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Chapter 1

Introduction

Until the early 1980’s telephony was essentially the only communication service,
but in the past two decades the technological developments in this field have sped
up. Nowadays communication services, such as IP telephony, Internet television,
and gaming, are widely available, and continuously evolve into more sophisticated
ones. These developments are accompanied by an increasing demand for highly-
performing communication networks to properly support these new services. High-
speed Internet access became widely available via ADSL, and mobile services grad-
ually evolved from speech, enabled by the GSM network, to broadband data access
supported by UMTS and HSPA. More recent developments in wireless technologies,
e.g. Wireless LAN, give rise to so-called wireless ad-hoc networks supporting com-
munication services among users in areas without any underlying infrastructure.

Communication services generate traffic streams consisting of small packets, that
have to be transported via the underlying network while obeying certain require-
ments in terms of, e.g., packet latency, throughput, and packet-loss ratio, as other-
wise the Quality of Service (QoS) will not be satisfactorily. These traffic streams may
be highly variable and unpredictable depending on the users’ behaviors as well as
on the characteristics of the services. In order to meet the desired requirements, var-
ious QoS-provisioning approaches can be deployed in the network, which vary in
complexity and the extent in which they adjust the traffic streams.

The tool of stochastic modeling, and, in particular, queueing theory, is widely
used to evaluate the performance of communication networks, aiming at optimiza-
tion of network design and dimensioning. A first stage in this performance eval-
uation consists of formulating the system dynamics as a mathematical (stochastic)
model. Subsequently, the model is analyzed to obtain the performance metrics of in-
terest, providing insight in, e.g., attained service levels, maximum sustainable load
for a given QoS demand, and the efficacy of various QoS-provisioning methods that
may be deployed in the network.

This thesis is concerned with two principal performance modeling and analysis
issues in communication network environments that are currently attracting sub-
stantial attention: i) the dimensioning of IP-network links, and ii) the impact of
resource sharing on the performance in wireless ad-hoc networks. Although the
research questions and the underlying communication networks differ, there is a
strong resemblance in terms of the models and evaluation methodologies that are
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used to analyze them. In particular, we concentrate on models in which the traf-
fic streams generated by the network’s users are modeled as fluid, i.e., we do as if
they are generated in a continuous ‘fluid’ manner, thus abstracting from the trans-
mission of individual packets. Fluid models have proven to be a powerful analysis
approach for communication networks as they, in many occasions, yield relatively
simple models that allow for tractable analysis, while still capturing the essential
relevant system characteristics.

The objective of this chapter is to further elaborate on the research questions that are
investigated in this thesis, and, in particular, to detail our contributions. In order to
do so, we first sketch some characteristics of the behavior of users and services, and
discuss the importance of providing QoS in communication networks (Section 1.1).
Next, we explain the research questions in more depth (Section 1.2), followed by
brief introductions of the models and evaluation approaches that we use to analyze
these questions (Section 1.3). Finally, we state our contributions and give an outline
of this thesis (Section 1.4).

1.1 Providing QoS in communication networks

Communication services generate traffic that has to be transported by an underlying
communication network; in order to attain a suitable QoS level, the network must
satisfy certain requirements. In Section 1.1.1 we focus on characteristics of com-
munication services, their traffic profiles and the relation between the QoS and the
performance at the network layer. In Section 1.1.2 we elaborate on the network-layer
performance and introduce two QoS-provisioning approaches.

1.1.1 Communication services

Communication services, such as web browsing, peer-to-peer file sharing, Internet
telephony (VoIP), Internet television (IP-TV), etc., are often classified into two groups:
elastic and streaming services, see e.g. [110].

Elastic services, e.g., web browsing and file sharing, adapt their packet transmis-
sion rate while active. These services mostly use the well-known TCP protocol, that
controls the transmission rate; the rate varies over time depending on the level of
congestion in the network. In most cases the entire file has to be transferred before it
can be used by a user; therefore users relate the QoS of elastic services directly to the
throughput or the transfer time of a file transmission.

Streaming services, e.g., voice and video services, generate traffic in a non-adap-
tive manner with either a constant or a variable rate. These services generally have
a real-time or interactive nature and consequently require that the traffic profile is
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preserved throughout the transport. Insufficient network capacity results in packet
loss and delays, which are significant causes of QoS degradation.

Obviously, the QoS and the performance at the network layer are strongly re-
lated; services will not properly function if the network performance is insufficient.
Consequently, the desired QoS enforces a minimum performance level for the un-
derlying network. The performance at the network layer is indicated by metrics
such as throughput, latency, and the packet-loss ratio (PLR); the relations between
these metrics and the QoS have been thoroughly investigated for many services,
see e.g. [37, 67]. For example, voice services demand a given small packet latency,
streaming video requires a specific small PLR, and file transfers require a certain min-
imum throughput.

1.1.2 QoS-provisioning techniques

The performance at the network layer depends strongly on the offered traffic and the
available capacity. Clearly, provisioning additional capacity in a network improves
the network’s performance. Further observe that the performance can be traded off
against the utilization of the network resources, i.e., increasing the traffic load (and,
hence, the network utilization) will degrade the performance.

Basically, two strategies are applied to ensure the QoS in communication net-
works: QoS differentiation and overprovisioning. QoS differentiation implements traf-
fic-differentiation mechanisms which preferentially treat traffic of highly-demanding
services such that the available capacity can be used more economically. Overprovi-
sioning is a ‘QoS by provisioning’ approach, i.e., allocating enough capacity to meet
the QoS requirements of all services present; all traffic streams are treated in the same
way, thus all meet the requirements of the most stringent service.

Both approaches have their own merits and, consequently, their own areas of ap-
plications. Overprovisioning has several advantages over QoS differentiation, see
also, e.g. [46]. In the first place, the complexity of the network routers can be kept
relatively low, as no advanced traffic-differentiation mechanisms, such as scheduling
and prioritization, are needed. Secondly, traffic-differentiation mechanisms require
that the parameters involved are ‘tuned well’, in order to meet the QoS needs of the
different classes – this usually requires the selection of various parameters (for in-
stance: weights in weighted fair queueing algorithms, etc.). Overprovisioning has
drawbacks as well: the lack of any traffic-differentiation mechanism dictates that
all flows should meet the most stringent QoS requirement, thus reducing the effi-
ciency of the network (in terms of maximum achievable utilization). However, it is
expected that this effect is mitigated if there is a high degree of aggregation, even in
the presence of heterogeneous QoS requirements across users, as argued in, e.g., the
introductions of [46] and in [71].

As said before both approaches have their own areas of applications based on
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the trade-off between costs of extra capacity and the increasing complexity due to
traffic-differentiation mechanisms. In situations without firm capacity restrictions
one would keep the complexity as low as possible, and hence one opts for overpro-
visioning. Therefore overprovisioning is generally applied in networks which can
achieve a high utilization of resources and where additional capacity is relatively
cheap, e.g., core networks. QoS differentiation is preferred in situations where ca-
pacity is scarce (and therefore expensive), e.g., in mobile access networks or wireless
ad-hoc networks. In these networks the number of active users typically remain
small and a single user can jeopardize the QoS of all other users.

1.2 Research topics addressed in this thesis

In this thesis we address two particular research topics related to different types of
communication networks. Each of them is dealt with in a separate part of the thesis:

I Dimensioning of IP-network links using overprovisioning,

II Impact of resource-sharing on the performance of wireless ad-hoc networks.

Below we describe our research topics in more detail. In Section 1.3 we will elaborate
on the performance modeling and evaluation issues associated with them.

1.2.1 Dimensioning of IP-network links using overprovisioning

We consider a service provider who uses overprovisioning to offer the required QoS.
Recall that the idea of overprovisioning is to provide sufficient capacity at the net-
work links such that the QoS demands of all users are met; it is the most convenient
QoS-provisioning approach in many practical situations, see Section 1.1.2.

Insight into the required link capacity can be obtained from a mathematical for-
mulation of this issue. We present our mathematical formulation, without going into
details here. Therefore, we let A(T ) denote the amount of traffic offered to the link
during an arbitrary time interval of length T . Then, the required capacity C is the
smallest C such that following inequality holds:

P(A(T ) ≥ CT ) < ε, (1.1)

where ε is typically small.
Note that the inequality allows overflows (defined as: A(s) > Cs) to occur for

time periods s shorter than T ; the reason is that network elements are equipped
with buffers such that overflows for short periods of time do not directly result in
QoS degradation. Further observe that the constraint is probabilistic, i.e., ε > 0, and
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not absolute, i.e., ε = 0, which would require an extraordinary amount of capacity.
In fact, the parameters T and ε reflect the QoS constraint; the choices of their values
embody the trade-off between the desired QoS and the network utilization costs.

In the first part of this thesis we extensively investigate inequality (1.1) and the
influence of different types of traffic behavior A(T ), the time scale T , and the QoS pa-
rameter ε. In particular, we consider dimensioning from a service provider’s point
of view, whose foremost difficulty is that he lacks detailed insight into the charac-
teristics of the offered traffic. We develop a dimensioning procedure which relies on
just coarse traffic-load measurements.

In addition, we investigate the properties of overflow periods, e.g., the duration
which is how long will an overflow last when it occurs. Overflow periods affect
the network performance and, consequently, the QoS, in particular, overflows that
last for long periods of time severely degrade the QoS. The duration and the other
properties are indicators of the impact of an overflow, and it relates to the transient
behavior of overflows. Observe that inequality (1.1) effectively restricts the frequency
of overflows of (at least) length T .

1.2.2 Impact of resource sharing on the performance of wireless ad-
hoc networks

In Part II of this thesis we investigate the impact of resource sharing among nodes on
the performance of wireless ad-hoc networks. Wireless ad-hoc networks consist of
self-configuring wireless nodes and can be deployed instantly without a fixed infras-
tructure or predetermined configuration. An important feature of ad-hoc networks
is multi-hop connectivity, i.e., if a node is not directly connected to its destination, it
can use other nodes to relay its traffic. The underlying communication technology is
usually based on shared medium access, i.e., neighboring nodes share a common ra-
dio channel with limited capacity, e.g., as in IEEE 802.11 Wireless LAN (see e.g. [63]).
Nodes that have central locations in these networks are more likely to be used as
relay nodes and can easily become performance bottlenecks.

The goal of the second part of this thesis is to evaluate the performance of a relay
node in a wireless ad-hoc network. We consider the situation that a time-varying
number of wireless source nodes are transmitting flows of data packets to destina-
tions elsewhere in the network via the relay node. We are interested in the transfer
time of a flow, i.e., the time that is required to entirely transmit a flow from a source
node, via the relay node, to the destination. In particular, we extensively investigate
the impact of the resource sharing between the source nodes and the relay node on
the transfer time of a flow. In particular, we investigate the benefits of granting a
different share of the capacity to the relay node than to each of the source nodes.



6 1. Introduction

1.3 Models and performance-evaluation methodologies

In the performance evaluation of communication networks by mathematical model-
ing one can distinguish three main steps:

1 Modeling, i.e., formulating the dynamics of the communication network in
terms of a stochastic model.

2 Analysis of the stochastic model to obtain insights into the performance metrics
as a function of the relevant system parameters.

3 Numerical evaluation using the analytical expressions of phase 2 to obtain in-
sight into the influence of the model parameters on the performance metrics.

This section briefly introduces fluid modeling (Section 1.3.1) and performance eval-
uation methodologies (Section 1.3.2) that are used throughout this thesis; more com-
prehensive descriptions are provided in Chapter 2. We emphasize that the third
step, i.e., numerical evaluations, is extensively performed in this thesis for each of
the research topics under consideration.

1.3.1 Fluid modeling

As mentioned in the beginning of this chapter, we use so-called fluid modeling of
traffic sources for the performance analysis in this thesis. By fluid modeling we
mean that traffic sources are modeled as if these generate traffic in a fluid manner,
i.e., according to a continuous process. This approach differs from ‘classical’ traffic
modeling and queueing networks where traffic sources generate discrete amounts of
work (packets) which arrive according to a certain point process. The advantage of
fluid modeling is that it abstracts from per-packet details resulting in a more tractable
model (while retaining the essential behavior of the system), which, in many cases,
allows for more explicit analysis. Fluid modeling of traffic sources can be applied
to capture the behavior of i) individual traffic sources, or ii) the aggregated traffic of
many sources.

Fluid modeling of individual traffic sources concentrates on initiations and depar-
tures of flows, where flows continuously generate traffic when active. The trans-
mission rate of an ongoing flow depends on the type of service involved; streaming
services are modeled with a non-adaptive (but potentially variable) rate, while the
rate of elastic services is adaptive (it for instance reacts to the number of other active
flows). This modeling approach is used to investigate flow-level performance met-
rics, i.e., performance metrics that characterize properties of individual flows, such
as the transfer time of an elastic flow.
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Fluid modeling of the aggregated traffic of many sources is particularly useful if there
is a substantial level of aggregation; the amount of traffic offered by an individual
user is then only a small fraction of the total aggregate and individual users are not
distinguished from each other. Studies in literature reveal that, in many practical
situations, large aggregates of traffic may be modeled by a Gaussian process; the
amount of offered traffic during an interval follows a Normal distribution where the
mean and the variance function depend on the length of the interval.

1.3.2 Performance-analysis methodologies

Besides ‘standard’ probability theory for the analysis of the performance metrics un-
der consideration, we frequently use a number of methodologies which are briefly
explained in this section, and in more detail in Chapter 2.

Transforms. On several instances we analyze the transform of the random variable
under consideration; the analysis of the random variable itself is often hard, and con-
sidering the transform may result in more tractable expressions. For a non-negative
random variable X the Laplace transform (LT) E exp(−sX) and the moment gener-
ating function (MGF) E exp(θX), are defined as

Ee−sX =
∫ ∞

x=0

e−sxf(x)dx, EeθX =
∫ ∞

x=0

eθxf(x)dx,

where f(x) is the probability density function of X . Transforms are often practical
to work with as they have some properties that greatly simplify calculations; most
notably, the LT of the sum of two independent random variables is the product of the
LTs of the individual random variables (and the same applies to MGFs).

Large deviations. From a performance engineering point of view there is special
interest in rare events, i.e., events that occur with a small probability. Communication
networks often support services with demanding QoS requirements, which enforce
stringent values for the performance metrics at the network layer, e.g., small delays
or low packet loss ratio. Therefore, the network is designed such that the probability
that such an event occurs, e.g., the excess traffic is above a certain value, is very small,
typically in the order of 10−4 to 10−6. Large deviations (LD) theory is dedicated to the
analysis of rare events. In this thesis we rely on specific cases of LD theory, viz. the
so-called sample-mean LD and sample-path LD.

Simulations. Simulations can be used to empirically estimate performance metrics.
Random samples of, e.g., the arrival process and service requirements, are used as
inputs for an emulation of a communication network while keeping track of the de-
sired performance metrics. We use simulations as a method to validate the modeling
phase (investigate whether the model accurately captures the system’s behavior),
and to validate the analysis of the model (in case that exact analysis is not possible



8 1. Introduction

and assumptions or approximations were made in the analysis phase). A drawback
of the use of simulations is that they can be time-consuming, in particular when con-
sidering rare events. In this thesis we use, besides straightforward simulations, also
importance sampling, which is a method to simulate rare events more efficiently.

1.4 Contributions and outline

This thesis essentially consists of two parts, each of them addressing one of the two
research topics introduced in Section 1.2. In this section we sketch the contributions
of this thesis, at the beginning of each chapter we provide the contributions of that
particular chapter with more detail.

1.4.1 Dimensioning of IP-network links using overprovisioning

In Chapter 3 we consider the dimensioning of an IP-network link that is carrying
the traffic from multiple users. Current bandwidth provisioning procedures for IP-
network links are mostly based on simple rules of thumb, using coarse traffic mea-
surements made on a time scale of e.g., 5 or 15 minutes. A crucial question, however,
is whether such coarse measurements give any useful insight into the capacity actu-
ally needed: QoS degradation experienced by the users is strongly affected by traffic
rate fluctuations on much smaller time scales. We develop a bandwidth provision-
ing rule that is based on Expression (1.1), i.e., we determine the required capacity
using the QoS measure that the probability that the traffic supply exceeds the avail-
able bandwidth, over some predefined (small) interval T , is below some small fixed
number ε. In the dimensioning procedure we combine coarse traffic-load measure-
ments with fluid traffic modeling that captures the behavior (i.e., rate fluctuations)
on the shorter time scales. Furthermore, the provisioning formula explicitly gives
the impact of the QoS parameters T and ε on the required capacity. The validity of
the bandwidth provisioning rule is assessed through extensive measurements per-
formed in several operational network environments. This chapter is based on [13].

In Chapters 4 and 5 we consider the M/M/∞ queue which is used as a flow-
level model for the occupancy of an IP-network link. We are particularly interested
in congestion periods, which are defined as periods during which the offered traffic
(number of active users) is continuously above a certain value C. For the so-called
C-congestion periods we are interested in the following performance metrics: the du-
ration DC, the number of arrivals NC, and the area AC which is the amount of offered
traffic in excess of the capacity. The motivation behind the analysis of congestion
periods is that knowledge of the characteristics of congestion periods can be used to
understand the performance of an IP-network link. Observe that Chapters 3, 4, and
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5 all investigate overflow periods, but, there are some differences. Chapter 3 primar-
ily focuses on the frequency of overflows, whereas Chapters 4 and 5 investigate the
‘severity’ of an overflow by considering the duration and other related properties of
congestion periods. Hence, Chapter 3 is essentially concerned with the stationary
behavior, while Chapters 4 and 5 focus on the transient behavior.

In Chapter 4 we obtain explicit recursive expressions via which all moments and
covariances of the quantities of congestion periods can be obtained. We derive ex-
plicit equations, for instance, we write ED2

C explicitly in terms of a starting condition
ED2

0 . We also present formulae for these starting conditions (which directly relate to
the busy period in the M/M/∞ queue). Further, we also define a C-intercongestion
period, a period during which the number of customers is continuously below level
C, and provide numerical evidence that the intercongestion period can be used as
an approximation of a congestion period, which solves the difficulties of obtaining
a starting condition. The presented results appeared as [117], which is an excerpt of
the more comprehensive version [116].

Chapter 5 is also devoted to C-congestion periods of an M/M/∞ queueing sys-
tem, but now the goal is to shed light on the tail probabilities P(DC > x), P(AC > x),
and P(NC > x) for x large. In the so-called many-flows scaling, we show that the tail
asymptotics are essentially exponential in the scaling parameter. The proof tech-
niques stem from large-deviations theory; we also identify the most likely way in
which the event under consideration occurs. In the same scaling, we approximate
the model by its Gaussian counterpart. We derive the tail asymptotics for the Gaus-
sian counterpart. Then we use change-of-measure arguments to find upper bounds,
uniform in the model parameters, on the probabilities of interest. These change-of-
measures are applied to devise importance-sampling schemes, for fast simulation of
rare-event probabilities. They turn out to yield a substantial speed-up in simulation
effort, compared to straightforward simulations. This chapter is based on [91].

1.4.2 Impact of resource sharing on the performance of wireless
ad-hoc networks

The main contribution of this part is the fluid-modeling approach of a central node
in a wireless ad-hoc network; the central node is used by other nodes as a relay node
to forward their traffic to destinations that cannot be reached directly due to their
limited transmission range. This system is modeled by fluid sources that feed into a
queue where the input rate into the queue as well as the output rate depend on the
current state of the system, e.g., the number of active source nodes. The fluid model
captures the essential features of a wireless ad-hoc network, in particular, the way
resources are shared among the nodes.

In Chapter 6 we first explain wireless ad-hoc networks in more detail, and then
we introduce the fluid model and the performance metrics. We also provide an
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overview of the literature on performance modeling of wireless ad-hoc networks.
In Chapter 7, which is based on [14, 115], we analyze the fluid model introduced

in Chapter 6. The primary aim is to obtain insightful expressions for the expected
transfer time of a flow, i.e., the duration from the moment that a source node starts
to transmit a flow till the moment that the relay node forwards the last packet. In
particular, we consider the impact of the resource sharing between the relay node
and the source nodes, where the relay node may obtain a different share of the ca-
pacity than each of the source nodes. In the analysis we first consider the special
case of exponential flow sizes; then the model falls in the framework of so-called
fluid queues with feedback. We exploit this framework to analyze the source-node
dynamics, as well as the workload at the relay node. Interestingly, we observe from
extensive numerical experimentation over a broad set of parameter values that the
distribution of the number of active source nodes is (practically) insensitive to the
flow-size distribution. By using this remarkable (empirical) result as an approxima-
tion assumption, we obtain explicit expressions for general flow-size distributions
for the mean workload at the relay node and the mean overall flow transfer time.

Chapter 8 addresses the validation of the fluid-modeling approach for wireless
ad-hoc networks. The fluid model and resulting expressions are validated by simu-
lations of the actual communication system that include all details of the IEEE 802.11
Wireless LAN protocols (see, e.g. [63]). First, we consider the system where all nodes
equally share the capacity which corresponds to the ‘plain’ IEEE 802.11 version. For
the validation we compare simulations of the actual communication system with
simulations of the fluid model to validate the fluid-modeling approach. We also
compare these results with numerical evaluations of the expressions that were an-
alytically obtained in Chapter 7. Next, we consider the situation where the relay
node may obtain a different share of the capacity, which relates to the IEEE 802.11e
version that allows for QoS differentiation. We first obtain a mapping of the IEEE

802.11e differentiation parameters to the fluid-model parameters, and then we vali-
date by means of simulations that the fluid model accurately describes the system’s
behavior. This chapter appeared as [114].

In Chapter 9 we study a special case of the fluid model with exponentially dis-
tributed flow-sizes and equal sharing of the common capacity, i.e., each source node
and the relay node receive the same share of the capacity. We characterize the distri-
butions of performance metrics by their Laplace transforms. In addition, the corre-
sponding tail probabilities of the performance metrics are studied using LD theory.
Recall that the results in Chapter 7 are restricted to the mean values of the performance
metrics. These results are published in [90].



Chapter 2

Fluid models and performance-evaluation
methodologies

This chapter provides more comprehensive descriptions of the fluid-modeling ap-
proach used in this thesis. It first addresses the underlying fluid models (Section 2.1),
and next (Section 2.2) the performance-evaluation methodologies that were concisely
introduced in Section 1.3.

2.1 Fluid modeling

In this section we describe a number of fluid models of traffic sources (Section 2.1.1),
and we introduce the concept of the fluid queue, i.e., a queue fed by fluid input
(Section 2.1.2).

2.1.1 Fluid modeling of traffic sources

In Section 1.3.1 it was already claimed that traffic sources can be modeled as if these
are ‘fluid’, i.e., as if the traffic sources continuously transmit traffic. In this section
we justify this fluid-modeling approach, and provide a definition of a fluid source
and highlight some of its properties. Subsequently, we present fluid models for: i)
individual traffic sources, and ii) the aggregated traffic of many sources, cf. Section
1.3.1.

Rationale for fluid modeling

Fluid modeling of traffic sources by a continuous process is a widespread metho-
dology, e.g. see [8, 10, 11, 18, 46, 100]. The idea behind this approach is to abstract
from the discrete nature of packets, which we explain after we have introduced two
different levels of abstraction: the packet level and the flow level, e.g., see [111].

The packet level considers traffic, potentially the aggregate of multiple users, at
the granularity of individual packets. The associated time scale is in the order of
the transmission time of a packet, i.e., order of milliseconds, and the traffic rate is
highly variable due to the dynamics of both users and their services involved. Typi-
cal packet-level performance metrics include the packet delay and delay variation.
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The flow level focuses on flows, to be understood as a succession of packets that
comprise an instance of a service, e.g., a web page, voice call or IP-TV stream. The
main events of interest are initiations of new flows and departures of finished flows
(e.g., after completion of a flow transfer). Frequently used flow-level performance
metrics include, e.g., the transfer time or average transmission rate of a flow; note
that these strongly affect the QoS of elastic services.

Fluid modeling exploits the fact that the flow-level time scale substantially exceeds
that of the packet-level; the packet-level fluctuations vanish if traffic is considered
over longer time periods. In fluid modeling a source is modeled as if it continuously
transmits traffic. A simple example is a streaming service, e.g., voice, that, when a
user is active, generates packets of size B at constant time intervals of length4t; this
active state is modeled as a fluid source with continuous transmission rate B/4t.
This modeling approach can be applied to all kinds of traffic sources, e.g., individual
flows or the aggregated traffic of many users, as long as the behavior is considered
on a time scale that is long enough to smoothen out the packet-level fluctuations.

The advantage of the fluid-modeling approach is that it provides more tractable
models compared to models that include packet-level details, and therefore allow,
in many cases, for more tractable analysis. Fluid models still capture the essences
of the underlying system; in particular, they include the effects of a varying number
of active users related to the initiations of new flows and the completion of flow
transfers. This modeling approach can be used to investigate properties of flows,
e.g., durations of flow transfers. In addition, characteristics of the aggregate traffic
at a time scale shorter than that associated with individual flows can be examined,
e.g., overflow periods (cf. Section 1.2.1).

Fluid traffic source A(t)

Let A(t) := {A(t), t ∈ R} be a continuous-time stochastic process, where A(t) de-
notes the amount of traffic generated in the interval [0, t). Observe that this process is
cumulative, in the sense that the amount of traffic A(s, t) that arrives in interval [s, t)
is A(s, t) = A(t) − A(s). Furthermore, in this thesis we only consider sources with

stationary increments, i.e., A(s, t) d= A(t− s), for all s, t ∈ R.
Directly coupled with the amount of offered traffic A(t) is the so-called instanta-

neous rate R(t), i.e., the rate at which the source generates traffic at epoch t. Then
R(t) := lims↑t A(s, t)/(t − s). It is noted, however, that R(t) is not always a well-
defined notion, e.g., for some Gaussian sources (see page 14).

Fluid-flow modeling of individual traffic sources

It is a widely used approach to model an individual flow as a continuous fluid
source, see e.g. [11, 18, 100]. The traffic source is often described by an ON-OFF-
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process, where the source is in the ON-state when the user is active, i.e., when in-
volved in a flow transfer, and in the OFF-state when inactive. The transmission rate,
constant or variable, during the ON-state depends on the type of service that it rep-
resents.

Traffic source with a fixed transmission rate when active. Some streaming services,
e.g., VoIP conversations, generate packets at constant intervals, when ON. As argued
before, this behavior during the ON-state can be modeled as a source with a constant
(positive) rate, and with rate 0 when OFF. This type of traffic source is used in Part I,
e.g., in Chapter 3 to model ADSL users with generally distributed ON-durations.

Traffic source with a variable transmission rate when active. Elastic services, such as
web-browsing or file-sharing, are rate-adaptive when ON. The traffic rate depends
on the current state of the network, e.g., the number of active users. For example, in
a link with a limited capacity C each source can transmit at rate rn := C/n if in total
n users are active. This type of traffic sources is used in Part II to model wireless
nodes.

Markov-modulated fluid source. A Markov-modulated fluid source is defined by a
continuous-time Markov chain Nt which transmits at rate rNt if the system is in state
Nt. Then the amount of offered traffic A(t) is obtained by

A(t) :=
∫ t

τ=0

rNτ dτ.

A Markov-modulated fluid source can be used to model a broad class of traffic
sources: individual traffic sources (including the two examples presented above in
case of exponentially distributed ON-durations), but it can also model the superpo-
sition of multiple (multi-rate) sources. This modeling approach is used in Part II,
in particular in Chapters 7 and 9, to model the arrival process of a superposition of
multiple wireless source nodes. An overview of Markov fluid-models is presented in
[51], the authors summarize the basic concepts and the potential use of these models.

Fluid models for the aggregate traffic of many sources

The traffic on high-speed transmission links in communication networks is, in many
cases, the aggregate of many users each having a small access rate. Studies in lit-
erature, e.g., see [3, 8, 10, 46, 73, 97, 102], reveal that the aggregate traffic can often
be modeled by a Gaussian process. The literature provides a theoretical foundation
for the Gaussianity of network traffic based on Central Limit Theorem (CLT)-type of
arguments. The Gaussianity is empirically validated by analyzing traffic traces of
real networks.

The Gaussianity of the aggregate traffic requires a sufficient level of aggregation.
In [73] the authors investigated the required aggregation, and distinguish between
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horizontal and vertical aggregation. By horizontal aggregation we mean the minimal
length of the time interval that one should consider before the traffic may be modeled
by a Gaussian process; if the time scale is too short one typically observes packet-
level behavior. Vertical aggregation involves the number of users that is required for
the aggregate traffic to exhibit Gaussian behavior.

More recent studies on this topic include [46, 97]. In [97] the authors elaborate on
the horizontal aggregation and examine whether the Gaussianity holds for various
time scales. They observe that when the traffic is Gaussian for a certain time scale, this
usually holds for a wide range of ‘adjacent’ time scales. The authors of [46] conclude
that the required level of vertical aggregation is at least 50 Mbits. However, this can
only be considered a temporarily useful rule of thumb; the continuous developments
of new services and the increasing access rates cause the required level of vertical
aggregation, expressed as the traffic volume, to grow over time.

Gaussian source. We have argued that the aggregate traffic of many sources can
be modeled by a Gaussian process under certain conditions. A traffic source A(·) is
called a Gaussian source if it is a Gaussian process with stationary increments, i.e., for
all s < t,

A(s, t) d= N (µ · (t− s), v(t− s)) ,

where µ is the mean traffic rate and v(·) the variance function.
Gaussian sources have a number of characteristics that make them suitable to

model network traffic, see e.g. [85, Section 2.6]. These characteristics are:

- Stationary increments. The distribution of the increment during interval [s, t)
only depends on the length of the interval, i.e., t− s, and is independent of the
position of the interval.

- Wide range of correlation structures. The variance function v(·) allows for a wide
range of correlation structures over time.

- Extreme irregularity of the traffic rate. The Gaussian source model can incorpo-
rate extreme traffic-rate fluctuations, where the instantaneous traffic rate can
be obtained as R(t) := lims↑t A(s, t)/(t − s). Recall that this traffic rate is not
always well-defined for Gaussian sources.

An example of a Gaussian process is the so-called integrated Ornstein-Uhlenbeck
(iOU) source which has variance function v(t) = 2λµ−3(tµ− 1 + e−tµ). Interestingly,
this process is the so-called Gaussian counterpart of an M/M/∞ process with arrival
rate λ and service rate µ, i.e., the expectations and variances of the amount of offered
traffic in interval [0, t) coincide. This process has a well-defined rate function R(t); in
particular, it is the Gaussian counterpart of the number of active users in an M/M/∞
system.
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Another Gaussian process that is widely used for network-traffic modeling is
fractional Brownian motion (fBm) with variance function v(t) = t2H where H is
the Hurst-parameter. This process has a long-range dependent correlation structure
for H > 1/2, behavior that was empirically discovered by, e.g., see [46, 80]. The
fBm process is, after appropriate scaling, the limiting process of the superposition of
many ON-OFF sources with heavy-tailed ON- or OFF-durations, see e.g. [33, 127].

2.1.2 Fluid queue

A queue fed by a (superposition of) fluid source(s) A(t) is called a fluid queue. The
queue typically has a limited service rate C. In case the instantaneous rate R(t) of the
traffic source exceeds the capacity C, the amount of work in excess of C is backlogged
in the queue; the workload in the queue at time t is denoted by W (t). The queue
works at full rate C whenever it is backlogged (W (t) > 0), and when the traffic
arrival rate equals or exceeds the service rate (i.e., R(t) ≥ C).

Next we will present a derivation of the steady-state buffer workload, which can
be written as a functional of the arrival process A(·). As an illustrative example we
consider a slotted cumulative arrival process A(·) that generates an amount of work
Xn in the n-th time slot, i.e., A(−n,−1) := X−n + · · · + X−1. We can relate the
workload W0 at slot 0 to the workload W−1 at slot −1:

W0 = max(0,W−1 + X−1 − C).

After applying this step k times we obtain

W0 = max(W−k + A(−k,−1)− kC, A(−k + 1,−1)− (k − 1)C, . . .

. . . , A(−1,−1)− C, 0).

This relation is known as Lindley’s recursion. For stability of the queue it is required
that the expected amount of work EXi that arrives during a slot is less than the
service rate, i.e., EXi < C. For a stable queue there exists a k such that W−k = 0. Now
observe that when κ denotes the last slot that the queue was empty, i.e., W−κ = 0
and W−k > 0 for 0 < k ≤ κ, then W0 = A(−κ)− κC. Hence, it is readily verified that

W0
d= sup

n≥0
A(−n,−1)− nC.

This means that the stationary distribution of the fluid queue is in distribution equiv-
alent to the distribution of the maximum of the ‘free process’ A(−n,−1) − nC. This
procedure also applies to continuous-time processes and leads to

W0
d= sup

t≥0
A(−t, 0)− Ct. (2.1)
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This identity is often attributed to Reich [106]. Note that this concept can be used
irrespective of whether or not the rate process R(t) is well-defined.

In this thesis we use some variants of the fluid queue: a Markov-modulated fluid
queue, a Markov-modulated fluid queue with so-called feedback, and a Gaussian queue,
which are explained next.

Markov-modulated fluid queue. In the analysis of Chapters 5 and 9 we use a Markov-
modulated source that feeds into a fluid queue. Let Nt follow a continuous-time
Markov chain on {0, . . . , nmax} with generator matrix Q, and let at time t the traffic
be generated at rate rNt

. Seminal work on this model was presented in the papers
[5, 77, 99]. A key contribution is the derivation of the stationary joint distribution of
(Nt,Wt) which is defined as

Fn(x) := lim
t→∞

P (Wt ≤ x; Nt = n) = P(W ≤ x; N = n).

The dynamics of the fluid queue is described as a linear system of differential equa-
tions: the workload satisfies the Kolmogorov forward equations: F ′(x)R = F (x)Q′,
where R := diag{r0, . . . , rnmax}. The solution of this system is, under mild regularity
conditions, given in the form of the following spectral expansion:

F (x) =
nmax∑

j=0

ajvj exp(zjx),

where (zj , vj) is an eigenvalue-eigenvector pair, i.e., a scalar and vector that solve
zjvjR = vjQ. Let ω denote the stationary distribution of Nt, then ωn = Fn(∞), and
further observe that P(W ≤ x) =

∑
n Fn(x).

The left graphs of Figure 2.1 present an M/M/∞-input process that feeds into a
fluid queue, i.e., flows arrive according to a Poisson process (λ) with a maximum
of nmax flows, and each flow generates traffic at rate 1 for an exponentially (µ) dis-
tributed duration. This system is a Markov-modulated fluid queue, and it is used in
the analysis of Chapter 5. The top left graph displays the number of active sources,
the bottom left graph the evolution of the buffer workload.

Markov-modulated fluid-queue with feedback. An extension of the above-explained
model comprises the transmission rates to also depend on the workload at the fluid
queue, so-called feedback. This behavior is modeled as a system with generator ma-
trix Q in case of an empty fluid queue (i.e., Wt = 0), and it behaves according to a
generator matrix Q̄ in case the queue is non-empty (Wt > 0). Observe that Nt does
not constitute a Markov chain. This model was examined in e.g. [88, 119, 120], and it
used in the analysis of Chapter 7.

Gaussian queue. The fluid queue is called a Gaussian queue when the input process
A(t) is a Gaussian source. Gaussian queues are notoriously hard to analyze; in par-
ticular, exact results are only available for Brownian motion and Brownian bridge input
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Figure 2.1: Traffic rates R(t) and evolution of the workload Wt of the fluid queue with λ = 10,
µ = 1 and C = 15. Left: M/M/∞ sources with unit rate. Right: i OU source.

processes. For other Gaussian processes one has to rely on approximations, e.g. see
[85, Section 5.4].

An interesting result is that a fluid queue fed by n exponential ON-OFF sources
converges to a Gaussian queue with an iOU input process, under a special parame-
trization, e.g. see [78]. The Gaussian queue, and in particular, fed by iOU input pro-
cesses is analyzed in Chapter 5. The right panels of Figure 2.1 present a Gaussian
queue fed by an iOU source; the top right panel presents the instantaneous traffic
rate, and the bottom right graph the evolution of the Gaussian queue.

2.2 Performance-evaluation methodologies

In the analysis of the performance metrics under consideration we use a number of
methodologies which are explained in more detail in the following sections.
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2.2.1 Transforms

On several occasions we analyze the transform of a random variable to obtain more
solvable algebraic equations. Recall from Section 1.3.2 that, for a non-negative ran-
dom variable X , the Laplace transform (LT) E exp(−sX) and the moment generating
function (MGF) M(θ) := E exp(θX) are defined as

Ee−sX =
∫ ∞

x=0

e−sxf(x)dx, EeθX =
∫ ∞

x=0

eθxf(x)dx,

where f(x) is the probability density function of the random variable X . Further
recollect that the LT of the sum of two independent random variables is the product
of the LTs of the individual random variables. For an overview of Laplace transforms
and their properties we refer to the standard text of Kleinrock [75, Appendix I].

Transforms sometimes allow for exact inversion if they consist of (a combination
of) standard transforms. In addition:

- The moments of a random variable can be obtained by differentiation of the
transform; the k-th derivative of the MGF at 0 yields the k-th moment, in case
of the LT the derivative has to be multiplied by a factor (−1)k.

- Application of the Chernoff bound. The Chernoff bound is an upper bound for
the tail probability of a random variable and it is derived by inserting the MGF

into the Markov inequality. Recall that the classical Markov inequality yields
P(X ≥ a) ≤ (EX)/a for a non-negative random variable X ; if we substitute X

by exp(θX) we obtain the following upper bound:

P(X ≥ a) = P
(
eθX ≥ eθa

) ≤ EeθX−θa = e−θaM(θ).

Because this holds for all non-negative θ, we choose the tightest upper bound:

P(X ≥ a) ≤ inf
θ≥0

e−θaM(θ). (2.2)

Unfortunately, the Chernoff bound is rather implicit in that it still requires an
optimization over θ. Its major advantage, however, is that it does not require
an inversion of M(θ).

- Transforms can be numerically inverted. In particular, Abate and Whitt have
developed theory on the numerical inversion, for a survey, e.g., see [1, 2, 66].

In this thesis transforms are used throughout almost all chapters. For example: in
Chapter 9 the performance metrics are characterized by their LTs, Chapters 3 and
5 rely on the Chernoff bound to obtain upper bounds on tail probabilities, and in
Chapter 7 a particular performance metric is obtained by inversion of its LT.
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2.2.2 Large deviations

From a performance engineering point of view there is special interest in rare events,
i.e., events that occur with a small probability. For example, in communication net-
work the packet loss ratio is often restricted to a certain value in the order of 10−4 to
10−6. Large deviations (LD) theory focuses on rare events and can be used to estimate
tail probabilities.

The scope of large deviations theory is on rare events that occur due to an accu-
mulation of events, e.g., a large buffer content that occurs due to arrival of a large
number of (large) flows; LD is less suitable to analyze quantities that can be caused
by a single event (as typically occurs in heavy-tailed scenarios). For standard text-
books on large deviations we refer to [34]. In the context of this thesis, the book of
Mandjes [85] and the work of Shwartz and Weiss [123] are of particular interest.

In this thesis we rely on specific instances of LD theory, i.e., the sample-mean LD

and the sample-path LD.

Sample-mean large deviations. Consider a sequence of n i.i.d. samples X1, . . . , Xn

that are distributed as a random variable X with mean µ = EX . We are interested in
the probability that the sample mean n−1

∑n
i=1 Xi deviates from µ. First we define

f(n) := P

(
1
n

n∑

i=1

Xi > a

)
,

where a > µ. An upper bound on this probability follows directly from the Chernoff
bound (Expression (2.2)), i.e.,

f(n) = P

(
exp

(
θ

n∑

i=1

Xi

)
> enθa

)
≤ inf

θ≥0
e−nθaE

(
exp

(
θ

n∑

i=1

Xi

))

≤ inf
θ≥0

e−nθa (M(θ))n = e−nI(a),

where

I(a) := sup
θ≥0

(θa− log M(θ)) .

The function I(a) is usually called the convex conjugated or Fenchel-Legendre Trans-
form. An important result in large deviations is Cramér’s theorem, which builds on
the large deviation principle (LDP), see e.g. [34, 85, 123], from which can be concluded

lim
n→∞

1
n

log f(n) = −I(a).

Hence, the decay rate of f(n) is of an exponential nature for increasing n and the
decay rate is given by I(a). Observe that the upper bound of the decay rate results
from the Chernoff bound, whereas the lower bound is more difficult to prove.
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Sample-path large deviations. Large deviations can also be applied to stochastic pro-
cesses. The idea is rather similar as for the sample mean, but now we consider a se-
quence of stochastic processes X1(·), . . . , Xn(·) and their mean sample path
n−1

∑n
i=1 Xi(·). We are interested in the probability that the mean sample path falls

in a collection of paths S, i.e.,

P

(
n−1

n∑

i=1

Xi(·) ∈ S

)
≈ exp

(
−n inf

f∈S
I(f)

)
.

The functional I(·) assigns ‘costs’ to any path, and inff∈S I(f) represents the expo-
nential decay rate of the mean sample path being in set S. Another interesting result
is that if the sample-mean path is in set S, with overwhelming probability this path
is close to path f? ∈ S, which is the path that minimizes the functional I(·) over the
set S; the path f? is therefore called the most-likely path.

For sample-path LD we rely on two results: the framework of Shwartz and Weiss
[123] for Markov-modulated traffic sources, and the generalized version of Schilder’s
theorem for Gaussian processes, see e.g. [85].

Sample-path large deviations for Markov-modulated sources. In the framework pre-
sented in Shwartz and Weiss [123] a crucial role is played by the local rate function. In
case of a birth-death process, this function is defined as

Ix(u) := sup
ϑ

(
ϑu− λx(eϑ − 1)− µx(e−ϑ − 1)

)
, (2.3)

where λx and µx are the state-dependent birth- and death-rates. In fact, the local rate
function measures the ‘cost’ of moving in direction u, when the mean process is in
state x. The next step is to define the action functional I(f), which represents the ‘cost’
of the mean process n−1

∑n
i=1 Xi(·) following a path f(·):

I(f) :=
∫ ∞

−∞
If(s)(f ′(s))ds.

Analogously to the sample mean LD a large deviations principle can be stated which
says that the decay rate of probability that the mean sample follows a path in the set
S is

lim
n→∞

1
n

logP

(
n−1

n∑

i=1

Xi(·) ∈ S

)
= − inf

f∈S
I(f).

This framework is used in Chapter 5.

Sample-path large deviations for Gaussian sources. The generalized version of Schilder’s
theorem considers sample-path large deviations for Gaussian processes. We consider
the probability that the sample mean of a sequence X1(·), X2(·), . . . of i.i.d. Gaussian
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processes is in a set S, then, informally, Schilder’s theorem provides us the corre-
sponding decay rate:

P

(
n−1

n∑

i=1

Xi(·) ∈ S

)
≈ exp

(
−n inf

f∈S
I(f)

)
= exp

(
−n

2
inf
f∈S

‖f‖2R
)

,

where ‖ · ‖R is a norm for paths within a well-defined path space R, the so-called
reproducing kernel Hilbert space; for more details see e.g. [85, Section 4.2].

Unfortunately the rate function of a given path, I(f), can usually not be given in
closed-form. Notably, in case of Brownian motion sources the rate function can be
calculated explicitly, due to the independence of the increments. In Chapter 5 the
case of iOU sources is considered, which also leads to rather explicit results due to
its specific characteristics, e.g., the Markovian nature of the rate process. For other
Gaussian sources the rate functions cannot be given explicitly, to the best of our
knowledge.

2.2.3 Simulations

Another methodology to estimate a performance metric is by using simulations. In
this thesis we use simulations as a validation tool for i) the analysis-phase, and ii) the
modeling-phase. Besides the ‘direct simulations’, we also use importance sampling
(IS), in particular, in case of rare-event simulation.

Simulation for validation purposes

Validation of the analysis. Exact analysis of a stochastic model is not always possible
and one has to use assumptions or approximations to obtain explicit or insightful
expressions. These assumptions and approximations can be validated by numeri-
cally comparing the analytically obtained expressions with simulations of the fluid
model.

Validation of the model. In the modeling phase the communication network and
users’ behavior are formulated in terms of a stochastic model. Typically, details of
the system are simplified in order to obtain a tractable model. These modeling as-
sumptions can be validated by comparing results of the real communication system
to the results from the model; this is done by simulating both the real telecommuni-
cation system in all its details, as well as the (fluid) model. The appropriateness of
the (fluid) model can be assessed by comparing the outputs of these simulations.

Simulation methodologies

We use two simulation methods, so-called direct simulations and importance sam-
pling, both are described below shortly.
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Direct simulations. Direct simulations can be applied to both the actual (commu-
nication) system as well as to the (fluid) model of the system. In simulations one
draws samples of the arrival process and service requirements to use these as in-
puts of an emulation of the behavior of the model or actual communication system
while keeping track of the desired performance metrics. An introductory textbook
on simulation techniques is by Law and Kelton [79].

Suppose we are interested in the probability that a random variable obtains a
value in set E , i.e. P(E ∈ E ). This probability is estimated by observing many occur-
rences E1, . . . , En of the random variable, and then the probability is estimated by
α(E ) in the following manner:

α(E ) := P(E ∈ E ) = E [I(E )] =
1
n

n∑

i=1

Ii(E ),

where Ii(E ) is the indicator function which is 1 if Ei ∈ E and 0 otherwise.
An indicator of the accuracy of an estimator is provided by the width of the con-

fidence intervals, which depends directly on the variance of the estimator. A rule of
thumb, that is often used, is that the width of the confidence interval should be less
than, say, 10% of the estimator itself. From the definition of the confidence interval it
can be seen that the number of required replications is inversely proportional to the
variance of a single experiment. This means that direct simulation can be very time-
consuming, in particular, if the performance metric corresponds to a rare event. A
methodology to reduce the variance, and thereby the simulation time, is importance
sampling.

Importance sampling. Importance sampling is a so-called variance-reduction meth-
odology. It uses the idea of change-of-measure, which means that samples are drawn
from an other probability measure, e.g., Q, under which the event under consider-
ation is more likely to occur. Consequently, the increased occurrences of this event
are compensated for by the likelihood ratio dP/dQ. The probability we are interested
in is then estimated as follows:

α(E ) = EQ
[
I(E )

dP
dQ

]
.

In principle any probability measure Q (for which dP/dQ is well-defined) can be
chosen, but an inappropriate choice can result in a variance increase.

Importance sampling is used in Chapter 5 to estimate rare-event probabilities of
the quantities related to congestion periods.
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Chapter 3

QoS-aware provisioning of IP-network links

3.1 Introduction

Current bandwidth provisioning procedures for IP-network links are mostly based
on simple rules of thumb, using coarse traffic measurements made on a time scale of
e.g., 5 or 15 minutes. A crucial question, however, is whether such coarse measure-
ments give any insight into the capacity actually needed: QoS degradation experi-
enced by the users is strongly affected by traffic rate fluctuations on a much smaller
time scale, e.g., seconds (file transfers, web browsing) or even less (interactive, real-
time applications). Therefore, a thorough understanding is required of the relation
between the characteristics of the offered traffic, the link speed, and the resulting
QoS (cf. Section 1.1.2). To overcome this problem, we develop a dimensioning pro-
cedure which combines coarse traffic-load measurements with traffic modeling to
obtain this relation. This enables us to select a link capacity for which the fraction of
time that the aggregate rate of the offered traffic exceeds the link speed is less than a
predefined (small) value.

A common procedure is to i) use MRTG [101] to get coarse measurement data (e.g.,
5 min. intervals), ii) determine the average traffic rate during these 5 min. intervals,
and iii) estimate the required capacity by some quantile of the 5 min. measurement
data – a commonly used value is the 95% quantile. This procedure is sometimes ‘re-
fined’ by focusing on certain parts of the day (e.g., office hours, in the case of business
customers), or by adding safety and growth margins. The main drawback of this ap-
proach, as mentioned before, is that it is not clear how the coarse measurement data
relates to the traffic behavior at time scales relevant for QoS.

3.1.1 Contribution

The goal of our work is to develop accurate and reliable provisioning procedures
that require a minimal measurement effort. In particular, we derive an ‘interpolation’
formula that predicts the bandwidth requirement on relatively short time scales (say
the order of 1 sec.), by using large time scale measurements (e.g., in the order of 5 min.).
In our approach we express QoS in terms of the probability (to be interpreted as
fraction of time) that, on a predefined time scale T , the traffic supply exceeds the
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available bandwidth. The bandwidth C should be chosen such that this probability
does not exceed some given bound ε. The time scale T and performance target ε are
case-specific: they are parameters of our model, and can be chosen on the basis of
the specific needs of the most demanding application involved. We remark that in
this setting buffers are not explicitly taken into account; evidently, there is a relation
between the time scale T in which the traffic rate exceeds the link rate and the buffer
size needed to absorb the excess traffic.

Our approach relies on minimal modeling assumptions. Notably, we assume
that the underlying traffic model is Gaussian – empirical evidence for this assump-
tion can be found in e.g., [46, 73]. For the special case of peak-rate constrained traf-
fic (peak rate r), we can use (the Gaussian counterpart of) M/G/∞ type of input
processes [3], leading to an elegant, explicit formula for the required bandwidth;
M/G/∞ corresponds to a flow arrival process that is Poisson with rate λ and flow
durations that are i.i.d. as some random variable D (with δ := ED). We find that,
measuring a load ρ ≡ λδr (in Mbit/s), the required bandwidth (to meet the QoS cri-
terion) has the form ρ + α

√
ρ. It is clear that the ρ can be estimated by coarse traffic

measurements (e.g., 5 or 15 minutes measurements). The α depends on the char-
acteristics of the individual flows, and its estimation requires detailed (i.e., on time
scale T ) measurements. In many situations, however, there are reasons to believe
that the α is fairly constant in time; the estimate needs to be updated only when one
expects that the flow characteristics have changed (for instance due to the introduc-
tion of new applications).

We expect that the provisioning approach advocated in this chapter extends to
several other networking environments. In situations with large numbers of more or
less i.i.d. users, the Gaussian assumption will apply due to Central-Limit type of ar-
guments, and hence the procedure followed goes through. In this chapter we present
a validation of this approach in an IP setting; future work includes an assessment of
the provisioning guidelines in other types of networks.

Apart from its simplicity, our bandwidth provisioning formula ρ + α
√

ρ has a
number of attractive features. In the first place it is transparent, in that the impact of
changing the ‘QoS parameters’ (that is, T and ε) on α is explicitly given. Secondly,
the provisioning rule is to some extent insensitive: α does not depend on λ, but just
on characteristics of the individual flows, i.e., the flow duration D and the peak rate
r. This property enables a simple estimate of the additionally required bandwidth
if in a future scenario traffic growth is mainly due to a change in λ (e.g., due to
growth of the number of subscribers). Furthermore, the analytical expression for
α provides valuable insight into the impact of changes in D and r. Our bandwidth
provisioning rule has been empirically investigated through the analysis of extensive
traffic measurements in various network environments with different aggregation
levels, user populations, etc.
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3.1.2 Literature

There is a vast body of literature on bandwidth provisioning, see for instance [111].
With respect to traffic modeling, it was empirically shown that Poisson packet ar-
rivals do not accurately capture the dependencies present in network traffic [103].
Gaussian approximations do incorporate these dependencies; their use was advo-
cated in several papers, e.g., [3, 46, 73, 100] and Section 2.1.1. The use of flow level
traffic models, like the M/G/∞ model (in which flows arrive according to a Poisson
process), is justified in, e.g., [11, 18, 102]. In [102] it is pointed out that the M/G/∞
traffic model is extremely flexible, in that it allows all types of dependence structures:
by choosing the flow durations Pareto-type one can construct long-range dependent
traffic, whereas exponential-type flows lead to short-range dependent traffic. The
use of M/G/∞ input is also investigated extensively in [4]; this paper also includes
the analysis of a number of dimensioning rules.

The study by Fraleigh et al. [46] is related to ours, in that it uses bandwidth pro-
visioning based on traffic measurements to deliver QoS. An important difference,
however, is that in their case the performance metric is packet delay (rather than our
link rate exceedance criterion). Also, in [46] measurements are used to fit the Gaus-
sian model, and subsequently this model is used to estimate the bandwidth needed;
this is an essential difference with our work, where our objective is to minimize the
required measurement input/effort, and bandwidth provisioning is done on the ba-
sis of only coarse measurements. Another closely related paper is [43], where several
bandwidth provisioning rules are empirically validated.

3.1.3 Outline

The remainder of this chapter is organized as follows. In Section 3.2 we describe in
detail the objectives of this chapter and the proposed modeling approach; next, we
provide the analysis leading to our bandwidth provisioning rule. Numerical results
of our modeling and analysis are presented and discussed in Section 3.3. In Section
3.4, the bandwidth provisioning rule is assessed through extensive measurements
performed in several operational network environments, and Section 3.5 describes a
bandwidth provisioning procedure based on the provisioning rule. Finally, conclu-
sions and topics for further research are given in Section 3.6.

3.2 Objectives, modeling and analysis

The typical network environment that we focus on corresponds to an IP network
with a considerable number of users generating mostly TCP traffic (from, e.g., web
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browsing, downloading music and video, etc.). Then the main objective of band-
width provisioning is to take care that the links are more or less ‘transparent’ to the
users, in that the users should not (or almost never) perceive any degradation of
their QoS due to a lack of bandwidth. Clearly, this objective (cf. Section 1.2.1) will
be achieved when the link rate is chosen such that only during a small fraction of
time ε the aggregate rate of the offered traffic (measured on a sufficiently small time
scale T ) exceeds the link rate. The values to be chosen for the QoS parameters T and
ε typically depend on the specific needs of the application(s) involved. Clearly, the
more interactive the application, the smaller T and ε should be chosen.

In more formal terms our objective can be stated as follows: the fraction (‘proba-
bility’) of sample intervals of length T in which the aggregate offered traffic exceeds
the available link capacity C should be below ε, for prespecified values of T and ε.
In other words, with A(t) denoting the amount of traffic offered in [0, t],

P(A(T ) ≥ CT ) ≤ ε, (3.1)

which was earlier introduced as Expression (1.1). For provisioning purposes, the
crucial question is: for given T and ε, find the minimally required bandwidth C(T, ε)
to meet the target.

In the remainder of this section we derive explicit, tractable expressions for our
target probability P(A(T ) ≥ CT ), see Expression (3.1). We do this for a traffic input
process {A(t), t ≥ 0} (cf. Section 2.1.1), for which the only explicit assumption im-
posed is that {A(t), t ≥ 0} has stationary increments, i.e., for any s, t and u > 0 we
require that the amount of traffic A(s + u) − A(s) arrived in [s, s + u] has the same
distribution as the amount of traffic A(t + u) − A(t) arrived in [t, t + u]. In other
words: the amount of traffic offered in a certain window depends on the window
length only, and does not depend on the ‘position’ of the window. This stationarity
will likely hold on time-scales that are not too long (up to, say, hours); on longer
time-scales there is no stationarity due to day-patterns, and growth (or decline) of
the number of subscriptions (time-scale of weeks, months, . . .).

Once we have an expression for (an upper bound to) P(A(T ) ≥ CT ), we can find
the minimal C required to make sure that this probability is kept below ε. We thus
find the required bandwidth C(T, ε) – it is expected that this function decreases in
both T and ε (as increasing T or ε makes the service requirement less stringent).

3.2.1 General traffic

For the upper bound on P(A(T ) ≥ CT ) we apply the Chernoff bound, which was
derived as Expression (2.2) in Section 2.2.1, and obtain:

P(A(T ) ≥ CT ) ≤ min
θ≥0

(
EeθA(T )−θCT

)
. (3.2)
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Note that C(T, ε) could be chosen as the smallest number C such that the right hand
side of (3.2) is smaller than ε:

C(T, ε) := min
{

C : min
θ≥0

(
EeθA(T )−θCT

)
≤ ε

}
.

Rearranging terms, we find that equivalently we are looking for the smallest C such
that there is a θ ≥ 0 such that

C ≥ logEeθA(T ) − log ε

θT
.

This C is obviously equal to the minimum of the right-hand side over θ ≥ 0:

C(T, ε) = min
θ≥0

logEeθA(T ) − log ε

θT
. (3.3)

3.2.2 Explicit formula for Gaussian traffic

Assuming that A(T ) contains the contributions of many individual users, it is justi-
fied (based on the Central Limit Theorem) to assume that A(T ) is Gaussian if T is not
too small, see Section 2.1.1 or e.g. [46, 73]. In other words A(T ) ∼ Norm(ρT, v(T )),
for some load ρ (in Mbit/s), and variance v(T ) (in Mbits2). For this Gaussian case we
now show that we can determine the right hand side of (3.3) explicitly.

The first step is to compute the moment generating function involved (this is
done by isolating the square):

EeθA(T ) = exp
(

θρT +
1
2
θ2v(T )

)
.

The calculation of the minimum in (3.3) is now straightforward:

C(T, ε) = ρ + min
θ≥0

( 1
2θv(T )

T
− log ε

θT

)
= ρ +

1
T

√
(−2 log ε) · v(T ); (3.4)

the minimum is attained at θ =
√

(−2 log ε)/v(T ).
Evidently, C(T, ε) can also be found by first computing the Chernoff bound for

Gaussian traffic

P(A(T ) ≥ CT ) ≤ exp
(
−1

2
(C − ρ)2T 2

v(T )

)
; (3.5)

then it is easily checked that (3.4) is the smallest C such that (3.5) is below ε.
As for any input process with stationary increments v(·) cannot increase faster

than quadratically (in fact, a quadratic function v(·) corresponds to perfect positive
correlation),

√
v(T )/T is decreasing in T , and hence also the function C(T, ε) – the

longer T , the easier it is to meet the QoS requirement. Also, the higher ε, the easier it
is to meet the requirement, which is reflected by the fact that the function decreases
in ε.
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REMARK 3.2.1 (EFFECTIVE BANDWIDTH). There is some reminiscence between formula
(3.4) and the effective bandwidth concept proposed earlier in the literature, see, e.g. [39], [40],
[70], but there are major differences as well. One of the key attractive properties of effective
bandwidths is their ‘additivity’: if there are two sources, both are assigned a bandwidth,
parameterized by the QoS criterion, such that their sum represents the bandwidth needed by
their superposition:

C1+2(ε) = C1(ε) + C2(ε).

Importantly, it can be argued that interpreting (3.4) as an effective bandwidth would lead to
a bandwidth allocation that is too pessimistic from a cost perspective: noting that

√
v1(T ) + v2(T ) ≤

√
v1(T ) +

√
v2(T ),

the amount of bandwidth to be provisioned for the aggregate input could be substantially less
than the sum of the individually required bandwidths. ♦

REMARK 3.2.2 (EQUIVALENT CAPACITY FROM GUÉRIN et al. [52]). We remark that
Expression (3.4) is of the same spirit as the ‘Gaussian’ equivalent capacity formula advo-
cated in [52], but some remarks need to be made.

- Time scale. The (classical) formula proposed in [52] is of the form

C(ε) = ρ +
√
−2 log ε− log(2π) · σ, (3.6)

where σ2 is the variance of the ‘instantaneous traffic rate’ R:

σ2 := VarR = lim
T↓0
Var

(
A(T )

T

)
= lim

T↓0
v(T )
T 2

.

Hence, C(ε) as derived in [52] relates to the time scale T = 0, and is in this sense
less general than our C(T, ε). We remark that for many Gaussian processes σ does not
exist; think of fractional Brownian motion with H < 1.

- Exceedance probability: [52]’s approximation vs. Chernoff bound. It is easily verified
that (3.6) essentially relies on the approximation

P(R > C) ≈ 1√
2π

exp
(
−1

2
(C − ρ)2

σ2

)
; (3.7)

the actual value of P(R > C) is the (complementary) Gaussian distribution function

P(R > C) =
∫ ∞

C

1√
2πσ

exp
(
−1

2
(x− ρ)2

σ2

)
dx.

In [52] it is reported that C(ε) – based on the approximation (3.7) of the exceedance
probability P(R > C) – is ‘a good approximation’ of the equivalent capacity, but no
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(mathematical) motivation was given. Relying on the approximation P(N > x) ∼
x−1(2π)−1/2 exp(−x2/2), where N ∼ Norm(0, 1), we find that P(R > C) reads

∫ ∞

C

1√
2πσ

exp
(
−1

2
(x− ρ)2

σ2

)
dx ≈

(
σ

C − ρ

)
1√
2π

exp
(
−1

2
(C − ρ)2

σ2

)
.

Hence, if C − ρ ≈ σ, then we indeed find approximation (3.7). However, we could
not find a rationale for C − ρ being of the same order as σ. In fact, we could construct
cases in which approximation (3.7) is extremely optimistic, in that it substantially
underestimates P(R > C). Hence, its use is not appropriate for provisioning purposes.

This motivates why our approach above uses the (provably conservative) Chernoff
bound (i.e., Expression (3.5)) rather than approximations of the type of Expression
(3.7). Also, numerical experiments indicated that there is usually just a modest dif-
ference between the capacities based on the Chernoff bound and capacities based on
inversion of the (complementary) Gaussian distribution function, where, evidently,
the former are always conservative. ♦

The formula for C(T, ε) indicates that, given that we are able to estimate the load ρ

and the variance v(T ) on the ‘advertised’ time scale T , we have found a straightfor-
ward provisioning rule. In the next subsection, we focus on the special case of (the
Gaussian counterpart of) M/G/∞ input; in that (still quite general) case the expres-
sions simplify further.

3.2.3 M/G/∞ traffic

Whereas the above provisioning formula holds for general Gaussian traffic, we now
focus on an important sub-class: Gaussian traffic that has the variance function of
the M/G/∞ input process, also called the Gaussian counterpart of the M/G/∞ input
process [3]. In the M/G/∞ input model, jobs arrive according to a Poisson process
with rate λ, and stay in the system during a period that is distributed as the random
variable D (i.i.d.), while in the system they generate traffic at rate r. Hence, ρ = λδr,

with δ = ED. Notice that the M/G/∞ traffic model is particularly appropriate in
scenarios in which a peak-rate limitation is imposed, see also [3, 102]. As we will see
later, by choosing D appropriately, it covers a broad range of correlation structures.

Denote by fX and FX the density and the distribution function, respectively, of
the random variable X . Let Dr be the residual distribution of D, i.e., 1 − FD(x) =
δfDr (x). Now the variance of A(T ) = r

∫ T

0
N(t)dt (with N(t) denoting the number

of flows present at time t) can be explicitly calculated, as follows. As the number
of flows present at both time s and time t has a Poisson distribution with mean
λ ED P(Dr > |t− s|), we obtain that

Cov(N(t), N(s)) = λ ED P(Dr > |t− s|).
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Hence

v(T ) = r2Var
∫ T

0

N(t)dt = r2

∫ T

0

∫ T

0

Cov(N(t), N(s)) dsdt

= ρr

∫ T

0

∫ T

0

P(Dr > |t− s|)dsdt,

which can be simplified to the sum of three single integrals, see also [92, 94]:

λr2

(
2T

∫ T

0

x(1− FD(x))dx− δ

∫ T

0

x2fDr (x)dx + δT 2(1− FDr (T ))

)
. (3.8)

Hence, cf. Expression (3.4), the required bandwidth C(T, ε) can be expressed as

C(T, ε) = ρ + α
√

ρ. (3.9)

Importantly, α depends exclusively on the characteristics of the individual flows, i.e.,
the distribution of the flow duration D and the peak rate r (and QoS requirements T

and ε), but does not depend on the flow arrival rate λ – this will turn out to be a key
property in our experimental investigations on provisioning that are presented in
Section 3.4. Now we evaluate Expression (3.8) for different distributions D, covering
both the long-range dependent and short-range dependent case.

Exponential flow durations

For exponentially distributed flow lengths D, the variance v(T ) reads

v(T ) = 2ρδ2r(e−T/δ − 1 + T/δ),

such that

α =
(

T

δ

)−1 √
(−2 log ε) · 2r(e−T/δ − 1 + T/δ).

Observe that v(T ) is, for T large, linear, corresponding to short-range dependent
input. Also observe, that α depends on T only through the ratio T/δ.

Pareto flow durations

For Pareto-distributed flow lengths D, i.e., obeying

FD(x) = 1−
(

b

x + b

)a

, x ≥ 0, (3.10)

and δ = b/(a − 1) (where a > 1 and b > 0), substantial calculus gives (assume for
ease a 6= 2, a 6= 3)

v(T ) =
2ρr

(3− a)(2− a)
· (ba−1

(
T + b)3−a − (3− a)bT − b2

)
;
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α =
1
T

√
(−2 log ε) · 2r

(3− a)(2− a)
· (ba−1(T + b)3−a − (3− a)bT − b2).

(Notice that [3] uses FD(x) = 1−(b/x)a for x ≥ b, but, as flow sizes do not obey some
natural lower bound b, we have chosen to use the more natural ‘shifted version’
(3.10) instead.) If a < 2, v(T ) grows ‘superlinearly’ for large T (in fact, it grows as
T 3−a), corresponding to long-range dependent input; for a > 2, we see that v(T ) is
essentially linear, cf. [32].

Discussion on the M/G/∞ input model

1. If T is small (i.e., small compared to δ), then α becomes insensitive in the
flow duration D. This can be seen as follows. From Expression (3.8) it can
be derived that v(T )/T 2 → ρr if T ↓ 0. Then Expression (3.4) yields C(T, ε) ≈
ρ +

√
(−2 log ε) · ρr, exclusively depending on ρ, for T small.

This result can be derived differently, by noting that for T ↓ 0, the perfor-
mance criterion boils down to requiring that the number of active users does
not exceed C/r. It is well-known that the number of active users has a Poisson
distribution with mean λδ; this explains the insensitivity.

2. The case of exponential flow lengths can be easily extended to, e.g., hyperex-
ponentially distributed flows; a random variable X is hyperexponentially dis-
tributed [129, p. 446] if with probability p ∈ (0, 1) it is distributed exponentially
with mean δ1, and else exponentially with mean δ2. Then the hyperexponen-
tial case is just the situation with two flow types feeding independently into
the link (each type has its own exponential flow length distribution); note that
the variance of the total traffic is equal to the sum of the variances of the traffic
generated by each of the different exponential flow types.

3. The above approach assumes that traffic arrives as ‘fluid’: it is generated at a
constant rate r. It is perhaps more realistic to assume that, during the flow’s
‘life time’, traffic arrives as a Poisson stream of packets (of size s); the rate of
the Poisson process is γ, where γs is equal to r. Denoting the above, fluid-
based, variance function by vf(T | r), and the packet-based variance function
by vp(T | γ, s), it can be verified that

vp(T | γ, s) = vf(T | r) + ρsT, (3.11)

irrespective of the flow duration distribution. Importantly, the provisioning
formula C(T, ε) = ρ + α

√
ρ remains valid (for an α that does not depend on λ).
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3.3 Numerical results

This section presents numerical results obtained by using the analytical model of
Section 3.2. The goal is to illustrate a few key features of our bandwidth provisioning
formula. We use the traffic parameters and QoS parameters displayed in Table 3.1,
unless specified otherwise.

Table 3.1: Default parameter settings for the numerical experiments.
arrival rate and flow size QoS parameters model-specific parameters

ρ 10 Mbit/s T 1 sec. r 1 Mbit/s
D exponential ε 0.01 - γ 83.3 packets/s
δ 1 sec. s 1500 Bytes

Experiment 1: Fluid model vs. packet-level model.
Figure 3.1 shows the required capacity obtained by the packet-level and fluid model
as a function of T , for various mean flow durations δ. It is seen that for large values
of the time scale T , both models obtain the same required capacity. This can be
understood by looking at the extra term ρsT of Expression (3.11), which influence
on C(T, ε) becomes negligible for increasing T , cf. Expression (3.4).

For T ↓ 0 the required capacity obtained by the packet-level model behaves like

C(T, ε) ∼ ρ +
√

ρs
1√
T

√
−2 log ε

and hence C(T, ε) ↑ ∞ as T ↓ 0, whereas the required capacity of the fluid model
converges to ρ +

√
(−2 log ε) · ρr, as was already argued in Section 3.2.3.

The fast increase in the required capacity in the packet-level model for a decreas-
ing time scale T was also observed in e.g., [46]. Note that, in fact, the required capac-
ity is not influenced by the absolute value of T , but rather by the ratio of T/δ. The right
graph of Figure 3.1 shows the same results as the left graph, but now on a linear axis
and only for T ∈ [0, 1].

In the remainder of this section we restrict ourselves to the flow-level model, as
we will focus on situations with values of T/δ > 0.1 for which the required capacity
is almost identical in both models.

Experiment 2: Impact of the flow duration distribution.
Next we investigate the impact of the flow duration distribution on the required
capacity. Figure 3.2 contains four graphs with results for hyperexponentially dis-
tributed flow durations D. Each graph shows, for a particular value of the mean
flow size δ, the required capacity as a function of the offered load ρ, for different
Coefficients of Variation (CoV) of D. These graphs show that the required capac-
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Figure 3.1: Experiment 1: Comparison of the required capacity for the flow-level and packet-
level model as a function of the time scale T . Left: logarithmic axis. Right: linear axis.

ity is almost insensitive to the CoV for the long (δ = 10 sec.) and short flow dura-
tions (δ = 0.01 sec.). For the other cases (δ ∈ {0.1, 1} sec.) the required capacity is
somewhat more sensitive to the CoV. The graphs show that for hyperexponentially
distributed flow durations less capacity is required if the CoV increases.

It should also be noticed that the required capacity for T = 0, also shown in Fig-
ure 3.2, corresponds to the often used M/G/∞ bandwidth provisioning approach,
cf. the discussion in Section 3.2.3 and the discussion on Experiment 1. The numeri-
cal results show that particularly for short flow durations significantly less capacity
is required than suggested by the classical M/G/∞ approach; for longer flows this
effect is less pronounced.

Experiment 3: Impact of QoS parameter ε.
Figure 3.3 shows the required capacity as a function of the QoS requirement ε, which
specifies the fraction of intervals in which the offered traffic may exceed the link
capacity. A larger value of ε means relaxing the QoS requirement, and hence less
capacity is needed. Obviously, for ε → 1 the required capacity converges to the long
term average load ρ = 10. For ε ↓ 0 the required capacity increases rapidly to infinity
(according to

√−2 log ε).

Experiment 4: Impact of the CoV of the flow-duration distribution.
To investigate the impact of the flow duration characteristics, we computed the re-
quired capacity for exponential, hyperexponential, and Pareto distributed flow dura-
tions with different CoV values, see the left panel of Figure 3.4. The graph shows that
the required capacity is almost insensitive to the flow duration distribution. The left
graph also confirms the earlier observations that the capacity is almost insensitive
to the CoV of the flow duration distribution. Note, that for hyperexponentially dis-
tributed flow durations the required capacity slightly decreases for increasing CoV,
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Figure 3.2: Experiment 2: Required capacity for hyper-exponential flow durations with dif-
ferent means and CoVs.
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while for Pareto distributed flow durations the required capacity slightly increases
for increasing CoV.

Experiment 5: Impact of the access rate.

Finally, the right panel of Figure 3.4 studies the effect of the access rate r on the re-
quired capacity. Three values of the access rate r and the mean flow duration δ are
chosen such that the mean flow size δ · r remains constant. As expected, the required
capacity increases considerably when r becomes larger (i.e. the traffic burstiness
grows). The results in this graph for hyperexponential and Pareto flow sizes con-
firm the conclusions from Experiments 2 and 4 that the required capacity is almost
insensitive to the flow duration distribution.

3.4 Experimental verification

In this section we will analyze measurement results obtained in operational network
environments in order to validate the modeling approach and bandwidth provision-
ing rule presented in Section 3.2. In particular, we will investigate the relation be-
tween measured traffic load values ρ̂ during 5 min. periods (long enough to assume
stationarity) and the traffic fluctuations at a 1 sec. time scale within these periods.

Clearly, if (A) our M/G/∞ traffic modeling assumptions of Section 3.2.3 apply
and if (B) differences in the load ρ are caused by changes in the flow arrival rate
λ (i.e., the flow size characteristics remain unchanged during the measurement pe-
riod), then, as a function of ρ, for given (T, ε), the required bandwidth Cρ should
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satisfy

Cρ = ρ + α
√

ρ, (3.12)

for some fixed value of α. To assess the validity of this relation, we have carried
out measurements in three different network environments: i) a national IP network
providing Internet access to residential ADSL users, ii) a college network, and iii) a
campus network.

In the ADSL network environment the main assumptions made in Section 3.2.3
in order to justify use of the M/G/∞ traffic model seem to be satisfied, i.e., the flow
peak rates are limited due to the ADSL access rates (which are relatively small com-
pared to the network link rates), and the traffic flows behave more or less indepen-
dently of each other (the IP network links are generously provisioned and, hence,
there hardly is any interaction among the flows). The other network environments
have essentially different characteristics. In particular, in the college and campus
network the ratio of the access rate and link rate is relatively large, which, obviously,
may lead to violation of our traffic modeling assumptions.

In Section 3.5 we demonstrate how to estimate the α in (3.12) directly from mea-
surements of the aggregate traffic at time scale T . An alternative to this approach
would be to fit the flow-size distribution, such that α can be computed by inserting
this into the explicit formulae of Section 3.2.3. Recall that Experiment 2 of Section
3.3 showed that the CoV of the flow-size has just a modest impact on α. Also, fit-
ting the full flow-size distribution has the evident drawback that it requires per-flow
measurements. Therefore, we prefer direct estimation of α.

The measurement scenarios and results will be described and discussed in more
detail in the following subsections.

3.4.1 ADSL network environment

We first focus on the ADSL network environment with residential users, see Figure
3.5. An ADSL connection consists of an ADSL modem on both sides of the local loop
between the subscriber and the local exchange. On the local exchange side, up to 500
modems are contained in Digital Subscriber Line Access Multiplexers (DSLAM).

The DSLAMs are connected to the core IP infrastructure by means of optical STM-
1 (155 Mbit/s) links. The aggregated traffic of all the ADSL subscribers of a certain
Internet Service Provider (ISP) is carried over a high-capacity link between the core
infrastructure and the ISP. Depending on the size of the ISP, this can vary between
a single STM-1 link and multiple Gigabit Ethernet links. At the time of the mea-
surements, none of the network links were saturated, and hence the traffic was not
affected by any shortage of capacity in the ADSL network.

We choose the sample size T = 1 sec., motivated by the fact that this can be
assumed to be the time scale that is most relevant for the Quality of Service percep-
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Figure 3.5: Overview of an ADSL infrastructure.

tion of end-users of typical applications like web browsing. Elementary transactions,
such as retrieving single web pages, are normally completed in intervals roughly in
the order of 1 sec. If the network performance is seriously degraded during one or
several seconds, then this will affect the quality as perceived by the users.

The method that was chosen to measure the traffic at the 1 sec. time scale was to
use the internal traffic counters (interface MIBs) of the DSLAMs. These counters keep
track of the accumulated number of bytes that are transported on each port in each
direction. In this experiment, the counters for the STM-1 ports in the downstream di-
rection (toward the subscribers) were used. The counters were read-out using SNMP.

The measurements were done during several evenings (between 5 PM and 11
PM), as this is the busiest period of the day for ADSL traffic. The measurements were
performed on a large number of DSLAMs, in locations ranging from small villages
to major cities. Time was split into 5 minute chunks, over which the load ρ is deter-
mined for each STM-1 link. In addition, for each 5 min. period, the 99% quantile of
the 1 sec. measurements was determined. This quantile was assumed to indicate the
minimum capacity C that is needed to fulfill the QoS requirement P(A(T ) ≥ CT ) ≤ ε,
with ε = 1% and T = 1 sec.

The left graph in Figure 3.6 results from measurements on 11 STM-1 links at var-
ious locations. Each location is represented by a distinct color. For orientation pur-
poses, the dotted line shows the unity (y = x) relation. It is remarkable how the
99% quantiles almost form a solid curve. We fitted a function ρ + α

√
ρ, such that

roughly 95% of the 99% quantiles are lower or equal to this function. The reason for
fitting an upper bound, instead of finding the function that gives the minimum least
square deviation, is that eventually we intend to use this function for capacity plan-
ning: then it is better to overestimate the required bandwidth than to underestimate
it. The graph shows an extremely nice fit for the function C = ρ + 1.0

√
ρ (with C and

ρ expressed in Mbit/s).
At the time of the measurements, the busiest STM-1’s did not carry more traffic
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Figure 3.6: Left: 99% maximum 1 sec. traffic as function of 5 min. traffic mean. Right: synthe-
sized traffic measurements for higher traffic volumes.

than 20 Mbit/s during the busiest hours, so we could not verify that the found up-
per bound also holds for higher traffic volumes. To overcome this problem at least
partly, we synthesized artificial traffic measurements by taking the superposition of
the traffic measured on several (unrelated) STM-1’s. The right graph of Figure 3.6
shows the results of this experiment. As expected on theoretical grounds, the fitted
function Cρ = ρ + 1.0

√
ρ remains valid.

3.4.2 College and campus network

We have performed similar experiments in two other network environments, viz.
a college network and a campus network, with essentially different characteristics
than the ADSL network. In particular, in these alternative network environments
the ratio of the access rate and link rate is relatively small, and, hence, one would
expect that the M/G/∞modeling assumption underlying the analysis in Section 3.2
is not valid anymore. The question is whether (or up to what extent) the bandwidth
requirement formula (3.9) still applies.

In the first scenario, we have measured a 1 Gbit/s link connecting a college net-
work to the Internet. This link is shared by about 1000 students and teachers, each
having a 100 Mbit/s FastEthernet connection (a ratio of 1 : 10). In the second sce-
nario, we have measured a 300 Mbit/s (trunked) link connecting an university cam-
pus (residential) network to the Internet. This link is shared by some 2000 students,
each of them having a 100 Mbit/s connection (a ratio of 1:3). Thus, theoretically, it
takes only 10 or 3 users, respectively, to saturate the observed network links.

The left graph of Figure 3.7 shows the measurement results for the college net-
work. As expected, the cloud of 99% quantiles of the 1 sec. traffic rate samples within
5 min. intervals does not form such a nice ‘curve’ as in the previous (ADSL) scenario,
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Figure 3.7: 99% maximum 1 sec. traffic as function of 5 min. traffic mean. Left: college net-
work. Right: campus residential network.

but the typical square-root behavior can still be recognized.
For the university campus network, the ‘peak versus average load’ is plotted

in the right graph of Figure 3.7. Note that the traffic in both directions has been
aggregated during the measurements, which explains that the link load as plotted in
the graph is sometimes higher than the link capacity (which is one-way). Although
the number of measurements available for the campus network is relatively low, we
conclude from the graph that the relation between the average link loads and the
99% quantiles of 1 sec. samples shows a similar behavior as in the college network.

From the above results it is concluded that, as expected, for these alternative sce-
narios our model developed in Section 3.2 does clearly not apply as well as for the
ADSL scenario. Indeed, it may be expected that this is caused by the high access link
speed, which leads to a possibly high variability in the rate at which traffic is gener-
ated by the users in the alternative scenarios (while the M/G/∞model assumes that
sources generate traffic at a fixed rate). Apparently, under these highly variable traf-
fic conditions the 5 min. average traffic rate does not provide sufficient information
to estimate the traffic behavior on much smaller time scales (i.e. more detailed in-
formation than just ρ is needed), and, consequently, other underlying traffic models
should be applied.

3.5 Bandwidth provisioning procedure

Our formula (3.9) for the required bandwidth C(T, ε) can be used to develop band-
width provisioning procedures. Obviously, a first step in this procedure is to verify
whether the main M/G/∞ modeling assumptions are satisfied in the network envi-
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ronment under consideration, such that formula (3.9) can indeed be applied. A next
step is then to estimate ρ and α. Clearly, ρ can be estimated through coarse traffic
measurements, as it is just the average load; α, however, contains (detailed) traffic
characteristics on time scale T (viz., the variance v(T )). In particular, as noticed in
Section 3.2.3, α depends on the flow peak rate r and on the parameters of the flow
duration D, but, importantly, α does not depend on the flow arrival rate λ; α can be
considered as a characteristic of the individual flows.

This ‘dichotomy’ between ρ and α gives rise to efficient provisioning procedures.
Consider the following two typical situations:

- Situations in which there is a set of links, that differ (predominantly) in the
number of connected users; across the links, the individual users have essen-
tially the same type of behavior (in terms of the distribution D and the access
rate r). Then the α can be estimated by performing detailed measurements at
(a part of) the existing links. When a new link is connected, one could obtain
an estimate ρ̂ of the load by performing coarse measurements (e.g., every 5
min., by using the MRTG tool [101]). Then the provisioning rule ρ̂+ α̂

√
ρ̂ can be

used. An example is the ADSL scenario described above, in which one could
use α̂ ≈ 1.0 to dimension a new link.

- Growth scenarios in which it is expected that the increase of traffic is (mainly)
due to a growing number of subscribers (i.e., the λ), while the user behav-
ior remains unchanged. Here it suffices to perform infrequent detailed mea-
surements at time scale T , yielding an estimate α̂ of α. If a future load ρ̂ is
envisaged, the required bandwidth can be estimated by the provisioning rule
ρ̂ + α̂

√
ρ̂.

The estimate of α has to be updated after a certain period (perhaps in the order of
months). This should correspond to the time at which it is expected that the ‘nature’
of the use of resources changes (due to, e.g., new applications, etc.).

The explicit formulas for α derived in Section 3.2 are also useful when examining
the impact of changes in the user behavior or the QoS parameters. For instance, the
impact of an upgrade of the access speed r can be evaluated. Also one could assess
the effect of imposing a stronger of weaker performance criterion ε: when replacing
ε1 by ε2, the α needs to be multiplied by

√
log ε2/ log ε1.

The measurement period of 5 min. mentioned above for estimating the load ρ is
motivated by the fact that this is the time scale on which measurements in an oper-
ational network can be (and are) performed on a routine basis. A higher frequency
would be desirable, but this would put a high load on the processing capacity of
routers, the transport capacity of management links, etc., particularly if there are
many routers and ports involved. On the other hand, measurements performed at
lower frequencies (for instance 1 to several hours) are too coarse, as traffic is not
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likely to be stationary over such long periods. Therefore, 5 min. will usually be a
suitable trade-off, as this is feasible to measure, and at the same time a reasonable
period during which the traffic can still be assumed stationary.

3.6 Concluding remarks

In this chapter we have considered bandwidth provisioning for IP network links.
Our goal was to develop accurate and reliable provisioning procedures that require
a minimal measurement effort. First we derived a formula for the minimally re-
quired link bandwidth C(T, ε), such that the aggregate traffic rate (measured on a
time scale T ) exceeds the link rate only during a small fraction ε of time. In particu-
lar, for the situation that the traffic is generated by peak rate constrained flows that
arrive according to a Poisson process and remain active for some random time D

(i.e., M/G/∞ input traffic) the resulting bandwidth provisioning rule is of the form
C(T, ε) = ρ+α

√
ρ; here ρ is the traffic load, which can be estimated easily from coarse

traffic measurements (typically in the order of 5 min.). Importantly, the coefficient
α is determined by characteristics of the individual flows, and does not depend on
the flow arrival rate λ. We have shown that this property opens up the possibility of
elementary (yet adequate) provisioning procedures.

The explicit expression of α shows the impact of the flow size, peak rate and
other traffic and system parameters on the required link bandwidth. In particular, α

lies somewhere between 0 and
√

(−2 log ε)r; its exact value depends mainly on the
ratio of the time scale of interest T and the mean flow duration. Extensive numerical
results show that C(T, ε) is quite insensitive to the flow size distribution (apart from
its mean value).

The above provisioning rule has been empirically validated through the analysis
of extensive traffic measurements in three practical scenarios: i) an IP network con-
necting private and small business ADSL users to the Internet, ii) a college network
and iii) a campus network. A particularly good correspondence with our theoret-
ical results was found from the measurements in the IP network scenario, where
the flow rates are bounded by relatively small ADSL access rates. The measurement
results for the other scenarios showed, as expected, less good correspondence: the
M/G/∞ modeling assumptions are not really satisfied there; in particular the flow
rates may be strongly variable due to the relatively high access rates (compared to
the network link rates) in these scenarios.

Topics for further research. It remains for further research whether other underlying
traffic models could be used to improve the results for network environments like the
college and campus network. An attractive alternative traffic model is the fractional
Brownian motion (fBm) model, as used in e.g., [46].
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Another topic for further research is the investigation of the validity of the sta-
tionarity assumption in our modeling approach. In particular, up to which time scale
t̂ can the traffic arrival process be assumed stationary? It is clear that the estimates
of the average rate ρ should be measured at a time scale smaller than t̂. It should
also be investigated in more detail under which conditions (and to what extent) the
Gaussian traffic assumption is valid, cf. Section 3.2.2.

As a last topic for further research we mention the QoS criterion used in this
chapter, i.e., the fraction of time ε that the aggregate offered traffic rate (measured
at time scale T ) is restricted by the link rate. In particular, we could obtain more
insight in the relation between this QoS criterion, which we used as link bandwidth
provisioning objective, and the actual QoS that the users are offered. In other words:
to what extent does this criterion actually determine the duration of a congestion
period (this will depend on the traffic characteristics, in particular the flow-level
dynamics)? What are appropriate choices of T and ε for different (TCP) application
types (file downloading, interactive web browsing, etc.)?



Chapter 4

Moments of congestion periods

4.1 Introduction

In the previous chapter we investigated as a QoS metric the fraction of time that a link
is in overload; in order to avoid a QoS degradation, the network should be dimen-
sioned such that the fraction of time that the link occupancy exceeds the link speed is
kept small. It is noted, however, that QoS as experienced by the users of the network
is not only affected by the frequency of overload periods, but also by their durations;
in this (and the following) chapter we focus on these durations of overload periods.
For that purpose we consider the M/M/∞ queue, and in particular, we investigate
so-called C-congestion periods, which are defined as periods during which the offered
traffic (number of users) is continuously above a certain value C.

We consider an M/M/∞ queueing system where customers arrive according to a
Poisson process with arrival rate λ and have an exponential service requirement with
mean µ−1. There are an infinite number of identical servers and customers start
service immediately upon arrival. The M/M/∞ queueing system can be used as
a flow-level model for the occupancy of a link in a communication network, see
e.g. Chapter 3.

A C-congestion period is defined as the period during which the number of users
present is continuously above level C. In other words: a C-congestion period is the
period starting at the epoch that an arriving customer finds C customers in the sys-
tem, until the first time that a departing customer leaves behind C customers. The
duration of a C-congestion period is denoted by DC. Other interesting quantities
which are related to a C-congestion period, are the number of users that arrive dur-
ing the congestion period, denoted by NC, and the total amount of work in excess of
level C during the C-congestion period, which is the so-called area AC above level C.

4.1.1 Literature

Keilson [68] studied passage times of a birth-death process by decomposing a pas-
sage time into the convolution of congestion periods; due to the general nature of
birth-death processes the results are rather implicit. There are several papers that
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have studied the congestion period in M/M/∞-queueing systems. Guillemin and
Simonian [58] present closed-form expressions for the means of DC, NC and AC. They
also obtained the Laplace transforms (LTs) for the above-mentioned quantities (ex-
pressed in terms of special functions), and analyzed the first passage time of level C

starting in steady-state. A continued fraction analysis of the duration is presented
in [55]. Preater [104] elaborates on the results of Guillemin and Simonian; by using
an alternative derivation he finds a more attractive form of the LT of the congestion
period. He also presents the joint LT of the congestion period triple ΘC(DC, NC, AC) of
the duration, number of arrivals and the area. In another paper [105] Preater exam-
ines the height of a congestion period, e.g., the maximum level that is reached dur-
ing a congestion period. Knessl and Yang [76] study P(DC > t) in several asymptotic
regimes. Both Guillemin and Simonian [58] and Preater [104] observe that, when C

grows large, a C-congestion period of an M/M/∞ queue behaves similarly to the
busy period of the M/M/1-queue. The LT of the duration and number of arriving
customers in the busy period of an M/M/1-queue can easily be obtained, and see
[57] for an analysis of the area of a busy period. Robert [109] presents an approxima-
tion of the order of the mean passage time from level n to level 0 for large n. Progress
on systems with heterogeneous servers has been reported recently in Tsybakov [130].

Another related subject of frequent study is the busy period of the M/G/∞ queue-
ing system, which in fact coincides with the congestion period of level 0 (i.e., the
0-congestion period), with generally distributed service times. One of the earliest
works on the busy period is by Takács [126]. He presents the LST of the busy cycle
duration of a so-called type II counter, which is similar to an M/G/∞ queue. This
result is used by others, e.g. Stadje [125] and Liu and Shi [83]. Liu and Shi [83]
consider the busy period in GIX/G/∞-queueing systems with batch arrivals and for
several special cases they obtain expressions for the first and second moment of both
the busy period and busy cycle. A joint LT for both the duration and number of
arrivals was already presented by Shanbhag [122].

Although the Laplace transforms of DC, NC and AC are known [58, 104], differ-
entiating these is fairly non-straightforward due to the rather implicit nature of the
functions involved. This explains the absence of explicit formulae for higher mo-
ments (the means are known) and covariances (between DC, NC and AC). Also, so
far no attention was paid to C-intercongestion periods, which are the periods during
which the number of customers in the system is continuously below C.

Strikingly little is known about the tail probabilities P(DC > x), P(AC > x), and
P(NC > x) (which will be investigated in Chapter 5). By majorizing the M/M/∞
queue by an appropriate M/M/1 queue, cf. [58, 104], upper bounds on the tails can
be derived relatively easily, but it is not a priori clear how tight these bounds are. We
mention here also a related result by Guillemin and Pinchon [56] on the area of a
busy period of an M/M/1 queue, stating that its tail distribution decays essentially
in a Weibullian way.
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4.1.2 Contribution

In this chapter we investigate the moments of the duration, number of arrivals and
area swept above C (i.e., DC, NC and AC) for C-congestion periods in an M/M/∞
queue. Recursive relations are derived through which all the moments of the above-
mentioned values can be obtained. In particular it is demonstrated that there is a
recursive relation between the congestion periods of two adjacent levels, e.g., level C

and level C−1: any quantity of level C can be expressed in terms of the same quantity
of a (C − 1)-congestion period. Iterating these, we can express the quantities related
to a C-congestion period in terms of the quantities related to a 0-congestion period
(which is, as observed above, a busy period of the M/M/∞ queue). For instance, we
write ED2

C explicitly in terms of ED2
0 . Furthermore, similar recursions are derived

for the covariances between the quantities DC, NC and AC.
Thus, in order to solve for the higher moments, we have to find the starting val-

ues for our recursion; in our example: to find an expression for ED2
C we have to

find an explicit formula for ED2
0 . The derivation of these starting values can be done

through the differentiation of the LT of these busy-period related quantities. In par-
ticular, explicit expressions for the first and second moments are presented. In ad-
dition to this, we find the covariances Cov(DC, NC), Cov(DC, AC) and Cov(NC, AC).
With EDC,ENC and EAC being known, this reduces to finding the ‘joint expectations’
E[DCNC],E[DCAC] and E[NCAC]. Again, we first express these in terms of the busy-
period quantities (for example, E[DCNC] is phrased in terms of E[D0N0]), and then
the busy-period related starting condition is solved. Theoretically, all moments (joint
expectations) of the quantities of a C-congestion period can be obtained by differen-
tiating the LT of the quantities (from Preater’s [104] congestion triple), but practically
this is far from trivial. It is considerably easier to obtain the moments (and joint ex-
pectations) of the busy-period quantities and to insert these as the starting conditions
into the recursive relations.

Analogously to a C-congestion period, a C-intercongestion period is defined as
the period that the number of users is continuously below level C. The analysis and
results for the quantities duration, number of arrivals, and the area below C are pre-
sented, which are also recursive relations for the moments and covariances. Again,
the recursion can be solved in terms of the quantities of level 0. Importantly, these
relate to the period that the system has less than 0 customers; hence, all moments
and joint expectations of the quantities are 0. The recursion has attractive numeri-
cal properties: it is more stable than those of the C-congestion periods. In addition,
similarly to Preater’s derivation of the LT of a congestion triple [104], the LT of the
intercongestion triple is derived.

Guillemin and Simonian [58] and Preater [104] already observed that, for large C,
the busy period of an M/M/1-queue can be used to approximate the behavior of a
C-congestion period of an M/M/∞ queue. The approximation works well for large
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C, but, not for C close to the average number of users in the system ρ. We present
results indicating that the quantities of a C-congestion period can be approximated
accurately by a ρ − (C − ρ)-intercongestion period (which has, as indicated above,
favorable numerical properties). The approximation works particularly well for C

close to ρ, and can consequently be used complementary to the above-mentioned
M/M/1-based approximation.

4.1.3 Outline

The outline of this chapter is as follows. Section 4.2 introduces the notation and
illustrates how a transient period of an M/M/∞ queue can be subdivided into C-
congestion periods. Section 4.3 presents the recursion schemes for the first and sec-
ond moment of the DC, NC and AC. The recursions are solved resulting in closed-
form expressions which still contain the starting condition: for instance, ED2

C is ex-
plicitly written in terms of ED2

0 . Similarly, Section 4.4 yields the derivation of the
covariances of the quantities in terms of the covariances relating to the busy period:
E[DCNC] is presented in terms of E[D0N0]. In Section 4.5 the first and second mo-
ments of D0 as well as the joint expectation E[D0N0] are obtained. These busy-period
quantities are then the ‘starting conditions’ of the recursions of Sections 4.3 and 4.4.
For the first and second moments of N0 and A0 and for the joint expectationsE[D0A0]
and E[N0A0] we refer the reader to Section 5 of [116]. Section 4.6 presents the defi-
nition, analysis and results for C-intercongestion periods. Section 4.7 provides some
numerical results and illustrates that an ρ − (C − ρ)-intercongestion period can be
used as an accurate approximation of a C-congestion period when C is close to ρ.
Section 4.8 concludes this chapter.

4.2 Model and preliminaries

4.2.1 Definitions

Consider an M/M/∞ queue with arrival rate λ and mean service requirement µ−1.
For convenience we introduce the notation νn := λ + nµ. The average workload of
the system is denoted by ρ = λ/µ. Let the Markov process Λt ∈ {0, 1, 2, . . .} denote
the number of customers in the system at time t. Let

Dj(i) := inf{t > 0 : Λt = j | Λ0 = i}, i > j, (4.1)

Nj(i) := #{t : Λt − Λt− = 1, 0 < t ≤ Dj(i)}, i > j,

Aj(i) :=
∫ Dj(i)

t=0
(Λt − j)dt, i > j, (4.2)

where Λt− := limε↓0 Λt−ε. Then, Dj(i) is the first passage time of state j from state
i, Nj(i) the number of arrivals during this first passage time Dj(i), and Aj(i) is the
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area above j during the same period of time. Note that Guillemin and Simonian (GS)
[58] have a slightly different interpretation of the number of arrivals1.

An important sub-class of these passage times is the class of C-congestion pe-
riods. A C-congestion period is the duration until the first return to level C after
an arriving customer raised the number of users above level C. So, a C-congestion
period is the period that the system is continuously above level C. Duration DC is
defined by (4.1) where i = C + 1 and j = C. For short-hand notation we introduce
DC := DC(C +1), NC := NC(C +1) and AC := AC(C +1). The special case where C = 0
is called the ‘busy period’.

4.2.2 Decomposition of a passage time into congestion periods

By its definition Dj(i) is a stopping time of the Markov process Λt. It can be de-
composed as the sum of the hitting times Di−1 and Dj(i − 1). The strong Markov
property states that these hitting times are independent. The first component is al-
ready a congestion period and the second term can be decomposed repeatedly in a
similar way and finally results in the following equality in distribution:

Dj(i) =
i−1∑

k=j

Dk, (4.3)

where the Dk for k = j, . . . , i − 1 are independent. Expression (4.3) resembles Ex-
pression (5.1.1) of Keilson [68].

The number of arrivals Nj(i) and the area Aj(i) can also be decomposed, based
on the decomposition of the duration Dj(i), resulting in

Nj(i) =
i−1∑

k=j

Nk, (4.4)

Aj(i) =
i−1∑

k=j

(Ak + (k − j)Dk) . (4.5)

Proof Equation (4.4) follows directly due to (4.3). Equation (4.5) is obtained because
area Aj(i) can be decomposed in a similar way as Dj(i) and Nj(i), but caution is
required because of the definition of the area. Aj(i) can be decomposed into the
terms Ai−1 and Aj(i−1), but Ai−1 only consists of the area above level i−1, ignoring
the area between i − 1 and j for the duration Di−1. The missing area for Ai−1 is
(i− 1− j)Di−1 and correction of all terms Ak leads to (4.5). ¤

1GS [58] include the arrival that starts a C-congestion period. Formally this arrival did not occur within
the C-congestion period as the customer entered the system when only C customers where present. Preater
[104] also ignores the arrival that initiates the congestion period.
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This subdivision of the passage times into the sum of independent congestion
periods simplifies the analysis. All the moments can be directly derived from the
moments of the individual congestion periods, e.g., for the duration it yields

EDj(i) =
i−1∑

k=j

EDk and ED2
j (i) =

i−1∑

k=j

ED2
k + 2

i−2∑

k=j

i−1∑

l=k+1

EDkEDl.

4.2.3 Analysis of a C-congestion period

In this section a recursive relation for the quantities of a C-congestion period are
derived using straightforward analysis.

A C-congestion period is initiated by a customer who finds C other customers
in the system upon arrival. The number of customers is increased to C + 1 and the
system will remain at this level for an exponentially νC+1 distributed time, as both
the interarrival time and the service times are exponentially distributed. The next
transition of the system is caused either by the arrival of a new customer or by the
departure of one of the C + 1 customers present. With probability (C + 1)µ/νC+1

the next transition is a departure, which immediately ends the currently ongoing
C-congestion period. With probability λ/νC+1 the next transition is initiated by an
arrival, which increases the number of customers to C + 2; then the remaining dura-
tion of the C-congestion period is the duration of a transient period DC(C + 2).

Let TC be the duration that the system remains at level C, which is exponentially
νC+1 distributed, and define random variable PC as

PC =
{

1 with probability λ/νC

0 with probability Cµ/νC.

Notice that, as PC is Bernoulli distributed all moments are the same: EP k
C = λ/νC for

all k. Now, for the duration of a C-congestion period DC the above reasoning leads
to:

DC = TC+1 + PC+1DC(C + 2) = TC+1 + PC+1 (DC+1 + D′
C) . (4.6)

Here X ′ denotes an independent, statistically identical copy of X . By the memo-
ryless property of the exponential distribution all the random variables, e.g., TC+1,
PC+1 and DC(C + 2), are mutually independent. Expression (4.6) is a recursive re-
lation which illustrates that the duration of a C-congestion period can be expressed
in terms of the duration of a (C − 1)-congestion period. By repeated iterations the
duration can be expressed in terms of D0, which is the duration of a busy period.

For the quantities NC and AC the following similar relations can be derived:

NC = PC+1 (1 + NC(C + 2)) = PC+1 (1 + NC+1 + N ′
C) . (4.7)

AC = TC+1 + PC+1AC(C + 2) = TC+1 + PC+1 (AC+1 + DC+1 + A′C) . (4.8)
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Note that by definition of NC the (possible) arrival that ends TC+1 and initiates the
passage time DC(C +2) is not accounted for in NC(C +2) and has to be accounted for
separately. The second equality of (4.8) follows directly from (4.5).

4.3 Quantities of a C-congestion period

In this section we present the mean and second moment of the duration, number of
arrivals and the area swept above C. For the quantity duration the mean, the second
moment and also higher moments are written out. Next, the moments of the number
of arrivals and the mean of the area are rather trivial, the second moment of the area
is more complicated as definition (4.8) includes a term DC which requires the joint
expectation of the quantities DC and AC.

4.3.1 Duration of a C-congestion period

For the derivations of the moments of the duration we use result (4.6) of Section
4.2.3. Although the expected duration of a congestion period is already given in
Guillemin and Simonian [58], the derivation of the mean duration is presented to
become acquainted with the methodology of the recursions.

Mean duration of a C-congestion period. Taking the expectation on both sides of Ex-
pression (4.6) yields

EDC = E [TC+1 + PC+1 (DC+1 + D′
C)] =

1
νC+1

+
λ

νC+1
(EDC+1 + EDC) .

By isolating EDC+1 at the left side, we obtain the following expression:

EDC+1 =
(C + 1)µEDC − 1

λ
. (4.9)

Expression (4.9) is a difference equation and illustrates that the mean duration of a
(C +1)-congestion period depends on the mean duration of C-congestion period. By
iteration EDC+1 (or preferably EDC) can be expressed in terms of ED0, which is the
expected duration of a busy period. This yields the following closed-form expression

EDC =
C!
ρC
ED0 − C!

λρC

C∑

j=1

ρj

j!
=

C!
λρC

∞∑

j=C+1

ρj

j!
, (4.10)

where ED0 is obtained via renewal arguments. Let π0 denote the fraction of time
that the system is empty, Tidle the duration that the system is empty, and Tbusy the
duration that the system is busy. As π0 = e−ρ, ETidle = 1/λ, ED0 = ETbusy and
π0 = ETidle/(ETbusy + ETidle) it follows that ED0 = (eρ − 1)/λ.
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Second moment of duration of a C-congestion period. The second moment of the dura-
tion can also be obtained by taking the second moment of Expression (4.6). Then we
obtain

ED2
C = E [TC+1 + PC+1 (DC+1 + DC)]2

= E
[
T 2

C+1 + 2TC+1PC+1 (DC+1 + DC) + P 2
C+1

(
D2

C+1 + 2DC+1DC + D2
C

)]

=
2

ν2
C+1

+
2λ

ν2
C+1

(EDC+1 + EDC) +
λ

νC+1

(
ED2

C+1 + 2EDC+1EDC + ED2
C

)
.

as E[DC+1DC] = EDC+1EDC by the strong Markov property. Rearranging leads to
the following difference equation:

ED2
C+1 =

C + 1
ρ
ED2

C −
2

λνC+1
− 2

νC+1
(EDC+1 + EDC)− 2EDC+1EDC.

This equation can be solved in terms of ED2
0 , the second moment of the duration of

a busy period which is treated in Section 4.5.2, and yields

ED2
C =

C!
ρC
ED2

0 − 2
C!
ρC

C∑

j=1

ρj

j!
1
νj

[EDj−1 + EDj ]

−2
C!
ρC

C∑

j=1

ρj

j!
EDj−1EDj − 2

λ

C!
ρC

C∑

j=1

ρj

j!
1
νj

, (4.11)

Higher moments of the duration of a C-congestion period. Higher moments can also be
obtained using the recursive relation (4.6), although calculations are more tedious.
By using the binomium theorem for both EDn

C and EDn
C (C + 2) we obtain:

EDn
C =

n∑

l=0

(
n

l

)
ETn−l

C+1 E[PC+1DC(C + 2)]l

=
n!

νn
C+1

+
λ

νC+1

n−1∑

l=1

(
n

l

)
(n− l)!
νn−l

C+1

l∑

k=0

(
l

k

)
EDk

C+1EDl−k
C

+
λ

νC+1

n∑

l=0

(
n

l

)
EDl

C+1 EDn−l
C .

Rearranging leads to a difference equation which can be solved in terms of EDn
0 :

EDn
C =

C!
ρC
EDn

0 −
C!
ρC

C∑

j=1

ρj

j!

n−1∑

l=1

(
n

l

)
(n− l)!
νn−l

j

l∑

k=0

(
l

k

)
EDk

jEDl−k
j−1

− C!
ρC

C∑

j=1

ρj

j!

n−1∑

l=1

(
n

l

)
EDl

jEDn−l
j−1 −

n!
λ

C!
ρC

C∑

j=1

ρj

j!
1

νn−1
j

. (4.12)
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From Expression (4.12) it can be observed that the n-th moment of level C depends
on all moments EDm

C for m < n and EDm
k for k < C, m ≤ n. This illustrates that

for EDn
C all moments EDm

0 for m = 1, . . . , n have to be known. This is a drawback
as closed-form expressions for the second and higher moments are not presented in
literature. An expression for ED2

0 will be derived in Section 4.5.2. The method can
also be used for higher moments, but the calculations become substantially more
tedious.

4.3.2 Number of arriving customers during a C-congestion period

The mean and second moment are obtained by taking the expectation of Expression
(4.7) and the square of Expression (4.7) respectively.

Mean number of arriving customers in a C-congestion period. Taking the expectation
of Expression (4.7) and rearranging leads to a difference equation in terms of EN0,
which is the number of arrivals during a busy period. EN0 is easily obtained as
EN0 = λED0 = eρ − 1 and the solution of the difference equation is the following
closed-form expression:

ENC =
C!
ρC
EN0 − C!

ρC

C−1∑

j=0

ρj

j!
=

C!
ρC

∞∑

j=C+1

ρj

j!
. (4.13)

Second moment of the number of arriving customers. The second moment is derived in
terms of EN2

0 in a similar manner and yields

EN2
C =

C!
ρC
EN2

0 −
C!
ρC

C∑

j=1

ρj

j!
(1 + 2ENjENj−1 + 2ENj + 2ENj−1) . (4.14)

For the derivation of EN2
0 we refer to Section 5.3 of [116].

4.3.3 Area swept above C during a C-congestion period

The mean and second moment can be obtained by using Expression (4.8).

Mean area swept above C. Taking the expectation of (4.8) leads to a difference equa-
tion that can be solved iteratively in terms of EA0. EA0, the area above 0 during a
busy period, can be obtained by observing that the system is a renewal process of
cycles consisting of busy and idle period. The average workload ρ during a cycle
should all be obtained during a busy period. Then ρ = EA0/(ED0 + 1/λ) and thus
EA0 = ρeρ. Finally, we obtain the following closed-form expression for EAC:

EAC =
C!
ρC
EA0 −

C∑

j=1

C!
j!

(
EDj +

1
λ

)
=

1
λ

C!
ρC

∞∑

j=C+1

ρj

j!
. (4.15)
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Second moment of the area swept above C. Taking the second moment of (4.8) and
isolating EA2

C+1 leads to a difference equation. The difference equation includes the
‘joint expectation’ E[DC+1AC+1], which results from the term E[AC(C + 2)]2. By def-
inition (4.2) AC+1 is dependent on DC+1, hence E[DC+1AC+1] 6= EDC+1EAC+1; an
expression for E[DC+1AC+1] is required and will be derived in Section 4.4. Then, the
difference equation can be solved in terms of EA2

0 (see Section 5.4 of [116]) and the
solution yields

EA2
C =

C!
ρC
EA2

0 −
C!
ρC

C∑

j=1

ρj

j!
(
ED2

j + 2EAjEAj−1 + 2E[DjAj ] + 2EDjEAj−1

)

−2
C!
ρC

C∑

j=1

ρj

j!
1
νj

(EAj + EDj + EAj−1)− 2
λ

C!
ρC

C∑

j=1

ρj

j!
1
νj

. (4.16)

Observe that Expression (4.16) requires, besides EA2
0, the terms ED2

j and E[DjAj ]
for 1 ≤ j ≤ C. Recall that ED2

j is given by (4.12), and E[DjAj ] can be obtained from
Section 4.4, so expressions are available for all the required terms.

4.4 Joint expectations of the C-congestion period quan-
tities

In this section the joint expectations E[DCNC], E[DCAC] and E[NCAC] are derived.
The covariances between the quantities can easily be found as, e.g., Cov(DC, NC) =
E[DCNC] − EDCENC. Furthermore, the joint expectation E[DCAC] is required to de-
termine the second moment of the area above k for all k ≥ C, see Section 4.3.3.

Joint expectation of the duration and number of arrivals. By (4.6) and (4.7) we have

E[DCNC] = E [(TC+1 + PC+1DC(C + 2)) PC+1 (1 + NC(C + 2))]

=
λ

νC+1

(
ETC+1 + ETC+1ENC+1 + ETC+1ENC + E[DC+1NC+1]

+EDC+1ENC + EDCENC+1 + E[DCNC] + EDC+1 + EDC

)
.

This difference equation can be solved in terms of E[D0N0], the derivation of which
is presented in Section 4.5.3, and yields

E[DCNC] =
C!
ρC
E[D0N0]− C!

ρC

C∑

j=1

ρj

j!
1
νj

(1 + ENj + ENj−1)

− C!
ρC

C∑

j=1

ρj

j!
(EDjENj−1 + EDj−1ENj + EDj + EDj−1) . (4.17)
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Joint expectation of the duration and the area swept above C. By (4.6) and (4.8) we have

E[DCAC] = E[(TC+1 + PC+1DC(C + 2)) (TC+1 + PC+1AC(C + 2))].

Isolating E[DC+1AC+1] yields

E[DC+1AC+1] =
C + 1

ρ
E[DCAC]− (

ED2
C+1 + EDCEAC+1 + EDC+1EAC

+EDC+1EDC)− 1
νC+1

(2EDC+1 + EDC + EAC+1 + EAC)− 2
λνC+1

.

Notice that expression includes a term ED2
C+1 that results from the decompositions

of DC(C +2) and AC(C +2) that both consist of a term DC+1. The difference equation
can be solved in terms of E[D0A0], which is deduced in Section 5.6 of [116], and
yields

E[DCAC] =
C!
ρC
E[D0A0]− C!

ρC

C∑

j=1

ρj

j!
(
ED2

j + EDj−1EAj + EDj−1EAj

+EDjEDj−1)− C!
ρC

C∑

j=1

ρj

j!
1
νj

(2EDj + EDj−1 + EAj + EAj−1)

− 2
λ

C!
ρC

C∑

j=1

ρj

j!
1
νj

. (4.18)

Observe that the solution requires the second moments ED2
j for 1 ≤ j ≤ C, which

are given by (4.11).

Joint expectation of the number of arrivals and the area swept above C. By (4.7) and (4.8)
we have

E[NCAC] = E[PC+1(1 + NC(C + 2))(TC+1 + PC+1AC(C + 2))]

The solution in terms of E[N0A0], see Section 5.7 of [116], yields

ENCAC =
C!
ρC
E[N0A0]− C!

ρC

C∑

j=1

ρj

j!
(
E[DjNj ] + ENjEAj−1 + ENj−1EAj

+ EDjENj−1 + EAj + EDj + EAj−1

)

− C!
ρC

C∑

j=1

ρj

j!
1
νj

(1 + ENj + ENj−1) . (4.19)
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4.5 Moments and joint expectations of the busy-period
quantities

In Sections 4.3 and 4.4 expressions were obtained for the moments and joint expec-
tations for the quantities of a C-congestion period. The expressions are all solved in
terms of the busy-period quantities (i.e., 0-congestion period quantities). The goal
of this section is to derive these busy-period quantities. This section only presents
the first and second moments of the duration and the joint expectation of the dura-
tion and number of arrivals; the derivations of the other busy-period quantities EN0,
EA0, E[D0A0] and E[N0A0] are presented Section 5 of [116].

The moments of the quantities are obtained by differentiating the Laplace trans-
form (LT) of the congestion triple (D0, N0, A0) that was obtained by Preater [104].
Section 4.5.1 presents Preater’s LT and additionally a lemma that simplifies the cal-
culations that are presented in the succeeding subsections.

Theoretically, all moments and joint expectations of the quantities of level C can
be obtained by differentiating Preater’s LT of the congestion triple, but this task ap-
peared to be far from trivial. Therefore we decided to first express them in terms
of moments and joint expectations of the 0-congestion period; subsequently, we de-
rive these 0-congestion period quantities through (relatively easy, but still tedious)
differentiations.

4.5.1 Preater’s LT of the 0-congestion triple (D0, N0, A0)

Analogously to Guillemin and Simonian [58], Preater uses µ = 1, and so λ = ρ. To
obtain the Laplace transform of the C-congestion triple, Preater first considers the LT

of the duration of a C-congestion period. By two different derivations he obtains the
LT in two different expressions: the first is a continued fraction, the second is a frac-
tion of the functions IC+1 and IC (see (4.21)). The equality of these two expressions
is the most important result of his Proposition 2.2. In his Theorem 3.1 he derives the
(joint) LT of the congestion triple by the first derivation and the result is also in the
form of a continued fraction. Using the equality of his Proposition 2.2, the continued
fraction can be rewritten as a fraction of IC+1 and IC. The LT for C = 0 resulting from
his Proposition 2.2 and Theorem 3.1 is stated below.

Preater’s Theorem 3.1 and Proposition 2.2 combined for C = 0. The vector
(D0, N0, A0) has Laplace transform

Θ∗0(s, t, u) := E exp(−sD0 − tN0 − uA0) =
1

u + 1
I1(a− b, b)
I0(a− b, b)

. (4.20)
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where

a := a(s, t, u) =
s + ρ

u + 1
, b := b(s, t, u) =

ρe−t

(u + 1)2
,

IC(a, b) :=
∫ 1

0

e−bx(1− x)a−1xCdx. (4.21)

Differentiating (4.21) is a tedious job, but can be simplified considerably by the next
lemma.

LEMMA 4.5.1.

I0(a, b) = e−b
∞∑

k=0

1
a + k

bk

k!
, I1(a, b) = I0(a, b)− I0(a + 1, b). (4.22)

Proof

I0(a, b) =
∫ 1

0

e−bx(1− x)a−1dx = e−b

∫ 1

0

ebxxa−1dx

= e−b
∞∑

k=0

bk

k!

∫ 1

0

xk+a−1dx = e−b
∞∑

k=0

1
a + k

bk

k!
.

I1(a, b) =
∫ 1

0

e−bx(1− x)a−1xdx = e−b

∫ 1

0

ebxxa−1(1− x)dx

= e−b
∞∑

k=0

bk

k!

∫ 1

0

(xk+a−1 − xk+a)dx
by (4.22)

= I0(a, b)− I0(a + 1, b).

¤

Furthermore, we introduce the following notation:

ξ(ρ) :=
∞∑

k=0

1
(k + 1)2

ρk

k!
.

Notice that ξ(ρ) < ∞.

4.5.2 Moments of the duration of the busy period

By (4.20) and using (4.22) we have

D∗
0(s) = Θ∗0(s, 0, 0) = 1− f(s)

n(s)
, (4.23)

where

f(s) :=
∞∑

k=0

1
s + k + 1

ρk

k!
and n(s) :=

∞∑

k=0

1
s + k

ρk

k!
.
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Let n(m)(s) denote the m-th derivative of n(s) (hence n(s) = n(0)(s)). Then it can
be shown that

n(m)(s) =
∞∑

k=0

(−1)m ·m!
(s + k)m+1

ρk

k!
and lim

s→0
n(m)(s) ∼ (−1)mm!

sm+1
.

The first equation is obtained by repeated derivation of n(s). The second statement
is obtained by proving that the (k ≥ 1)-terms can be bounded by a finite term as
follows:

∞∑

k=1

ρk

km · k!
≤

∞∑

k=1

ρk

k!
<

∞∑

k=0

ρk

k!
= eρ.

Then the second statement is proven by observing that the second statement is ex-
actly the (k = 0)-term which goes to infinity for s close to 0.

First moment. Although the first moment is already obtained in Section 4.3.1,
we also present its derivation for the sake of completeness. It is well known that
ED0 = −(D∗

0)′(0). Differentiation of (4.23) yields

(D∗
0)′(s) =

d
ds

(
1− f(s)

n(s)

)
=

n′(s)f(s)
n2(s)

− f ′(s)
n(s)

.

We conclude that ED0 = f(0) − 0 = (eρ − 1)/ρ, which coincides with the results
earlier obtained in Section 4.3.1 for µ = 1.

Second moment. Now ED2
0 = (D∗

0)′′(0). The second derivative is

(D∗
0)′′(s) =

d
ds

(
n′(s)f(s)

n2(s)
− f ′(s)

n(s)

)

= −f ′′(s)
n(s)

+ 2
n′(s)f ′(s)

n2(s)
− 2

(n′(s))2f(s)
n3(s)

+
n′′(s)f(s)

n2(s)
.

The first of these four terms goes to 0, and the second to −2f ′(0). The third term
goes to −∞, and, as n′′(s) ∼ 2/s3, the fourth term goes to +∞. Define for ease

gn(s) :=
∞∑

k=1

1
(k + s)n

ρk

k!
;

for any n ∈ N, it holds that gn(0) < eρ < ∞. Simple manipulations yield

lim
s↓0

(
n′′(s)
n2(s)

− 2
(n′(s))2

n3(s)

)

= lim
s↓0

(s−1 + g1(s))(2s−3 + 2g3(s))− 2(s−2 + g2(s))2

(s−1 + g1(s))3
= 2g1(0).
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Thus

ED2
0 = 2g1(0)f(0)− 2f ′(0)

= 2

( ∞∑

k=1

1
k

ρk

k!

)
eρ − 1

ρ
+ 2

∞∑

k=0

1
(k + 1)2

ρk

k!
= 2eρξ(ρ). (4.24)

Relation between (4.24) and the results of Liu and Shi [83]. Liu and Shi [83] obtained
the following expression for the second moment of the busy period of an M/G/∞
queue:

ED2
0 =

2
λP 2

0

∫ ∞

0

[P0(t)− P0] dt

where P0(t) = exp
{
−ρ

∫ t

0
e−xdx

}
= exp{−ρ(1− e−t)} and P0 is the probability that

the system is idle, thus P0 = e−ρ. Then, by using that exp{ρe−t} =
∑∞

k=0(ρe−t)k/k!,
we have

2
ρP 2

0

∫ ∞

0

[P0(t)− P0] dt =
2e2ρ

ρ

∫ ∞

0

e−ρ
[
eρe−t − 1

]
dt

=
2eρ

ρ

∫ ∞

0

∞∑

k=1

(ρe−t)k

k!
dt =

2eρ

ρ

∞∑

k=1

ρk

k!

∫ ∞

0

e−ktdt

=
2eρ

ρ
ρ

∞∑

k=0

ρk

(k + 1)2 k!
= 2eρξ(ρ).

We conclude that Expression (4.24) and the result of Liu and Shi [83] coincide.

4.5.3 Joint expectation E[D0N0] of the busy period

The joint expectation E[D0N0] can be obtained by differentiating the Laplace trans-
form (4.20) to both s and t:

E[D0N0] = lim
s↓0,t↓0

d2

dsdt
Ee−sD0−tN0 .

By (4.20) and (4.22) we have

Ee−sD0−tN0 = Θ∗0(s, t, u) = 1− I0(a− b + 1, b)
I0(a− b, b)

= 1− f(s, t)
n(s, t)

,

where a = a(s, t) = s + ρ and b = b(s, t) = ρe−t and by the definition we have

n(s, t) :=
∞∑

k=0

ρk

k!
e−kt

s + ρ(1− e−t) + k
;

f(s, t) :=
∞∑

k=0

ρk

k!
e−kt

s + ρ(1− e−t) + k + 1
.
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Define n′s := dn(s, t)/ds, n′t := dn(s, t)/dt and n′′st := d2n(s, t)/dtds. Analogously,
the derivatives f ′s, f ′t and f ′′st are defined. Then

d2

dtds
Ee−sD0−tN0 =

d
dt

[
fn′s
n2

− f ′s
n

]

= −f ′′st

n
+

f ′sn
′
t + f ′tn

′
s

n2
+

fn′′st

n2
− 2fn′sn

′
t

n3
.

For s, t → 0, the first term goes to 0, and the second term yields −ρf ′s(0, 0)− f ′t(0, 0).
The third and fourth terms result in (∞−∞), and require careful analysis, similar
as was done for ED2

0 . This eventually yields 2ρ2ξ(ρ)f(0, 0). Then we obtain the
following expression for E[D0N0]:

E[D0N0] = −ρf ′s(0, 0)− f ′t(0, 0) + 2ρ2ξ(ρ)f(0, 0). (4.25)

Notice that E[D0N0] is bounded for finite ρ; f(0, 0) ≤ ∑∞
k=0 ρk/k! = eρ and similar

bounds can be obtained for f ′s(0, 0) and f ′t(0, 0).

4.5.4 Moments for the mean service times other than 1

The expressions for the moments of D0 (Section 4.5.2) and the joint expectation of
D0N0 (Section 4.4) are derived for the case of mean service time µ = 1. To adapt
the derived expressions for service times µ 6= 1, it suffices to see that varying λ or
µ for fixed ρ is only a scaling of time. The scaling of time does not influence the
number of arrivals, but it does influence the duration and area. The expressions for
the moments can be adapted to µ 6= 1 by a factor (µ−1)n where n is the order of the
moment, e.g., in self-evident notation:

EDn
C = µ−nEDn

C|{µ=1}, EDCNC = µ−1EDCNC|{µ=1},
ENn

C = ENC|{µ=1}, EDCAC = µ−2EDCAC|{µ=1},
EAn

C = µ−nEAn
C|{µ=1}, ENCAC = µ−1ENCAC|{µ=1}.

4.6 C-intercongestion periods

Besides the duration of a C-congestion period, we are also interested in the time
that the system is below level C, a so-called C-intercongestion period. This section
consists of the definitions of a C-intercongestion period, the derivation of a LT of
the intercongestion triple, and the derivation of the first and second moments of the
quantities and the covariances between the quantities.
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4.6.1 Definitions

Analogously to the definitions of a C-congestion period in Section 4.2.1 we define

Dj(i) := inf{t > 0 : Λt = j | Λ0 = i}, i < j,

Nj(i) := #{t : Λt − Λt− = 1, 0 < t ≤ Dj(i)}, i < j,

Aj(i) :=
∫ Dj(i)

t=0
(j − Λt)dt, i < j,

where Dj(i) is the duration of the transient period to go from state i to state j for
i < j, Nj(i) is the number of arrivals during Dj(i), and Aj(i) is the area under C

duringDj(i). For convenience we use the following short notation: DC := DC(C−1),
NC := NC(C − 1) and AC := AC(C − 1). Dj(i) is a hitting time which allows for
the following decomposition Dj(i) =

∑j
k=i+1Dk. Due to the definition of Nj(i)

and Aj(i) these can be similarly decomposed Nj(i) =
∑j

k=i+1Nk and Aj(i) =∑j
k=i+1 (Ak + (j − k)Dk).
Finally, we derive a recursive structure for a C-intercongestion period. Using

random variables TC and PC, which have the same definition as in Section 4.2.1, the
duration DC (C ≥ 2) can be subdivided into the independent durations TC−1 and
DC(C − 2) as follows:

DC = TC−1 + (1− PC−1)DC(C − 2) for C ≥ 2.

Similarly decompositions of NC and AC gives the following recursive equations:

NC = PC−1 + (1− PC−1)NC(C − 2) for C ≥ 2,

AC = TC−1 + (1− PC−1)AC(C − 2) for C ≥ 2.

This set of equations again gives rise to recursions for DC, NC and AC, which can be
solved in terms of D0, N0 and A0.

4.6.2 Laplace transforms of the duration and the intercongestion
triple

The derivation of the Laplace transforms is done analogously to the derivation of the
LTs of the congestion period done by Preater [104]. First, the LT of the duration will
be derived in two different ways which results in two different forms. The equality of
these two forms is exploited in the derivation of the LT of the intercongestion triple.
In this section we follow Preater’s assumption that µ = 1.

Laplace transform of the intercongestion period duration

LEMMA 4.6.1. Let xn be a non-negative, bounded sequence satisfying

xn :=
a + bn

n + c− xn−1
, n ≥ 1,
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where a, c > 0, b ≥ 0. Then

x0 = L(a, b, c) := −1− c +
a + b

−2− c + a+2b
−3−c+ a+3b

−4−c+···

. (4.26)

Proof The proof is derived by mimicking Lemma 2.1 of [104] for

xn−1 := −n− c +
a + bn

xn
, n ≥ 1.

Writing x0 as a continued fraction yields (4.26). ¤

PROPOSITION 4.6.2. The Laplace transform of the duration DC is

D∗C(s) = C−1L(λC, λ, λ + s + C − 1)

=
λ

C

IC(s, λ)
IC−1(s, λ)

∑C−1
k=0

(
C−1

k

)
λk

k! I2k(s + C − 1− k, λ)∑C
k=0

(
C
k

)
λk

k! I2k(s + C − k, λ)
. (4.27)

Proof (a) An n-intercongestion period starts with a sojourn time Tn−1 at level n− 1.
At the end of Tn−1 with probability (n− 1)/(λ + n− 1) a customer departs, starting
a (n − 1)-intercongestion period followed by another sojourn at level n − 1. At the
end of each sojourn time Tn−1 a new (n−1)-intercongestion period can be started by
a departure or the n-intercongestion can be ended by the arrival of a new customer.
With obvious notation, we find the following equality in distribution:

Dn = T
(0)
n−1 +

Gn−1−1∑

i=1

(
D(i)

n−1 + T
(i)
n−1

)
, n ≥ 0,

where all variables on the right are independent, Tn is exponentially (λ + n) dis-
tributed and Gn is geometrically (pn := λ/(λ + n)) distributed. Then,

T ∗n(s) := Ee−sTn =
λ + n

s + λ + n
,

and

D∗n(s) =
pn−1T

∗
n−1(s)

1− (1− pn−1)T ∗n−1(s)D∗n−1(s)

=
λ

n− 1 + s + λ− (n− 1)D∗n−1(s)
. (4.28)

Let xn = (n + C)D∗n+C(s). Then (4.28) fulfils the setting of Lemma 4.6.1 with a = λC,
b = λ and c = λ + s + C − 1. Hence, the first equality in (4.27) follows from (4.26).

(b) We follow the lines of the proof of Proposition 2.2 of Preater [104]. Let Xt

be a stationary version of the M/M/∞ occupation process, so Xt is Poisson (ρ) dis-
tributed (ρ = λ as µ = 1). Preater defined πn(t) := P(Xt = n|X0 = 0), which is
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Poisson (λ(1−e−t)) distributed and has LT π∗n(s) = (λn/n!)In(s, λ). Additionally we
define χn(t) := P(Xt = n|X0 = n) and denote its LT by χ∗n(s). By conditioning on
the number k ≤ n of the initial n customers that were present at epoch 0, and that
are still present at epoch t. We obtain

χn(t) =
n∑

k=0

(
n

k

)
(1− e−t)n−k(e−t)kπk(t).

Then its LT can be obtained as follows:

χ∗n(s) =
∫ ∞

0

e−st
n∑

k=0

(
n

k

)
(1− e−t)k(e−t)n−k (λ(1− e−t))k

k!
e−λ(1−e−t)dt

=
n∑

k=0

(
n

k

)
λk

k!

∫ 1

0

(1− u)s+n−k−1u2ke−λudu

=
n∑

k=0

(
n

k

)
λk

k!
I2k(s + n− k, λ),

by using the substitution u := 1− e−t in the second step.
Next, we introduce the first passage time τn := inf{t ≥ 0 : Xt = n|X0 = 0}. Then

for n ≥ 0
∫ t

0

χn(t− x)P(τn ∈ dx) = πn(t).

Taking Laplace transforms on both sides results in Ee−sτn = π∗n(s)/χ∗n(s). We thus
obtain

D∗C(s) =
Ee−sτC

Ee−sτC−1
=

λ

C

IC(s, λ)
IC−1(s, λ)

∑C−1
k=0

(
C−1

k

)
λk

k! I2k(s + C − 1− k, λ)∑C
k=0

(
C
k

)
λk

k! I2k(s + C − k, λ)
.

which proves the second equality in (4.27). ¤

A ‘sanity check’ of (4.27) is the special case C = 1; for C = 1 the intercongestion
period reduces to an exponentially (λ) distributed idle period. In Appendix B of
[116] it is shown that then (4.27) indeed reduces to λ/(λ + s).

Laplace transform of C-intercongestion triple (DC,NC,AC)

THEOREM 4.6.3. Let C ∈ N. The vector (DC,NC,AC) has LT

Ω∗C(s, t, u) := E exp (−sDn − tNn − uAn) = C−1L(a′C, a′, b′)

where a′ := λe−t; b′ := s + λ + u + C − 1.
In particular,

Ω∗C(s− u, t, u) =
λ

C

IC(s, λ)
IC−1(s, λ)

∑C−1
k=0

(
C−1

k

)
λk

k! I2k(s + C − 1− k, λ)∑C
k=0

(
C
k

)
λk

k! I2k(s + C − k, λ)
.
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Proof

Ω∗n(s, t, u) = E exp (−sDn − tNn − uAn)

= E exp (−(s + u)Dn − tNn − u(An −Dn))

= E exp
(
− (s + u)T (0)

n−1 − t

−
Gn−1−1∑

i=1

[
(s + u)T (i)

n−1 + (s + u)Dn−1 + tNn−1 + uAn−1

] )

= T ∗n−1(s + u)pne−t
[
1− (1− pn)T ∗n−1(s + u)Ω∗n−1(s + u, t, u)

]−1

=
λe−t

n− 1 + s + u + λ− (n− 1)Ω∗n−1(s + u, t, u)
(4.29)

Let xn = (n+ C)Ω∗n+C(s−nu, t, u). Then (4.29) falls in the framework of Lemma 4.6.1
with a = a′C; b = a′; c = b′. ¤

4.6.3 Moments of the C-intercongestion period quantities

The derivations of the moments and joint expectations of the intercongestion-period
quantities are analogous to the derivation of the congestion-period quantities in Sec-
tions 4.3 and 4.4, although there is a large difference in obtaining the starting condi-
tions. As the system can never have less than 0 customers, all quantities correspond-
ing to level 0 are 0 themselves, e.g., EDn

0 = 0, ENn
0 = 0, EAn

0 = 0, ED0N0 = 0,
ED0A0 = 0, EN0A0 = 0.

Moments of the duration of an C-intercongestion period.

EDC =
1
λ

(C − 1)!
ρC−1

C−1∑

j=0

ρj

j!
, (4.30)

ED2
C =

(C − 1)!
ρC−1

2
λ2

+ 2
(C − 1)!

ρC

C−1∑

j=1

ρj

(j − 1)!
1
νj

(EDj+1 + EDj)

+2
(C − 1)!

ρC

C−1∑

j=1

ρj

(j − 1)!
(EDj+1EDj) +

2
λ

(C − 1)!
ρC−1

C−1∑

j=1

ρj

j!
1
νj

. (4.31)

Moments of the number of arrivals during a C-intercongestion period.

ENC =
(C − 1)!

ρC

C−1∑

j=1

ρj

(j − 1)!
+ 1,

EN 2
C =

(C − 1)!
ρC−1

+ 2
(C − 1)!

ρC

C−1∑

j=1

ρj

(j − 1)!
ENj+1ENj +

(C − 1)!
ρC−1

C−1∑

j=1

ρj

j!
1
νj

.
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Moments of the area swept under C during a C-intercongestion period.

EAC =
1
λ

(C − 1)!
ρC−1

+
(C − 1)!

ρC−1

C−1∑

j=1

ρj

(j − 1)!
EDj +

1
λ

(C − 1)!
ρC−1

C−1∑

j=1

ρj

j!
,

EA2
C =

C − 1
ρC−1

2
λ2

+
(C − 1)!

ρC

C−1∑

j=1

ρj

(j − 1)!
(
ED2

j + 2E[Dj−1Aj−1]

+ 2EAj−1EAj + 2EDj−1EAj) +
2
λ

(C − 1)!
ρC−1

C−1∑

j=1

ρj

j!

+
(C − 1)!

ρC

C−1∑

j=1

ρj

(j − 1)!
1
νj

(EAj−1 + EDj−1 + EAj) .

Joint expectations of a C-intercongestion period. The joint expectations can be obtained
in a similar fashion; they can be found in Section 6.4 of [116].

4.7 Intercongestion period as an approximation of a con-
gestion period

From a numerical perspective a drawback of the congestion period recursions is that
the starting condition corresponds to a busy period; for high loads the system will
hardly ever be empty, and hence the busy-period quantities will tend to grow large,
thus resulting in numerical instability. The intercongestion period recursions do not
have this problem; as remarked before, all moments of the quantities of level 0 are 0,
and consequently the recursions are numerically stable.

Congestion and intercongestion periods are similar in the sense that a C-congestion
period is the duration that the system is above level C and a C-intercongestion period
is the duration that the system is below level C. For C close to ρ, the birth rate (λ)
and the death rate (ρµ) are (almost) identical, hence Pρ ≈ 1− Pρ in distribution. As
Tn ≈ Tρ−(n−ρ) in distribution for n close to ρ, it follows that a ρ-congestion and a
ρ-intercongestion period exhibit similar stochastic behavior; a ρ-congestion period
can be approximated by a ρ-intercongestion period. More generally, a C-congestion
periods can be approximated by (ρ−(C−ρ))-intercongestion periods by the observa-
tion Pn ≈ 1− Pρ−(n−ρ) for n close to ρ. In particular, this approximation is expected
to work well for C close to the average load ρ.

Figures 4.1 and 4.2 present numerical results of the proposed approximation for
arrival rate λ = 1 and mean service time µ−1 = 1000, so the average load ρ is 1000.
The moments of the congestion period quantities are obtained by simulations; the
recursions are numerically unstable as the busy periods are very large due to the
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Figure 4.1: Approximation of the simulated C-congestion period ( CP) duration by an analyti-
cally derived (2ρ − C)-intercongestion period ( ICP). Left: duration moments. Right: Relative
error between simulated C-congestion period and derived (2ρ− C)-intercongestion period
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Figure 4.2: Approximation of a simulated C-congestion period ( CP) by an analytically derived
(2ρ− C)-intercongestion period ( ICP). Left: number of arrivals. Right: area swept above C.

high average load. The intercongestion period quantities are obtained analytically
by the recursive relations presented in Section 4.6. The left graph of Figure 4.1 shows
the first four moments of C-congestion period duration and an approximation of the
duration; the approximation is the duration of a (2ρ − C)-intercongestion period.
The right graph presents the relative error of the approximation. We see that for
values of C in the neighborhood of ρ the approximation is close to the simulated
results. Especially for ‘lower’ moments the approximation is accurate; as could be
expected, for higher moments the relative error becomes larger. In the range of C =
(ρ, . . . , 1100) the error of the second moment is less than 7%; here it is important to
notice that the system will hardly ever have more than 1100 customers (probability
is in the order of 0.001). Figure 4.2 presents the results for the number of arrivals and



4.8. Concluding remarks 67

the area for the same scenario. The results for these quantities are also accurate, so
the intercongestion period seems to be a very good approximation for the congestion
period, in particular for C close to average load ρ.

Another approximation was proposed earlier by Guillemin and Simonian [58].
They argue that a C-congestion period converges (after a specific scaling) to an
M/M/1 busy period for large C. They propose to use the death-rate Cµ of the
M/M/∞ queue as the death-rate for the M/M/1 queue, which results in an accu-
rate approximation for C large compared to ρ. For C close to ρ the approximation
is not so good; the behavior of the M/M/∞ congestion period differs significantly
from the M/M/1 busy period. However, as concluded earlier, the approximation of
a congestion period by an intercongestion period is very accurate for C close to the
average load ρ. We remark that the regime in which C is close to ρ is from a practical
point of view perhaps the most relevant regime: networks are usually dimensioned
such that C is exceeded only a small fraction of time. Hence, our main conclusion is
that our approximation (for C close to ρ) nicely complements the one proposed by
Guillemin and Simonian.

4.8 Concluding remarks

We studied the quantities duration, number of arrivals, and area for C-congestion pe-
riods of an M/M/∞ queue. We presented a derivation using recursive relations thus
obtaining all moments and ‘joint expectations’ of the above quantities. The starting
conditions of the recursions correspond to the busy period (a 0-congestion period); it
is noted that the derivation of the higher moments and the joint expectations of these
busy-period quantities were far from trivial, and followed from tedious calculations.

Furthermore, we introduced C-intercongestion periods, which are the intervals in
which the system is below level C. Analogously to C-congestion periods, recursive re-
lations are presented for the moments and joint expectations of the quantities. These
are also solved in terms of a starting condition, but in contrast with C-congestion
periods, the starting conditions of C-intercongestion period quantities are easily ob-
tained: all moments and joint expectations of 0-intercongestion period quantities are
0. For the C-intercongestion period we also derived the Laplace transforms of the
duration and the so-called intercongestion triple.

Finally, it was shown that an intercongestion period can be used in an approxi-
mation of a congestion period, in particular for C close to the average load ρ. This
approximation is especially useful as the calculations of the intercongestion period
are numerically more stable than those of the congestion periods. The proposed
approximation complements other approximations proposed in literature, as these
tend to be less accurate for C close to the average load ρ.





Chapter 5

Tail asymptotics of congestion periods

5.1 Introduction

In this chapter we, once again, consider C-congestion periods of an M/M/∞ queue,
but now we focus on the tail asymptotics of the quantities DC, AC, and NC. Knowl-
edge of the probabilistic characteristics of a C-congestion period is useful, for in-
stance when designing packet-based networks, similar to what we did in Chapter
3. These networks are typically designed such that the impact of overflows is lim-
ited, or, in other words, C should be chosen such that long congestion periods are
rare. More precisely, we wish to find a value for C such that the probability that
the duration of the congestion period exceeds a given threshold is kept very small,
typically in the order of 10−4 to 10−6. These probabilities relate to the so-called tail
of a probability distribution; in this chapter we characterize the tail behavior of the
distributions of the quantities using large-deviations theory (cf. Section 2.2.2).

5.1.1 Contribution

Our contribution is to shed light on the tail probabilities P(DC > x), P(AC > x), and
P(NC > x), for which hardly anything is known (cf. Section 4.1.1). In more detail,
our contributions are the following.

Asymptotics under many-flows scaling. We scale the arrival rate Λ by a parame-
ter n, i.e., we let Λ ≡ nλ, but leave the mean service time µ−1 unchanged, so that
the system load becomes P = nρ, where ρ := λ/µ. Starting a congestion period at
level C ≡ nc, our aim is to find the asymptotics of the probabilities P(Dnc > x),
P(Anc > nx), and P(Nnc > nx), for n large and x > 0 given. We succeed in doing
so by using sample-path large-deviations techniques, relying predominantly on the the-
ory developed in [123]. It turns out that the probability P(Dnc > x) decays roughly
exponentially in n (that is, we show that −n−1 · logP(Dnc > x) tends to a positive,
finite limit); analogous results hold for P(Anc > nx) and P(Nnc > nx). Assuming
that c > ρ (which we shall do throughout this chapter), we explicitly identify the
corresponding decay rates. As a by-product, we also identify the most likely path,
which is essentially the most probable way in which the events under considera-
tion occur: given that the rare event happens, then with overwhelming probability
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it does so via a path in the direct neighborhood of the most likely path. Clearly, the
many-flows scaling is particularly suitable for systems with a considerable level of
multiplexing.

Asymptotics of the Gaussian counterpart. We approximate the M/M/∞ model under
the many-flows scaling by an appropriate Gaussian process, the so-called Gaussian
counterpart of the M/M/∞ system; see for further background on this type of ap-
proximation [3], and [54, Section 2]. We argue that this counterpart is the so-called
integrated Ornstein-Uhlenbeck (iOU) model [85]. Now we can analyze the rare events
under considerations by applying sample-path large deviations results, viz. the gen-
eralized version of Schilder’s theorem [7, 35, 85]. Owing to the fact that the iOU

process has a well-defined rate process (unlike for instance fractional Brownian mo-
tion), the corresponding large-deviations rate function can be expressed in a consid-
erably more explicit way than in the standard version of the generalized version of
Schilder’s theorem.

Relying on this explicit sample-path large-deviations result, we determine the tail
asymptotics of P(Dnc > x) and P(Anc > nx) for n large for the Gaussian counter-
part; the quantity Nnc does not have a meaningful Gaussian counterpart. As could
be expected, these Gaussian asymptotics become increasingly accurate when c ap-
proaches ρ from above, that is, in a heavy-traffic setting. Again we also find the
corresponding most likely paths.

Uniform bounds. All results mentioned above relate to the M/M/∞model under the
many-flows scaling, and are in terms of (relatively crude) asymptotics. For practical
purposes, however, it would be helpful to have bounds — particularly upper bounds
— on the probabilities of interest, that are valid for all parameter settings (i.e., not
just in an asymptotic regime). Using change-of-measure arguments, and relying on
the celebrated Chernoff bound, we are able to derive such uniform upper bounds;
these are in closed-form.

Importance sampling algorithms. Estimating the probabilities P(DC > x), P(AC > x),
and P(NC > x) by direct, naı̈ve simulation is inherently difficult, particularly for
large x, because of the rarity of the event under consideration. This motivates the
search for ‘fast-simulation’ techniques [24]. The change-of-measures, mentioned
above in the context of the uniform bounds, suggest parameters that can be used
in importance-sampling procedures. In a numerical study, we compare the esti-
mates (as obtained under the many-flows scaling), as well as the uniform upper
bounds, with results obtained from importance-sampling-based simulations. The
importance-sampling schemes turn out to yield a substantial speed-up compared to
direct, naı̈ve simulations. They are very useful for practical purposes, as the uniform
upper bounds tend to overestimate the probabilities of interest.
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5.1.2 Outline

Section 5.2 introduces the model, i.e., the M/M/∞ queue, the C-congestion period,
and formally defines the quantities of interest, i.e., DC, NC, and AC. In Section 5.3 we
present the analysis of the tail probabilities under the many-flows scaling, whereas
Section 5.4 addresses the Gaussian counterpart. Where Sections 5.3 and 5.4 present
logarithmic asymptotics of the scaled model, in Section 5.5 we establish uniform,
closed-form (upper) bounds on the probabilities of interest. Further, this section also
describes change-of-measures that can be used in importance-sampling-based sim-
ulation schemes. In Section 5.6 we numerically evaluate the decay rates of Sections
5.3 and 5.4, and compare these with the uniform bounds, as well as with simulation
results (obtained by the importance-sampling procedure sketched in Section 5.5).
Section 5.7 concludes.

5.2 Model and preliminaries

Model. We consider a resource at which flows arrive according to a Poisson process
with intensity Λ, and at which the jobs stay for an exponentially distributed time with
mean µ−1. We are thus in the setting of the (classical) M/M/∞model. The following
properties are well-known: i) in stationarity the number of trunks occupied has a
Poisson distribution with mean P := Λ/µ; ii) the number of arriving flows in an
interval of length t is Poisson distributed with mean Λt, and each of them has arrived
on an epoch uniformly distributed over the interval [0, t], independently of the other
arrivals.

Congestion periods. We define the key quantities studied in this chapter. To this end,
we first need some additional notation. First, let X(t) denote the number of flows
present at time t; X(·) constitutes a continuous-time Markov chain on {0, 1, . . .}, with
upward transition rate λ, and downward transition rate (from state k) kµ. A(t) is the
defined as the work generated by the flows in the interval [0, t], which is essentially
the integral of X(·):

A(t) :=
∫ t

0

X(s)ds.

We also need the discrete-time embedding of the above described continuous-time
process. We let Ym be the number of flows present after m jumps, where a jump
is an arrival or departure. It is clear that (Ym)m∈N is a discrete-time Markov chain,
with upward transition probability λ/(λ+kµ) and downward transition probability
kµ/(λ + kµ) (from state k).

A first observation is that the process A(t) is rather convenient to work with,
owing to its nice structure. In particular, using elementary arguments and relying



72 5. Tail asymptotics of congestion periods

on properties i) and ii) mentioned above, it can be verified that, for ϑ < µ,

logE(eϑA(t) | X(0) = C + 1) =

(C + 1) log
(

µ

µ− ϑ
− ϑ

µ− ϑ
e−(µ−ϑ)t

)
+

Λtϑ

µ− ϑ
− Λϑ

(µ− ϑ)2
(1− e−(µ−ϑ)t). (5.1)

It is clear that A(t) is smaller than the amount of work that has arrived in [0, t] when
the full flow would have been ‘injected’ instantaneously. This reasoning yields that

logE(eϑA(t) | X(0) = C + 1) ≤ (C + 1) log
(

µ

µ− ϑ

)
+

Λtϑ

µ− ϑ
, (5.2)

which is in agreement with (5.1). More specifically, it is readily checked that EA(t) =
Pt and

VarA(t) =
2Λ

µ3

(
tµ− 1 + e−tµ

)
. (5.3)

We study the tail behavior of the following three random variables:

DC := inf{t ≥ 0 : X(t) = C | X(0) = C + 1};

AC := (A(DC)− CDC | X(0) = C + 1);

NC :=
1
2

inf{m ∈ N : Ym = C | Y0 = C + 1} − 1
2
.

We refer to DC as the duration of the congestion period above level C. AC can be
interpreted as a proxy for the amount of traffic lost during a congestion period (in
systems in which the number of lines is truncated at C); informally, this is the area
under the graph of X(s)− Cs during a congestion period. Furthermore, it is readily
verified that NC corresponds to the number of arrivals during a congestion period
(which equals the number of departures during a congestion period, decreased by
1). We throughout assume that P < C.

We recall that the LT s of the distributions of DC, AC, and NC were found by
Guillemin and Simonian [58] in terms of special functions, whereas Preater [104]
elegantly derived their joint LT. Chapter 4 already presented explicit expressions for
expected values and variances of DC, AC, and NC, and their covariances.

Performance metrics. As an alternative to deriving the distribution functions of
DC, AC, and NC from the Laplace transforms, we apply a scaling that allows explicit
asymptotic analysis. In this scaling one identifies Λ ≡ nλ and C ≡ nc, where n

is large; likewise P ≡ nρ. We can equivalently write that the total traffic arrival
process An(t) corresponds to the sum of n independent and identically distributed
arrival processes, each distributed as the process A(t) introduced above, but with Λ
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replaced by λ, and C replaced by c. Similarly Xn(t) is defined as the aggregate rate
process, and (Y n

m)m∈N as the aggregate rate at jump epochs.
Our first goal is to asymptotically characterize the probabilities P(Dnc > x),

P(Anc > nx), and P(Nnc > nx), for n large. The scaling applied is usually referred
to as the ‘many-flows scaling’ [21, 48, 85], and is particularly appropriate if the level
of multiplexing is reasonably large. We recall that it is assumed that c > ρ, so that
the events under consideration are increasingly rare when n grows large. We rely
on large-deviations theory to show that the above probabilities decay essentially ex-
ponentially in n, and to explicitly determine the corresponding exponential decay
rates, i.e., for x > 0,

δ(x) := lim
n→∞

1
n

logP(Dnc > x),

and likewise also the decay rate corresponding to a large area, for x > 0,

α(x) := lim
n→∞

1
n

logP(Anc > nx),

and the decay rate corresponding to many arriving flows per congestion period, for
x > 0,

ν(x) := lim
n→∞

1
n

logP(Nnc > nx).

5.3 Large deviations analysis of congestion period

In this section we consider the M/M/∞ model under the many-flows scaling that
was described above, and apply sample-path large deviations to compute the decay
rates (n large) of P(Dnc > x), P(Anc > nx), and P(Nnc > nx). In the first subsection
we review the main results for sample-path large deviations of Markovian systems.
Then we subsequently determine the decay rates δ(x), α(x), and ν(x).

5.3.1 Sample-path large-deviations theory

In our exposition, we rely extensively on the framework presented in Shwartz and
Weiss [123]. In this framework a crucial role is played by the local rate function. In
case of the M/M/∞ process, this function is defined as (cf. Expression (2.3))

Ix(u) := sup
ϑ

(
ϑu− λ(eϑ − 1)− µx(e−ϑ − 1)

)
.

In fact, the local rate function measures the ‘cost’ of moving in direction u, when the
(scaled) process is in state x, in the following sense. Suppose x flows are present.
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Then the position of the scaled process Xn(·)/n after ε time units (ε small) is, in
expectation, roughly x + (λ−µx)ε, and hence the ‘most likely’ derivative of moving
is u(x) := λ−µx. Indeed, it is verified that Ix(u(x)) = 0: there is no ‘cost’ involved in
moving into this most-likely direction. It is checked that any other direction yields
strictly positive costs. We further remark that the function Ix(u) can be calculated
explicitly (the first order condition being a quadratic equation), but this is, for the
purposes of the present study, not necessary.

Having the local rate function at our disposal, we can define the action func-
tional. Informally, this action functional I(f) represents the ‘cost’ of the scaled process
Xn(·)/n following a path f(·):

I(f) :=
∫ ∞

−∞
If(s)(f ′(s))ds.

It is a matter of elementary calculus to check that, considering just the time after
time 0, the path ϕ(s) := ρ + (ϕ0 − ρ)e−µs (for some ϕ0 > 0) yields cost 0: as ϕ′(s) =
(λ− ϕ0µ)e−µs,

I(ϕ) =
∫ ∞

0

sup
ϑ

(
ϑ(λ− ϕ0µ)e−µs

−λ(eϑ − 1)− (λ + (ϕ0µ− λ)e−µs)(e−ϑ − 1)
)
ds = 0;

this answer makes sense, as this path is essentially the ‘average path’ starting at ϕ0

at time 0 to the system’s equilibrium value ρ.
Using this framework, the following sample-path large-deviations principle can be

stated:

lim
n→∞

1
n

logP
(

1
n

Xn(·) ∈ S

)
= − inf

f∈S
I(f). (5.4)

Informally, one find the most likely path f in the set S , say f?; given that the event
{Xn(·)/n ∈ S } occurs, the realization will be close to f?. Intentionally, (5.4) has
been stated in a slightly imprecise way: in fact one has two inequalities, respectively
for open and closed sets (in the path-space). These issues are not crucial in the scope
of this study, and we refer to [123] for these and related details.

In discrete time, i.e., for the process Y n
m, a similar framework can be set up, see

for instance Bucklew [23]. Then the local rate function is given by

Jx(u) := sup
ϑ

(
ϑu− log

(
λ

λ + µx
eϑ +

µx

λ + µx
e−ϑ

))
.

Again, this function can be evaluated in a more explicit manner, but we will refrain
from doing this. Similar to before, we can define the action functional as

J(f) :=
∫ ∞

−∞
Jf(s)(f ′(s))ds.
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Again we have a sample-path large-deviations principle:

lim
n→∞

1
n

logP
(

1
n

Y n(·) ∈ S

)
= − inf

f∈S
J(f). (5.5)

5.3.2 Congestion period

We cast our problem of identifying the decay rate of P(Dnc > x) into the large-
deviations framework of the previous subsection. Immediately from the sample-
path large-deviations result (5.4), we have that

δ(x) = − inf
f∈T

I(f),

with T := {f | ∀s ∈ [0, x] : f(s) ≥ c, f(0) = c}. Heuristically reasoning, as we are
looking for the ‘cheapest’ path in T , it cannot be that the optimal path is such that
f(x) > c, as otherwise even a longer congestion period could be obtained ‘for free’.
Based on this argumentation, it is seen that inff∈T I(f) = inff∈T̄ I(f), with

T̄ := {f | ∀s ∈ [0, x] : f(s) ≥ c, f(0) = f(x) = c}.
We therefore further study the following variational problem:

δ(x) = − inf
f∈T̄

∫ x

0

If(s)(f ′(s))ds.

PROPOSITION 5.3.1. For x ≥ 0,

δ(x) = −xδ?; δ? := (
√

λ−√µc)2.

Proof We prove this result by subsequently establishing a lower bound and an up-
per bound. Define the path fc through fc(s) = c for all s ∈ [0, x]. As fc ∈ T̄ , it follows
that

δ(x) ≥ −I(fc) = −x sup
ϑ

(−λ(eϑ − 1)− µc(e−ϑ − 1)
)

= −x
(
λ− 2

√
λµc + µc

)
= −x(

√
λ−√µc)2;

the optimizing ϑ equals ϑ? := 1
2 log(µc/λ) = 1

2 log(c/ρ) > 0. Hence we have proven
the lower bound. On the other hand,

δ(x) ≤ − inf
f∈T̄

∫ x

0

(
ϑ?f ′(s)− λ(eϑ? − 1)− µf(s)(e−ϑ? − 1)

)
ds

(i)
= sup

f∈T̄

∫ x

0

(
λ(eϑ? − 1) + µf(s)(e−ϑ? − 1)

)
ds

= sup
f∈T̄

∫ x

0

(√
λµc− λ + f(s)

√
λµ

c
− µf(s)

)
ds

(ii)

≤
∫ x

0

(√
λµc− λ + c

√
λµ

c
− µc

)
ds = −x(

√
λ−√µc)2,
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recalling for i) that f(0) = f(x) = c for all f ∈ T̄ , and for ii) Lemma 5.A.1 (to be
found in the appendix). This yields the upper bound: all f ∈ T̄ yield at most decay
rate −xδ?, as desired. ¤

REMARK 5.3.2. Also [123, Section 13.5.6] focuses on congestion periods, albeit with a slight-
ly different definition. They consider the random variable

BC := sup{t ≥ 0 : A(t) ≥ Ct | X(0) = C + 1}.

Again invoking the sample-path large-deviations result (5.4), the decay rate of P(Bnc > x)
can be rewritten as − inff∈B I(f), where

B :=
{

f

∣∣∣∣ ∀s ∈ [0, x] :
∫ s

0

f(r)dr ≥ cs , f(0) = c

}
.

In [123, Eq. (13.65)] it is claimed that this decay rate equals −xδ?, i.e., δ(x). This, however,
seems an error, and the correct decay rate should be [87]

− sup
ϑ

(ϑcx− c log φ(ϑ, x)− ψ(ϑ, x)), (5.6)

where, cf. (5.1),

φ(ϑ, t) :=
µ

µ− ϑ
− ϑ

µ− ϑ
e−(µ−ϑ)t (5.7)

ψ(ϑ, t) :=
λtϑ

µ− ϑ
− λϑ

(µ− ϑ)2
(1− e−(µ−ϑ)t). (5.8)

The proof is based on the fact that it turns out that the most likely path in

B̄ :=
{

f

∣∣∣∣
∫ x

0

f(s)ds ≥ cx , f(0) = c

}

lies in B; notice that B̄ ⊇ B. It is a direct implication of Cramér’s theorem that the decay
rate of the optimal path in B̄ indeed equals (5.6). Hence, the decay rate of P(Bnc > x) is
(5.6), which is larger than −xδ?. In other words: the event is less rare than suggested by
[123, Equation (13.65)]; there is a cheaper path than fc(·), namely a path that is strictly
larger than c on (0, x). For additional details, we refer to Case 3 in Theorem 3.1 in [87]. ♦

5.3.3 Area

We now turn our attention to the tail asymptotics of the area Anc. Again applying
the sample-path large-deviations result (5.4), we obtain

α(x) = − inf
f∈A

I(f), (5.9)
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where A is the set of paths that lead to an area of at least x:

A :=
{

f

∣∣∣∣ ∃t > 0 :
∫ t

0

f(s)ds ≥ x + ct, ∀s ∈ [0, t] : f(s) ≥ c, f(0) = c

}
.

In the following lemma we prove that the set Ā , given by

Ā :=
{

f

∣∣∣∣ ∃t > 0 :
∫ t

0

f(s)ds ≥ x + ct , f(0) = c

}
,

which is evidently larger than A , contains the optimal path in A .

LEMMA 5.3.3. The following identity holds:

inf
f∈A

I(f) = inf
f∈Ā

I(f).

Proof As mentioned above, A ⊆ Ā . Hence, in order to prove the stated, it suffices
to show that the minimizer in the larger set, Ā , is element of the smaller set, A .

This follows directly from a reasoning analogous to Section 13.2 of [123]. To this
end, first observe that

inf
f∈Ā

I(f) = inf
t>0

inf
f∈Āt

I(f), where Āt :=
{

f

∣∣∣∣
∫ t

0

f(s)ds ≥ x + ct , f(0) = c

}
.

For a model intimately related to our M/M/∞ model (viz. the model with expo-
nential on-off sources) [123] identifies, using calculus-of-variations techniques, the
optimizing t?, as well as the corresponding most likely path f? in Āt? . This path f?

turns out to be a symmetric hyperbolic cosine, i.e., t? is such that f?(0) = f?(t?) = c,
f?(s) > c for all s ∈ (0, t?), and

∫ t?

0

f?(s)ds = x + ct?.

Mimicking the analysis in [123], it is elementary to check that the same properties
hold for the M/M/∞ model. This implies that f? ∈ A , which proves the stated. ¤

We have reduced the problem of finding α(x) to finding the most likely path in Ā .
Before actually computing this decay rate, which we will do in Proposition 5.3.5, we
first establish another auxiliary result that reveals a relation between the decay rate
corresponding to the most likely path in Ā on one hand, and the decay rate of tail
probabilities in a related queueing system.

To this end, consider a queue fed a Poisson stream of jobs (rate nλ), each staying
in the system for an exponentially distributed time (mean µ−1), generating traffic at
a unit rate while in the system, where the buffer is emptied at a constant rate nc. Let
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Qn denote the steady-state buffer content of this queue; as before, it is assumed that
ρ < c. The following distributional equality is well-known:

Qn d= sup
t≥0

An(t)− nct,

a relation usually attributed to Reich [106]. Define, for ϑ < µ,

log Nt(ϑ) = ρ(φ(ϑ, t)− 1) + ψ(ϑ, t), (5.10)

where φ(ϑ, t) and ψ(ϑ, t) are given in (5.7).

LEMMA 5.3.4. The following identity holds:

− inf
f∈A

I(f)− (ρ− c)− c log
c

ρ
= lim

n→∞
1
n

logP(Qn > nx)

= − inf
t≥0

sup
ϑ>0

(ϑ(x + ct)− log Nt(ϑ)) . (5.11)

Proof The first equality follows from reasoning as in Section 13.2 of [123]. The decay
rate of the steady-state probability P(Qn > nx) can be rewritten as − inf I(f), where
the infimum is over all f that start off in ρ at time−∞, and for which the busy period
in which overflow (over level x) is reached starts at time 0; if level x is reached at
some time t > 0, this means that

∫ t

0

f(s)ds = b + ct,

and in addition f(s) ≥ c for all s ∈ [0, t], and f(0) = c. Now an elementary splitting
argument yields that this decay rate can be decomposed into

− inf
f∈A−

I(f)− inf
f∈A

I(f),

where A − := {f | f(−∞) = ρ, f(0) = c}. Using arguments as in Section 13.1 of
[123],

inf
f∈A−

I(f) = (ρ− c) + c log
c

ρ
.

This, and an application of Lemma 5.3.3, proves the first equality.
The second equality follows from Botvich and Duffield [21], as follows. Let Nt(ϑ)

be the moment generating function of the work generated by a single Poisson stream
of jobs (that is, with rate λ), each staying in the system for an exponentially dis-
tributed time (with mean µ−1):

log Nt(ϑ) = ρ(φ(ϑ, t)− 1) + ψ(ϑ, t);
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here it is used that the number of flows present at time 0 has a Poisson distribution
with mean ρ. According to [21], the decay rate of P(Qn > nx) equals

− inf
t≥0

sup
ϑ>0

(ϑ(x + ct)− log Nt(ϑ)) . (5.12)

This implies the second equality. ¤

Now the decay rate α(x) follows immediately from Lemma 5.3.4, in conjunction with
Equation (5.9).

PROPOSITION 5.3.5. For x ≥ 0,

α(x) = − inf
t≥0

sup
ϑ>0

(ϑ(x + ct)− log Nt(ϑ)) + (ρ− c) + c log
c

ρ
.

As opposed to δ(x) and (as we will see later) ν(x), there is no explicit, closed-form
available for α(x). It is, however, possible to explicitly characterize α(x) for x ↓ 0 and
x →∞. We define

α?
0 := 2

√
2 ·

√
λ

(
1− ρ

c
+

ρ

c
log

ρ

c

)
;

α?
∞ := µ− λ

c
;

β?
∞ :=

(c− ρ)2

ρ
+ c− ρ− c log

c

ρ
.

PROPOSITION 5.3.6. The asymptotic behavior of α(x) is given by

α(x) = −α?
0

√
x−O(x) as x ↓ 0;

α(x) = −β?
∞ − α?

∞x + o(1) as x →∞.

Proof The behavior around x = 0 follows directly from Mandjes and Kim [86] (see
the remark on the open model in Section 3), in conjunction with Lemma 5.3.4. It is
readily verified that, in the notation used in that remark, ϑ0 = log(c/ρ), and then it
is a matter of evaluating the expressions.

The behavior for t → ∞ follows immediately from the expression for Nt(ϑ) for
t large, and Theorem 3 of Botvich and Duffield [21]. The latter result states that the
decay rate of P(Qn > nx) equals −β̄?

∞ − α?
∞x + o(1) for x large, where α?

∞ solves

lim
t→∞

1
t

log Nt(ϑ) = cϑ,

i.e., α?
∞ = µ− λ/c = µ(1− ρ/c), and

β̄?
∞ := − lim

t→∞
(log Nt(α?

∞)− c α?
∞ t) =

(c− ρ)2

ρ
.

Now an application of Lemma 5.3.4 yields the stated. ¤
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5.3.4 Number of flows

We cast our problem of identifying the decay rate of P(Nnc > nx) into the large-
deviations framework introduced earlier. We now use the discrete-time sample-path
large deviations. Immediately from (5.5),

ν(x) = − inf
f∈N

J(f),

with N := {f | ∀s ∈ [0, 2x] : f(s) ≥ c, f(0) = c}. Analogously to the duration of the
congestion period we are looking for the ‘cheapest’ path, which cannot be optimal if
f(2x) > c, as otherwise even a longer congestion period could be obtained ‘for free’.
Hence inff∈N J(f) = inff∈N̄ J(f), with

N̄ := {f | ∀s ∈ [0, 2x] : f(s) ≥ c, f(0) = f(2x) = c}.
We therefore further study the following variational problem:

ν(x) = − inf
f∈N̄

∫ 2x

0

Jf(s)(f ′(s))ds.

PROPOSITION 5.3.7. For x > 0,

ν(x) = −xν?; ν? := 2 log
λ + µc

2
√

λµc
= log

(λ + µc)2

4λµc
.

Proof We prove this result by subsequently establishing a lower bound and an up-
per bound. Define the path fc through fc(s) = c for all s ∈ [0, 2x]. As fc ∈ N̄ , it
follows that

ν(x) ≥ −J(fc) = −2x · sup
ϑ

(
− log

(
λ

λ + µc
eϑ +

µc

λ + µc
e−ϑ

))

= 2x · log

(
λ
√

µc/λ + µc/
√

µc/λ

λ + µc

)
= −2x · log

λ + µc

2
√

λµc
;

the optimizing ϑ equals ϑ? := 1
2 log(µc/λ) = 1

2 log(c/ρ) > 0. Hence we have proven
the upper bound. On the other hand,

ν(x) ≤ − inf
f∈T̄

∫ 2x

0

(
ϑ?f ′(s)− log

(
λ

λ + µf(s)
eϑ?

+
µf(s)

λ + µf(s)
e−ϑ?

))
ds

(i)
= − inf

f∈T̄

∫ 2x

0

(
− log

(
λ

λ + µf(s)
eϑ?

+
µf(s)

λ + µf(s)
e−ϑ?

))
ds

= sup
f∈T̄

∫ 2x

0

log
(

1
λ + µf(s)

(
λeϑ?

+ µf(s)e−ϑ?
))

ds

= sup
f∈T̄

∫ 2x

0

log
(√

λµc (1 + f(s)/c)
λ + µf(s)

)
ds

(ii)

≤ 2x log
(

2
√

λµc

λ + µc

)
.
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Here i) is due to the fact that f(0) = f(x) = c for all f ∈ N̄ , and ii) due to Lemma
5.A.2. This yields the lower bound: all f ∈ N̄ yield at most decay rate −xν?, as
desired. ¤

5.4 Large deviations analysis of the Gaussian counter-
part

So far, we have considered the asymptotics of P(Dnc > x), P(Anc > nx), and
P(Nnc > nx), using sample-path large-deviations. In this section we approximate
An(·) by its so-called Gaussian counterpart Ān(·), that is, the superposition of n Gaus-
sian processes, each with mean and variance given through

EĀ(t) = ρt, v(t) := VarĀ(t) =
2λ

µ3

(
tµ− 1 + e−tµ

)
,

cf. (5.3). This specific Gaussian process is known as the integrated Ornstein-Uhlenbeck
(iOU) process. The procedure of replacing stochastic processes by their Gaussian
counterpart was proposed and extensively motivated by Addie, Mannersalo, and
Norros [3]; see for a further justification in the M/M/∞ case also [54, Section 2] and
[132].

With Ā(·) corresponding to a single iOU process with the mean and variance de-
fine above, it is observed that Ā(·) is a genuine Gaussian counterpart of our original
Markovian system, in the sense that the following two properties hold:

- In the first place, the ‘rate process’ X̄(t) := Ā′(t) is well-defined (which is not
the case for several other Gaussian processes such as fractional Brownian mo-
tion). This is a stationary Gaussian process (where Ā(·) was a Gaussian process
with stationary increments). It is readily verified that EX̄(t) = ρ, and

Var
(
X̄(t)

)
= lim

ε↓0
v(t + ε)− v(t)

ε2
= ρ;

these results are in agreement with the fact that in the original (that is, non-
Gaussian) model X(t) has a Poisson distribution with mean (and hence also
variance) ρ.

- In the second place the Gaussian process has a Markovian structure, in the
sense that, for 0 < u < T and s > 0,

(Ā(T, T + s) | X̄(T ), Ā(0, u)) d= (Ā(T, T + s) | X̄(T )).

This follows by showing that both sides of the previous display have the same
mean and variance. We briefly present the procedure for the mean; the variance



82 5. Tail asymptotics of congestion periods

can be done analogously. To this end, recall

E(Y1 | Y2 = y2, Y3 = y3) =

EY1 +
(
Cov(Y1, Y2)
Cov(Y1, Y3)

)T

Σ−1

(
y2 − EY2

y3 − EY3

)
;

Var(Y1 | Y2 = y2, Y3 = y3) =

Var(Y1) +
(
Cov(Y1, Y2)
Cov(Y1, Y3)

)T

Σ−1

(
Cov(Y1, Y2)
Cov(Y1, Y3)

)

where

Σ :=
(

Var(Y2) Cov(Y2, Y3)
Cov(Y2, Y3) Var(Y3)

)
.

As a consequence, E(Ā(T, T + s) | X̄(T ) = x, Ā(0, u) = y) equals

ρs +
(
Cov

(
Ā(T, T + s), X̄(T )

)

Cov
(
Ā(T, T + s), Ā(0, u)

)
)T

×
(

ρ Cov
(
X̄(T ), Ā(0, u)

)

Cov
(
X̄(T ), Ā(0, u)

)
v(u)

)−1(
x− ρ

y − ρu

)
.

It is a matter of straightforward computations to verify that

Cov
(
Ā(T, T + s), X̄(T )

)
=

λ

µ2
(1− e−µs);

Cov
(
Ā(T, T + s), Ā(0, u)

)
=

λ

4µ3
e−µT (1− e−µs)(eµu − 1);

Cov
(
X̄(T ), Ā(0, u)

)
=

λ

4µ2
e−µT (eµu − 1).

Now tedious calculus yields that

E(Ā(T, T + s) | X̄(T ) = x, Ā(0, u) = y) = ρs +
1− e−µs

µ
· (x− ρ),

which is in agreement with E(Ā(T, T + s) | X̄(T ) = x) (observe that, in partic-
ular, u and y cancel). Similarly, Var

(
Ā(T, T + s) | X̄(T ) = x, Ā(0, u) = y

)
coin-

cides with Var
(
Ā(T, T + s) | X̄(T ) = x

)
, and equals v(s)+(λ/µ3)(1−e−µs)2 =

(2λ/µ3)(sµ− 3/2 + 2e−sµ − e−2µs/2).
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Useful relations. We give a number of additional useful relations:

E(Ā(0, t) | X̄(0) = x) = ρt +
(1− e−tµ)

µ
(x− ρ).

Var(Ā(0, t) | X̄(0) = x) =
2λ

µ3

(
tµ− 3

2
+ 2e−tµ − 1

2
e−2tµ

)
.

Now

E(X̄(t) | X̄(0) = x) = E
(

lim
ε↓0

Ā(0, t + ε)− Ā(0, t)
ε

| X̄(0) = x

)

= ρ + e−tµ(x− ρ)

entails that E(X̄(ε) | X̄(0) = x) = x + ε(λ− µx) + O(ε2), for ε ↓ 0, and likewise

Var
(
X̄(t) | X̄(0) = x

)
= Var

(
lim
ε↓0

Ā(0, t + ε)− Ā(0, t)
ε

| X̄(0) = x

)

= ρ(1− e−2tµ)

leads to Var
(
X̄(ε) | X̄(0) = x

)
= 2λε + O(ε2).

5.4.1 Sample-path large deviations theory

The computation of the decay rates δ̄(x) of the congestion period, ᾱ(x) of the area,
and ν̄(x) of the number of customers, can, as before, be done relying on a sample-
path large-deviations result. In the setting of Gaussian processes, this result is known
as (the generalized version of) Schilder’s theorem [7, 35, 85]. It is noted that this result
is of a rather implicit nature, in that there is in general no closed-form expression for
the action functional (that is, we do not have an explicit expression for the ‘cost’ of a
given path f ). Owing to the fact that the iOU process has a well-defined rate process,
however, the corresponding action functional can, for this specific Gaussian process,
be expressed explicitly. The goal of this subsection is to identify this action functional
— we do so by first heuristically deriving the sample-path large-deviations result,
which will be rigorized in the second part of this subsection.

Heuristic approach. With X̄n(t) := (Ān)′(t), we focus on the likelihood that the sam-
ple mean n−1X̄n(·) follows the function f(·) on the interval [0, T ], given the initial
condition n−1X̄n(0) = x. The function f(·) is evidently such that f(0) = x. Then we
require, after discretizing time for k = 1, . . . , T/4t, that

1
n

X̄n(k4t) = f(k4t)
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for all k; the finer the grid, the better the approximation. Hence we consider for 4t

small

P
(

1
n

X̄n(t) ≈ f(t), ∀t ∈ [0, T ]
∣∣∣∣

1
n

X̄n(0) = x

)

≈ P
(

1
n

X̄n(k4t) ≈ f(k4t), ∀k ∈ {1, ..., T/4t}
∣∣∣∣

1
n

X̄n(0) = x

)
.

By the Markovian property of the rate process, the previous display reads
T/4t∏

k=1

P
(

1
n

X̄n(k4t) ≈ f(k4t)
∣∣∣∣

1
n

X̄n((k − 1)4t) ≈ f((k − 1)4t)
)

=
T/4t∏

k=1

P
(

1
n

X̄n(4t) ≈ f(k4t)
∣∣∣∣

1
n

X̄n(0) ≈ f((k − 1)4t)
)

,

for paths f(·) with f(0) = x. Relying on standard large-deviations results for the
Normal distribution, we thus obtain the decay rate

lim
n→∞

1
n

logP
(

1
n

X̄n(t) ≈ f(t), ∀t ∈ [0, T ]
∣∣∣∣

1
n

X̄n(0) = x

)

= lim
4t↓0

T/4t∑

k=1

(
f(k4t)− E (

X̄(4t) | X̄(0) = f((k − 1)4t)
))2

2Var
(
X̄(4t) | X̄(0) = f((k − 1)4t)

) .

Applying the approximations of E(X̄(ε) | X̄(0) = x) and Var
(
X̄(ε) | X̄(0) = x

)
for

small ε, as given above, this further reduces to

lim
4t↓0

1
2

T/4t∑

k=1

(f(k4t)− f((k − 1)4t)−4t(λ− µf((k − 1)4t))2

2λ4t

= lim
4t↓0

1
4λ

T/4t∑

k=1

4t

(
(f(k4t)− f((k − 1)4t))

4t
− (λ− µf((k − 1)4t))

)2

= lim
4t↓0

1
4λ

T/4t∑

k=1

4t (f ′((k − 1)4t)− λ + µf((k − 1)4t))2

=
1
4λ

∫ T

0

(f ′(t)− λ + µf(t))2 dt.

Hence the candidate rate function of a path f is

Ī(f) =
∫ T

0

Īf(s)(f ′(s))ds, where Īx(u) :=
(u− λ + µx)2

4λ
.

So far we have considered paths on [0, T ], that start in x at time 0. Extending the
argument to paths on (−∞,∞), the candidate for the rate function would become

Ī(f) =
∫ ∞

−∞
Īf(s)(f ′(s))ds. (5.13)
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The remainder of this subsection is devoted to a formal approach to establishing
(5.13) by applying the generalized version of Schilder’s theorem.

Sample-path large-deviations principle. For any Gaussian process with stationary in-
crements Ā(·), the generalized version of Schilder’s theorem states that, under mild
conditions,

lim
n→∞

1
n

logP
(

1
n

Ān(·) ∈ S

)
= − inf

F∈S
K(F ); (5.14)

as before, we should formally distinguish between open en closed sets S . In general,
the action functional K(F ) is only explicitly given for paths F (·) that are mixtures of
covariance functions: if, for αi, si ∈ R, and Γ(s, t) := Cov

(
Ā(s), Ā(t)

)
, the path F (s)

is of the form
∑d

i=1 αiΓ(s, si), then

K(F ) =
d∑

i=1

d∑

j=1

αiαjΓ(si, sj).

Also for F (·) that are not given as a mixture of covariance functions, one can de-
termine K(F ) by approximating F (·) by a mixture of covariance functions, and by
using a limiting procedure — we leave out details here.

In case Ā(·) has a derivative, then one could also consider large deviations prob-
abilities that relate to the rate process X̄n(·) rather than the cumulative traffic process
Ān(·). With f(s) := F ′(s),

lim
n→∞

1
n

logP
(

1
n

X̄n(·) ∈ S

)
= − inf

f∈S
K(F ). (5.15)

In order to rigorize (5.13), we show that for F (·) being a linear combination of co-
variance functions, we have that indeed

K(F ) =
1
4λ

∫ ∞

−∞
(f ′(t)− λ + µf(t))2 dt. (5.16)

It is elementary to show that, using the shorthand notation Γi(t) := Γ(t, si), the
right-hand side of the previous display equals

1
2λ

d∑

i=1

d∑

j=1

αiαj

∫ ∞

−∞
(Γ′′i (t) + µΓ′i(t))(Γ

′′
j (t) + µΓ′j(t))dt.

Then (5.16) indeed follows from the next lemma.

LEMMA 5.4.1. For all i, j = 1, . . . , d,
∫ ∞

−∞
(Γ′′i (t) + µΓ′i(t))(Γ

′′
j (t) + µΓ′j(t))dt = 2λΓ(si, sj).

Proof See appendix. ¤
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5.4.2 Congestion period

The decay rate of the congestion period can be found in the same fashion as in Sec-
tion 5.3.2, the only major difference being that now we should rely on the sample-
path large-deviations result for iOU traffic.

PROPOSITION 5.4.2. For x ≥ 0,

δ̄(x) = −xδ̄?; δ̄? :=
(µc− λ)2

4λ
.

Proof We prove this result by first establishing a lower bound. Clearly, δ̄(x) ≥ Ī(fc),
recalling that fc(s) = c for all s ∈ [0, x]. Evaluating Ī(fc), we find the lower bound.

Now focus on the upper bound. Straightforward algebra yields that

δ̄(x) = − inf
f∈T̄

∫ x

0

(
(f ′(s))2

4λ
− 1

2
f ′(s) +

1
4

f(s)f ′(s)
λ

+
λ

4
+

µ2

4λ
f2(s)− 1

2
µf(s)

)
ds.

Evidently, the fact that f(0) = f(x) = c (for all f ∈ T̄ ) entails that

∫ x

0

1
2
f ′(s)ds =

∫ x

0

1
4

f(s)f ′(s)
λ

ds = 0,

which immediately leads to

δ̄(x) ≤ − inf
f∈T̄

∫ x

0

(
µ2

4λ
f2(s)− 1

2
µf(s)

)
ds− λ

4
x.

The right-hand side of the previous display is smaller than −xτ̄?, as follows, after
elementary algebra, from the inequality

µ2

4λ
(y2 − c2) =

µ2

4λ
(y + c)(y − c) ≥ µ2

4λ
· 2c · (y − c) =

µ

2
· c

ρ
(y − c) ≥ µ

2
(y − c),

for all y ≥ c. This completes the upper bound.

REMARK 5.4.3. We now consider the so-called heavy-traffic regime c = ρ+ε for ε small, and
we show that δ? and δ̄? are very much alike. In other words: in heavy-traffic the Gaussian
approximation is particularly accurate. The formal calculation is as follows. It is easily
checked that

δ? = µ

(
ε2

4ρ
+

ε3

8ρ2

)
+ O(ε4), and δ̄? = µ

(
ε2

4ρ

)
,

as ε ↓ 0. See for related results also [54, Section 5.2]. ♦
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5.4.3 Area

We now consider the decay rate ᾱ(x) of the area exceeding an amount x, which is
obtained in a similar manner as was done for the M/M/∞ model in Section 5.3.3.
Again exploiting the relation with the tail probabilities of an appropriately chosen
queueing system, and the large-deviations results by Botvich and Duffield [21], we
obtain the following proposition. As its proofs is identical to that of Proposition 5.3.5,
we leave it out. Realize that

lim
n→∞

1
n

logP
(

1
n

X̄n(0) ≥ c

)
= − (c− ρ)2

2ρ
.

PROPOSITION 5.4.4. For x ≥ 0,

ᾱ(x) = − inf
t≥0

(x + (c− ρ)t)2

2v(t)
+

(c− ρ)2

2ρ
.

There is no explicit, closed-form available for α(x). It is, however, possible to explic-
itly characterize α(x) in the asymptotic regimes x ↓ 0 and x →∞.

PROPOSITION 5.4.5. The asymptotic behavior of α(x) is given by

ᾱ(x) = −
√

2λ/3 ·
(

c− ρ

ρ

)3/2

· √x + O(x) as x ↓ 0;

ᾱ(x) = −µ(c− ρ)
ρ

x− (c− ρ)2

2ρ
as x →∞.

Proof First consider the regime x ↓ 0. The infimum will be reached for t(x) close to
0, in which case the variance function v(t) behaves as

ρt2 − λt3/3 + O(t4).

By virtue of Equation (6.6) of [85],

inf
t≥0

(x + (c− ρ)t)2

2v(t)
=

(c− ρ)2

2ρ
+

√
2λ/3 ·

(
c− ρ

ρ

)3/2

· √x + O(x).

Now focus on x → ∞. We again use Theorem 3 of Botvich and Duffield [21], which
implies that

inf
t≥0

(x + (c− ρ)t)2

2v(t)
=

(c− ρ)2

ρ
+

µ(c− ρ)
ρ

x + o(1)

for x large. Now an application of Lemma 5.3.4 yields the stated. ¤

REMARK 5.4.6. There is not a Gaussian equivalent of an ‘arrival’. We therefore do not have
a Gaussian counterpart of the decay rate ν(x). See, however, the appendix of [54], where
it is pointed out how an ‘artificial’ Gaussian counterpart can be constructed (which lacks a
straightforward interpretation).
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5.5 Uniform bounds

In the previous sections we computed the decay rates of the probabilities of interest,
but these do not provide us with estimates of the probabilities themselves. In partic-
ular, a statement of the type n−1 log f(n) → −ζ just says that f(n) = g(n) exp(−ζn)
for some subexponential function g(·), that is log g(n) = o(n) as n →∞; the function
g(n) can still be of the form exp(n1−δ) for a small positive constant δ. For practical
purposes conservative (but preferably tight) estimates of the probabilities of interest
are useful. In this section such approximations are derived. They indicate that the
logarithmic estimates are rather precise.

5.5.1 Congestion period

We consider the original, that is, unscaled, model. The exponential part in the follow-
ing bound should be compared with the logarithmic asymptotics found in Section
5.3.2.

PROPOSITION 5.5.1. Uniformly in x ≥ 0,

P(DC > x) ≤
(√

C

P

)C+1

· exp
(
−(
√

Λ−√Cµ)2x
)

.

Proof It is clear that P(DC > x) ≤ P(A(x) > Cx | X(0) = C + 1). The Markov
inequality yields that, for any ϑ > 0,

P(A(x) > Cx | X(0) = C + 1) ≤ E(eϑA(x) | X(0) = C + 1)e−ϑCx.

Applying (5.2), we obtain

P(A(x) > Cx | X(0) = C + 1) ≤
(

µ

µ− ϑ

)C+1

exp
(

ϑ

(
Λ

µ− ϑ
− C

)
x

)
.

Now plug in ϑ = ϑ? := µ−
√

Λµ/C > 0. ¤

A slightly different bound can be found as follows. We include it here, as it gives
us insight into the way importance-sampling algorithms might be devised. Suppose
we wish to estimate P(DC > x) by simulation, applying importance sampling with
arrival rate Λ? :=

√
ΛµC and service rate µ? :=

√
Λµ/C, irrespective of the number of

flows present; call the new measure Q. It is elementary that, in self-evident notation,

P(DC > x) = EQLI,
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where L is the so-called likelihood ratio, and I the indicator function of the event
under consideration. In more detail, the likelihood ratio can be expressed as follows.
Let τi denote the i-th jump of the congestion period, i.e., τi is 1 if the i-th jump is
upward and 0 if it is downward. (With τ0 we mean the jump to level C +1 that starts
the congestion period.) Let Zi denote the state (i.e., the number of flows present)
between the i-th and (i + 1)-st jump, and Si the time between these jumps. Then,
with N denoting the last jump before time x, realizing that the (N +1)-st jump epoch
is the first jump epoch at which we are certain that it can decided whether indeed
DC > x,

L =
N∏

i=0

(Λ + µZi) exp(−(Λ + µZi)Si)
(Λ? + µ?Zi) exp(−(Λ? + µ?Zi)Si)

N−1∏

i=0

(p(Zi))τi+1(q(Zi))1−τi+1 ,

where

p(k) :=
(

Λ

Λ + µk

)/(
Λ?

Λ? + µ?k

)
, q(k) :=

(
µx

Λ + µk

)/(
µ?x

Λ? + µ?k

)
.

Elementary calculus yields that this likelihood equals

Λ + µZN√
ΛµC +

√
Λµ/CZN

×

exp

(
−

N∑

i=0

(
Λ + µZi −

√
ΛµC −

√
Λµ/CZi

)
Si

)(√
P

C

)ZN−(C+1)

.

Relying on Lemma 5.A.1, it is elementary to show that, as long as Zi > C,

Λ + µZi −
√

ΛµC −
√

Λµ/CZi ≥ Λ− 2
√

ΛµC + µC.

Now observe that, during a run in which I = 1, Zi > C for all i ∈ {0, . . . , N}, and∑N
i=0 Si > x as well as ZN > C. Also, due to P < C,

Λ + µZN√
ΛµC +

√
Λµ/CZN

≤
√

C

P
.

We thus find the upper bound

P(DC > x) ≤ C

P
· exp

(
−(
√

Λ−√Cµ)2x
)

. (5.17)

Note that for C > 2 this bound is sharper than the one we presented in Proposition
5.5.1.

5.5.2 Area

A similar argument can be used to find a uniform upper bound on P(AC > x).
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PROPOSITION 5.5.2. Uniformly in x ≥ 0,

P(AC > x) ≤
( C

P

)2

· exp
(
−

(
µ− Λ

C

)
x

)
.

Proof First observe that

P(AC > x) ≤ P(∃t ≥ 0 : A(t) > x + Ct).

Let us find an upper bound for the right-hand side of the previous display. Suppose
we perform importance sampling under a measureQ that is such that the arrival rate
is Λ? := µC and service rate µ? := Λ/C. It is clear that the resulting system is such
that, under the new measure, A(t) indeed crosses level x + Ct with probability 1, as
the mean rate under Q is Λ?/µ? = C2µ/Λ = C2/P > C.

A fundamental equality is, with EQ denoting expectation under Q,

P(∃t ≥ 0 : A(t) > x + Ct) = EQL,

where L is the so-called likelihood ratio. In more detail, the likelihood ratio can be
expressed as follows. Using the same definitions as in the previous section,

L =
N∏

i=0

(Λ + µZi) exp(−(Λ + µZi)Si)
(Λ? + µ?Zi) exp(−(Λ? + µ?Zi)Si)

N−1∏

i=0

(p(Zi))Ii+1(q(Zi))1−Ii+1 ,

Elementary calculus yields that

L =
Λ + µZN

µC + ΛZN/C
×

exp

(
−

(
µ− Λ

C

) (
A

(
N∑

i=0

Si

)
− C ·

N∑

i=0

Si

)) ( P

C

)ZN−(C+1)

.

Due to P < C, it holds that

Λ + µZN

µC + ΛZN/C
≤ C

P
.

As we know that ZN ≥ C, and, by definition of N ,

A

(
N∑

i=0

Si

)
− C ·

N∑

i=0

Si ≥ x,

the upper bound follows. ¤
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5.5.3 Number of flows

Finally, we use the change-of-measure technique to find a uniform upper bound on
P(NC > m). We start, however, by a result that can be proven in a more elementary
way.

PROPOSITION 5.5.3. Uniformly in x ∈ N,

P(NC > x) ≤
(

4ΛµC

(Λ + µC)2

)x

.

Proof First observe that, stochastically, Y2x ≤ Y ′
2x := C +

∑2x
i=1 Zi, where the Zi are

i.i.d., and Zi = 1 with probability Λ/(Λ + µC) and −1 otherwise. By the Markov
inequality, it follows that, for any ϑ ≥ 0,

P(NC > m) ≤ P
(

2x∑

i=1

Zi ≥ 0

)
≤ (
EeϑZ

)2x
,

with Z distributed as the Zi. Now minimize the last expression over all ϑ ≥ 0, and
the desired follows. ¤

As mentioned above, a similar bound can be found by an importance-sampling ar-
gumentation. Simulate the discrete-time process (i.e., the jump process) that results
after changing Λ into Λ? :=

√
ΛµC and µ? :=

√
Λµ/C until either the process drops

below the value C, or 2x transitions have been performed. It is readily checked that
the likelihood at this stopping epoch equals

L =

(√
P

C

)ZN−(C+1) N∏

i=0

√
ΛµC +

√
Λµ/CZi

Λ + µZi
.

Applying Lemma 5.A.2, it is elementary to show that

√
ΛµC +

√
Λµ/CZi

Λ + µZi
≤ 2

√
ΛµC

Λ + µC
.

Using that, if I = 1, then N ≥ 2x and ZN > C, we find the same upper bound as
above, but now multiplied with

√
C/P, i.e., slightly weaker.

5.6 Numerical results

In this section we demonstrate our asymptotics and bounds through a number of
numerical experiments. In these experiments we choose µ = 1, and c = 1, and we
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compare the situation λ = 0.5 with λ = 0.9. The primary goal of this section is to
present a comparison between the rough asymptotics of Sections 5.3-5.4, the bounds
of Section 5.5, and the ‘real’ values.

A number of remarks need to be made here.

- The results in Sections 5.3-5.4 are in terms of decay rates, and in order to com-
pare them we do as if the decay is ‘purely exponential’. For instance for the
congestion duration, the resulting approximation, based on Proposition 5.3.1,
is, with as before Λ = nλ and C = nc,

P(DC > x) ≈ exp
(
−(
√

Λ−√µC)2x
)

, (5.18)

cf. Proposition 5.5.1. In case of the area, this approximation is somewhat trick-
ier to derive; we now sketch how the approximation for P(AC > x) can be
found. Focusing for the moment on the regime x → ∞, Proposition 5.3.6 en-
tails that

P(Anc > nx) ≈ exp (−nβ?
∞ − nα?

∞x) .

Noticing that

β?
∞ =

1
n

(
(C − P)2

P
+ C − P − C log

C

P

)
; α?

∞ = µ− Λ

C
,

we obtain the approximation

P(AC > x) ≈ exp
(
− (C − P)2

P
− C + P + C log

C

P
−

(
µ− Λ

C

)
x

)
;

cf. Proposition 5.5.2. In the regime x ↓ 0 an analogous argumentation yields

P(AC > x) ≈ exp

(
−2
√

2 ·
√

xΛ
(
1− P

C
+

P

C
log

P

C

))
.

The Gaussian counterparts can be dealt with similarly.

- To obtain ‘real’ values of the probabilities of interest, we used importance-
sampling-based simulations, with the change-of-measures suggested in Sec-
tion 5.5. We also performed direct simulations (that is, simulations under the
original measure), where we empirically observed that under importance sam-
pling substantially less simulation effort is needed to obtain an estimate of
given precision; for higher values of x direct simulation becomes prohibitively
time-consuming. The outcomes of these direct simulations (in the graphs corre-
sponding to the label ‘M/M/∞’) coincide with the importance-sampling-based
estimates, as should be the case.
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For the congestion duration DC we consider the tail probabilities for n = 20, 50, 100
in Figure 5.1. In the numerical results we compare Proposition 5.3.1 for the M/M/∞
process, Proposition 5.4.2 for the Gaussian counterpart, the uniform upper bound
given by Expression (5.17), and results from importance-sampling simulations as
well as direct simulations of the M/M/∞ process.

In each of the graphs we see that the uniform upper bound of Expression (5.17) is
slightly larger than Proposition 5.3.1, namely a factor C/P. The result from the Gaus-
sian counterpart (Proposition 5.4.2) is in between the results for the M/M/∞ and the
simulation results for low load, but for high load it is close to Proposition 5.3.1 and
Expression (5.17). Observe that for higher loads (right graphs) the probabilities of a
long congestion duration are higher, which is evident as these occurrences become
less rare. By comparing the graphs of Figure 5.1 it is seen that increasing the scaling
parameter n indeed leads to smaller probabilities.

Given our analytical results, the curve with simulated probabilities should even-
tually be (that is, for n large) parallel to the curves obtained from Proposition 5.3.1
and Expression (5.17), which is evidently not yet the case for n = 100. A similar
slow convergence has been observed for the tail asymptotics of the sojourn time in
Processor-Sharing (PS) queues in e.g. [95]. It may also play a role that, just as is the
case for the sojourn-time distribution in the M/M/1 PS queue, the asymptotics are
likely to be not of a ‘purely exponential’ form (as suggested by (5.18)); instead there
may be in addition a polynomial factor δx−γ (for some γ, δ > 0), and potentially also
a Weibullian factor exp(−αxβ) (for some α > 0 and β ∈ (0, 1)), cf. [20, 44].

The figures show that the results obtained from Proposition 5.3.1 and Expression
(5.17) can, in practical situations, only be used as (very rough) indications of the
probability of interest. In case quick, reliable estimates are required (for instance for
dimensioning purposes), we advise to rely on the described (efficient) importance
sampling scheme.

The results for the area AC are displayed in Figure 5.2; we only present the result
for n = 20, as the effect of increasing n is similar as for the duration. The graphs
compare the results of Proposition 5.3.6 for the M/M/∞ process, Proposition 5.4.5
for the Gaussian counterpart, the uniform upper bound of Proposition 5.5.2 and the
simulation results, both from direct simulations and importance sampling. Recall
that Propositions 5.3.6 and 5.4.5 include both the behavior of x close to 0, and x

large, respectively; therefore in the graphs there are two curves for each proposition,
and it is emphasized that these curves are not valid for the entire range of x. The
uniform upper bound corresponds to the ‘highest’ curve, as expected. For low loads
all curves are relatively close, and the simulation results are in between the other
mentioned results; the latter property is in contrast with the results for the duration
and the number of arrivals, for which the probabilities from the simulation are al-
ways the smallest. It is seen that in the low-load case the part of Proposition 5.3.6
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Figure 5.1: Congestion duration for µ = 1, and c = 1. Left: λ = 0.5. Right: λ = 0.9. Top:
n = 20. Middle: n = 50. Bottom: n = 100.

corresponding to x →∞ is already highly accurate for moderate x.

In Figure 5.3 the tail probabilities of the number of arrivals NC are considered,
again for n = 20. We compare the results from Proposition 5.3.7, the uniform upper
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Figure 5.2: Area for n = 20, µ = 1, and c = 1. Left: λ = 0.5. Right: λ = 0.9.
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Figure 5.3: Number of arrivals for n = 20, µ = 1, and c = 1. Left: λ = 0.5. Right: λ = 0.9.

bound from Proposition 5.5.3, and simulation results; recall that in this case there is
no meaningful Gaussian counterpart. Propositions 5.3.7 and 5.5.3 lead to the same
expression, viz.,

P(NC > x) ≈
(

4ΛµC

(Λ + µC)2

)x

,

as is easily checked. Furthermore, observe that the propositions grossly overestimate
the real (that is, simulated) probabilities, as is immediately clear after inspection of
the simulation results (just as was the case for the congestion duration). We again
advise to use the proposed importance sampling scheme to quickly generate reliable
estimates of the probability of interest.
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5.7 Concluding remarks

This chapter considered tail asymptotics of congestion-period-related quantities.
Large-deviations theory is applied to explicitly calculate the exponential decay rates
under the many-flows scaling, both for the actual M/M/∞ model and its Gaussian
counterpart. Then uniform upper bounds on the tail probabilities are derived, which
also reveal an efficient change-of-measure to be used in importance-sampling simu-
lations. There are several directions for future research, of which we now mention a
few.

We derived tail asymptotics under the many-flows scaling (x fixed, n large).
These are presumably tightly related to the asymptotics of P(DC > x), P(AC > x),
and P(NC > x) for x large. As the LT s of these three random variables are known
[58], one may attempt to obtain from these the corresponding tail asymptotics, cf.
also [54, 55]. In addition, we saw that our asymptotic results and bounds not nec-
essarily lead, for given n, x, to accurate approximations of the tail probabilities of
interest, and therefore one may investigate techniques to improve on this (for values
of n, x of practical interest), cf. the results in [53, Section 5].

We saw that for iOU Gaussian processes the generalized-Schilder-based large de-
viations rate function of a path f could be computed explicitly. One may wonder for
which class within the family of Gaussian processes similar explicit expressions can
be derived; one may expect that these should be such that, like is the case for iOU, the
corresponding rate process is well-defined, but it is not a priori clear what additional
conditions should be imposed.

Experientially we observed that the proposed importance-sampling algorithms
led to a substantial speed up: in order to obtain estimates with a predefined level of
precision, the simulation time needed was reduced significantly. We expect that the
proposed change-of-measures are actually asymptotically efficient. A proof of this
property is beyond the scope of the present study.

5.A Useful relations

5.A.1 A few elementary inequalities

The following, useful, lemmas are straightforward to prove.

LEMMA 5.A.1. For all α, β > 0 with α < β, and y > c,

−
√

αβ + α− y

c

√
αβ +

y

c
β ≥ (

√
α−

√
β)2.
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LEMMA 5.A.2. For all α, β > 0 with α < β, and y > c,

1 + y/c

α + βy/c
≤ 2

α + β
.

5.A.2 Rate function

We here present the proof of Lemma 5.4.1.

Proof of Lemma 5.4.1

Γi(t) =
λ

µ3
×





1− e−|t|µ + e−(|t|+si)µ − e−siµ for t ≤ 0,

e−tµ + e−siµ − e−(si−t)µ − 1 + 2tµ for t ∈ (0, si),
e−tµ + e−siµ − e−(t−si)µ − 1 + 2siµ for t ≥ si.

Γ′i(t) =
d
dt

Γi(t) =
λ

µ3
×




−µe−|t|µ + µe−(|t|+si)µ for t ≤ 0,

−µe−tµ − µe−(ti−s)µ + 2µ for t ∈ (0, si),
µe−tµ − µe−(t−si)µ for t ≥ si.

Γ′′i (t) =
d2

dt2
Γi(t) =

λ2

µ3
×




−µ2e−|t|µ + µ2e−(|t|+si)µ for t ≤ 0,

µ2e−tµ − µ2e−(si−t)µ for t ∈ (0, si),
−µ2e−tµ + µ2e−(t−si)µ for t ≥ si.

Integrating by parts assuming 0 < si < sj yields
∫ 0

−∞
(Γ′′i (t) + µΓ′i(t))(Γ

′′
j (t) + µΓ′j(t))dt

=
λ2

µ2

∫ 0

−∞

(
−2e−|t|µ + 2e−(|t|+si)µ

)(
−2e−|t|µ + 2e−(|t|+sj)µ

)
dt =

2λ2

µ3
;

∫ si

0

(Γ′′i (t) + µΓ′i(t))(Γ
′′
j (t) + µΓ′j(t))dt

=
λ2

µ2

∫ si

0

(
−2e−(si−t)µ + 2

)(
−2e−(sj−t)µ + 2

)
dt

=
2λ2

µ3

(
2siµ− 2− e(si−sj)µ + 2e−siµ + 2e−sjµ − e−(si+sj)µ

)

Observe that Γ′′i (t) + µΓ′i(t) = 0 for t > si, hence,
∫ sj

si

(Γ′′i (t) + µΓ′i(t))(Γ
′′
j (t) + µΓ′j(t))dt

=
∫ ∞

sj

(Γ′′i (t) + µΓ′i(t))(Γ
′′
j (t) + µΓ′j(t))dt = 0.
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Finally, upon combining the above, it is straightforward that
∫ ∞

−∞
(Γ′′i (t) + µΓ′i(t))(Γ

′′
j (t) + µΓ′j(t))dt = 2λΓ(si, sj).

¤
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Chapter 6

Resource sharing in wireless ad-hoc networks

6.1 Introduction

In this part of the thesis we focus on wireless ad-hoc networks (cf. Section 1.2.2). We
investigate the impact of the resource-sharing policy on the performance of an ad-
hoc network where multiple ‘source nodes’ transmit their flows via a common relay
node. The principal goal of this chapter is to introduce the fluid-modeling approach
of wireless ad-hoc networks that will be studied extensively in the next chapters.
The present chapter serves as an introduction to this part.

Outline of this chapter. In order to introduce the fluid model and the performance
metrics, we first explain wireless ad-hoc networks in more detail, and, in particu-
lar, the resource sharing among nodes (Section 6.2). Next, we provide an overview
of the literature on the performance modeling of wireless ad-hoc networks (Section
6.3). Subsequently, we describe our fluid model in detail, together with its perfor-
mance metrics (Section 6.4), and we present some preliminary analysis (Section 6.5).
Finally, we introduce validation scenarios that are used in the numerical evaluations
in Chapters 7 and 8 (Section 6.6).

6.2 Wireless ad-hoc networks

Developments in wireless communication technology open up the possibility of op-
erating wireless ad-hoc networks. These networks can be deployed without a fixed
infrastructure or predetermined configuration, and one of the key-features is multi-
hop connectivity. For this reason ad-hoc networks are particularly suitable in sit-
uations where a fixed communication infrastructure, wireline or wireless, does not
exist or malfunctions, e.g., due to a disaster, for instance see [12, 49, 50, 124]. The
communication technology is usually based on shared medium access (for example,
IEEE 802.11 Wireless LAN, see [63]), i.e., neighboring nodes share a common under-
lying radio capacity.

As mentioned above, wireless ad-hoc networks have two important character-
istics: i) multi-hop connectivity, i.e., nodes that cannot directly communicate with
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their destinations use other nodes as relay nodes; ii) nodes contend for access to a
shared wireless medium in a distributed fashion. A consequence of the first charac-
teristic is that certain nodes, in particular nodes that have central locations, are likely
to become relay nodes having considerably higher traffic loads than other nodes. The
second characteristic entails that there is a lack of coordination between the nodes
which may result in non-optimal sharing of the medium capacity. Therefore, a relay
node can easily become a performance bottleneck. For example, when a relay node
obtains the same share of the medium capacity as each of its neighboring nodes, the
input rate of traffic into the relay node exceeds the output rate when more than one
neighboring node sends traffic via the relay node. This results in the accumulation
of traffic at the relay node and consequently in increasing delays.

Currently, IEEE 802.11 Wireless LAN [62, 63, 64, 65] is the most popular wireless
ad-hoc networking technology; our fluid model (cf. Section 6.4) is inspired by this
technology, but the model is also suitable for other technologies with distributed
resource-sharing. The performance of WLAN is largely determined by the maximum
data rate at the physical (PHY) layer and the Medium Access Control (MAC) layer pro-
tocols defined by the IEEE 802.11 standards. WLAN nodes have to contend for access
to the wireless medium according to the Distributed Coordination Function (DCF).
The DCF is a random access scheme based on Carrier Sense Multiple Access with
Collision Avoidance (CSMA/CA), which uses random backoffs in order to manage
packet retransmissions in case of a destructive collision. In literature it is shown that
the DCF tends to share the wireless medium capacity equally among the contending
nodes, cf. [16, 82]. Clearly, DCF is particularly appropriate in the context of ad-hoc
networks as it operates in a fully distributed fashion. The DCF has, however, also
significant drawbacks. Most notably, it only facilitates equally sharing of the capac-
ity among active nodes. It cannot grant different shares of the available capacity to
different nodes, hence, it is not capable to relieve the burden on relay nodes.

In 2005 a QoS-enabled version of the DCF was standardized, viz. the Enhanced
Distributed Channel Access (EDCA), which is part of amendment IEEE 802.11e, see
e.g. [63, 65]. The EDCA provides several parameters enabling QoS differentiation
among the traffic originating from services with different QoS requirements. In prin-
ciple, it can be used to enforce unequal sharing of the capacity among nodes. In
particular, in our study we use this technology to grant a larger share of the capac-
ity to the relay node. We refer to Section 8.2 for more elaborate descriptions of the
DCF and EDCA. For more details on QoS aspects in ad-hoc networks, we refer to the
survey [15].

Recall that our goal is to investigate the impact of the resource-sharing policy on the
performance of wireless nodes in an ad-hoc network. We do so by considering a
fluid model of a single relay node that is fed by multiple source nodes. Source nodes
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become active at random time instances and start transmitting flows to a destination
via the relay node; after a source node has transmitted its flow to the relay node it
becomes inactive.

We consider the general situation in which the relay node may obtain a larger
share of the capacity than each of the source nodes. The ‘resource-sharing ratio’ m

indicates the share of the overall capacity C that the relay node obtains relative to the
share that is allocated to each of the source nodes. More precisely, if n source nodes
are active, then the relay node obtains service rate mC/(m + n) while each source
node receives service rate C/(m + n). If the aggregate rate of traffic flowing into the
relay node exceeds the service rate of the relay node, work is backlogged at the relay
node in a buffer (of infinite size). It is stressed that the relay node can only claim its
full share mC/(m + n) if either the number of active source nodes exceeds m (that
is, n ≥ m), or if the relay node is backlogged. Otherwise the relay node is allocated
a share C/2, while each source node obtains C/(2n) (and hence the buffer remains
empty). An important consequence of these allocation rules is that the system is
work-conserving. We will explain the model in more detail in Section 6.4.

6.3 Literature

This overview of the literature mainly focuses on analytical studies on the perfor-
mance of wireless ad-hoc networks. It is divided into three classes: packet-level
behavior, fluid modeling of flows in single-hop WLAN, and fluid modeling of multi-
hop flows in wireless ad-hoc network. Our interest is on the modeling of multi-hop
flows in wireless ad-hoc networks; as will become clear, this topic was hardly cov-
ered in literature. The packet-level studies are mentioned as their outcomes are used
in our fluid models.

Packet-level behavior of WLAN and wireless ad-hoc networks. The packet-level behav-
ior of IEEE 802.11 WLAN in a single-hop network, i.e., the contention for a transmis-
sion opportunity among active nodes, has been investigated extensively. A detailed
mathematical performance model of the DCF has been developed and analyzed by
Bianchi [16], and slightly improved by Wu et al. [134]. In these papers the authors
assume a constant number of persistently contending stations and rely on a rela-
tively simple Markov chain analysis, neglecting only minor dependencies among
the behavior of different nodes, and is used to obtain the saturated throughput of
the wireless medium. Comparison with simulation shows that the analytical results
are in general remarkably accurate.

The modeling approach introduced by Bianchi [16] is extended in many direc-
tions, e.g. in [82] various modeling enhancements on the PHY and MAC layer are
included in the DCF performance model. This modeling approach is also used to ob-
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tain packet contention delays for saturated sources [25], non-saturated sources [41],
and heterogenous non-saturated sources [84]. In [41] the average contention delay is
obtained by exploiting the state probabilities of Bianchi’s Markov chain.

The Markov chain analysis, presented in [16], is extended to include the QoS-
differentiation capabilities of the EDCA in e.g. [27, 136]. In particular, these models
include the impact of variation of the AIFS parameter (one of the four EDCA param-
eters) on the saturation throughputs. In [113] the IEEE 802.11e QoS-differentiation
parameters (EDCA parameters) CWmin, CWmax, AIFS, and the TXOPlimit are systemat-
ically evaluated by means of simulations.

Analytical models for packet-level performance in multi-hop ad-hoc networks are
presented in, e.g. [26, 60]. These papers consider situations in which the nodes expe-
rience different channel-conditions as the number of neighbors and their distances to
these neighbors vary per node. The performance measures of interest are the overall
aggregate throughput and the throughput per node including the impact of hidden
nodes; the authors do not consider the performance of multi-hop flows.

Fluid modeling of flows in single-hop WLAN. Flow-level behavior in a single-hop net-
work is studied in [45, 82, 133]. These papers consider situations where the number
of active nodes varies dynamically in time according to the initiation and comple-
tion of file transfers at random time instants. They propose and analyze simplified
analytical models yielding approximations for the expected flow (file) transfer time.
In particular, in [82] the analysis is based on the modeling assumption that, from the
flow-level point of view, WLAN can be regarded as a Processor Sharing (PS) type of
queueing system where flows are modeled as if they continuously send traffic instead
of sending individual packets. A closed-form expression for the mean flow-transfer
time is obtained by considering the system as a Processor Sharing queue with state-
dependent service rates. In [27] the model is extended to include EDCA’s service
differentiation; the authors use a queueing system with Discriminatory Processor
Sharing (DPS) service discipline to model flow level behavior; results are validated
by simulations.

The analyses in [45, 82, 133] ignore the effects of higher-layer protocols, in partic-
ular TCP, on the traffic behavior. In the papers [98, 112, 118] the transfer times of TCP

flows over WLAN are investigated using an analytical packet/flow-level approach
analogously to the one in [82]. They first determine the aggregate system through-
put for a fixed number of persistent TCP flows, which is obtained using essentially
an analysis similar to the one of [16]. The resulting throughputs, which are obtained
for each number of persistent flows, are used as the service capacities in a Processor
Sharing queue with state-dependent service rates modeling the situation with a time-
varying number of non-persistent TCP flows; the main result is an expression for the
mean TCP flow transfer time. In addition, [112] also analyzes the second moment of
the transfer time of a TCP flow.
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Fluid modeling of multi-hop flows in wireless ad-hoc networks. As mentioned at the be-
ginning of this section, to the best of our knowledge there were no flow-level models
for multi-hop flows in ad-hoc networks that yield analytical results, before we pre-
sented our fluid model (cf. Section 6.4, which appeared as [14]). We first list our own
contributions on the fluid modeling of multi-hop flows, and next we discuss related
literature on this topic.

In [14] we introduced the ‘standard’ fluid model that plays a central role in this part
of the thesis, which corresponds to the special case of resource-sharing ratio m =
1 (relating to the IEEE 802.11 DCF), cf. Sections 6.1 and 6.4. For this fluid model
(described in more detail in Section 6.4.3) analytical expressions are presented for a
number of performance metrics (see also Section 8.3.2), in particular, we analyze the
time required to entirely transmit a flow from a source node to its destination.

In [90], Chapter 9 of this thesis, we derive the Laplace transforms and we char-
acterize the tail probabilities of the performance metrics of interest, still for the case
the resource-sharing ratio m = 1. We focus on the case of exponentially distributed
flow-sizes.

The fluid model of [14, 90] is extended to a general resource-sharing policy m ∈
[0,∞) in [115], Chapter 7 of this thesis. This extension entails that a larger share of the
medium capacity can be granted to the relay node than to each of the neighboring
nodes, in order to improve the overall flow transfer time. We present analytical
expressions for the performance metrics of this fluid model. It is stressed that this
general case is significantly more difficult than the ‘standard’ fluid model with m = 1
as in [14, 90] due to the fact that the resource sharing between the source nodes and
the relay node is influenced by the workload at the relay node, and it is not solely
determined by the number of active source nodes as is the case for m = 1.

The focus of [114], Chapter 8 of this thesis, is on the validation of the fluid model.
By system simulations incorporating all details of the IEEE 802.11b and IEEE 802.11e
Wireless LAN technology it was demonstrated that the fluid model accurately de-
scribes the resource sharing among the source nodes and their common relay node.

Our fluid-modeling approach has been adopted in several other studies. In [9] the
‘standard’ fluid model, i.e., with equal sharing of the capacity m = 1 as was in-
troduced in [14], is considered for the case of regularly-varying flow sizes (that is,
heavy-tailed flows). In particular, the tail asymptotics of the overall flow transfer time
are derived by sample-path arguments; it is proven that the tail behaves roughly
as the residual flow size. In [107] a versatile infinite-state Markov reward model is
proposed to investigate the impact of various resource-sharing strategies for expo-
nentially distributed flow-sizes, and in [108] the authors specialize their framework
towards the IEEE 802.11e model; in both papers the authors numerically compute
their performance metrics, such as the distribution of the number of active source
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nodes and the workload at the relay node; they do not study flow-level performance
metrics, e.g., flow-transfer times.

The model of [115] with general resource-sharing ratio m ∈ [0,∞) is also the
subject of study in [93]. The authors derive the transforms for the performance met-
rics (analogously to [90]). In [28] an ad-hoc network with one- and two-hop flows
sharing the same radio capacity is considered; in cohort to our model, the flows are
relayed via different network nodes. The authors show that this situation can be
modeled and analyzed by a Discriminatory Processor Sharing (DPS) model provid-
ing (for exponentially distributed flow-sizes) closed-form expressions for the mean
transfer time of one- and two-hop flows.

Finally, we stress that the vast majority of ad-hoc network performance studies
available in the literature are based on simulation, see e.g. [47, 59]. These papers
usually capture great detail of the ad-hoc network protocols, but have the intrinsic
drawback that they do not provide any deeper understanding of the impact of the
parameters on the realized performance. Moreover, simulation runtime may become
prohibitively large, hampering, e.g., sensitivity analysis or parameter optimization.
Analytical performance models usually capture less detail in order to retain tractabil-
ity, but do provide insight into the behavior of the system in a more explicit fashion.

6.4 Fluid model

This section presents the fluid model and the performance metrics that are analyzed
in this part of the thesis. In Section 6.4.1 we describe the considered ad-hoc network
scenario, and Section 6.4.2 describes the resource sharing among the network nodes.
Finally, the performance metrics are defined in Section 6.4.3.

6.4.1 Ad-hoc network scenario

We consider a network with a large number of source nodes which may become
active and start transmitting flows of data (files) to destinations via a common relay
node, see Figure 6.1. Flow transfers are initiated according to a Poisson process
with rate λ (‘flow arrival rate’). Flow sizes (in terms of fluid or bits) are generally
distributed with distribution F with mean f , second moment f2 (assumed to be
finite), and Coefficient of Variation (CoV) CF , i.e., C2

F := Var(F ) /(EF )2 = f2/f2 − 1.
The number of active source nodes at time t is denoted by Nt.

6.4.2 Resource sharing among network nodes

The total transmission capacity of the system is denoted by C and it is shared among
the active source nodes and the relay node. If the aggregate rate of traffic flowing
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Source nodes Relay node Destinations

WtNt

1

Figure 6.1: Network model.

from the source nodes to the relay node exceeds the rate out of the relay node, traffic
is stored in a buffer of infinite size which is served by the relay node in a FCFS-
fashion. By Wt we denote the workload at the relay node at time t.

The resource-sharing ratio between the relay node and the source nodes is de-
noted by m, i.e., the relay node obtains capacity mC/(Nt + m) if Nt ≥ m sources
are present or if the buffer of the relay node is backlogged, i.e., Wt > 0. Otherwise,
the relay node and the set of active source nodes each obtain half the capacity (C/2),
i.e., the aggregate input rate at the relay node is equal to the output rate. The source
nodes always equally share the capacity not used by the relay node. Observe that the
entire capacity C is always used if there is work in the system, so that the system is
work-conserving. The resource sharing between the source nodes and the relay node
is summarized in Table 6.1. The column ‘drift’ indicates the sign of the net input rate
into the buffer at the relay node, i.e., it indicates whether the buffer content increases
(+), decreases (−) or remains constant (0). Notice from Table 6.1 that the resource
sharing at epoch t depends on both Nt and Wt. Figure 6.2 presents a sample-path
example of the resource sharing in case m = 2, including the performance metrics of
Section 6.4.3.

Table 6.1: Resource sharing between source nodes and relay node.
Number of Wt = 0 Wt > 0

active sources source relay drift source relay drift
Nt < m C/2Nt C/2 0 C/(m + Nt) mC/(m + Nt) –
Nt = m C/2Nt C/2 0 C/(m + Nt) mC/(m + Nt) 0
Nt > m NA NA NA C/(m + Nt) mC/(m + Nt) +

Observe that in our model a flow may be present (and receive service) at both
the source node and the relay node: at flow initiation the source node immediately
starts transmitting fluid to the relay node and parts of the flow may be present at
both source and relay node. At some point in time the source node transmits the last
(infinitesimally small) ‘particle’ of the flow to the relay node, and then the source
node becomes inactive; this epoch is referred to as the ‘arrival of the last particle
at the relay node’-epoch, or alternatively as the ‘source-departure’-epoch. In case
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Figure 6.2: Sample-path example of the resource sharing between source and relay nodes and
the resulting performance metrics for resource-sharing ratio m = 2.
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the relay node is not backlogged, this last particle will be served instantly and the
flow transfer is completed. If the relay node is backlogged, the last particle suffers
an additional delay before the flow transfer time from source node to destination is
completed.

In the sequel, we often refer to the special case of the resource-sharing ratio m = 1
as the ‘standard’ fluid model; this model captures the resource sharing of the IEEE

802.11 DCF, and was first introduced in [14].

REMARK 6.4.1 ( SPECIAL CASE OF THE RESOURCE-SHARING RATIO: m ∈ [0, 1]). Ob-
serve that for m ∈ [0, 1] the relay node always obtains the full share m of the capacity C when
Nt ≥ 1, i.e., the resource sharing is independent of the workload Wt at the relay node. Conse-
quently, the rates that are granted to the source nodes and the relay node are fully determined
by Nt.

6.4.3 Performance metrics

The main performance metric of interest is the overall flow transfer time Doverall, i.e.,
the time required to completely transfer a flow from source node to destination. The
overall flow transfer time is the sum of two other performance metrics: i) the time
(Dsource) a source requires to completely transfer a flow to the relay node, and ii)
the delay at the relay node (D∗

buffer) experienced by the last particle of the flow (the
asterisk indicates that the performance measure relates to the last particle of a flow),
i.e.,

Doverall = Dsource + D∗
buffer.

In addition we are interested in the steady-state buffer workload Wbuffer at an arbi-
trary moment (which is equal to the steady-state workload at a flow-arrival epoch
due to the model assumption of Poisson arrivals), and the buffer workload W ∗

buffer
present at the arrival of a last particle of a flow at the relay node; observe that W ∗

buffer
contributes to the delay D∗

buffer.

The notation introduced above is used in Chapters 7 and 8, but in Chapter 9 we use
a different, shorter notation. For reasons of conciseness in Chapter 9 we use F , D,
and S for respectively Dsource, D∗

buffer, and Doverall.

6.5 Characterization of the total workload in a wireless
ad-hoc network

This section presents some preliminary analysis, in particular, we relate the total
workload Wtotal in our model of the ad-hoc network scenario, described above with



110 6. Resource sharing in wireless ad-hoc networks

flow-initiation rate λ and flow-size distribution F , to the workload in an M/G/1-
queue. Therefore we use the key observations:

1. Each flow is served essentially twice; once by the source node to transmit the
flow to the relay node, and once by the relay node to forward the flow to the
destination node.

2. The overall system is work-conserving, i.e., the total service rate of the system is
always C if there is work in the system.

We remark that these observations immediately lead to the stability criterion 2ρ < 1,
with ρ := λf/C.

Now it easily seen that the following lemma holds.

LEMMA 6.5.1. EWtotal corresponds to the virtual waiting-time in an M/G/1-queue with
arrival rate λ and service-requirement distribution F with first moment 2f/C and second
moment 4f2/C2. Then,

EWtotal =
(

2ρ

1− 2ρ

)
· 1
2
(C2

F + 1)
2f

C
=

(
2ρ

1− 2ρ

)
· (C2

F + 1)
f

C
. (6.1)

Proof The expression for EWtotal follows directly from the Pollaczek-Khintchine
mean-value formula. ¤

Observe that Expression (6.1) is independent of m; this is a direct result of the fact
that the total networks is work-conserving, i.e., ‘work’ always leaves the total system
at rate C.

6.6 Validation scenarios

In this section we introduce the validation scenarios and their parameter settings,
and we explain the details of the simulation environments used in the numerical
studies of Chapters 7 and 8.

6.6.1 Validation scenarios

In the validation experiments in Chapters 7 and 8, we examine the transfer of flows
(files) with an average flow size f of 0.12 Mbits, which corresponds to flows of 10
packets of each 1500 Bytes in an actual communication system (cf. [14, 114]). The
following flow-size distributions are considered: Deterministic, Erlang-4, Exponen-
tial, and Hyper-Exponential (with balanced means, e.g., see p. 359 of [128]) with a
Coefficient of Variation (CoV) CF of 2, 4 and 16.
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The flow-initiation rate is varied such that the load ρ varies from very low loads
(0.024) to an almost saturated system (0.48). Recall that, for stability, ρ < 1

2 is re-
quired.

We assume a common radio-link with capacity C = 5 Mbit/s, cf. the motivation in
Section 8.3.1. The resource-sharing ratio m is varied over the values {0, 1, 2, 3, 5, 10}.

6.6.2 Simulation environments

For the numerical evaluations in the following chapters we rely on two simulation
tools: a fluid-model simulator and a wireless ad-hoc network simulator. Both simu-
lators are own-built simulation tools in the general-purpose programming language
Delphi.

The fluid-model simulator exactly captures the behavior of the fluid model that was
introduced in Section 6.4; the simulator is used in Chapter 7 to validate the analysis.

The ad-hoc network simulator is used in Chapter 8 as a validation of the fluid
model. All the details of CSMA/CA contention of the EDCA are included in the sim-
ulator, e.g., the back-off mechanism, physical and virtual carrier sensing, and colli-
sion handling. The PHY-layer includes propagation- and fading-models and a clear
channel assessment (CCA) procedure that results in limited ranges for successfully
transmitting and receiving packets and sensing transmissions of other nodes. The
PHY-parameters are set according to the IEEE 802.11b standard: RTS-, CTS- and ACK-
frames are transmitted at 2 Mbit/s and the data-frames are transmitted at 11 Mbit/s.

The simulation environments are used for the numerical studies in Chapters 7 and
8. In the numerical experiments sufficiently many replications have been simulated
in order to obtain small confidence intervals. In all experiments the confidence in-
terval’s half-width divided by the estimate is below 5%. We remark that this ratio is
only close to 5% for high loads and high CoV (i.e., CF = 16), in the other cases the
ratio is usually well below 1%.





Chapter 7

Mean-value analysis of the fluid model

7.1 Introduction

This chapter presents an analysis of the mean values of the performance metrics for
the fluid model of Section 6.4. These performance measures include the average
overall flow transfer time Doverall, i.e., the average time required to transmit a flow
from a source node via the relay node to the destination, and the workload Wbuffer at
the relay node. We present analytical expressions for general resource-sharing ratio
m ∈ [0,∞) and general flow-size distributions.

7.1.1 Contribution

In our analysis we first address the case of exponentially distributed flow-sizes. As
the resource sharing is influenced by the workload at the relay node, the number of
active source nodes itself does not constitute a Markov chain. However, the model
falls within the class of so-called ‘fluid queues with feedback’ (or: ‘feedback fluid-
queues’), as introduced in Section 2.1.2. We provide an analysis of the overall flow
transfer time.

For the case of generally distributed flow-sizes we cannot rely on the framework
of fluid queues with feedback, as the exponentiality assumptions imposed there are
crucial. However, we empirically observed the remarkable property that the distri-
bution of the number of active source nodes is insensitive to the flow-size distribution
(apart from its mean) for any general resource-sharing ratio m ∈ [0,∞). This insen-
sitivity claim1 is supported by a sizeable set of simulation experiments, correspond-
ing to a broad range of parameters settings, including combinations of heavy load, a
highly variable flow-size distribution, and a large resource-sharing ratio m.

By using the (conjectured) insensitivity as an approximation assumption, and by
exploiting the relation between the workload of the total system and the workload
of an appropriate M/G/1-queue (cf. Section 6.5), we derive insightful closed-form

1We consider the observed insensitivity as a highly surprising fact, since (for m > 1) the process
describing the number of active source nodes does not fulfill the usual criteria for insensitivity (where
we remark that for m ∈ [0, 1] the insensitivity can be proven in a relatively elementary way, see Remark
7.3.2).
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expressions for the mean workload at the relay node. In particular, we show that
the mean workload at the relay node for general flow-size distributions is propor-
tional to the mean workload for exponentially distributed flow-sizes; here the asso-
ciated multiplicative factor is independent of the system parameters (including m),
apart from the Coefficient of Variation of the flow-size distribution. In addition, we
present an approximation for the overall flow transfer time for general flow-size dis-
tributions. The resulting expressions allow for easy numerical evaluation and are
thoroughly validated by simulations of the fluid model.

7.1.2 Outline

The outline of this chapter is as follows. The fluid model, as was introduced in
Section 6.4, is first analyzed for the special case of exponentially distributed flow-
sizes in Section 7.2. In Section 7.3 the analysis is extended to the case of generally
distributed flow-sizes; a crucial step in this analysis is played by our claim that the
source-node behavior is insensitive to the flow-size distribution apart from its mean
for general m. Section 7.4 presents an extensive numerical validation of the analyses
of the earlier sections; in particular, we present empirical evidence of the insensitivity
claim for a broad set of parameters, including extreme situations. In Section 7.5 we
illustrate the benefits of differentiated resource sharing. Finally, Section 7.6 presents
concluding remarks.

7.2 Analysis for exponentially distributed flow-sizes

This section presents an analysis of the model for the special case of exponentially
distributed flow-sizes, which allows for a detailed analysis of the mean performance
metrics. First, in Section 7.2.1 we derive the joint distribution of the number of active
source nodes and the workload at the relay node at an arbitrary epoch. Next, this
result is used in Section 7.2.2 to determine the workload at the relay node at the
arrival epoch of the last particle of a flow. Finally, based on the results obtained in
Sections 7.2.1 and 7.2.2, we present in Section 7.2.3 an approximation for the mean
delay ED∗

buffer of the last particle of a flow that added to the mean delay EDsource

yields the mean overall flow transfer time EDoverall.

7.2.1 Joint distribution of the number of source nodes and the
buffer workload

The source-node dynamics of the model of Section 6.4 does not constitute a Markov
chain; the transition rates depend on both the number of active source nodes Nt and
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on the buffer workload Wt, or, more precisely, whether Wt is positive or not. Put
differently, there is feedback from the buffer content to the source-node behavior, in
that information on the buffer content is needed to describe the source-node dynam-
ics. Assuming exponential flow-sizes, the joint distribution of the number of source
nodes and the buffer workload can be obtained by using the theory developed in [88]
on so-called feedback fluid-queues, see e.g. Section 2.1.2. This joint distribution is de-
rived in two steps: first we consider the simplified fluid model without feedback (i.e.,
the source nodes evolve independently of the buffer content), and then the obtained
results are translated in terms of the model with feedback. An extensive treatment
of this derivation is presented in Appendix 7.A; below we restrict ourselves to an
excerpt.

First we consider the fluid-queue without feedback, i.e., the relay node always ob-
tains share m of the capacity; let N̄t and W̄t respectively denote the number of active
source nodes and buffer workload at epoch t in this model (in the sequel all quanti-
ties with bars ‘¯’ relate to the model without feedback). Observe that N̄t constitutes
a Markov chain and has generator matrix Q̄ (as given by Expression (7.21) in Ap-
pendix 7.A). Further, let R̄ be a diagonal matrix where R̄n is the net input rate into
the relay node if n sources are active, i.e., R̄n := (n −m) C/(n + m). We define the
stationary distribution of (N̄t, W̄t) as

Fn(x) := lim
t→∞

P
(
W̄t ≤ x; N̄t = n

)
= P

(
W̄ ≤ x; N̄ = n

)
.

To facilitate the analysis we here assume that a maximum nmax is imposed on the
number of source nodes that may be simultaneously active; flows that are initiated,
if already nmax other source nodes are active, are blocked. Observe, however, that
if one chooses nmax sufficiently large (which we will do in the sequel), this will not
have any significant impact on the outcome of the model.

The buffer workload has to satisfy the Kolmogorov forward equations

−→
F ′(x)R̄ =

−→
F (x)Q̄′.

The spectral expansion of the solution is given by

−→
F (x) =

nmax∑

j=0

aj
−→v j exp(zjx)

where (zj ,
−→v j) is an eigenvalue-eigenvector pair, i.e., a scalar and vector that solve

zj
−→v jR̄ = −→v jQ̄. For details on how to obtain the coefficients aj see Appendix 7.A.

Clearly, P(W̄ ≤ x) =
∑

n Fn(x). For stability we assume that the average net input
rate is negative, i.e.,

∑
n ωnR̄n < 0, where ω denotes the distribution of N̄ , i.e., ωn :=

Fn(∞).
The joint distribution of the workload and number of active sources for the fluid

model with feedback follows from the corresponding joint distribution of the fluid
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model without feedback; this result follows from the crucial observation that both
models behave identically during busy periods, see [88]. Hence, the joint distribution
Gn(x) of (N, W ) for the model with feedback is found after some sort of rescaling
the distribution Fn(x) of (N̄ , W̄ ):

Gn(x) =
Fn(x)−∑

k Fk(0)
1−∑

k Fk(0)
P(W > 0) + P(W = 0; N = n). (7.1)

For the derivation of the probabilities P(W > 0) and P(W = 0; N = n) in (7.1) we
refer to Appendix 7.A. The stationary distribution π of the number of active source
nodes N follows from (7.1) as

πn = Gn(∞). (7.2)

Let πa (πd) denote the stationary distribution of the active number of source
nodes present at a flow-arrival epoch (left behind at a source-departure epoch, which
coincides with the arrival epoch of the last particle of a flow at the relay node). Then
we have the following result.

LEMMA 7.2.1. π, πa and πd are identical.

Proof π = πa follows directly from the PASTA-property. πd = πa as Nt is a birth-
death process and the number of up-crossings of level n balances the number of
down-crossings of level n. ¤

7.2.2 Flow transfer time and the buffer workload

This subsection first explains how to compute EDsource, and then provides two ex-
pressions for EWbuffer, one of them being based on the theory developed in Sec-
tion 7.2.1. Finally it addresses the expected workload EW ∗

buffer at the relay node at
the epoch that a last particle of a flow arrives at the relay node, by considering the
sum of the mean workload EWbuffer present at flow initiation and the mean workload
increase E∆Wbuffer at the buffer of the relay node during a flow transfer.

Expected flow transfer time EDsource

The expected number of active source nodes is given by

EN =
∞∑

n=0

nπn. (7.3)

The flow transfer time follows from Little’s law:

EDsource = EN/λ. (7.4)
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Expected buffer workload at an arbitrary moment

The expected buffer workload EWbuffer at the relay node upon flow arrival can be
obtained in two manners which are both presented below: in the first place by re-
lying on the workload distribution, i.e., Expression (7.1), and secondly as a direct
application of Lemma 6.5.1.

Buffer workload at an arbitrary moment, using the workload distribution. Observe that
π−1

n Gn(x) is the workload distribution conditional on n source nodes being active.
Then, the expected conditional buffer workload is obtained by

E[Wbuffer|N = n] = π−1
n

∫ ∞

0

xdGn(x)

= π−1
n

1
1−∑

i Fi(0)
P(W > 0)

nmax∑

j=0,j 6=n+

aj(−→v j)n

zj
,

see Appendix 7.A. Hence, the expected unconditional buffer workload is:

EWbuffer =
1

1−∑
i Fi(0)

P(W > 0)
nmax∑
n=0

nmax∑

j=0,j 6=n+

aj(−→v j)n

zj
. (7.5)

Buffer workload at an arbitrary moment, using the relation between the model and the work-
load in the corresponding M/G/1 FCFS-queue. We define Wsources as the aggregate
workload at all active source nodes, and Wtotal and Wbuffer as in respectively Sec-
tion 6.5. Recall that work at a source node still needs to be served twice, i.e., by the
source node and relay node. Then,

Wtotal = Wsources + Wbuffer. (7.6)

Observe that Wtotal does not depend on the resource-sharing ratio m; in fact, it does
not even depend on the service discipline as long as it is work-conserving.

AsEWtotal is given by Expression (6.1) with C2
F = 1, we are left to deriveEWsources.

This follows due to the memoryless property of the exponential distribution of the
flow sizes. The expected amount of work at an active source node (i.e., the residual
of the flow) equals 2f/C. Furthermore the expected number of source nodes simul-
taneously active is given by Expression (7.3). Hence

EWsources = EN · 2f/C,

and the expected workload at the buffer of the relay node is:

EWbuffer =
(

2ρ

1− 2ρ
− EN

)
· 2f/C. (7.7)
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REMARK 7.2.2 (RELATION BETWEEN EXPRESSIONS (7.5) AND (7.7) FOR EWbuffer). It
is interesting to note that Expression (7.5) depends on all the eigenvalue-eigenvectors (zj ,

−→v j)
for j = {0, .., nmax}; on the other hand Expression (7.7) depends just through EN on the
normalized eigenvector that corresponds to the zero eigenvalue, cf. Expressions (7.3) and
(7.2). Due to the implicitness of the eigenvalue-eigenvector pairs (zj ,

−→v j) and correspond-
ing constants aj , it is not a priori obvious from these expressions that they match. ♦

Buffer workload at the arrival epoch of the last particle of a flow at the relay node

In this section we derive the expected buffer workload EW ∗
buffer at the epoch that the

last particle of a flow arrives at the relay node. Note that the mean buffer workload
on flow initiation coincides with the mean workload at an arbitrary epoch (PASTA).
Hence, W ∗

buffer can be obtained using the following relation:

EW ∗
buffer = EWbuffer + E∆Wbuffer, (7.8)

where ∆Wbuffer denotes the buffer increase during the transfer time Dsource of an
arbitrary flow.

We are left to derive E∆Wbuffer. Let ∆Wtotal denote the increase in workload in the
total system during the flow transfer time Dsource by a source node, and let ∆Wsources

denote the increase (which may be negative) of the aggregate workload of all source
nodes during Dsource. By (7.6) we evidently have the following relation:

∆Wtotal = ∆Wsources + ∆Wbuffer. (7.9)

LEMMA 7.2.3. E∆Wbuffer = E∆Wtotal.

Proof We have to prove that E∆Wsources = 0, i.e., the expected amount of work at
the source nodes present upon arrival of a flow coincides with the amount present
at the corresponding source-departure epoch. This property follows directly from
two observations. First, due to Lemma 7.2.1, the expected number of source nodes at
the flow-initiation epoch equals the expected number of source nodes at the epoch
of the arrival of the last particle of a flow at the relay node. Second, the expected
residual flow-sizes at these instances coincide due to the memoryless property of the
exponentially distributed flow-sizes. ¤

Lemma 7.2.3 and Relation (7.9) lead to the following proposition.

PROPOSITION 7.2.4. The expected increase of the buffer workload E∆Wbuffer during the
transfer time Dsource of a flow is given by

E∆Wbuffer = (EN + 1) · 2f/C − EN/λ. (7.10)
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Proof Due to Lemma 7.2.3 we are left to compute E∆Wtotal during the flow transfer
time (with mean EDsource) of a tagged flow. The input into the total system is the
result of initiations of new flows (including the tagged flow) which arrive at rate λ,
each bringing along an amount of work with expected value 2f/C (cf. Lemma 6.5.1).
The expected number of arrivals (including the tagged flow) is λEDsource + 1, and
consequently the expected input into the total system is (λEDsource + 1) · 2f/C.

The expected output is EDsourceC, as is readily verified by the following two ob-
servations. First, the total system is non-empty during the flow transfer time Dsource

as at least the tagged flow is served during Dsource. Second, the total system is work-
conserving and serves at rate C. Writing the expressions in terms of EN using (7.4)
proves the lemma. ¤

Notice that the expected workload EW ∗
buffer of Expression (7.8), which is the sum

of Expressions (7.7) and (7.10), only depends on the resource-sharing ratio m via EN .
Recall that EN is given by Expression (7.3) that can be determined by Expressions
(7.1) and (7.2).

An interesting result follows from rewriting Expressions (7.7) and (7.10) in terms
of EN and considering their ratio. It turns out that, remarkably, the proportionality
constant does not depend on m.

COROLLARY 7.2.5. The expected workload increase E∆Wbuffer at the relay node during a
flow transfer is proportional to the expected workload EWbuffer at flow arrival:

E∆Wbuffer =
1− 2ρ

2ρ
EWbuffer,

and Expression (7.8) can be written as

EW ∗
buffer =

1
2ρ
EWbuffer.

7.2.3 Mean delay ED∗
buffer of the last particle and mean overall flow

transfer time EDoverall

At the moment that the source node has transmitted the full flow into the relay node,
the last fluid particle enters the buffer at the relay node, and then the source node
becomes inactive. In this subsection we present an approximation for the expected
buffer delay ED∗

buffer of this last particle.
Recall that the last particle does not experience any buffer delay if the buffer is

empty. In case the buffer is non-empty, the buffer delay D∗
buffer of the last particle

is the time required by the relay node to serve the amount of work W ∗
buffer present

upon arrival of that last particle. Recall from Section 6.4 that during D∗
buffer the relay

node uses the entire resource-sharing ratio m. Hence, during D∗
buffer the behavior of

the system behaves as the model without feedback presented in Appendix 7.A.1.
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Conditional buffer delay of the last particle at the relay node. Let Yn(τ) denote the con-
ditional buffer delay, i.e., the time required by the relay node with resource-sharing
ratio m to serve an amount τ of fluid if initially n source nodes are active. Here we
again assume that there is a maximum nmax imposed on the number of source nodes
that may be simultaneously active, as in Section 7.2.1. Let Q̄ denote the generator
matrix without feedback as in (7.21) and M(s) := −Q̄ + sR where

R := diag
{

1,
m

m + 1
,

m

m + 2
, · · · ,

m

m + nmax

}
.

PROPOSITION 7.2.6. The expected conditional time required to serve an amount τ of fluid,
if initially n source nodes are active, is given by

EYn(τ) = A(n,0)τ +
nmax∑

j=1

A(n,j)

sj
esjτ −

nmax∑

j=1

A(n,j)

sj
(7.11)

where sj denote the eigenvalues of R−1Q̄. The constants A(n,j) follow from the partial-
fraction expansion of

sφn(s) =
detM−n(s)
detM(s)

.

where M−n(s) is defined as M(s) with the n-th column replaced by
−→
1 .

Proof See Appendix 7.B. ¤

In Expression (7.11) the eigenvalues sj for j ≥ 1 are negative, and hence EYn(τ)
is approximately linear in τ .

Approximation of the buffer delay. We now use Proposition 7.2.6 to approximate the
buffer delay experienced by the last particle of the flow. By definition the expected
buffer delay EYn(τ) of the last particle can be expressed as

ED∗
buffer =

nmax∑
n=0

πd
n

∫ ∞

0

EYn(τ)w∗n(τ)dτ,

where w∗n(τ) is the probability density function of the amount of work at the buffer
at a source-departure epoch leaving behind n source nodes, and πd coincides with π

(due to Lemma 7.2.1). Unfortunately, we do not have the density function w∗n(τ).
If one assumes, however, that EYn(τ) is linear in τ , the conditional buffer delay

roughly looks like
∫ ∞

0

EYn(τ)w∗n(τ)dτ ≈ EYn(EW ∗
buffer). (7.12)

Then we obtain the following approximation for the expected delay D∗
buffer of the

last particle.
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APPROXIMATION 7.2.7. The buffer delay of the last particle can be approximated by

ED∗
buffer ≈

nmax∑
n=0

πnEYn (EW ∗
buffer) . (7.13)

REMARK 7.2.8 (SPECIAL CASE m = 1). As mentioned earlier, the special case m equals
1 was studied in [14]. For exponential flow-sizes and m = 1 and nmax → ∞ a closed-
form expression for the equivalent of (7.11) is available, namely Expression (33) of [29] (also
included as Expression (8.3)). It is seen that Expressions (33) of [29] and (7.11) are very
similar in nature, in the sense that both expressions consist of a linear term and in addition a
term that is exponentially decaying in τ . ♦

Now we have derived expressions for all the parts of the main performance metric
from the user perspective: the mean expected overall flow transfer time EDoverall is

EDoverall = EDsource + ED∗
buffer (7.14)

where EDsource is given by (7.4) and ED∗
buffer is approximated by (7.13).

7.3 Analysis for generally distributed flow-sizes

This section treats the analysis the performance metrics for generally distributed flow-
sizes. The analysis presented in this section borrows elements from the approach
followed in the previous section for the case of exponentially distributed flow-sizes.

Our analysis relies heavily on knowledge of the stationary distribution of the
number of active source nodes, together with the expected residual flow-sizes at the
source nodes. In Section 7.3.1 we present an approximation assumption that states
that the distribution of the number of active source nodes is insensitive to the flow-
size distribution, and we also state two (related) properties concerning the expected
residual flow-sizes at the source nodes. (These claims will be thoroughly assessed in
Section 7.4.2.) The approximation assumption relates to a general resource-sharing
ratio m ≥ 0, and we use it to derive the mean workload at the relay node in Sec-
tion 7.3.2. In Section 7.3.3 we then consider the buffer delay of the last particle of
a flow, which, together with earlier results, enables us to compute the mean overall
flow transfer time. Finally, Section 7.3.4 presents an overview of all the expressions
required to evaluate the performance metrics, in the form of a calculation scheme.

7.3.1 Steady-state behavior of the active source nodes

By extensive simulations of the fluid model, for m ≥ 0, we observed the striking
property i) that the source-node behavior (in terms of the distribution of the number
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of active source nodes) is insensitive to the flow-size distribution, i.e., only the mean
flow-size plays a role. In addition, our simulations revealed that the system exhibits
two other characteristics that are closely related to insensitive systems, i.e., ii) the
residual flow-sizes at the source nodes are very well approximated by the ‘usual’
excess life distribution as known from renewal theory, and iii) the residual flow-
sizes are nearly independent of the number of active source nodes. The numerical
evidence for these claims is presented in detail in Section 7.4.2 (see Figures 7.3 and
7.4). We assessed the properties for wide ranges of the parameter settings including
(extremely) heavy loads, various flow-size distributions, and high resource-sharing
ratios. The simulations indicate that the claim i) is exact, whereas claims ii) and iii)
seem to hold as a very accurate approximation; in fact it took a huge number of
replications to show that those statements were not exact. This motivates the use of
the three properties i)–iii) as approximation assumptions.

Let us now formally state the approximation assumptions. As mentioned above,
convincing support is provided by the extensive simulation results, to be presented
in Section 7.4.2, but it is noted that in Remark 7.3.2 we formally prove that for the
special case m ∈ [0, 1] the assumptions holds.

ASSUMPTION 7.3.1.

1. The stationary distribution of the number of active source nodes is insensitive to the
flow-size distribution apart from its mean and is given by Expression (7.2).

2. The expected residual flow-size E[F r] of a flow at a source node coincides with the
expected residual flow-size of a renewal process, i.e.,

E[F r] = (1/2)(C2
F + 1) · f =

f2

2f
. (7.15)

3. The number of active source nodes Nt and their expected residual flow-sizes E[F r] are
independent.

Properties as those mentioned in Assumption 7.3.1 are well-known to hold for sta-
tionary symmetric queues, cf., e.g., Kelly [69], Cohen [31], Bonald and Proutière [17],
and more recently the work of Zachary [135]. However, the service discipline of our
model is not symmetric; the requirement that the service rate only depends on Nt

is not fulfilled as the service rate also depends on the workload Wt at the buffer of
the relay node. We would therefore like to stress that the (empirically observed) in-
sensitivity of Assumption 7.3.1 is a highly remarkable property: to the authors’ best
knowledge there are no results on other insensitive queueing-systems that do not
have a symmetric service-discipline. It is a subject for further research to formally
prove this insensitivity.
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REMARK 7.3.2 (INSENSITIVITY OF THE SOURCE-NODE BEHAVIOR FOR m ∈ [0, 1]). For
m ∈ [0, 1] the relay node obtains a service rate less than or equal to the share that each active
source node obtains. Therefore, the relay node always obtains its entire share m if there is
work in the system; consequently, the resource sharing only depends on the number of active
sources (and no information on the buffer content is needed).

Hence, the behavior of the source nodes is described by a Processor Sharing queue with
state-dependent service rates r(n) := nC/(n+m) if n source nodes are active. This model is
a special case of the so-called Generalized Processor Sharing queue described by Cohen in [31]
for which he presented a joint stationary probability/density function of the number of active
sources nodes N and their residual service requirements T := (T (1), ..., T (N)), cf. formula
(7.19) in [31]:

P(N = n, T = τ) =
(λβ)n

n! ϕ(n)
∑∞

k=0
(λβ)k

k! ϕ(k)

n∏

i=1

1−B(τ(i))
β

, (7.16)

n = 0, 1, ..., τ(i) ≥ 0,

where ϕ(0) := 1 and ϕ(n) := (
∏n

i=1 r(i))−1, for n = 1, 2, ..., and where B(·) denotes
the customers’ service requirement distribution, β is the mean service requirement and λ the
customer arrival rate.

In [31] it was shown that the stationary distribution is insensitive to the flow-size dis-
tribution and that it is independent of the residual flow-sizes. Further, [31] establishes that
the residual flow-sizes are distributed according to the excess life distribution from renewal
theory, see e.g. Expression (7.15), and that the residual flow sizes and the number of active
source nodes are independent. A more explicit expression for the distribution of the number
of source nodes can be obtained from the local-balance equations:

πn = (1− ρ)m+1 · ρn
n∏

k=1

m + k

k
. (7.17)

♦

7.3.2 Mean buffer workload

For the expected buffer workload EWbuffer we use the relation EWtotal = EWsources +
EWbuffer. The mean total workload EWtotal is given by (6.1), and EWsources follows
from Assumption 7.3.1 and equals

EWsources = EN · E[F r]. (7.18)

We obtain the following expression for the expected workload in the buffer.

LEMMA 7.3.3. Under Assumption 7.3.1,

EWbuffer =
(

2ρ

1− 2ρ
− EN

)
· (C2

F + 1)f/C. (7.19)
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Note that Expression (7.19) coincides with Expression (7.7) as C2
F = 1 for exponen-

tially distributed flow-sizes. Corollary 7.3.4 results from considering the ratio of
Expressions (7.19) and (7.7).

COROLLARY 7.3.4. Under Assumption 7.3.1, the buffer workload in case of general flow-
size distribution relates to the workload in case of exponential flow-size distribution, with the
same mean f , in the following manner. In self-evident notation,

EWbuffer =
(C2

F + 1)
2

EW exp
buffer. (7.20)

The important implication of relation (7.20) is that it entails that the expected buffer
workload for general flow-size distributions is proportional to the expected buffer
workload for exponential flow-sizes. It is stressed that the proportionality con-
stant just includes the CoV, and, importantly, that this factor is independent of the
resource-sharing ratio m (but recall that, evidently, EW exp

buffer does depend on m).
Using Expression (7.8), the mean buffer workloadEW ∗

buffer at the arrival of the last
particle is the sum of EWbuffer and the mean workload increase E∆Wbuffer. The latter
is derived in Section 7.2.2, and observe that the derivation is independent of the flow-
size distribution, i.e., Expression (7.10) holds for general flow-size distributions. As
a consequence, imposing Assumption 7.3.1, EN is still given by (7.3).

7.3.3 Mean buffer delay of the last particle in case of general flow-
size distributions

For the mean buffer delay ED∗
buffer of the last particle we use Approximation (7.13)

which is derived in Section 7.2.3, although the approximation is derived assuming
exponentially distributed flow-sizes. This procedure is motivated by considering the
two ways in which the flow-size distribution has an impact on the buffer delay.

- First, it affects the buffer workload W ∗
buffer seen by the last particle, but recall

that this effect could (under Assumption 7.3.1) be captured, and resulted in
Expression (7.10), see the remarks at the end of Section 7.3.2.

- The second effect is on the transient behavior during buffer delay D∗
buffer where

the resource sharing depends on the number of active source nodes and their
residual flow sizes. Recall that during the entire D∗

buffer the relay node contin-
uously obtains ratio m, which is, importantly, a symmetric service-discipline
(therefore corresponding to an insensitive invariant distribution). Small flows
have a small delay anyway, whereas long jobs will see a number of source
nodes that is (by approximation) distributed according to this invariant. This
suggests that the impact of the distribution of the flow-sizes is only modest.
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Table 7.1: Performance metrics calculation scheme for general flow-size distributions.
Performance corresponding required derived by
metric expression expressions
EN (7.3) (7.1) FQwF, Conjecture 7.3.1
EDsource (7.4) (7.3) FQwF, Conjecture 7.3.1
EWbuffer (7.20) (7.3) FQwF, Conjecture 7.3.1 or Expr. (7.6)
E∆Wbuffer (7.10) (7.3) Expr. (7.6)
EW ∗

buffer (7.8) (7.20), (7.10) Expr. (7.6)
ED∗buffer (7.13) (7.8), (7.11) Laplace transforms
EDoverall (7.14) (7.4), (7.13) Expr. (7.6)

7.3.4 Calculation scheme of the performance metrics for general
flow-sizes

In order to facilitate easy evaluation of all performance metrics involved, we present
in Table 7.1 an overview of the expressions required to calculate the performance
metrics. For each performance metric we state the equation number of the corre-
sponding expression in this chapter, which other expressions are required to calcu-
late this expression, and how the expression was derived (where FQwF is an abbre-
viation of ‘fluid-queue with feedback’).

7.4 Numerical results

This section serves three goals: i) to numerically illustrate the behavior of the system
as described in Section 6.4 (or, more specifically, to assess the impact of the ratio m

under various loads, and for various flow-size distributions), ii) to provide empirical
evidence for Assumption 7.3.1, and iii) to validate the approximations proposed in
the previous sections. Recall that the validation scenarios and the parameter settings
used in the numerical examinations were already introduced in Section 6.6. Section
7.4.1 presents results for exponentially distributed flow-sizes and general resource-
sharing ratios (cf. Section 7.2). Numerical support of Assumption 7.3.1 is provided
in Section 7.4.2. Finally, Section 7.4.3 focuses on the performance metrics for general
flow-size distributions (cf. Section 7.3). In addition, we refer to Section 8.3.3 which
presents, among other things, a numerical evaluation for the special case m = 1.

7.4.1 Results for exponentially distributed flow-sizes

This section presents numerical results for exponentially distributed flow-sizes. Fig-
ure 7.1 presents the mean flow transfer time EDsource (left graph) and the buffer
workload EWbuffer (right graph) for different values of resource-sharing ratio m as
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Figure 7.1: Exponential flow-sizes. Left: EDsource. Right: EWbuffer.
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Figure 7.2: Exponential flow-sizes. Left: ED∗
buffer. Right: EDoverall.

a function of the load. Recall that the results are exact for exponentially distributed
flows; therefore we do not compare these results with simulations. The graphs il-
lustrate the influence of resource-sharing ratio m: a small ratio m implies that the
source nodes obtain a large share of the capacity resulting in short flow transfer times
EDsource for the source nodes. On the other hand for small ratios m the relay node
obtains a small share of the capacity which results in a larger mean buffer workload
EWbuffer.

Figure 7.2 presents the approximation of the mean buffer delay ED∗
buffer (left

graph) and the mean overall flow transfer time EDoverall (right graph). Approxima-
tion (7.13) of the buffer delay performs very well: it is close to the simulation results.
The right graph shows the overall performance EDoverall. The small error between
the analysis and simulation results is solely due to the approximation of the buffer
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delay ED∗
buffer, as EDsource is exact. Also, the graph illustrates that the EDoverall im-

proves for increasing m. Observe that the curves of EDoverall for different values of m

are close to each other for ρ < 0.4; this indicates that the trade-off between EDsource

and ED∗
buffer is more or less balanced for these regimes.

7.4.2 Numerical evidence for Assumption 7.3.1

Recall that Assumption 7.3.1 consists of three parts, which we will validate sepa-
rately. For m ∈ [0, 1] these results can be proven, see Remark 7.3.2; in this section we
therefore focus on m > 1.

To validate part i) of the assumption (i.e., the distribution of the source nodes
is insensitive to the flow-size distribution), we compare the stationary distribution
of the number of active source nodes obtained by simulations of the fluid model
(for various flow-size distributions) with the exact results for the exponential flow-
size distribution. Figure 7.3 shows the results for high loads ρ ∈ {0.38, 0.48} and
resource-sharing ratio m ∈ {2, 5, 10}. We observe that the distributions from simula-
tion and the analysis coincide for all ranges, i.e., the analytically obtained probabil-
ity of n active source nodes falls within each of the confidence intervals of the simu-
lated probability, for all flow-size distributions. These results offer strong support for
the first part of Assumption 7.3.1 for all loads and resource-sharing ratios. Observe
also the remarkable shapes of the stationary distributions; in particular, consider the
shape for high load and high resource-sharing ratio in the bottom-right panel of Fig-
ure 7.3.

Figure 7.4 presents numerical results for the second part of Assumption 7.3.1 (i.e.,
the expected residual flow-size at a source node coincides with the expected resid-
ual excess flow-size from renewal theory). The numerical results from the simula-
tion and the analysis are very close together, although the proposed mean residual
flow-size distribution given by Expression (7.15) is not always within the confidence
interval of the mean residual flow-sizes at the source nodes as obtained from our
simulations. For scenarios with a high load and a flow-size distribution with CF > 1
we observe that the simulated mean residual flow size is slightly larger than the an-
alytical value. In summary, the curves are very close together, and it seems justified
to use the claimed as an approximation assumption.

The third part of Assumption 7.3.1 deals with the independence of the number
of active source nodes and their residual flow-sizes. This assumption is mainly re-
quired to support Expression (7.18), i.e., EWsources = EN · E[F r]. Therefore we di-
rectly sampled EWsources, EN , and E[F r] from simulations; there we observed that
both sides of Expression (7.18) match (up to a high level of precision), and the same
applies to the mean residual flow size E[F r] (which follows from Expression (7.15))
and the directly sampled value.
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Figure 7.3: Distributions of the number of source nodes for different flow-size distributions.
Left: λ = 16, ρ = 0.38. Right: λ = 20, ρ = 0.48. Top: ratio m = 2. Middle: ratio m = 5.
Bottom: ratio m = 10.

7.4.3 Results for general flow-size distributions

This section focuses on the validation of the analysis for general flow-size distri-
butions. We do so by comparing the output of our calculation scheme with esti-
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Figure 7.4: Residual flow-sizes at the source nodes for different flow-size distributions. Left:
m = 5. Right: m = 10.

mates obtained from fluid simulations. We present the main performance metrics
for general flow-size distributions and general resource-sharing ratio m. Each graph
in Figures 7.5–7.8 shows the performance metrics as a function of the load for vari-
ous flow-size distributions. In each graph the resource-sharing ratio m is fixed: left
m = 2 and right m = 5. The effects of the load and resource-sharing ratio on the per-
formance metrics are similar to the results for the exponential case of Section 7.4.1
and will not be discussed again.

Figure 7.5 presents the results for the mean flow transfer time EDsource. Note that,
due to the (empirically observed) insensitivity of the distribution of the number of
active source nodes, the curves coincide for the different flow-size distributions; the
deviations between analysis and simulations are less than a percent in general, for
CF = 16 less than two percent. The mean buffer workload is shown in Figure 7.6.
Recall that, under Assumption 7.3.1, the analysis should be exact for both EDsource

and EWbuffer. At this point we see that, for high CoV’s, the analysis overestimates
EWbuffer, as is illustrated by the numerical results.

Figure 7.7 shows the approximation of the delay ED∗
buffer of the last particle. It

is observed that the resulting curves are close to the results of the fluid-model sim-
ulations. This supports the explanation in Section 7.3.3 that, although the analyti-
cal derivation of the expected conditional delay EYn(τ) relies on exponentially dis-
tributed flow-sizes, the flow-size distribution hardly affects the outcome. As a result,
the approximation ED∗

buffer gives a good approximation for general flow-sizes. Fi-
nally, Figure 7.8 presents the results for the mean overall flow transfer time EDoverall.
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Figure 7.5: Flow transfer time EDsource for general flow-size distributions. Left: m = 2. Right:
m = 5.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5

W
o

rk
lo

a
d

 (
in

 s
e
c.

)

Load (ρ)

EWbuffer for m=2

 Sim.   Det.
 Anal. Det.
 Sim.   Erl-4
 Anal. Erl-4
 Sim.   Exp.
 Anal. Exp.
 Sim.   Hyp-  2
 Anal. Hyp-  2
 Sim.   Hyp-  4
 Anal. Hyp-  4
 Sim.   Hyp-16
 Anal. Hyp-16

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5

W
o

rk
lo

a
d

 (
in

 s
e
c.

)

Load (ρ)

EWbuffer for m=5

 Sim.   Det.
 Anal. Det.
 Sim.   Erl-4
 Anal. Erl-4
 Sim.   Exp.
 Anal. Exp.
 Sim.   Hyp-  2
 Anal. Hyp-  2
 Sim.   Hyp-  4
 Anal. Hyp-  4
 Sim.   Hyp-16
 Anal. Hyp-16

Figure 7.6: Buffer workload EWbuffer for general flow-size distributions. Left: m = 2. Right:
m = 5.

As it is the sum of the exact EDsource and the (accurately) approximated ED∗
buffer, it

implies that the overall flow transfer time has a remarkably good fit.

7.5 Benefits of resource sharing

By varying the resource-sharing ratio m one could try to reduce the overall flow trans-
fer time Doverall, which is the sum of the delays Dsource and D∗

buffer (cf. Expression
(7.14)). Obviously the optimization is a trade-off: by granting a larger share of the
capacity to the bottleneck node D∗

buffer reduces while Dsource increases. We investigate
the impact of the resource-sharing ratio m on Doverall.
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Figure 7.7: Buffer delay ED∗
buffer for general flow-sizes distributions. Left: m = 2. Right:

m = 5.
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Figure 7.8: Overall flow transfer time EDoverall for general flow-size distributions. Left: m = 2.
Right: m = 5.

Figure 7.9 illustrates the impact of the resource-sharing ratio m for fixed load
ρ ≈ 0.43 and different flow-size distributions. The left graph presents the mean
overall flow transfer time EDoverall, the right graph illustrates the trade-off between
EDsource and ED∗

buffer for flow-size distributions CF ∈ {1, 4, 16}. The left graph shows
that the EDoverall is descending in m for all flow-size distributions. In addition, the
right graph illustrates, once again, the insensitivity of EDsource to the flow-size dis-
tribution.

Interestingly, EDoverall coincides for all flow-size distributions at resource-sharing
ratio m = 20, which was the nmax in our numerical experiments. Observe that the
buffer remains empty when Nt cannot exceed m, and the relay node will contin-
uously obtain share C/2. As a consequence, D∗

buffer = 0 and Doverall equals Dsource.
Further recall that EDsource is insensitive to the flow-size distribution (cf. Assumption
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Figure 7.9: Impact of the resource-sharing ratio m for ρ = 0.43. Left: EDoverall for various
flow-size distributions. Right: trade-off between EDsource and ED∗

buffer for CF ∈ {1, 4, 16}.

7.3.1), but, this result also follows from the observation that the source nodes behave
as a Processor Sharing model with service capacity for which it is known that the
mean sojourn times are insensitive to the flow-size distribution (apart from its mean).
Hence, the mean overall flow transfer time EDoverall is given by 2f/(C(1− 2ρ)), and
is insensitive to the flow-size distribution.

Observe that, in order to optimize the mean overall flow transfer time, it is best to
set the resource-sharing ratio m as large as possible: this results in the shortest mean
transfer times.

7.6 Concluding remarks

In this chapter we presented a method to analyze the impact of the resource-sharing
policy in a wireless ad-hoc network. We considered a setting where source nodes
transmit flows to destinations via a common relay node. We obtained explicit ex-
pressions for the means of a number of performance metrics, such as the transfer
time of a flow and the workload at the relay node.

The source-node behavior does not constitute a Markov chain (for m > 1), but,
when assuming exponential flow-sizes, the joint distribution of the number of active
source nodes and the workload can be analyzed using feedback fluid queues. We
claim the remarkable fact that the obtained stationary distribution of the number of
active source nodes is even valid for generally distributed flow-sizes, as we argue that
the source-node behavior is actually insensitive to the flow-size distribution (apart
from its mean); the latter claim is supported through extensive simulation experi-
ments. Under this insensitivity claim we derived a number of expressions (some of
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them being exact, others approximations) for the performance metrics under consid-
eration. Again by simulation it was shown that these expressions are highly accurate
over a broad set of parameter values.

Topics for further research. Further research includes service-based QoS differentiation
where source nodes can obtain different shares of the capacity based on the priori-
ties of their services; these priorities can even be dynamically adjusted based on the
advertized buffer content per node.

Another interesting topic for future research relates to models with multiple hops.
This introduces so-called ‘hidden nodes’, and as a result there is not a single re-
source C shared by all nodes, but multiple resources shared by non-disjoint subsets
of nodes.

7.A Analysis of source-node behavior for exponential
flow-sizes

This section presents a more comprehensive analysis of the results presented in Sec-
tion 7.2.1, i.e., the stationary distribution of the number of active source nodes and
the buffer workload.

We assume that flow-sizes are exponentially distributed with mean f . The source-
node behavior of the model of Section 6.4 is not an autonomous process; the transi-
tion rates depend on both the number of active source nodes Nt and on whether the
buffer workload Wt is positive or not. Hence, Nt does not constitute a Markov chain
as it requires feedback of the workload Wt, e.g., see [88].

We analyze the source-node behavior analogously to [88]. First we analyze the
fluid-queue without feedback, i.e., the system in which the relay node is always allot-
ted a share mC/(n+m) of the capacity (when there are n source nodes transmitting);
random variables (and other quantities) corresponding to the model without feed-
back are denoted with a bar ‘ − ’ on top. Now, N̄t constitutes a Markov chain and
the joint distribution of (N̄t, W̄t) is derived in terms of a system of linear differen-
tial equations as in the seminal studies on fluid queues [5, 77]. The result without
feedback is extended to the case with feedback by the important observation that the
behavior during busy periods of both models coincide. Finally, the joint distribution
(Nt,Wt) of the model with feedback follows from rescaling the distribution (N̄t, W̄t)
of the model without feedback. In the following we make this procedure precise.
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7.A.1 Fluid-queue without feedback

First, we consider the model of Section 6.4 without feedback, i.e., the relay node
always obtains its entire resource-sharing ratio m. We introduce W̄t as the buffer
workload at time t for a system without feedback. Consequently, N̄t does not depend
on W̄t, and therefore N̄t constitutes a Markov chain with generator matrix Q̄, given
through

Q̄(i, j) :=





λ if j = i + 1,

iC/((m + i)f) if j = i− 1,

0 otherwise.
(7.21)

where the diagonal elements are such that the rowsums are 0. For technical reasons
we first assume that the resource-sharing ratio m is non-integer; the case of integer
values of m is explained at the end of this section.

Let R̄ be a diagonal matrix where R̄n is the net input rate into the relay node,
i.e., if n sources are active then

R̄n =
n−m

n + m
C.

Denote by D (U) all states with negative (positive) drift, i.e., R̄n < for all n ∈ D and
R̄n > 0, for all n ∈ U . Let Q̄DD, Q̄UU be submatrices obtained by partitioning of Q̄

according to the ‘up states’ and ‘down states’.
We define the stationary distribution of (N̄t, W̄t) as

Fn(x) := lim
t→∞

P (W̄t ≤ x; N̄t = n) = P (W̄ ≤ x; N̄ = n).

For the analysis we assume that a maximum nmax is imposed on the number of
source nodes that may be simultaneously active; flows that are initiated if already
nmax other source nodes are active are blocked. The buffer workload satisfies the
Kolmogorov forward equations

−→
F ′(x)R̄ =

−→
F (x)Q̄′. The spectral expansion of the

solution is given by

−→
F (x) =

nmax∑

j=0

aj
−→v j exp(zjx)

where (zj ,
−→v j) is an eigenvalue-eigenvector pair, i.e., a scalar and vector that solve

zj
−→v jR̄ = −→v jQ̄. Clearly, P(W̄ ≤ x) =

∑
n Fn(x). Further, let ω denote the stationary

distribution of N̄t without feedback, hence ωn = Fn(∞). For stability we assume
that the average net input rate is negative, that is,

∑
n ωnR̄n < 0. As our generator

matrix Q̄ corresponds to a birth-death chain, all eigenvalues zj are real [36].
Following Mitra [99], the number of negative eigenvalues n+ in a stable system

(i.e.,
∑

n ωnR̄n < 0) is equal to the number of states with positive drift, i.e., n+ =
nmax − dme; exactly one eigenvalue has value zero and the remaining eigenvalues



7.A. Analysis of source-node behavior for exponential flow-sizes 135

are positive. In the remainder we label the eigenvalues zj such that zj < 0 for j ∈
{0, . . . , n+ − 1}, zn+ = 0, and zj > 0 for j ∈ {n+ + 1, . . . , nmax}.

The coefficients aj are calculated as follows. When zj > 0, then aj = 0 as the
distribution function should be in [0, 1]. The other coefficients aj are computed from
Fi(0) = 0 for all up states i. Further observe that

ω =
−→v n+

〈−→v n+ ,
−→
1 〉

,

where 〈·, ·〉 denotes the (standard) inner product. For computationally efficient nu-
merical schemes, see e.g. [81].

Elwalid and Mitra [39] presented explicit expressions for a number of quantities
related to the busy and idle periods of the workload at the relay node. A busy (idle)
period is the period during which the workload at the relay node is positive (zero).
A busy period starts when the system is empty and Nt becomes larger than m by a
flow initiation. A busy period ends when the buffer becomes empty, and then Nt is
in a state in D.

Denote by
−→̄
P the distribution of N̄ at the end of the busy period. Then, due to

Expression (5.9) of [39],
−→̄
P =

1〈−→
FD(0)Q̄DD,

−→
1

〉−→FD(0)Q̄DD.

Note that the (i, j) entry of −(Q̄DD)−1 is the mean time spent in state j by Nt, if the
process started in state i, before leaving the set D, see e.g. [61]. Then, the mean idle
period EĪ is given by

EĪ =
〈
−−→̄P (Q̄DD)−1,

−→
1

〉
. (7.22)

The mean busy period EB is obtained from
∑

i∈D Fi(0) = EĪ/(EB̄ + EĪ) :

EB̄ = EĪ · 1−∑
n∈D Fn(0)∑

n∈D Fn(0)
.

REMARK 7.A.1 (INTEGER-VALUED RESOURCE-SHARING RATIO m). In case of an in-
teger-valued resource-sharing ratio m, state m has zero drift, or, more precisely, Rm =
0. Therefore R is singular. In this situation the Kolmogorov forward equations consist of
nmax differential equations and 1 supplementary algebraic equation. This algebraic equation
results from the state with drift zero and hinders obtaining the eigenvalue-eigenvector pairs.
Observe that the state with zero drift does not influence the workload distribution and is
basically redundant. In Appendix A.1 of [99], Mitra proposes how to reduce the dimension
of the system of differential equations by 1 to (obtain a proper system), by eliminating the
redundant algebraic equation. Further, it is proven that the eigenvalues of the reduced form
coincide with the original form and it is shown how the eigenvectors of the original system
are obtained from the reduced system. ♦
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7.A.2 Fluid queue with feedback

Here we consider the model of Section 6.4 which includes feedback of the workload
Wt at the relay node. As remarked before, the number of source nodes no longer
constitutes a Markov chain. We are interested in the stationary buffer workload de-
noted by Gn(x) := P(W ≤ x; N = n). Let random variable B (I , respectively) denote
a busy (idle) period in the system with feedback, and

−→
P the distribution of N at the

end of a busy period.

Note that the distributions
−→
P and

−→̄
P are identical, and also the busy periods B

and B̄ have the same distribution. Hence,

P(W ≤ x;N = n|W > 0) = P(W̄ ≤ x; N̄ = n|W̄ > 0).

As a consequence, the stationary distribution Gn(x) of the buffer workload and num-
ber of source nodes is

Gn(x) = P(W̄ ≤ x; N = n|W̄ > 0)P(W > 0) + P(W = 0; N = n)

=
Fn(x)−∑

k Fk(0)
1−∑

k Fk(0)
P(W > 0) + P(W = 0; N = n). (7.23)

To complete (7.1) we require expressions for P(W > 0) and P(W = 0; N = n). Here
P(W > 0) follows from

P(W > 0) =
EB

EI + EB
.

Also

EI =
〈
−−→P (QDD)−1,

−→
1

〉
,

cf. Equation (7.22), where QDD is the square generator matrix of dimension n+ for
the states with downwards drift in case Wt = 0, i.e.,

QDD(i, j) :=





λ if j = i + 1,

C/2 if j = i− 1,

0 otherwise.

Further, P(W = 0; N = n) corresponds to the n-th element of −−→P (QDD)−1. Finally,
the stationary distribution π of the number of active source nodes Nt follows from
Equation (7.23), as πn = Gn(∞).

7.B Proof of Proposition 7.2.6

This proof is essentially along the lines of [19]. Recall that Yn(τ) denotes the con-
ditional buffer delay, i.e., the time required by the relay node with resource-sharing
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ratio m to serve an amount of work τ if n other jobs are present upon the start. By
φn(s) we denote the Laplace transform of EYn(τ), i.e.,

φn(s) =
∫ ∞

0

e−sτEYn(τ)dτ.

We obtain an expression for φn(s) by conditioning on the next possible event, namely:
flow arrival, source departure of one of the n source nodes, or the relay node com-
pletes the service of amount τ . First we define νn := λn + µn, with

λn := λ 1{n < nmax}; µn :=
C

f

n

m + n
.

Then we obtain the following expression:

φn(s) =
∫ ∞

0

e−sτ

∫ ∞

τ ·m+n
m

νne−νntτ · m + n

m
dtdτ +

∫ ∞

0

e−sτ

∫ τ ·m+n
m

0

νne−νnt

{
t +

λn

νn
EYn+1

(
τ − m

m + n
t

)

+
µn

νn
EYn−1

(
τ − m

m + n
t

)}
dtdτ.

After elementary algebra, this is rewritten as the following system of linear equa-
tions:

1
s

= −λnφn+1(s) +
(

m

m + n
s + νn

)
φn(s)− µnφn−1 (s) , (7.24)

or, in matrix notation,
−→
1 = s ·M(s)

−−→
φ(s) where M(s) := −Q̄ + sR with Q̄ as in (7.21)

and

R := diag
{

1,
m

m + 1
,

m

m + 2
, · · · ,

m

m + nmax

}
.

It is readily verified that the equation detM(s) = 0 coincides with det(R−1Q− sI) =
0. In other words: the roots of detM(s) = 0 are the eigenvalues of R−1Q. As Q is
singular, one of the eigenvalues of R−1Q is 0, say s0. Further, a straightforward ap-
plication of ‘Geršgorin’ yields that all eigenvalues s0, . . . , snmax are real, non-positive
and unique.

The Laplace transform φn can be solved from the linear system by applying
Cramer’s rule to s~φ (s) = (M(s))−1~1, i.e.,

sφn(s) =
detM−n(s)
detM(s)

. (7.25)

where M−n(s) is defined as M(s) with the n-th column replaced by ~1. The denom-
inator of the right-hand side of (7.25) is a polynomial of degree nmax + 1 in s. The



138 7. Mean-value analysis of the fluid model

above considerations entail

sφn(s) =
A(n,0)

s
+

nmax∑

j=1

A(n,j)

s− sj

where the constants A(n,j) follow from the partial-fraction expansion at s0, . . . , snmax .
Then,

φn(s) =
A(n,0)

s2
+

nmax∑

j=1

A(n,j)

sj

1
s− sj

−
nmax∑

j=1

A(n,j)

sj

1
s
.

Finally, inverting the individual parts gives the desired result:

EYn(τ) = A(n,0)τ +
nmax∑

j=1

A(n,j)

sj
esjτ −

nmax∑

j=1

A(n,j)

sj
.



Chapter 8

Validation of the fluid-modeling approach

8.1 Introduction

In this chapter we validate the fluid-modeling approach that was introduced in
Chapter 6, and analyzed in Chapter 7. The fluid model (cf. Section 6.4) is validated by
simulations of the wireless ad-hoc network that include all the details of the widely
used IEEE 802.11 MAC-protocol.

8.1.1 Contribution

The validation of the fluid model is considered separately for the ‘standard’ fluid
model where the relay node and source nodes equally share the capacity (i.e., m = 1),
and the general case where the relay node can obtain a different share of the capacity
(i.e., m ∈ [0,∞)).

For the standard fluid model with m = 1 we validate that it captures the behavior
of network nodes that operate according to the IEEE 802.11 MAC-protocol DCF. This
model allows for more explicit expressions for the performance metrics than is the
case with general resource-sharing ratio m ∈ [0,∞), see the analysis in Chapter 7
and the excerpt in Section 8.3.2 (see also [14, 115]). These analytical expressions
are numerically evaluated and compared with the results from the wireless ad-hoc
network simulator with a detailed implementation of the IEEE 802.11 protocols.

For the case with m ∈ [0,∞) we validate that the fluid model captures the
resource-sharing behavior of the IEEE 802.11e EDCA. The EDCA provides four QoS-
differentiation parameters and we provide a mapping of their values onto the fluid
model’s parameters, viz. m and C, that model the alternative resource-sharing strate-
gies that can be enforced in real systems. We have to slightly adapt the fluid model
of Section 6.4 as the medium capacity Cn and resource-sharing ratio mn turn out to
depend on the number of active source nodes n, albeit only moderately. We discuss
a mapping between the parameter settings of IEEE 802.11 and the fluid-flow model,
and validate the fluid-flow model and the parameter mapping by means of detailed
system simulations.
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Figure 8.1: Distributed Coordination Function ( DCF).

8.1.2 Outline

This chapter is organized as follows. The IEEE 802.11 DCF and EDCA protocols are
explained in Section 8.2. In Section 8.3 we validate the fluid model (of Section 6.4)
for the IEEE 802.11 DCF; as mentioned before, this relates to resource-sharing ratio
m = 1. First we obtain the service capacity used in the fluid model, and we present
an excerpt of the analytical results and validate the fluid model by comparing it
with ad-hoc network simulations. Section 8.4 validates the fluid model for an IEEE

802.11e EDCA relay node; first we obtain the input parameters of the fluid model and
second we validate this model. Finally, Section 8.5 presents concluding remarks and
discusses some directions for further research.

8.2 IEEE 802.11 Wireless LAN

In this section we briefly explain the IEEE 802.11 DCF and its enhancements as speci-
fied in IEEE 802.11e EDCA in order to support QoS differentiation. The DCF and EDCA

were initially standardized in respectively [62] and [65]. In 2007 an update [63] was
provided of the original standard [62] which incorporates several amendments, most
notably, 802.11a, 802.11b [64], 802.11e [65], and 802.11g.

8.2.1 IEEE 802.11b Distributed Coordination Function (DCF)

Figure 8.1 illustrates the principle of the BASIC access scheme. When a station wants
to transmit a data packet, it first senses the medium to determine whether or not the
channel is already in use by another station (physical carrier sensing). If the chan-
nel is sensed idle for a contiguous period of time called DIFS (Distributed InterFrame
Space), the considered station transmits its packet. In case the channel is sensed busy,
the station must wait until it becomes idle again and subsequently remains idle for
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a DIFS period, after which it has to wait another randomly sampled number of time
slots before it is permitted to transmit its data packet. This backoff period is sampled
from a discrete uniform distribution on {0, · · · , CWr − 1} , with CWr the contention
window after r failed packet transfer attempts (CW0 is the initial contention window
size). The backoff counter is decremented from its initially sampled value until the
packet is transferred when the counter reaches zero, unless it is temporarily ‘frozen’
in case the channel is sensed busy before the backoff counter reaches zero. In the
latter case the station continues decrementing its backoff counter once the medium
is sensed idle for at least one DIFS period. It is noted that the idea behind the ran-
dom backoff procedure is to reduce the probability of collisions, which occur either
when the backoff counters of multiple stations reach zero simultaneously, or in case
a so-called hidden station fails to freeze its backoff counter when it cannot sense an-
other station’s transmission. In a collision only the strongest signal among multiple
concurrent transmissions has a chance of successful capture by the intended receiver.

If the destination station successfully captures the transmitted data packet, it re-
sponds by sending an ACK (ACKnowledgement message) after a SIFS (Short Inter-
Frame Space) time period. A SIFS is shorter than a DIFS in order to give the ACK pref-
erence over data packet transmissions by other stations, while it is sufficiently long
to allow the stations involved in the considered transfer to switch between transmis-
sion and reception mode. If the source station fails to receive the ACK within a prede-
fined time-out period, the contention window size is doubled unless it has reached
its maximum window size, upon which the data packet transfer is reattempted. The
total number of transmission attempts is limited to rmax. Once the data packet is
successfully transferred, the contention window size is reset to CW0 and the entire
procedure is repeated to transfer subsequent data packets. If an unfortunate data
packet is still not successfully transferred after rmax retransmissions, the MAC layer
gives up. It is then up to higher-layer protocols (e.g. UDP (User Datagram Protocol)
or TCP) whether the packet is discarded or once again offered to the MAC layer for
transmission.

8.2.2 IEEE 802.11e Enhanced Distributed Channel Access (EDCA)

IEEE 802.11e specifies the Enhanced Distributed Coordination Access (EDCA) as the
distributed contention mechanism that can provide service differentiation. Whereas
an IEEE 802.11b station has only one queue for all traffic, an IEEE 802.11e station (QoS

STA) has multiple queues, so-called Access Categories (ACs), and traffic is mapped
into one of the ACs according to its service requirements. Each AC contends for the
medium using the CSMA/CA mechanism described in Section 8.2.1 using it own set
of EDCA parameters values. These EDCA parameters are CWmin, CWmax, AIFS, and
the TXOPlimit.

The parameters CWmin and CWmax have the same functionality as in the DCF. The
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Figure 8.2: QoS STA with three Access Categories.

parameter AIFS (Arbitration InterFrame Space) differentiates the time that each AC

has to wait before it is allowed to decrement its backoff counter after the medium has
become free. In the DCF each station has to wait for a DIFS period while the duration
of an AIFS is a SIFS period extended by a discrete number of time slots AIFSN, so
AIFS = SIFS + AIFSN × timeslot (where AIFSN ≥ 2 for QoS STAs and AIFSN ≥ 1 for
Quality APs). The TXOPlimit (Transmission OPportunity (TXOP) limit) is the duration
of time that an AC may send after it has won the contention, so it may send multiple
packets as long as the last packet is completely transmitted before the TXOPlimit has
passed. Figure 8.2 illustrates the parameters AIFS and CWmin.

Obviously, the backoff counters of multiple ACs of one station can reach zero at
the same moment, which is called a virtual collision. Each QoS STA has an internal
scheduler that handles a virtual collision. The AC with the highest priority is given
the TXOP and may actually initiate a transmission. The ACs of lower priority are
treated as if they experienced a collision, so they have to double their contention
window CW and start a new contention for the medium.

8.3 Validation of the fluid model for IEEE 802.11 DCF re-
source sharing

This section illustrates that the fluid model accurately describes the behavior of
source and relay nodes when all are equipped with the IEEE 802.11b DCF. First,
we describe how to obtain accurate parameter values for the fluid model. Next, we
present a summary of the analytical results that were presented in [14]. Finally, we
validate the fluid model by comparing the analytical results with simulation results
of the ad-hoc network simulator.
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8.3.1 Mapping of IEEE 802.11 DCF parameters

The DCF equally shares the capacity among the contending nodes, hence the resource-
sharing ratio m equals 1. Therefore we are left to determine the capacity C.

The capacity C can be obtained by the model of Bianchi [16]. Recall that if at least
one source node is active, then the relay node is active as well. As we assume that
an active node is continuously contending for a TXOP, the ad-hoc network scenario
satisfies the framework of Bianchi’s model and Cn corresponds to Bianchi’s saturated
throughput for n + 1 nodes. Note that we are interested in the saturated throughput
at flow level (i.e., excluding all overhead), although the overheads of all OSI-layers
should be taken into account in the calculations.

We consider an IEEE 802.11b wireless ad-hoc network, which entails that all nodes
can transmit at a gross bit rate of 11 Mbit/s. We assume the use of RTS/CTS-access,
then the resulting net bit rate is approximately 5.0 Mbit/s independent of the number
of active source nodes, cf. the curve 802.11b in the left graph of Figure 8.5.

8.3.2 Analysis of the ‘standard’ fluid model

The analysis in Chapter 7, obviously, covers the standard case of resource-sharing
ratio m = 1, but for this special case more explicit (closed-form) expressions can be
obtained; see the analysis in paper [14] of which an excerpt is presented next.

The stationary behavior of the active source nodes was already given by Expres-
sion (7.17) with m = 1, and it is insensitive to the flow-size distribution (cf. Remark
7.3.2). Little’s law on the mean number of active source nodes yields

EDsource =
EN

λ
= 2

f/C

1− ρ
. (8.1)

The buffer delay D∗
buffer is derived from the buffer workload W ∗

buffer seen by the
last particle, which is the sum of the workload Wbuffer upon flow arrival and the
buffer increase ∆Wbuffer during Dsource. The amount of work in the buffer at the relay
node is the difference between the total amount of work in the system Wtotal (both at
the sources and the buffer) and the work remaining at the source Wsources, hence

EWbuffer = EWtotal − EWsources =
2ρ2f2

fC

1
(1− 2ρ)(1− ρ)

.

The expected workload increase during a flow transfer Dsource is given by

E∆Wbuffer = EDsource − 2f/C =
2fρ/C

1− ρ
.

Therefore,

EW ∗
buffer = EWbuffer + E∆Wbuffer =

2ρ2f2/fC

(1− 2ρ)(1− ρ)
+

2fρ/C

1− ρ
.
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Observe that the buffer delay of the last particle D∗
buffer is the time required to serve

the amount of work W ∗
buffer that is present at the buffer upon arrival of the last parti-

cle. As the capacity sharing between source nodes and relay node is purely processor
sharing, we approximate the buffer delay of the last particle by

ED∗
buffer ≈

∞∑
n=0

πnEXn(EW ∗
buffer), (8.2)

where EXn(τ), the so-called response time for jobs in an M/M/1-PS queue presented
by Coffman, Muntz, and Trotter (see [29]), is given by

EXn(τ) = τ +
ρτ

1− ρ
+ (n(1− ρ)− ρ) (f/C)

1− exp(−(1− ρ)τ C/f)
(1− ρ)2

. (8.3)

For further details about Approximation (8.2) we refer to Approximation 7.2.7 and
also to [14].

8.3.3 Numerical results for the fluid modeling of IEEE 802.11 DCF

This section numerically validates the fluid model as an accurate description of the
ad-hoc network scenario of Section 6.4.1. The validation using the validation sce-
nario of Section 6.6 and consists of a comparison of:

i) detailed simulations of ad-hoc network,

ii) simulation of the fluid-flow model of Section 6.4, and

iii) the analytical results of Section 8.3.2.

The graphs of Figure 8.3 present the mean buffer workload EWbuffer at the re-
lay node for an arbitrary packet (left) and last packet of a flow EW ∗

buffer (right). The
graphs present three curves: ad-hoc network scenario simulations, fluid-model sim-
ulations, and fluid-model analysis. In both graphs it can be seen that the three curves
more or less coincide. Only for loads close to the saturation load, the results are less
accurate due to the imprecision of the estimated capacity C. Overall the curves indi-
cates that the fluid model accurately describes the ad-hoc network scenario and that
the analytical results of Section 8.3.2 are also very good. Further, it can be observed
that the buffer occupancy seen by the last particle is only slightly higher than the
buffer occupancy upon flow arrival; the relatively short flow transfer time and low
number of active source nodes result in a minor increase of the buffer during the
flow transfer time.

Figure 8.4 presents the results for the mean buffer delay ED∗
buffer of the last packet

(left) and the mean overall flow transfer time EDoverall (right). Note that the analyt-
ically obtained buffer delay of the last particle in the left graph is based on an ap-
proximation (cf. Expression (8.2)). The fluid model captures the behavior of a IEEE
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802.11b nodes very well as the model reflects both the impact of the load and flow-
size distribution, except for high loads in which case the results are less accurate. By
comparing the graphs it is seen that the mean overall transfer time is almost com-
pletely determined by the buffer delay at the relay node.
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8.4 Validation of the fluid model for IEEE 802.11e EDCA

resource sharing

This section shows that the fluid model accurately captures the behavior of IEEE

802.11e EDCA relay node, and in particular, that it captures the resource sharing be-
tween source and relay nodes.

In Section 8.4.1 we introduce a state-dependent variant of the fluid-model of Sec-
tion 6.4, i.e., the capacity Cn and resource-sharing ratio mn now dependent on the
number of active source nodes n. In Section 8.4.2 the IEEE 802.11e parameters are
mapped onto these fluid-model parameters. In Section 8.4.3 we validate our model-
ing approach by detailed ad-hoc network simulations.

8.4.1 Resource sharing between relay and source nodes

The resource-sharing ratio mn between the share of the relay node and a source node,
and the common capacity Cn depend on the number of active source nodes n, where
mn ≥ 0 and Cn > 0. Further, the model operates similarly as the fluid model defined
in Section 6.4.

The relay node may obtain capacity mnCn/(n + mn), however, only if it can actu-
ally use the entire share, viz. the input rate exceeds the output rate (i.e., Nt ≥ mNt)
or if the buffer is backlogged (i.e., Wt > 0). Otherwise the input and output rates are
coupled, resulting in capacity share of CNt/2 for the relay node. The capacity share
obtained by the relay node is summarized as follows:

CNt ×




mNt/(Nt + mNt), {Wt > 0} ∨ {Nt ≥ mNt},
1/2, {Wt = 0} ∧ {Nt < mNt},

1, {Nt = 0}.
The source nodes always equally share the remaining capacity. The stability condi-
tion of this system is

∑
n ωnCn(n −mn)/(n + mn) < 0, where ωn is the steady-state

probability of having n active source nodes in the system.

8.4.2 Mapping of IEEE 802.11e parameters

IEEE 802.11e EDCA provides four ‘differentiating parameters’ (cf. Section 8.2.2), name-
ly CWmin, CWmax, AIFS, and TXOPlimit. Unfortunately, the mapping of the EDCA pa-
rameters onto the fluid-model parameters Cn and mn is not self-evident, see e.g. [113].

In case the relay node is saturated, i.e., {Wt > 0}∨{Nt ≥ mNt}, the fluid model pa-
rameters Cn and mn can be estimated from an extension of the model of Bianchi [16]
to two classes with different settings for the differentiating parameters, see e.g. [136].
In particular, the resource sharing in case of n active source nodes can be obtained
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Figure 8.5: Varying number of source nodes and a relay node with a varying parameter
setting. Left: Overall saturated throughput. Right: Resource sharing ratio.

from the model of [136] with n nodes in one class and a single node (representing our
relay node) in the other class. The parameters Cn and mn for {Wt > 0}∨{Nt ≥ mNt}
are estimated by respectively the aggregate throughput and the ratio of the per node
throughput in the two classes.

In case of a non-saturated relay node, i.e., {Wt = 0} ∧ {Nt < mNt}, the above-
mentioned approach would overestimate both the non-saturated capacity C′n and re-
source sharing ratio m′

n due to the assumption that all nodes are saturated. Observe
that the non-saturated resource sharing ratio m′

n equals n as this resource-sharing
ratio couples the input rate into the relay node to the output rate. Next, the non-
saturated capacity C′n is estimated as follows: we consider the same differentiating
parameter and its value is set such that it provides for the desired resource-sharing
ratio m′

n in the model of [136], the corresponding capacity Cn is used as an estima-
tion of C′n. For example, when we use differentiating parameter TXOPlimit = 3 and
{Nt = 2} ∧ {Wt = 0}, then the resource sharing ratio m′

2 equals 2; therefore C′2 is
estimated by C2 which is the saturated capacity for TXOPlimit = 2.

Figure 8.5 shows the saturated throughput (left graph) and the resource shar-
ing ratio (right graph) as a function of the number of source nodes. First, we vary
the value of CWmin at the relay node; all other parameters of the relay node and
all parameters of the source nodes are set according to the IEEE 802.11b standard.
Then we do a similar experiment in which we vary the TXOPlimit of the relay node,
while all other parameters are set according to IEEE 802.11b. The left graph illus-
trates that higher overall throughputs are obtained by an IEEE 802.11e relay node,
especially for parameter TXOPlimit. In the right graph the throughput ratios for pa-
rameter TXOPlimit are trivial, the ratios for parameter CWmin are examples of non-
trivial resource sharing as, intuitively, the throughput ratio for CWmin is the inverse
of the CWmin parameter-setting ratio. For example, when CWmin of the relay node
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is set to 7, then the expected ratio is 31/7 ≈ 4, but the realized ratio is larger than 6
for a small number of active source nodes, see e.g. [113] for an explanation on this
phenomenon.

8.4.3 Numerical results for the fluid modeling of IEEE 802.11e EDCA

In the present section the fluid model for an IEEE 802.11e relay node is numerically
validated by ad-hoc network simulations. The validation scenario were defined in
Section 6.6 and the experiments coincide with those of the previous section: one of
the parameters CWmin or TXOPlimit of the relay node is varied, all other parameters
of the relay node and all parameters of the source nodes are set according to the IEEE

802.11b standard.
For fluid-flow simulations, of which results are presented in Figure 8.6, we use

Cn and mn estimated by the ad-hoc network simulator. The reason is that the fluid
model is very sensitive for the used capacity if the offered load is close to the avail-
able capacity, cf. Section 8.3.3. Bianchi’s model is proven to be accurate and the dif-
ferences between results of the model and the ad-hoc network scenario simulations
are small (just a few percent), but this approach ensures that deviations between
the fluid model and the ad-hoc network scenario are solely due to fluid-modeling
assumptions.

Figure 8.6 displays a comparison of ad-hoc network scenario simulations and
fluid-model simulations. The fluid model simulations slightly underestimate the
ad-hoc network scenario simulation results, but the behavior of the differentiating
parameters is captured fairly well. The small deviations can be the result of modeling
assumptions, e.g., in the fluid-model we assume that Cn and mn are instantly valid
after the number of active source nodes has changed. By slightly modifying the
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parameter values, i.e., a minimal reduction of Cn, the results coincide. We conclude
that the fluid model of Section 8.4.1 accurately describes the behavior of an IEEE

802.11e relay node in a wireless ad-hoc network.

8.5 Concluding remarks

In this chapter we have shown that the fluid model is an accurate description of
multi-hop flows relayed by a performance bottleneck in a wireless ad-hoc network.
We have indicated how to map the parameter settings of both IEEE 802.11b and
802.11e relay nodes onto the fluid model, and the validation proves that the fluid
modeling is accurate for both types of relay nodes.

Topics for further research. An interesting topic is the implementation of an alter-
native service disciplines at the relay node. In the above analysis it is assumed that
the packet scheduling at the relay node is First Come First Served. Alternative ser-
vice disciplines, e.g. round robin, may yield considerably smaller mean overall flow
transfer times.

Another topic is the investigation of the influence of higher-layer protocols, such
as TCP, on the flow transfer time.

Furthermore, it remains to be investigated how to properly implement the resource-
sharing policy in wireless ad-hoc networks. Currently, obstacles for implementation
are the lack of global knowledge of which nodes currently are bottlenecks and the
absence of practical parameter settings to provide the desired resource sharing. A
possible implementation is that each node is assigned an infinite TXOPlimit for all re-
lay packets, i.e., a node sends all packets that it has to relay for other nodes in a single
TXOP.





Chapter 9

Transforms and tail probabilities for the equal
resource-sharing fluid model

9.1 Introduction

In this chapter we consider the ‘standard’ fluid model of Section 6.4, i.e., the fluid
model with m = 1 (resulting in so-called coupled input and output rates). In addi-
tion, throughout this chapter we assume exponentially distributed flow-sizes. This
results in the situation that, when n flows are present, each of these use C/(n + 1)
to transmit its traffic into the queue, while the remaining capacity C/(n + 1) is used
to drain the queue. It will turn out that we can analyze this model relying on the
concept of Markov-modulated fluid queues. We derive the Laplace transforms of all
performance metrics and we obtain the tail probabilities by large-deviations analy-
sis. In this chapter we use a different notation than in the previous chapters, as was
mentioned earlier in Section 6.4.3.

9.1.1 Markov-modulated fluid queue

Standard Markov fluid queues consist of traffic sources feeding into a queue that is
emptied at a constant rate, say C. The sources are for instance of the exponential ON-
OFF type: they alternate between active periods (with a duration that is exponentially
distributed with mean µ−1 during which traffic is generated at some fixed rate, say
p) and silences (which have an exponential distribution with mean λ−1). If there are
N of such sources (i.i.d.), and if Np > C, every now and then the buffer of the queue
fills. Under the stability condition Npf < C, with f := λ/(λ + µ) the fraction of time
each source is on, the queue’s workload has a steady-state distribution, say W ?. A
detailed performance analysis of this workload is available, see e.g. [5].

Standard Markov fluid-queues have been studied extensively. In the seminal
studies [5, 77] a system of differential equations (known as Kolmogorov forward
equations) is derived for P(W ? ≤ x,N? = n), where N? is the number of sources in
the on-state in steady-state. Later these results have been extended in many direc-
tions. To mention a few: one has considered heterogeneous sources, sources with a
more general structure than exponential on-off, see e.g. [99], there have been rather
explicit results for the case that the sources have a so-called birth-death structure [36]
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or have a countably infinite state-space, see e.g. [131], and also models have been
studied in which the source behavior depends on the current workload [88, 120]. In
addition there has been considerable interest in so-called large-buffer asymptotics,
i.e., expansions of P(W ? > x) for large x; these relate nicely to a notion of effective
bandwidths [39, 72].

9.1.2 Contribution

The goal of the present chapter is to extend the results for standard Markov fluid
queues to our model of a relay node in an ad-hoc network. Interestingly, not even
the stability criterion is trivial, as essentially all traffic has to be ‘served’ twice (it has
to be transmitted into the queue, and subsequently it has to be served by the queue);
as a result the common stability condition that the mean input rate, say m, be smaller
than C does not apply.

The second aim is to characterize the steady-state workload distribution. It is
not hard to see that this can be analyzed by setting up a system of Kolmogorov
forward equations, but the special structure allows more explicit results. The crucial
property of our model with coupled input and output that enables the analysis, is
that the queue only drains when there are no flows present. This property entails
that our model strongly resembles the classical M/G/1 queueing model, and hence
the Laplace transform (LT) of the steady-state workload distribution can be given
explicitly.

In standard Markov fluid queues there is a one-to-one mapping between the
buffer content that a ‘fluid particle’ sees upon arrival, and the delay it has: if it sees
x units traffic in the queue, it leaves the queue after x/C units of time. As a conse-
quence, for standard Markov fluid queues, the queueing delay distribution follows
immediately from the steady-state workload distribution. This is not the case for our
model with coupled input and output; more specifically, when considering a tagged
fluid particle that arrived at time 0, flows arriving in the future affect the service
capacity available to the queue, and hence also the delay of the fluid particle. This
makes the analysis of the queueing delay non-standard. We fully characterize its
Laplace transform.

Furthermore, we study the flow transfer delay, i.e., the time it takes before the
flow has transmitted all its traffic into the queue. This delay is essentially the absorp-
tion time of a certain continuous-time Markov chain. Again, the solution is given in
terms of Laplace transforms.

The sojourn time of a flow is defined as the flow transfer time of an arbitrary flow
increased by the time it takes before the last fluid particle of the flow is served. As
these two components are correlated, the Laplace transform of the sojourn time does
not immediately follow from the LTs of the buffer delay and the flow transfer delay.
We derive the transform of the sojourn time explicitly using the fact that the buffer
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content cannot decrease during any flow transfer time.
Having the Laplace transforms of the workload, queueing delay, and flow trans-

fer delay at our disposal, a next question is how the tails of these distributions be-
have. We show that they decay exponentially, and, relying on large-deviations tools,
the decay rates are derived.

9.1.3 Outline

The outline of this chapter is as follows. In Section 9.2 we present a detailed descrip-
tion of the ‘standard’ fluid model, and we derive its stability condition. In Section
9.3 we relate our model to the classical M/G/1 queueing model, and we present the
Laplace transform (LT) of the steady-state workload distribution. Next, we charac-
terize the Laplace transforms of the queueing delay in Section 9.4, the flow transfer
delay in Section 9.5, and the sojourn time in Section 9.6. The tail-probabilities of
the workload, queueing delay, and flow transfer delay are presented in Section 9.7.
Finally, Section 9.8 concludes and identifies a few challenging subjects for future re-
search. In particular, it discusses to what class of sharing policies (between the flows
and the queue) our results can be extended.

9.2 Model and background

In this section, we first give a detailed description of our model, which is a special
case of the fluid model presented in Section 6.4. Then we derive the steady-state
distribution of the number of flows simultaneously present in the system, allowing
us to give a precise stability condition.

9.2.1 Model

Consider a queueing system at which flows arrive according to a Poisson process,
transmit traffic into a queue, and leave when ready. When there are n flows active,
any flow can transmit its traffic into the queue at rate C/(n+1), while a rate C/(n+1)
is used to serve the queue; as a consequence, the queue only drains when there
are no flows present, while it stays at the same level if exactly one flow is active.
Suppose that we impose the admission control policy that the system accommodates
maximally N ∈ N flows simultaneously; in this way each active flow (as well as the
queue) is guaranteed at least a transmission rate C/(N + 1).

We let Nt denote the number of flows present (i.e., feeding traffic into the queue)
at time t. It is not hard to see that, under the assumption of exponentially distributed
flow sizes (with mean µ−1) and interarrival times with mean λ−1, the process Nt
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constitutes a Markov chain on {0, . . . , N}, with generator matrix

Q :=




−λ λ

µ1C −µ1C − λ λ

µ2C −µ2C − λ λ
. . . . . . . . .

µN C −µN C




, (9.1)

where µn := µn/(n + 1). When Nt = n, the aggregate traffic rate generated by the
flows is rI,n := Cn/(n + 1), while the queue’s output rate is rO,n := C/(n + 1), such
that the net rate of change of the queue is 0 when Qt = Nt = 0, and otherwise, for
n ∈ {0, . . . , N},

rA,n := rI,n − rO,n = C
n− 1
n + 1

.

Define RI := diag{rI}, RO := diag{rO}, and RA := RI −RO.

Two variants of this model. In a first variant, one lets N →∞, thus getting a countably
infinite state space. This means that there is no admission control imposed on the
number of flows.

In a second variant, there are N sources that can be potentially active, and each
source has a silence time that is exponentially distributed with mean λ−1. The qn,n+1

should be (N − n)λ rather than λ (for n = 0, . . . , N − 1).

9.2.2 Stability condition

Due to the sharing of the service capacity between the flows and the queue, the
stability condition of this model is not standard. Also, a fraction of the flows is
rejected because they enter when already N flows are present. In this subsection we
find the stability condition and the blocking probability.

To find a condition on λ, µ and C under which the queue is stable, we first de-
termine the equilibrium distribution π of (Nt)t∈R. Trivially, the balance equations
are

πnµnC = πn−1λ, n = 1, . . . , N.

Recursively solving these equations, it is not hard to derive, with ρ defined as λ/(µC),
that

πn =
ρn(n + 1)∑N

k=0 ρk(k + 1)
.
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Standard calculus on the geometric series yields
N∑

k=0

ρk(k + 1) =
d
dρ

(
N∑

k=0

ρk+1

)
=

d
dρ

(
ρ

1− ρN+1

1− ρ

)

=
1− ρN+1(N + 2) + ρN+2(N + 1)

(1− ρ)2
.

The equilibrium condition of the fluid model is
∑N

n=0 πnrA,n < 0, after considerable
algebra translating into

−1 + 2ρ− ρN+1N + ρN+2(N − 1)
1− ρN+1(N + 2) + ρN+2(N + 1)

· C < 0.

Due to the PASTA-property, the probability of an arbitrary arriving flow being blocked
is

πN =
ρN (N + 1)(1− ρ)2

1− ρN+1(N + 2) + ρN+2(N + 1)
.

Special case of N → ∞. Interestingly, for N → ∞, the equilibrium probabilities
πn have the form (1 − ρ)2(n + 1)ρn, and the equilibrium condition (−1 + 2ρ)C < 0,
or, equivalently, 2λ/µ < C (cf. Section 6.5). The latter condition has an appealing
interpretation. In the model with N → ∞, the input process is essentially a Poisson
stream (arriving at rate λ) of flows that have mean size µ−1. Every flow has to be
processed twice: first it has to be put into the queue, and then it has to be served by
the queue. This immediately leads to the stability condition 2λ/µ < C.

9.3 Steady-state workload distribution

In this section we study the steady-state workload of the queue. As mentioned in
the introduction, one could set up a system of Kolmogorov forward equations as
in [5], which, in conjunction with the proper boundary condition, characterize the
distribution function (in terms of eigenvalues and eigenvectors of some matrix). Due
to the specific structure of our model, however, rather explicit results for the Laplace
transform of the steady-state workload can be given. In particular we exploit the
property that the buffer content only decreases when no flows are present, and the
fact that these periods have an exponential duration, cf. for instance [30, 131]. As a
consequence, our model is closely related to the family of M/G/1 systems.

9.3.1 Busy periods

In our analysis of the steady-state workload distribution, we need the notion of busy
periods. A busy period B is, in this context, defined as a period that starts at an



156 9. Transforms and tail probabilities for the equal resource-sharing fluid model

epoch at which (Nt)t∈R jumps from 0 to 1, and ends at a moment that it jumps from
1 to 0. We introduce the auxiliary quantity Bn, for n = 1, . . . , N :

Bn := inf{t ≥ 0 : Nt = n− 1 | N0 = n};

evidently B
d= B1. In our analysis we also need the distribution of T , the net amount

of traffic entering the queue (i.e., the increase of the buffer content) during B. Define

A(s, t) :=
∫ t

s
rA,Nu

du. Then T
d= T1, with

Tn
d= A(0, Bn).

Analysis of the Laplace transform. Using standard arguments, cf. [58, 104, 117], we
find the recursion, for n = 1, . . . , N − 1,

Ee−sTn =
λ

λ + µnC + rA,ns
Ee−sTn+1Ee−sTn +

µnC

λ + µnC + rA,ns
, (9.2)

while for n = N the random variable Tn is exponentially distributed with mean
rN/(µN C):

Ee−sTN =
µN C

µN C + rA,Ns
. (9.3)

The above implies that Ee−sT is the solution of a finite recursion, of which the start-
ing condition is known (namely Ee−sTN ). The nature of the formula for Ee−sT is an
N -fold iterated fraction.

Mean and second moment. Similarly to the above, we can find a recursion for the
mean. It reads

ETn =
rA,n

µnC
+

λ

µnC
ETn+1 = . . . =

N∑

i=n

λi−nrA,i

µn · · ·µiCi−n+1
=

1
nµ

N∑

i=n

ρi−n(i− 1).

In particular,

ET =
1
µ
· ρ

(1− ρ)2
(
1− ρN−1N + ρN (N − 1)

)
;

for the case N → ∞, this converges to the elegant expression ρ/(µ(1 − ρ)2). For the
second moment we can develop a recursion in the same way, again by distinguishing
between the period where the number of flows is n, and the first jump afterwards.
We obtain

ET 2
n =

2r2
A,n

(λ + µnC)2
+

2rA,n

λ + µnC

λ

λ + µnC
(ETn + ETn+1)

+
λ

λ + µnC
(ET 2

n + 2ETnETn+1 + ET 2
n+1),
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with ET 2
N = 2r2

A,N/(µN C)2. The recursion can be restated as ET 2
n = αnET 2

n+1 + βn,
with αn := λ/(µnC), and

βn := 2
r2

A,n

µnC(λ + µnC)
+ 2

rA,nλ

µnC(λ + µnC)
(ETn + ETn+1) + 2

λ

µnC
ETnETn+1;

notice that βn, n = 1, . . . , N , are known numbers, in view of the formulae for ETn

above. The solution of the recursion is, with the ‘empty product’ defined as 1,

ET 2
n =




N−1∑

i=n




i−1∏

j=n

αj


 βi


 +




N−1∏

j=n

αj


ET 2

N .

In particular, by inserting n = 1 we derive the second moment of T :

ET 2 =

(
N−1∑

i=1

ρi−1iβi

)
+ 2ρN−1N

r2
A,N

(µN C)2
.

9.3.2 Steady-state workload

The steady-state workload, say W ?, is, according to Reich’s formula [106] (see also
Expression (2.1)), distributed as

W ? d= M := sup
t≥0

A(−t, 0) d= sup
t≥0

A(0, t),

where the second equality in distribution is due to the reversibility of (Nt)t∈R. In
this subsection, we derive an explicit expression for the LT of M . Define

Mi := sup
t≥0

{A(0, t) | N0 = i};

clearly Ee−sM =
∑N

n=0 πnEe−sMn , hence we have to find expressions for Ee−sMn ,
for n = 0, . . . , N.

As for n = 1, . . . , N , during periods Bn the queue does not decrease, the random
variables Tn are nonnegative almost surely. In fact, A(0, t) attains its maximum either
at time 0, or at an epoch at which Nt jumps from 1 to 0. These observations lead to
the following equality in distribution:

Mn
d= Tn + Tn−1 + · · ·T1 + M0,

with Bn, Bn−1, . . . , B1,M0 independent. This entails that

Ee−sMn = Ee−sM0 ·
n∏

i=1

Ee−sTi ,



158 9. Transforms and tail probabilities for the equal resource-sharing fluid model

for n = 0, . . . , N (again defining the empty product to be 1). With a recipe to compute
Ee−sTi given in the previous section, we are left with computing Ee−sM0 .

We now introduce an embedding that facilitates easy computation of the LT of
M0. Starting in 0, the maximum of A(0, t) over t ≥ 0 equals the maximum of∑i

j=0(Xj − Yj) over i = 0, 1, . . ., with the Xj i.i.d. samples, distributed as T , and
the Yj i.i.d. samples from an exponential distribution with mean C/λ (where also the
sequences Xj and Yj are independent). The LT of the latter maximum is given by the
celebrated Pollaczek-Khinchine formula, see for instance [6], so that we arrive at

Ee−sM0 =
(

1− λET

C

)
s

s− (λ/C)(1− Ee−sT )
.

Our final result is stated in the following theorem.

THEOREM 9.3.1. The LT of the steady-state workload is given by, s ≥ 0,

Ee−sW ?

= Ee−sM =
N∑

n=0

πn

(
1− λET

C

)
s

s− (λ/C)(1− Ee−sT )

(
n∏

i=1

Ee−sTi

)
,

where the Ee−sTi follow from (9.2) and (9.3).

Moreover, we can also consider the joint distribution of the steady-state workload
W ? and number of flows N?. It turns out that

E(e−sW ?

1{N? = n}) =

πn

(
1− λET

C

)
s

s− (λ/C)(1− Ee−sT )

(
n∏

i=1

Ee−sTi

)
. (9.4)

The above results also enable calculation of the mean steady-state workload:

EW ? =
(

1
2

λET 2

C − λET

)
+

(
N∑

n=0

(
πn

n∑

i=1

ETi

))
,

following the convention that the empty sum is defined as 0.

9.4 Queueing delay distribution

As argued in Section 9.1, it is a nontrivial step to translate the steady-state workload
distribution into the queueing delay distribution: for standard Markov fluid queues
the buffer content seen by a fluid particle arriving, say at time 0, fully determines
the epoch at which it will leave the queue, whereas in our system with coupled
input and output the arrivals and departures of flow after 0 has impact. In the first
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subsection we analyze the so-called virtual queueing delay, i.e., the delay experienced
by a fluid particle arriving at a random point in time (i.e., a ‘time average’), whereas
the second subsection characterizes the queueing delay of an arbitrary fluid particle
(i.e., a ‘traffic average’).

9.4.1 Virtual queueing delay

Let D? denote the delay experienced by a fluid particle arriving at the queue in
steady state, say for ease at time 0; this type of delay is sometimes referred to as
virtual queueing delay. Let O(0, t) denote the amount of output capacity available
in the interval [0, t). Then, cf. [74, Section III],

Ee−sD?

=
∫ ∞

0

e−stP(D? = t)dt =
∫ ∞

0

e−stP(W ? = O(0, t))dt

=
N∑

n=0

∫ ∞

0

e−stP(W ? = O(0, t), N? = n)dt.

Now define, for z ≥ 0, the random variable τz as the time until z units of service
have become available:

τz := inf {t ≥ 0 : O(0, t) = z} = inf
{

t ≥ 0 :
∫ t

0

rO,Nsds = z

}
;

notice that O(0, t) is increasing in t. Using this notion, we get, with some abuse of
notation,

Ee−sD?

=
N∑

n=0

∫ ∞

0

e−stP(τW ? = t,N? = n)dt,

which equals, remarking that O(0, t) depends on (W ?, N?) just through N?,

N∑
n=0

∫ ∞

0

∫ ∞

0

e−stP(W ? = z, N? = n)P(τz = t | N? = n)dzdt.

Now we interchange the order of integration, to get

N∑
n=0

∫ ∞

0

E(e−sτz | N? = n)P(W ? = z, N? = n)dz.

Hence, to further compute this expression, we are first required to evaluate the ex-
pression E(e−sτz | N? = n). Fortunately, we have the following proposition at our
disposal, cf. [22] and the appendix of [72].
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PROPOSITION 9.4.1. Consider an irreducible, finite-state (with states 0, . . . , N), continuous-
time Markov chain (Xt)t∈R with generator Q. Let r be a componentwise positive vector of
dimension N , and R := diag{r}. Define

τz := inf
{

t ≥ 0 :
∫ t

0

rXs
ds = z

}
,

and ξn(s, z) := E(e−sτz | X0 = n). Then, with ξ(s, z) = (ξ1(s, z), . . . , ξN (s, z))T, and 1
an (N + 1)-dimensional vector with 1’s,

ξ(s, z) = exp((R−1Q− sR−1)z)1. (9.5)

In addition, the eigenvalues δ0(s), . . . , δN (s) of R−1Q−sR−1 are real, negative, and unique
(s > 0).

Proof A straightforward conditioning argument yields, with qj := −qjj ,

ξn(s, z) =
∑

m 6=n

ξm(s, z − rn ∆t)qnm∆t +

ξn(s, z − rn ∆t)e−s∆t(1− qn ∆t) + o(∆t).

Now writing e−s∆t = 1 − s∆t + O((∆t)2), subtracting ξn(s, z − rn ∆t) from both
sides, dividing the equation by rn∆t, and letting ∆t ↓ 0, we arrive at

∂

∂z
ξn(s, z) =

N∑
m=1

qnm

rn
ξn(s, z)− ξn(s, z)

s

rn
.

In matrix-notation, we have that

∂

∂z
ξ(s, z) = (R−1Q− sR−1)ξ(s, z),

which yields (9.5).
Next we use that Geršgorin’s circle theorem, see e.g. [96], implies that each eigen-

value of M(s) = (mij)N
i,j=0 := R−1Q− sR−1 is in at least one of the disks



z ∈ C :

∣∣∣∣z −
qii − s

ri

∣∣∣∣ <
∑

j 6=i

qij

ri



 ,

and hence all eigenvalues are in the left half plane. Furthermore, the matrix M(s)
is real and tridiagonal with mi,i+1mi+1,i > 0 for i = 0, . . . , N − 1, and hence all its
eigenvalues are real and unique, see again [96]. ¤
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Apply Proposition 9.4.1, with continuous-time Markov chain Nt governed by Q

as defined by (9.1), and R := RO (which is indeed componentwise positive). Recall-
ing that all eigenvalues δ0(s), . . . , δN (s) of M(s) := R−1

O Q − sR−1
O are different, so

that we can write, for constants γmn with m,n = 0, . . . , N ,

E(e−sτz | N? = n) =
N∑

m=0

γmneδm(s) z. (9.6)

Then we have found an explicit expression of the LT of the virtual queueing delay.

THEOREM 9.4.2. For s > 0,

Ee−sD?

=
N∑

n=0

N∑
m=0

γmnE(eδm(s)W ?

1{N? = n}),

where the γmn are as in (9.6). The δn(s), for n = 0, . . . , N , are the eigenvalues of R−1
O Q−

sR−1
O (which are negative). An expression for E(e−sW ?

1{N? = n}) is available from Theo-
rem 9.3.1.

9.4.2 ‘Packet-average’ queueing delay

Informally, the previous section gave the LT of the queueing delay ‘at an arbitrary
point in time’. Clearly, there is a bias between the delay D? ‘at an arbitrary point in
time’ and delay D̄? ‘seen by an arbitrary fluid molecule’. The correction to be made
is rather straightforward:

Ee−sD̄?

=
N∑

n=0

(
rI,n∑N

k=0 πkrI,k

)
N∑

m=0

γmnE(eδm(s)W ?

1{N? = n}),

cf. Asmussen [6, Proposition 7.2].

9.5 Flow transfer delay distribution

Now we focus on the time F it takes for an arbitrary arriving flow to transmit its
traffic. We define the transfer time as the time between arrival and the epoch that its
last fluid particle has been transmitted into the queue.

9.5.1 Flow transfer delay

Let the process (Zi)i∈N correspond to the number of flows present at (i.e., just after)
arrival epochs. This process is a Markov chain, with, say, transition matrix P =
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(pmn)N
m,n=1. It is clear that Zi can jump only one level up, or in other words, pmn = 0

for all n > m+1. It can be verified easily that, for m = 1, . . . , N and n = 1, . . . , m+1,

pmn =

(
m∏

k=n

µkC

λ1{k 6= n}+ µkC

)
λ

λ + µn−1C
.

From this the equilibrium distribution πZ can be computed efficiently due to the fact
that the chain can jump just one level upwards. More directly, however, one can
argue that we can use the PASTA-property here, such that

πZ
n :=

πn−1∑N−1
m=0 πm

. (9.7)

We can now compute the LT of the flow transfer delay. Define F as the transfer
delay of a tagged flow, that arrives at, say, time 0, when there are n− 1 flows present
(i.e., there are n flows immediately after the arrival of the tagged flow), n = 1, . . . , N .
We compute, for n = 1, . . . , N and m = 0, . . . , N − 1,

φnm(s) := E(e−sF 1{NF+ = m} | N0 = n).

A standard linear system can be written down, for n = 1, . . . , N − 1, cf. the anal-
ysis for the finite-capacity processor-sharing queue in [19, Section II]:

φnm(s) =
1

λ + µnC + s(
λφn+1,m(s) +

n− 1
n

µnC φn−1,m(s) +
1
n

µnC 1{n− 1 = m}
)

;

here the fraction 1/n is the probability that at a departure epoch it is the tagged flow
that leaves. We also have

φNm(s) =
1

µN C + s

(
N − 1

N
µN C φN−1,m(s) +

1
N

µN C 1{N − 1 = m}
)

.

We have thus derived, for fixed m = 0, . . . , N − 1 and s, N linear equations in N

unknowns; as in [19] it can be shown that the corresponding matrix is, for any s > 0,
diagonally dominant and thus non-singular, and hence there is a unique solution.
The transform of the flow transfer delay of an arbitrary customer now reads

Ee−sF =
N∑

n=1

N−1∑
m=0

πZ
n φnm(s). (9.8)
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9.5.2 Representation of flow transfer delay with a phase-type dis-
tribution

Alternatively, the flow transfer delay distribution can also be found through a system
of Kolmogorov equations. Defining

fnm(t) := P(F > t,NF+ = m | N0 = n),

it is standard to derive through the usual ∆t-argumentation, for n = 1, . . . , N and
m = 0, . . . , N − 1,

fnm(t + ∆t) = fn+1,m(t) λ∆t 1{n < N} + fn−1,m(t) µnC
n− 1

n
∆t 1{n > 1}

+ fnm(t) (1− (λ 1{n < N}+ µnC 1{n > 1})∆t) ,

immediately leading to

f ′nm(t) = λ 1{n < N}fn+1,m(t) + µnC
n− 1

n
1{n > 1}fn−1,m(t)

− (λ 1{n < N}+ µnC 1{n > 1})fnm(t).

Define the matrix Q? = (q?
mn)N

m,n=1 through q?
n,n−1 := qn,n−1 (n − 1)/n, and q?

mn :=
qmn otherwise. Then we have that the vector fm(t) := (fm1(t), . . . , fmN (t))T satisfies
f ′m(t) = Q?fm(t). Now also observe that the starting condition fmn(0) (again, fix m)
follows from

(λ 1{n < N}+ µnC 1{n > 1})fnm(0) =

λ 1{n < N}fn+1,m(0) +
n− 1

n
µnCfn−1,m(0) +

1
n

µnC1{n− 1 = m};

we call the solution f̄m := (f̄m1, . . . , f̄mN )T. We thus have obtained that

fm(t) = exp(Q?t)f̄m.

As Q? is strictly diagonally dominant, it is non-singular. Using Geršgorin’s theorem,
one can prove that the eigenvalues δ̄1, . . . , δ̄N have a negative real part. In addition,
as q?

m,m+1q
?
m+1,m > 0 and Q? is a real and tridiagonal matrix, all eigenvalues are real

and unique [96]. These observations imply that we can find constants γ̄nm such that

P(F > t | N0 = n) =
N∑

m=1

γ̄nmeδ̄mt. (9.9)

Now we can rewrite LT (9.8) as follows. Observe that

Ee−sU = 1−
∫ ∞

0

P(U > u)se−sudu,
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for any random variable U on [0,∞) for which these expectations exist. Hence, we
obtain that, using that

∑N
n=1 γ̄mn = 1 for all m, and

∑N
m=1 πZ

m = 1,

Ee−sF = 1−
N∑

m=1

πZ
m

(
N∑

n=1

γ̄nm
s

−δ̄n + s

)
=

N∑
m=1

πZ
m

(
N∑

n=1

γ̄nm
−δ̄n

−δ̄n + s

)

=
N∑

n=1

γ̄n
−δ̄n

−δ̄n + s
, with γ̄n :=

N∑
m=1

πZ
mγ̄nm.

We conclude that F has a phase-type distribution, with shape parameters −δ̄1, . . . ,

−δ̄N and weights γ̄1, . . . , γ̄N (where the latter vector sums to 1).

9.5.3 Mean transfer delay

Consider the mean transfer delay of a flow that finds n − 1 flows upon arrival (n =
1, . . . , N ), i.e.,

E(F | N0 = n) =: ηn;

at time 0 there are n flows present, including the tagged flow. Clearly, ηn is charac-
terized through the N linear equations

(λ 1{n < N}+ µnC 1{n > 1}) ηn =

1 + λ 1{n < N}ηn+1 +
n− 1

n
µnC 1{n > 1}ηn−1.

Interestingly, these equations can be solved iteratively, as follows. The first equation
gives η2 in terms of η1. Then consider the second equation; this gives η3 in terms of
η1 and η2, and hence also η3 in terms of η1 alone. Continuing in this way, we derive
from the j th equation ηj+1 in terms of η1. After the (N − 1)-st equation we have η1

up to ηN expressed in terms of η1. Plug these into the N -th equation, and solve η1,
and implicitly also η2, . . . , ηN . This procedure, however, does not lead to attractive
explicit expressions.

Mean flow transfer delay EF . First consider the limiting case of N →∞. Then it turns
out that the above equations do allow a nice explicit solution. Inspired by the results
for the processor-sharing queue [121], we try the ‘linear solution’ ηn = ϑI + ϑII n.

Plugging these into our recursion yields the remarkably simple expressions

ϑI =
1

µC

1
2− ρ

, ϑII =
1

µC

3
2− ρ

,

so that

E(F | N0 = n) =
1

µC

n + 3
2− ρ

.
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The unconditioned mean file transfer delay (of an accepted flow) now reads (use
PASTA)

EF =
∞∑

n=0

πnE(F | N0 = n + 1) =
∞∑

n=0

ρn(n + 1)(1− ρ)2
1

µC

n + 4
2− ρ

=
2

µC − λ
=

2
µC

1
1− ρ

.

We remark that the latter quantity can be computed also in a direct way, as follows.
The mean number of flows in the system is

∑∞
n=0 nρn(n + 1)(1 − ρ)2 = 2ρ/(1− ρ),

and with ‘Little’ we get the desired. Note that this result coincides with Expression
(8.1) as it should.

‘Little’ can of course also be used when N < ∞; the advantage is that then we do
not need explicit expressions for E(F | N0 = n) to compute EF . It yields

EF =
∑N

n=0 nπn

λ(1− πN )
=

∑N
n=0 nρn(n + 1)(1− ρ)2

λ(1 + ρN+1N − ρN (N + 1))

=
1

µC

∑N−1
n=0 ρn(n + 1)(n + 2)(1− ρ)2

1 + ρN+1N − ρN (N + 1)
;

an explicit (though unattractive) expression for the numerator can be derived by
differentiating the finite geometric series

∑N
n=0 ρn = (1− ρN+1)/(1− ρ) twice.

Mean flow transfer delay EF (x) of a flow of size x. We can also compute the expected
flow transfer delay (of an accepted flow) given that the flow has size x. It is given by
[30]

EF (x) =
x

C

1
1− πN

(
N−1∑
n=0

ρn cn+1

n!

)/(
N∑

n=0

ρn cn

n!

)
,

where cn is the fraction of the service rate C that is dedicated to a single flow, when
there are n flows present, i.e., 1/(n + 1). This formula, which is remarkably enough
linear in x, can be simplified to

EF (x) =
x

C

∑N−1
n=0 ρn(n + 1)(n + 2)∑N−1

n=0 ρn(n + 1)
=

fx

C
,

with f :=
∑N−1

n=0 ρn(n + 1)(n + 2)(1− ρ)2

1 + ρN+1N − ρN (N + 1)
;

by integrating x out, the above expression for EF is recovered.
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9.6 Sojourn time distribution

In this section we analyze the sojourn time of flows in the system, which is in fact the
flow transfer time, increased by the time it takes to serve the last fluid particle of the
flow. Notice that these two components are not independent, and as a consequence
the LT of the sojourn time does not follow immediately from our earlier results.

We first describe the state of the system just after an arrival of an accepted flow.
Then we study the transform of the flow transfer time jointly with the increase of
the buffer during this period. Finally we use these ingredients to find the LT of the
sojourn time.

9.6.1 Situation at flow arrival epochs

Here the PASTA-property applies. In other words: the joint distribution of the work-
load and the number of flows just after an arrival of an accepted flow is given by
(9.4). Therefore, associating time 0 with the accepted flow arrival, we write, for
n = 1, . . . , N ,

χn(s) := E(e−sW01{N0 = n})

=
πn−1∑N−1
m=0 πm

(
1− λET

C

)
s

s− (λ/C)(1− EesT )

(
n∏

i=1

EesTi

)
, (9.10)

cf. also Expression (9.7).

9.6.2 Joint transform of flow transfer delay and workload incre-
ment

The goal of this subsection is to compute the transform of the transfer delay F of a
job that finds n− 1 jobs upon arrival (n = 1, . . . , N ), jointly with the increment of the
workload in this period, say ∆W , and the number of flows present at the end of the
transfer (not counting the flow that just left) NF+:

ψnm(~s) := E(e−s1F−s2∆W 1{NF+ = m} | N0 = n),

with ~s ≡ (s1, s2). Notice that the workload cannot decrease during the flow transfer,
and, as a consequence, the distribution of ∆W depends on the past only through N0

(importantly, the value of W0 does not play a role).
The ψnm(~s) satisfy, for n = 1, . . . , N − 1, the following system of equations:

ψnm(~s) =
1

λ + µnC + s1 + rA,ns2
×

(
λψn+1,m(s) +

n− 1
n

µnC ψn−1,m(s) +
1
n

µnC 1{n− 1 = m}
)
. (9.11)
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We also have

ψNm(~s) =
1

µN C + s1 + rA,Ns2
×

(
N − 1

N
µN C ψN−1,m(s) +

1
N

µN C 1{N − 1 = m}
)

. (9.12)

For fixed m and ~s, these form a system of linear equations, which is (as earlier) non-
singular.

9.6.3 Sojourn time

In our analysis, we use the following decomposition of the sojourn time S: S can be
written as the sum of

- the flow transfer delay,

- and the time required to process the last particle of the flow. The buffer content
at the end of the flow transfer time can be decomposed into

i) the amount of traffic in the buffer at the epoch the flow arrived,

ii) the net amount of fluid that entered the buffer during the flow transfer
delay.

Above we have seen that the workload at flow arrival (intersected with the event that
n flows are present) is characterized through the LT χn(s). On the other hand, the
net amount of fluid entering the queue, jointly with the flow transfer delay and in-
tersected with the event that when the tagged flow leaves there are m flows present,
given that at the start of the flow transfer n flows were transmitting, is characterized
through LT ψnm(s). Combining these gives, with some abuse of notation, and with
τz as defined before, the following expression for the LT of S:

Ee−sS = E exp(−sF − sτW0+∆W )

=
∫ ∞

0

∫ ∞

0

N∑
n=1

N−1∑
m=0

P(W0 = x,N0 = n)E(e−sτx+y | N0 = m)

E(e−sF 1{∆W = y, NF+ = m} | N0 = n)dxdy.

Now using Proposition 9.4.1, this expression equals
∫ ∞

0

∫ ∞

0

N∑
n=1

N−1∑
m=0

P(W0 = x, N0 = n)

E(e−sF 1{∆W = y, NF+ = m} | N0 = n)
N∑

k=0

γkmeδk(s) (x+y)dxdy.

We have proven the following result.
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THEOREM 9.6.1. For s > 0,

Ee−sS =
N∑

n=1

N−1∑
m=0

N∑

k=0

γkmχn(−δk(s))ψnm(s,−δk(s)),

where the γmn are as in (9.6), χn(·) as in (9.10), and ψ(·) defined through (9.11) and (9.12).

REMARK 9.6.2. The above procedure also yields the joint LT of the flow transfer time F , and
the time τW0+∆W it takes to serve the last fluid particle of the flow:

E exp(−s1F − s2τW0+∆W ) =
N∑

n=1

N−1∑
m=0

N∑

k=0

γkmχn(−δk(s2))ψnm(s1,−δk(s2)).

This formula (implicitly) describes the correlation between F and τW0+∆W . ♦

9.7 Tail probabilities

In this section, we study the tail behavior of W ?, D?, and F , and S. More specifically,
we show that these three random variables decay exponentially, and, in addition, we
identify the associated decay rate. We first recall the following collection of results,
which were proven in, e.g., [72], relying on the Gärtner-Ellis theorem [34, Theorem
2.3.6]. A key role is played by the asymptotic logarithmic moment generating func-
tion (MGF), or cumulant function, and its properties.

PROPOSITION 9.7.1. Consider an irreducible, finite-state (with states 0, . . . , N), continuous-
time Markov chain (Xt)t∈R with generator Q and equilibrium distribution π. Let r be a
vector of dimension N such that mA :=

∑N
n=0 πnrn < 0, and R := diag{r}. Define

A(s, t) :=
∫ t

s
rXudu.

1. The asymptotic logarithmic MGF of A(0, t), i.e.,

ΛA(θ) := lim
t→∞

1
t

logE exp(θA(0, t)),

is a convex function, and equals the largest eigenvalue of Q + θR, irrespective of the
value of X0. With qi :=

∑
j 6=i qij , we have that ΛA(θ) exists for all θ smaller than

min
{

qi

ri
: ri > 0

}
.

2. For any x > mA,

lim
t→∞

1
t

logP
(

A(0, t)
t

> x

)
= −IA(x),



9.7. Tail probabilities 169

with IA(x) := supθ(θx−ΛA(θ)); IA(·) is convex, IA(mA) = 0. Similarly, for x < mA,

lim
t→∞

1
t

logP
(

A(0, t)
t

< x

)
= −IA(x).

3. For the steady-state workload W ?, which is distributed as supt≥0 A(−t, 0), it holds
that

lim
x→∞

1
x

logP(W ? > x) = −θ?.

Here θ? is the smallest positive eigenvalue solving the eigensystem −θRx = Qx.

Alternatively, θ? is characterized as the unique positive solution of ΛA(θ) = 0. Yet a
third way of computing the decay rate is

θ? = inf
m>0

IA(m)/m. (9.13)

REMARK 9.7.2. An intuitive explanation of the relation (9.13) is the following. IA(m)
can be interpreted as the cost incurred for the process A(0, t) to generate traffic at rate
m; evidently there is no cost involved when sending at the average rate mA (reflected by
IA(mA) = 0), but there is a positive cost for sending at a higher (or lower) rate. Suppose
the process generates traffic at rate m > 0. Then it takes about x/m to reach buffer level
x, and the cost made is IA(m)/m. There is an evident trade-off between the numerator and
the denominator: when choosing m small but positive, the cost per unit of time are relatively
low, but it takes long to reach x, whereas the opposite applies when choosing m large. We
conclude that the ‘most likely speed’ m? is the minimizing argument in

x

(
inf

m>0
IA(m)/m

)
, (9.14)

where (9.14) roughly equals − logP(W ? > x), for x large. ♦

9.7.1 Decay rate of steady-state workload

The decay rate θ? of W ? follows immediately from Proposition 9.7.1, with continuous-
time Markov chain Nt governed by Q as defined by (9.1), and R := RA: θ? is the
smallest positive eigenvalue of the system −θRAx = Qx. In fact, one can prove the
stronger statement that P(W ? > x) exp(θ?x) converges to some constant κ > 0 for
x →∞, and even, for n = 0, . . . , N ,

lim
x→∞

P(W ? > x, N? = n) exp(θ?x) = κn, (9.15)

for κn > 0, see for instance [77].
Another way to characterize θ? is as follows [89]. Let Umn be the value of A(0, Vn)

conditional on N0 = m, where Vn is the epoch of the first entrance of Nt for t > 0



170 9. Transforms and tail probabilities for the equal resource-sharing fluid model

to state n. Then θ? can be alternatively characterized as the unique positive solution
of EeθUmm = 1; remarkably, in [89] it is shown this solution is identical for any m =
0, . . . , N. Now consider m = 0. Then U00 is distributed as E+T , with E exponentially
distributed with mean λ−1, T as defined in Section 3, and E and T independent. The
equation EeθU00 = 1 then reduces to

λ

λ + θC
EeθT ,

or, equivalently, θ+(λ/C)(1−EeθT ) = 0. We conclude that the decay rate θ? coincides
with (minus) the pole of Ee−sW ?

, cf. Theorem 9.3.1.

9.7.2 Decay rate of queueing delay

We next characterize the exponential decay rate of the queueing delay. We here focus
on the virtual queueing delay, but it can be verified easily that the same decay rate
applies to the ‘packet average’.

We first define the cumulant function of the output process, as follows. For θ ∈ R,

ΛO(θ) := lim
t→∞

1
t

logE exp(θO(0, t)).

This function equals the largest eigenvalue of Q + θRO, due to Proposition 9.7.1. We
also define IO(x) := supθ(θx − ΛO(θ)), and mO :=

∑
n=0 NπnrO,n. We first observe

that, again due to Proposition 9.7.1, irrespective of the number of flows present at
time 0,

lim
u→∞

1
u

logP(O(o, u) ∈ [iεu, (i + 1)εu)) =

ζi(ε) :=




−IO(iε) if mO < iε;
−IO((i + 1)ε) if mO > (i + 1)ε;
−IO(mO) = 0 if iε < mO < (i + 1)ε,

explicitly using the convexity of IO(·). The following result is [34, Lemma 1.2.15].

LEMMA 9.7.3. For any finite index set S , and ωi(u) ≥ 0,

lim sup
u→∞

1
u

log
∑

i∈S
ωi(u) = max

i∈S
lim sup

u→∞
1
u

log ωi(u).

Now we have collected the prerequisites for the proof of the following result.

THEOREM 9.7.4. The decay rate of the virtual queueing delay equals

lim
t→∞

1
t

logP(D? > t) = − inf
m

(IO(m) + θ?m) = ΛO(−θ?). (9.16)
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Proof We first prove the first equality in (9.16). We start by establishing the upper
bound. Conditioning on the value of O(0, t),

P(D? > t) =
N∑

n=0

P(W ? > O(0, t), N? = n)

≤
N∑

n=0

∞∑

i=0

P(W ? ≥ (i + 1)εt, N? = n)

P(O(0, t) ∈ [iεt, (i + 1)εt) | N? = n). (9.17)

It is clear that for some values of i there is no contribution, due to the fact that the
rates in the vector rO are between C/(N + 1) and C. Therefore, we can restrict our-
selves to

i ∈ Iε, where Iε :=
{

i ∈ N :
C

ε(N + 1))
− 1 ≤ i ≤ C

ε

}
.

The decay rate of P(W ? ≥ (i + 1)εt, N? = n) is −θ?(i + 1)ε, independently of n, see
(9.15). The decay rate of P(O(0, t) ∈ [iεt, (i + 1)εt) | N? = n) is ζi(ε), as given above,
also independently of n. In view of Lemma 9.7.3, the decay rate of (9.17) is majorized
by

max
i∈Iε

(−θ?(i + 1)ε + ζi(ε)) .

Now let ε ↓ 0; using the continuity of IO(·), we arrive at

sup
m∈[C/(N+1),C]

(−θ?m− IO(m)). (9.18)

Now we present the lower bound, which is established in a similar fashion. Evi-
dently, for any i,

P(D? > t) ≥ P(W ? ≥ (i + 1)εt, N? = n)P(O(0, t) ∈ [iεt, (i + 1)εt) | N? = n).

The decay rate of the right-hand side of the previous display is −θ?iε + ζi(ε); as this
holds for any i, the supremum over i is still a lower bound. Taking ε ↓ 0, we obtain
that the upper bound (9.18) is also lower bound.

We have now proven the first equality in (9.16); the second immediately follows
from the duality relation ΛO(θ) = supx(xθ − IO(x)), see for instance [38, Theorem
VI.4.1]. ¤

REMARK 9.7.5. There is an appealing alternative way to characterize this decay rate, cf.
Remark 9.7.2. Consider the event that a fluid particle arriving at time 0 has (approximately)
virtual delay t. Suppose that, after time 0, the queue drains at rate m, which costs IO(m)
per unit of time. In order to achieve delay t, the workload at time 0 should have been mt.
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Supposing that the queue built up at rate m′ > 0 before time 0, with cost IA(m′) per unit of
time, this took (m/m′)t time. In other words, we are to minimize

inf
m,m′>0

(
IA(m′)

mt

m′ + IO(m) t

)
= t

(
inf

m>0
(θ?m + IO(m))

)
,

where the equality is due to (9.13). ♦

9.7.3 Decay rate of flow transfer delay

The decay rate of the flow transfer delay follows immediately from the phase-type
distribution identified in Section 5. Directly from Equation (9.9), we see that

lim
x→∞

1
x

logP(F > x) = δ̄ := max
n=1,...,N

δ̄n,

i.e., the dominant eigenvalue of Q?.

9.7.4 Decay rate of sojourn time

We now turn our attention to the tail behavior of the sojourn time. This is a com-
plicated issue, as long sojourn times are due to a combination of i) a high workload
when the flow enters, ii) a large flow, iii) a large amount work brought along by
flows arriving during the flow transfer time of the tagged flow, iv) a low service
speed available to the queue after the flow transmission time (i.e., when the com-
plete flow has been put into the queue). We below sketch how the exponential decay
rate can be computed; the arguments can be made precise as in Section 6.2.

Using the representation S = F+τW0+∆W , we condition on the values of W0,∆W,

and F . With some abuse of notation,

P(F + τW0+∆W > t)

≈
N∑

n=1

∫ ∞

0

P(W0 = zt | N0 = n)P(F + τz+∆W > t, N0 = n)dz

≈
N∑

n=1

N−1∑
m=0

∫ ∞

0

∫ ∞

0

∫ ∞

0

P(W0 = zt | N0 = n)

P(F = ft, ∆W = wt, N0 = n,NF+ = m)

P(τzt+wt > t− ft, N0 = m)df dw dz,

with f ∈ (0, 1). Now we use the folk theorem that says that the decay rate of an
integral equals the decay rate of the maximum of the integrand. We saw earlier that
the exponential decay rate (x large) of P(W0 = zt | N0 = n) does not depend on n;
likewise, the decay rates of the other two probabilities, P(τzt+wt > t − ft, N0 = m)
and P(F = ft, ∆W = wt,N0 = n,NF+ = m), do not depend on m and n. They can
be computed as follows:
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• As before, for z > 0,

lim
t→∞

1
t

logP(W0 = zt) = −zθ? =: J1(z).

• Similar to the decay rate of F being equal to maxn=1,...,N δ̄n, i.e., the infimum
over all s < 0 for which Ee−sF < ∞, we have that

lim
x→∞

1
t

logP(F = ft, ∆W = wt) =

inf
{
s1f + s2w : Ee−s1F−s2∆W < ∞}

=: J2(f, w).

Notice that this decay rate is larger than −∞, as can be seen as follows. Sup-
pose that T is the flow size of the tagged flow. Then, as each flow receives a
rate of maximally C/2, we have that F ≥ 2T/C. Hence, for s1 > −µC/2,

Ee−s1F−s2∆W ≥ µ

µ + 2s1/C
,

and Ee−s1F−s2∆W = ∞ for s1 ≤ −µC/2.

• Also, as earlier,

lim
t→∞

1
t

logP(τzt+wt > t−ft) = lim
t→∞

1
t

logP(O(0, (1− f)t) < zt + wt)

= −(1− f)IO

(
z + w

1− f

)
=: J3(z, f, w),

with (z + w)/(1− f) < mO.

Collecting terms, we find that

lim
x→∞

1
t

logP(S > t) = sup
z,f,w

(J1(z) + J2(f, w) + J3(z, f, w)) ,

where the maximization is over all z, w > 0 and f ∈ (0, 1), such that (z+w)/(1−f) <

mO.

9.8 Concluding remarks

An important feature of the model discussed in this chapter is that there is just one
state in which the queue drains. It has appeared that this is a key property in our
analysis. Importantly, it entails that the dynamics of the number of flows in the sys-
tem are not affected by the workload process. This enabled the computation of the
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LT of the workload, as it brought us into the framework of M/G/1-type of models.
Also, it implied that the workload cannot decrease during flow transfer; as a con-
sequence ∆W (as used in Section 9.7) depends on N0, and not on W0. We remark
that, if the focus is on the mean sojourn time, rather than the entire distribution, fairly
explicit approximations are possible, see Section 8.3.2.

Topics for further research. An interesting extension would relate to the situation
without admission control. The complication is that the state-space of (Nt)t∈R be-
comes (countably) infinite. The results of Section 9.3 carry over to this situation; still
the LT of T can be computed by methods similar to those in [58, 104]. The results of
the other sections will change; in any case all matrix-exponentials should be handled
with care.

One could also study the situation of multiple relay nodes that are sharing ca-
pacity. The complicating factor is that then the dynamics of the flows feeding into
one queue will be affected by the workload process in other queues. As a result,
this model has the flavor of coupled-processors systems as studied in, e.g., [42],
which are notoriously hard to analyze. Other challenging extensions include: i) non-
exponential flow-size distribution (for instance regularly varying), ii) heterogeneous
flow types, iii) allocation policies that do not depend only on the number of flows
present, but also on the buffer content, cf. [120].
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Summary

Communication services continuously evolve and become more and more sophisti-
cated. These developments are accompanied by an increasing demand for highly-
performing communication networks to properly support these new services. In
particular, the so-called Quality of Service (QoS) critically depends on the perfor-
mance of the underlying network.

This thesis is concerned with two principal performance modeling and analysis is-
sues in communication network environments that are currently attracting substan-
tial attention: i) the dimensioning of IP-network links, and ii) the impact of resource
sharing on the performance of wireless ad-hoc networks. These two topics are dealt
with in separate parts of this thesis. We use stochastic modeling, and, in particular,
queueing theory, to evaluate the performance of the mentioned issues. A central role
in our research is played by so-called fluid models.

Part I: QoS-aware network dimensioning. In the first part of this thesis we consider
the issue of IP-network link dimensioning. It is crucial to find a proper trade-off
between providing sufficient capacity in order to achieve the desired QoS, and the
related costs.

In Chapter 3 we develop an insightful bandwidth provisioning formula for an
IP-network link; it only requires the (envisioned) load of the IP-network link as its
input. The provisioning formula takes into account the characteristics of the indi-
vidual flows and their QoS requirements. The criterion to determine the required ca-
pacity is that the probability that the traffic supply exceeds the available bandwidth,
over some predefined (small) interval, should be below some small fixed number.
The validity of the bandwidth provisioning rule is assessed through extensive mea-
surements performed in several operational network environments.

In Chapters 4 and 5 we consider the M/M/∞ queue which is used as a flow-
level model for the occupancy of an IP-network link. We are particularly interested
in congestion periods, which are defined as periods during which the offered traffic
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(number of active users) is continuously above a certain value C. For the congestion
periods we are interested in the following performance metrics: the duration DC,
the number of arrivals NC, and the area AC which is the amount of offered traffic
in excess of the capacity. Knowledge of the characteristics of a congestion period is
useful, for instance when dimensioning IP-network links, similar to what we did in
Chapter 3. In Chapter 4 we present a procedure to compute all the moments of the
quantities of the congestion periods. In Chapter 5 we address the tail asymptotics of
these quantities. These are particularly interesting if we wish to find a value for C

such that the probability that the duration of the congestion period exceeds a given
threshold, is kept very small; typically in the order of 10−4 to 10−6. We derive the
tail asymptotics of the quantities, and we show that these are essentially exponential;
the proof techniques stem from large-deviations theory. Additionally, we provide
schemes for fast simulations, which yield a substantial speed-up in simulation effort,
compared to straightforward simulations.

Part II: Impact of resource sharing on the performance of a wireless ad-hoc network. In the
second part of this thesis we focus on wireless ad-hoc networks; these networks can
be deployed instantly without a fixed infrastructure or predetermined configuration.
An important feature of ad-hoc networks is multi-hop connectivity, i.e., if a node is
not directly connected to its destination, it can use other nodes to relay its traffic.
The wireless nodes share the radio transmission capacity; therefore, a node which is
heavily used by many other nodes, is prone to becoming a performance bottleneck.

In Chapter 6 we introduce our fluid-modeling approach of a varying number of
source nodes that transmit flows of data via a common relay node to their desti-
nations. Our main performance metric of interest is the overall flow transfer time,
i.e., the time required to entirely transmit a flow from a source node to its destination.

In Chapter 7 we present a mean-value analysis of the fluid model, and, in par-
ticular, we investigate the impact on the performance metrics when the relay node
may obtain a share of the capacity that is m times as large as the share that each of the
source nodes receive. In the analysis we first consider the special case of exponential
flow sizes; we analyze the source-node dynamics and the workload at the relay node
by our fluid-modeling approach. Then we observe from extensive numerical experi-
mentation over a broad set of parameter values that the distribution of the number of
active source nodes is actually insensitive to the flow-size distribution. Using this re-
markable result as an approximation assumption, we obtain explicit expressions for
the mean workload at the relay node and the overall flow transfer time for general
flow-size distributions. Finally, we illustrate that the overall flow transfer time of a
multi-hop flow improves by granting the relay node a larger share of the medium
capacity.

In Chapter 8 the fluid model is validated to accurately describe the behavior
of wireless ad-hoc networks based on IEEE 802.11 WLAN technology. We first pro-
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pose a mapping between the parameter settings of IEEE 802.11 WLAN and the fluid
model, and then we validate the fluid model and parameter mapping by compari-
son with ad-hoc network simulations that include all the details of the IEEE 802.11
MAC-protocols. The numerical results show that the model accurately captures the
behavior of an IEEE 802.11 wireless ad-hoc network.

In Chapter 9 a special case of the fluid model is studied in more detail, i.e., the
fluid model with equal sharing of the capacity (viz. m = 1) and exponentially dis-
tributed flow-sizes. As a result of these assumptions the model under consideration
can be regarded as a queueing system with Markov fluid input. We compute the
Laplace transforms of the performance measures of our interest. Furthermore, we
determine the exponential decay rates of the corresponding tail probabilities, rely-
ing on large-deviations theory.





Samenvatting

Communicatiediensten worden steeds functioneler. Een direct gevolg is dat ze steeds
veeleisender worden ten aanzien van de communicatienetwerken waarvan ze ge-
bruikmaken. Deze netwerken moeten zorgen voor een snelle en betrouwbare afhan-
deling van het verkeer dat door de diensten wordt gegenereered. De kwaliteit van
een dienst is dan ook direct afhankelijk van de prestaties van de onderliggende trans-
portnetwerken.

In dit proefschrift beschouwen we de volgende onderzoeksonderwerpen m.b.t. de
prestaties van communicatienetwerken: i) het dimensioneren van verbindingen in
een IP-netwerk, en ii) het bepalen van de invloed van capaciteitsdeling op de pres-
taties van draadloze ad-hoc netwerken. Bij het onderzoek naar beide onderwerpen
maken we gebruik van stochastische modellering, en in het bijzonder, de wachtrij-
theorie. Hierbij staat het gebruik van zogeheten vloeistof-wachtrijmodellen centraal;
dit zijn modellen waarbij ervan uitgegaan wordt dat de gebruikers hun verkeer aan-
bieden als een continue stroom, als ware het ’vloeistof’.

Deel I: kwaliteitsbewust dimensioneren van netwerken. Het eerste deel van dit proef-
schrift is gewijd aan het dimensioneren van verbindingen in een IP-netwerk. De
uitdaging is om enerzijds alle diensten binnen hun gestelde kwaliteitseisen te be-
handelen, maar anderzijds dit met zo min mogelijk capaciteit te bewerkstelligen
vanwege de daaraan gerelateerde kosten.

In Hoofdstuk 3 ontwikkelen we een inzichtelijke dimensioneringsformule voor
een IP-netwerk verbinding welke slechts de gemiddelde verkeersbelasting van de
verbinding als input nodig heeft. De dimensioneringsformule houdt rekening met
de karakteristieken van de individuele verkeersstromen en hun kwaliteitseisen. Het
dimensioneringscriterium is dat de kans dat het aangeboden verkeer gedurende
een vooraf gedefinieerde kleine tijdsduur groter is dan de capaciteit, kleiner moet
zijn dan een bepaalde (kleine) waarde. De validiteit van de dimensioneringsregel
is uitgebreid onderzocht door middel van metingen in verschillende operationele
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netwerkomgevingen.

In Hoofdstukken 4 en 5 beschouwen we een M/M/∞ wachtrijmodel dat kan
worden gezien als een vloeistof-wachtrijmodel van de bezetting van een verbinding
in een IP-netwerk. We zijn met name geı̈nteresseerd in congestieperioden, dit zijn pe-
rioden gedurende welke het aantal klanten continu hoger is dan een bepaald niveau
C. Interessante metrieken gerelateerd aan een congestieperiode zijn: de duur DC, het
aantal nieuwe klanten NC dat aankomt gedurende de congestieperiode en de hoe-
veelheid verkeer AC dat in surplus boven C wordt aangeboden. Inzicht in de karak-
teristieken van congestieperioden is nuttig voor bijvoorbeeld het dimensioneren van
verbindingen in een IP-netwerk, zoals in Hoofdstuk 3. In Hoofdstuk 4 presenteren
we procedures waarmee alle momenten van de metrieken bepaald kunnen worden.
In Hoofstuk 5 bestuderen we de staartkansen van de metrieken van een congestiepe-
riode. Deze zijn interessant voor het dimensioneren, waarbij we de benodigde ca-
paciteit C zo willen bepalen dat de kans zeer klein is dat een congestieperiode langer
duurt dan een bepaalde tijd; typisch is deze kans in de orde van 10−4 tot 10−6. Ge-
bruikmakend van de theorie van grote afwijkingen tonen we aan dat de staarten van
de verdelingen in essentie exponentieel zijn. Daarnaast bepalen we nog het staartge-
drag met ‘importance sampling’, een methode om op efficiënte wijze kleine kansen
d.m.v. simulaties te schatten.

Deel II: de invloed van capaciteitsdeling op de prestaties van draadloze ad-hoc netwerken.
In het tweede deel beschouwen we draadloze ad-hoc netwerken; dit zijn netwerken
die kunnen worden opgezet zonder onderliggende of vooraf gedefinieerde infra-
structuur; de gebruikers zijn zelf de knooppunten van het netwerk. Een belangrijk
aspect van draadloze ad-hoc netwerken is multi-hop connectiviteit, d.w.z. dat ge-
bruikers die niet direct verbonden zijn met hun eindbestemming, hun verkeer door
andere gebruikers kunnen laten ‘doorsturen’. Alle gebruikers delen een gezamen-
lijke radioverbinding die een beperkte capaciteit heeft; men kan zich voorstellen dat
gebruikers die vaak verkeer van andere gebruikers moeten doorsturen, een knelpunt
kunnen worden.

In Hoofdstuk 6 introduceren we een vloeistof-wachtrijmodel van een gebruiker
die door een variërend aantal andere ‘brongebruikers’ wordt gebruikt als tussensta-
tion om hun uiteindelijke bestemmingen te bereiken. De voornaamste prestatiemaat
waarin we geı̈nteresseerd zijn, is de totale transmissieduur van een file, oftewel de
tijd die nodig is om een file geheel van een brongebruiker naar de eindbestemming
te versturen.

In Hoofdstuk 7 bepalen we de verwachtingswaarden van de prestatiematen van
ons model; in het bijzonder onderzoeken we het geval waarbij het tussenstation een
m keer zo groot deel van de gezamenlijke capaciteit mag benutten als ieder van de
brongebruikers. In de analyse beschouwen we eerst het speciale geval van expo-
nentieel verdeelde filegroottes; hiervoor onderzoeken we het gedrag van de bronge-
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bruikers en de werklast (in de buffer) bij het tussenstation. Aan de hand van een uit-
gebreide simulatiestudie observeren we vervolgens dat de verdeling van het aantal
actieve brongebruikers ongevoelig is voor de verdeling van de filegroottes. Dit op-
merkelijke resultaat gebruiken we als een benaderingsaanname, waarmee we expli-
ciete uitdrukkingen verkrijgen voor de verwachting van de werklast bij het tussen-
station en van de totale transmissietijd voor algemeen verdeelde filegroottes. Tot slot
laten we zien dat de totale transmissietijd aanzienlijk verbetert door het tussensta-
tion een groter deel van de gezamenlijke capaciteit toe te kennen.

In Hoofdstuk 8 valideren we dat het vloeistof-wachtrijmodel het gedrag van een
draadloos ad-hoc netwerk, gebaseerd op IEEE 802.11 WLAN technologie, accuraat
modelleert. Hiervoor leggen we eerst de relatie tussen de parameters van de IEEE

802.11 WLAN protocollen en de instellingen van de parameters van ons vloeistof-
wachtrijmodel. Vervolgens vergelijken we het model met ad-hoc netwerk simu-
laties die alle details van de IEEE 802.11 MAC-protocollen bevatten. De verkregen
numerieke resultaten tonen aan dat het vloeistof-wachtijmodel het gedrag van een
IEEE 802.11 draadloos ad-hoc netwerk nauwkeurig beschrijft.

In Hoofdstuk 9 wordt een speciaal geval van het model bestudeerd, namelijk
het vloeistof-wachtrijmodel met m = 1 en exponentieel verdeelde filegroottes. Als
gevolg van deze aannames kunnen we de buffer bij het tussenstation beschouwen als
een Markov-systeem met vloeistof-input. We bepalen de Laplace getransformeerden
voor verschillende prestatiematen. Daarnaast laten we zien, m.b.v. de theorie van
grote afwijkingen, dat de staartkansen exponentieel afnemen.
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