
Towards a Unifying Theory
on Branching-type Polling Systems in Heavy Traffic

R.D. van der Meia,b

aCentre for Mathematics and Computer Science, Amsterdam, Netherlands
bVrije Universiteit, Mathematics and Computer Science, Amsterdam, Netherlands

For a broad class of polling models the evolution of the system at specific embedded polling instants is known
to constitute multi-type branching process (MTBP) with immigration. In this paper it is shown that for
this class of polling models the vector that describes the state of the system at these polling instants, say
X = (X1, . . . , XM ), satisfies the following heavy-traffic behavior (under mild assumptions):

(1 − ρ)X →d γ Γ(α, µ) (ρ ↑ 1), (1)

where γ is a known M -dimensional vector, Γ(α, µ) has a gamma-distribution with known parameters α and
µ, and where ρ is the load of the system. This general and powerful result is shown to lead to exact -
and in many cases even closed-form - expressions for the Laplace-Stieltjes Transform (LST) of the complete
asymptotic queue-length and waiting-time distributions for a broad class of branching-type polling models
that includes many well-studied polling models policies as special cases. The results generalize and unify
many known results on the waiting times in polling systems in heavy traffic, and moreover, lead to new
exact results for classical polling models that have not been observed before. To demonstrate the usefulness
of the results, we derive closed-form expressions for the LST of the waiting-time distributions for models
with cyclic globally-gated polling regimes, and for cyclic polling models with general branching-type service
policies. As a by-product, our results lead to a number of asymptotic insensitivity properties, providing new
fundamental insights in the behavior of polling models.

Keywords: Polling systems, multi-type branching processes, heavy traffic, waiting-time distribution, queue-
length distribution, gamma-distribution, unifying theory

1 Introduction

Polling systems are multi-queue systems in which a single server visits the queues in some order to serve the
customers waiting at the queues, typically incurring some amount of switch-over time to proceed from one
queue to the next. Polling models find a wide variety of applications in which processing power (e.g., CPU,
bandwidth, manpower) is shared among different types of users. Typical application areas of polling mod-
els are computer-communication systems, logistics, flexible manufacturing systems, production systems and
maintenance systems; the reader is referred to [35, 20] for extensive overviews of the applicability of polling
models. Over the past few decades the performance analysis of polling models has received much attention in
the literature. We refer to the classical surveys by [33, 34], and to a recent survey paper by Vishnevskii and
Semenova [46] for overviews of the available results on polling models. One of the most remarkable results
is that there appears to be a striking difference in complexity between polling models. Resing [29] observed
that for a large class of polling models, including for example cyclic polling models with Poisson arrivals
and exhaustive and gated service at all queues, the evolution of the system at successive polling instants at
a fixed queue can be described as a multi-type branching process (MTBP) with immigration. Models that
satisfy this MTBP-structure allow for an exact analysis, whereas models that violate the MTBP-structure
are often more intricate.

In this paper we study the heavy-traffic behavior for the class of polling models that have an MTBP-
structure, in a general parameter setting. Initiated by the pioneering work of Coffman et al. [11, 12], the
analysis of the heavy-traffic behavior of polling models has gained a lot of interest over the past decade.
This has led to the derivation of asymptotic expressions for key performance metrics, such as the moments
and distributions of the waiting times and the queue lengths, for a variety of model variants, including
for example models with mixtures of exhaustive and gated service policies with cyclic server routing [36],
periodic server routing [43, 44], simultaneous batch arrivals [39], continuous polling [17], amongst others. In
this context, a remarkable observation is that in the heavy-traffic behavior of polling models a central role
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is played by the gamma-distribution, which occurs in the analysis of these different model variants as the
limiting distribution of the (scaled) cycle times and the marginal queue-lengths at polling instants. This
observation has motivated us to develop a unifying theory on the heavy-traffic behavior of polling models
that includes all these model instances as special cases, where everything falls into place. We believe that
the results presented in this paper are a significant step towards such a general unifying theory.

The motivation for studying heavy-traffic asymptotics in polling models is twofold. First, a particularly
attractive feature of heavy-traffic asymptotics (i.e., when the load tends to 1) for MTBP-type models is
that in many cases they lead to strikingly simple expressions for queue-length and waiting-time distribu-
tions, especially when compared to their counterparts for arbitrary values of the load, which usually leads
to very cumbersome expressions, even for the first few moments (cf., e.g., [18]). The remarkable simplicity
of the heavy-traffic asymptotics provides fundamental insight in the impact of the system parameters on
the performance of the system, and in many cases attractive insensitivity properties have been observed
(see also Sections 3.1 and 3.2). A second motivation for considering heavy-traffic asymptotics is that the
computation time needed to calculate the relevant performance metrics usually become prohibitively long
when the system is close to saturation, both for branching-type [10] and non-branching-type polling models
[3, 4], which raises the need for simple and fast approximations. To this end, heavy-traffic asymptotics form
an excellent basis for developing such approximations (see also Section 3.3), and in fact, have been found to
be remarkably accurate in several cases, even for moderate load (cf., e.g., [36, 38, 44]).

Recently, polling models in heavy traffic have received attention in the literature, and significant progress
has been made in this area. For a two-queue model with exhaustive service and independent renewal ar-
rival processes, Coffman et al. [11, 12] use the theory of diffusion processes to derive expressions for the
joint workload distribution and the waiting-time distributions under heavy traffic assumptions. For models
with independent Poisson arrivals, Kudoh et al. [18] give explicit expressions for the second moment of the
waiting time in fully symmetric systems with gated or exhaustive service at each queue for models with
two, three and four queues, by exploring the classical buffer-occupancy approach (cf., e.g., [33]), which is
based on the relation between the joint queue-length distributions at successive polling instants. They also
give conjectures for the heavy-traffic limits of the first two moments of the waiting times for systems with
an arbitrary number of queues. In a series of papers, Van der Mei and co-authors explore the use of the
Descendant Set Approach (DSA) [16] to derive exact expressions the waiting-time distributions in models
with mixtures of exhaustive and gated service and cyclic [36] or periodic [43] server routing. Following a
similar approach, Van der Mei also derives the exact asymptotics waiting-time distribution in cyclic queueing
models with simultaneous batch arrivals [39]. Kroese [17] studies continuous polling systems in heavy traffic
with unit Poisson arrivals on a ring and shows that the steady-state number of customers at each queue
has approximately a gamma-distribution. Vatutin and Dyakonova [45] use the theory of MTBPs to obtain
the limiting distributions several two-queue polling models with zero switch-over times. In addition to the
evaluation of the performance of heavily loaded polling systems, the results can also be used to address
stochastic scheduling problems, see for example [22, 23, 27, 28] and referenes therein.

To develop a unifying theory on the heavy-traffic behavior of branching-type polling models, it is inter-
esting to observe that the theory of MTBPs, which was developed largely developed in the early 1970s, is
well-matured and powerful (cf., e.g., [26, 14, 15]). Nonetheless, the theory of MTBPs has received remark-
ably little attention in the literature on polling models. In fact, throughout this paper we will show that the
following result on MTBPs can be used as the basis for the development of a unifying theory on branching-
type polling models under heavy-traffic assumptions: the joint probability distribution of the M -dimensional
branching process {Zn, n = 0, 1, . . .} (with immigration in each state) converges in distribution to vΓ(α, µ)
in the sense that (cf. Quine [26]):

lim
n→∞

1

πn(ξ)
Zn →d vΓ(α, µ) (ξ ↑ 1), (2)

where ξ is the maximum eigenvalue of the so-called mean matrix, πn(ξ) is a scaling function, v is a known
M -dimensional vector and Γ(α, µ) is a gamma-distributed random variable with known shape and scale
parameters α and µ, respectively. We emphasize that (2) is valid for general MTBPs under very mild mo-
ment conditions (see Section 2 for details). In this paper, we show that this result (2) can be transformed
into equation (1), providing an asymptotic analysis for a very general class of MTBP-type polling models.
Subsequently, we show that equation (1) leads to exact asymptotic expressions for the scaled time-average
queue-length and waiting-time distributions under heavy-traffic assumptions; for specific model instances,
basically all we have to do is calculate the parameters v, α and µ, and the derivative of ξ as a function of ρ
at ρ = 1, which is usually straightforward. In this way, we propose a new and powerful approach to derive
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heavy-traffic asymptotics for polling model that have MTBP-structure. To demonstrate the usefulness of the
results we use the approach developed in this paper to derive new and yet unknown closed-form expressions
for the complete asymptotic waiting-time distributions for a number of classical polling models. To this end,
we derive closed-form expressions for the asymptotic waiting-time distributions for cyclic polling models with
the Globally-Gated (GG) service policy, and for models with general branching-type service policies. As a
by-product, the results also lead to asymptotic insensitivity properties providing new fundamental insights
in the behavior of polling models. Moreover, the results lead to simple approximatons for the waiting-time
distributions in stable polling systems.

The remainder of this paper is organized as follows. In Section 2 we give a brief introduction on MTBPs and
formulate the limiting result by Quine [26] (see Theorem 1) that will be used throughout. In Section 3 we
translate this result to the context of polling models, and give an approach for how to obtain heavy-traffic
asymptotics for branching-type polling models. To illustrate the usefulness of the approach, we consider
two specific types of polling models: (1) cyclic models with GG service, and (2) cyclic models with general
branching-type service policies. For these models, we derive a complete characterization of the asymptotic
waiting-time distributions. The implications of these results are discussed extensively. Finally, in Section 4
we address a number of challenging topics for further research.

2 Multitype branching processes with immigration

We consider a general M -dimensional multi-type branching process Z = {Zn, n = 0, 1, . . .}, where Zn =

(Z
(1)
n , . . . , Z

(M)
n ) is an M -dimensional vector denoting the state of the process in the n-th generation, and

where Z
(i)
n is the number of type-i particles in the n-th generation, for i = 1, . . . ,M , n = 0, 1, . . .. The

process Z is completely characterized by (1) its one-step offspring function and (2) its immigration function,
which are assumed mutually independent and to be stochastically the same for each generation. The one-
step offspring function is denoted by f(z) = (f (1)(z), . . . , f (M)(z)), with z = (z1, . . . , zM ), and where for
|zk| ≤ 1 (k = 1, . . . ,M), i = 1, . . . ,M ,

f (i)(z) =
∑

j1,...,jM≥0

p(i)(j1, . . . , jM )zj1
1 · · · zjM

M , (3)

where p(i)(j1, . . . , jM ) is the probability that a type-i particle produces jk particles of type k (k = 1, . . . ,M).
The immigration function is denoted as follows: For |zk| ≤ 1 (k = 1, . . . ,M),

g(z) =
∑

j1,...,jM≥0

q(j1, . . . , jM )zj1
1 · · · zjM

M , (4)

where q(j1, . . . , jM ) is the probability that a group of immigrant consists of jk particles of type k (k =
1, . . . ,M). Denote

g := (g1, . . . , gM ), where gi :=
∂g(z)

∂zi

|z=1, (5)

and where 1 is the M -vector where each component is equal to 1. A key role in the analysis will be played
by the first and second-order derivatives of f(z). The first-order derivatives are denoted by the mean matrix

M = (mi,j) , with mi,j :=
∂f (i)(z)

∂zj

|z=1 (i, j = 1, . . . ,M). (6)

Thus, adopting the standard notion of “children”, for a given type-i particle in the n-th generation, mi,j is
the mean number of type-j children it has in the (n+ 1)-st generation. Similarly, for a type-i particle, the
second-order derivatives are denoted by the matrix

K(i) =
(

k
(i)
j,k

)

, with k
(i)
j,k :=

∂2f (i)(z)

∂zj∂zk

|z=1, i, j, k = 1, . . . ,M. (7)

Denote by v = (v1, . . . , vM ) and w = (w1, . . . , wM ) the left and right eigenvectors corresponding to the
largest real-valued, positive eigenvalue ξ of M, commonly referred to as the maximum eigenvalue (cf., e.g.,
[2]), normalized such that

v>1 = v>w = 1. (8)
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The following conditions are necessary and sufficient conditions for the ergodicity of the process Z (cf. [29]):
ξ < 1 and

∑

j1+···+jM >0

q(j1, . . . , jM )log(j1 + · · · + jM ) <∞. (9)

Throughout the following definitions are convenient. For any variable x that depends on ξ we use the
hat-notation x̂ to indicate that x is evaluated at ξ = 1. Moreover, for ξ ≥ 0 let

π0(ξ) := 0, and πn(ξ) :=

n
∑

r=1

ξr−2, n = 1, 2, . . . . (10)

A non-negative continuous random variable Γ(α, µ) is said to have a gamma-distribution with shape param-
eter α > 0 and scale parameter µ > 0 if it has the probability density function

fΓ(x) =
1

Γ(α)
xα−1e−µx (x > 0) with Γ(α) :=

∫ ∞

t=0

tα−1e−tdt, (11)

and Laplace-Stieltjes Transform (LST)

Γ∗(s) =

(

µ

µ+ s

)α

(Re(s) > 0). (12)

Note that in the definition of the gamma-distribution µ is a scaling parameter, and that Γ(α, µ) has the
same distribution as µ−1Γ(α, 1). Using these definitions, the following result holds:

Theorem 1
Assume that all derivatives of f(z) through order two exist at z = 1 and that 0 < gi < ∞ (i = 1, . . . ,M).
Then

lim
n→∞

1

πn(ξ)









Z
(1)
n

...

Z
(M)
n









→d A







v̂1
...
v̂M






Γ(α, 1) (ξ ↑ 1) (13)

where v̂ = (v̂1, . . . , v̂M ) is the normalized the left eigenvector of M̂, and where Γ(α, 1) is a gamma-distributed
random variable with scale parameter 1 and shape parameter

α :=
1

A
ĝ>ŵ =

1

A

M
∑

i=1

ĝiŵi, with A :=
M
∑

i=1

v̂i

(

ŵ>K̂(i)ŵ
)

> 0. (14)

Proof: See [26] (Theorem 4). 2

In the next section we will show how this result, which was derived in the context of generic MTBPs,
can be transformed into results for a general class of polling models.

3 Heavy-traffic Asymptotics for Polling Models

In this section we show how Theorem 1 can be transformed to derive new closed-form expressions for the LST
of the queue-length and waiting-time distributions for a broad class of polling models, under heavy-traffic
scalings. To this end, we consider two classical models that have been widely studied in the literature. In
Section 3.1 we derive the LST of the asymptotic waiting-time distribution for cyclic polling models with
globally-gated (GG) service. In Section 3.2 we derive asymptotic expressions for cyclic polling models with
general branching-type service policies. In Section 3.3 we discuss the implications, the generality and the
limitations of the results.

To avoid duplication, the following model assumptions and notation are introduced for both type of models.
Consider an asymmetric cyclic polling model that consists of N ≥ 2 queues, Q1, . . . , QN , and a single server
that visits the queues in cyclic order. Customers arrive at Qi accoring to a Poisson process with rate λi,
and are referred to as type-i customers. The total arrival rate is Λ :=

∑N
i=1 λi. The service time of a type-i

customer is a random variable Bi, with LST B∗
i (·) and k-th moment b

(k)
i , which is assumed to be finite for

k = 1, 2. The k-th moment of the service time of an arbitrary customer is b(k) :=
∑N

i=1 λib
(k)
i /Λ (k = 1, 2).

The total load of the system in ρ :=
∑N

i=1 ρi. We define a polling instant at Qi to be the moment at which
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the server arrives at Qi, and a departure epoch at Qi a moment at which the server depart from Qi. The
visit time at Qi is defined as the time elapsed between a polling instant and its successive departure epoch
at Qi. Moreover, as i-cycle is the time between two successive polling instants at Qi. Upon departing from
Qi the server immediately proceeds to Qi+1, incurring a switch-over time Ri with LST R∗

i (·) and first two

moments r
(k)
i (k = 1, 2), which are assumed to be finite. Denote by r > 0 and r(2) > 0 be the first two

moments of the switch-over time per 1-cycle of the server along the queues. The interarrivel times, service
times and switch-over times are assumed to be mutually independent and independent of the state of the
system.

Throughout, we focus on the behavior of the model when the load ρ tends to 1. For ease of the discus-
sion we assume that as ρ changes the total arrival rate changes while the service-time distributions and
ratios between the arrival rates are kept fixed; note that in this way, the limit for ρ ↑ 1, which will be used
frequently throughout this paper, is uniquely defined. Similar to the hat-notation for the MTBPs defined
in Section 2, for each variable x that is a function of ρ we use the hat-notation x̂ to indicate its value at ρ = 1.

For both models to be discussed below, joint queue-length vector at successive moments when the server
arrives at a fixed queue (say Qk) consitutes an MTBPs with immigration. To this end, the following notation

is useful. Let X
(k)
i,n be the number of type-i customers in the system at the n-th polling instant at Qk, for

i, k = 1, . . . , N and n = 0, 1, . . ., and let X(k)
n = (X

(k)
1,n, . . . , X

(k)
N,n) be the joint queue-length vector at the

n-th pollling instant at Qk. Moreover, X(k) = {X(k)
n , n = 0, 1, . . .} is the MTBP describing the evolution of

the state of the system at successive polling instants at Qk. For ρ < 1, we have X(k)
n →d X

(k) for n → ∞,
where X(k) denotes the steady state joint queue-length vector at an arbitrary polling instant at Qk.

3.1 Globally-Gated Service

The Globally-Gated (GG) service discipline works as follows (cf. [6]). At the beginning of a 1-cycle, marked
by a polling instant at Q1 (see above), all customers present at Q1, . . . , QN are marked. During the coming
1-cycle (i.e., the visit of queues Q1, . . . , QN ), the server serves all (and only) the marked customers. Cus-
tomers that meanwhile arrive at the queues will have to wait until being marked at the next cycle-beginning,
and will be served during the next 1-cycle. Since at each cycle the server serves all the work that arrived
during the previous cycle, the stability condition is ρ < 1, which is both necessary and sufficient (cf. [13, 6]).
Throughout this paper, this model will be referred to as the GG-model.

In 3.1.1 we show how Theorem 1 can be used to derive expressions for the LST of the asymptotic scaled
waiting-time distributions at each of the queues. In 3.1.2 we discuss several interesting implications that
follow from these expressions.

3.1.1 Analysis

To analyze the heavy-traffic behavior of the GG-model, we establish the relation with the general MTBP-
model described in Section 2. To this end, recall that for the model considered here the joint queue-length
process at embedded polling instants at Qk (for any k) can be described as an N -dimensional MTBP with
immigration in each state. For notational ease of the discussion that will follow, we proceed along two steps.
First we focus on the heavy-traffic asymptotics for the joint queue-length vector at the successive moment at
which the server arrives at Q1 (Theorem 2). Second, we will transform these results to the joint queue-length
distribution at polling instants at Qk, k = 1, . . . , N (Theorem 3).

To start, we consider the MTBP X(1) := {X(1)
n , n = 0, 1, . . .} describing the evolution of the joint queue-

legnth vector at successive polling instants of the server at Q1. Then the process X(1) is characterized by
the offspring generating functions, for i = 1, . . . , N ,

f (i)(z1, . . . , zN ) = B∗
i





N
∑

j=1

λj(1 − zj)



 (15)

and the immigration function

g(z1, . . . , zN) =

N
∏

i=1

R∗
i





N
∑

j=1

λj(1 − zj)



 . (16)

5



Note that it follows directly from (16) that, for j = 1, . . . , N ,

gj =
N
∑

i=1

riλj = rλj . (17)

To derive the limiting distribution of the joint queue-length vector at polling instants at Q1, we need to
specify the following parameters: (1) the mean matrix M and its corresponding left and right eigenvectors
v̂ and ŵ at ρ = 1 (normalized according to (8)), and (2) the parameters A and ĝ. These parameters are
obtained in the following two Lemmas.

Lemma 1
For the GG-model, the mean matrix M is given by the following expression:

M =













b
(1)
1 λ1 b

(1)
1 λ2 · · · b

(1)
1 λN

b
(1)
2 λ1 · · · · · · b

(1)
2 λN

...
...

...
...

b
(1)
N λ1 · · · · · · b

(1)
N λN













and hence, M̂ =













b
(1)
1 λ̂1 b

(1)
1 λ̂2 · · · b

(1)
1 λ̂N

b
(1)
2 λ̂1 · · · · · · b

(1)
2 λ̂N

...
...

...
...

b
(1)
N λ̂1 · · · · · · b

(1)
N λ̂N













. (18)

Moreover, the right and left eigenvectors of M̂ (i.e., M at ρ = 1) are

ŵ = |b|−1













b
(1)
1

b
(1)
2
...

b
(1)
N













, and v̂ = |b|











λ̂1

λ̂2

...

λ̂N











, respectively, (19)

with

b := (b
(1)
1 , . . . , b

(1)
N )>, and |b| :=

N
∑

i=1

b
(1)
i . (20)

Proof: The first equation of (18) follows directly from (15) by differentiation: For i, j = 1, . . . , N ,

mi,j :=
∂f (i)(z)

∂zj

|z=1 =
∂

∂zj

B∗
i





N
∑

j=1

λj(1 − zj)



 |z=1 = b
(1)
i λj , (21)

and the second equation in (18) then follows directly by evaluating the first equation at ρ = 1. To prove

that ŵ is a right eigenvector of M̂, note that it follows directly from (18) that, for i = 1, . . . , N ,

N
∑

j=1

b
(1)
i λ̂jb

(1)
j = b

(1)
i ρ̂ = b

(1)
i , (22)

so that M̂b = b, and hence, M̂ŵ = ŵ. Similarly, to show that v̂ is a left eigenvector of M̂, note that for
i = 1, . . . , N ,

N
∑

j=1

λ̂jb
(1)
j λ̂i = ρ̂λ̂i = λ̂i, (23)

which implies M̂>v̂ = v̂. This completes the proof of Lemma 1, by properly normalizing the eigenvectors
according to (8). 2

Lemma 2
For the GG-model, we have

ĝ>ŵ = |b|−1r, (24)

and

A = |b|−1 b
(2)

b(1)
. (25)
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Proof: To start, (24) follows directly the following sequence of equalities:

ĝ>ŵ :=
N
∑

i=1

ĝiŵi =
N
∑

i=1

r|b|−1λ̂ib
(1)
i = ρ̂|b|−1r = |b|−1r, (26)

which follows directly from (17) and (19), and using the fact that ρ̂ = 1 by definition. To prove (25), we first
observe that by differentiating (15) two times we have, for i = 1, . . . , N ,

K(i) = b
(2)
i











λ2
1 λ1λ2 · · · λ1λN

λ2λ1 λ2
2 · · · λ2λN

...
...

...
...

λNλ1 · · · · · · λ2
N











, and so K̂(i) = b
(2)
i











λ̂2
1 λ̂1λ̂2 · · · λ̂1λ̂N

λ̂2λ̂1 λ̂2
2 · · · λ̂2λ̂N

...
...

...
...

λ̂N λ̂1 · · · · · · λ̂2
N











. (27)

Consequently, using (19) we have for i = 1, . . . , N ,

ŵ>K̂(i)ŵ = |b|−2b
(2)
i

N
∑

j=1

N
∑

k=1

b
(1)
j λ̂j λ̂kb

(1)
k = |b|−2b

(2)
i , (28)

and hence, combining (19) and (28) we have

A :=

N
∑

i=1

v̂i

(

ŵ>K̂(i)ŵ
)

= |b|−1
N
∑

i=1

λ̂ib
(2)
i = |b|−1Λ̂b(2) = |b|−1 b

(2)

b(1)
, (29)

where the last equality follows form the fact that Λ̂ = 1/b(1). This completes the proof of Lemma 2. 2

Let us consider the heavy-traffic behavior of the maximum eigenvalue ξ of M. Note that in general, ξ
is a non-negative real-valued function of ρ (cf. [2]), say

ξ = ξ(ρ), (30)

for ρ ≥ 0. Then the following result describes the behavior of ξ(·) in the neighbourhood of ρ = 1.

Lemma 3
For the GG-model, the maximum eigenvalue ξ = ξ(ρ) has the following properties:

(1) ξ < 1 if and only if 0 ≤ ρ < 1, ξ = 1 if and only if ρ = 1, and ξ > 1 if and only if ρ > 1;
(2) ξ = ξ(ρ) is a continuous function of ρ;
(3) limρ↑1 ξ(ρ) = f(1) = 1;
(4) the derivative of ξ(·) at ρ = 1 is given by

ξ′(1) := lim
ρ↑1

1 − ξ(ρ)

1 − ρ
= 1. (31)

Proof: See Appendix A. 2

We are now ready to transform Theorem 1 to the model under consideration.

Theorem 2
For the GG-model, the steady-state joint queue-length distribution at polling instants at Q1 satisfies the
following limiting behavior:

(1 − ρ)









X
(1)
1
...

X
(1)
N









→d

b(2)

b(1)







λ̂1

...

λ̂N






Γ(α, 1) (ρ ↑ 1), (32)

where

α = r
b(1)

b(2)
. (33)

Proof: First, it is readily verified that the joint-queue-length process X(1) := {X(1)
n = (X

(1)
1,n, . . . , X

(1)
N,n), n =

0, 1, . . .} at embedded polling instants at Q1 constitutes an N -dimensional MTBP with offspring function
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f (i)(z) and immigration function g(z) defined in (15) and (16) and with mean matrix M defined in (18).
Moreover, is it easy to verify that the assumptions of Theorem 1 are satisfied (with M = N). Then using
Lemmas 1 to 3 and Theorem 1 it follows that

lim
n→∞

1

πn(ξ(ρ))









X
(1)
n,1
...

X
(1)
n,N









→d

b(2)

b(1)







λ̂1

...

λ̂M






Γ(α, 1) (ρ ↑ 1), (34)

where α is defined in (33). Consequently, relation (32) follows from the following sequence of equations:

lim
ρ↑1

(1−ρ)









X
(1)
1
...

X
(1)
N









= lim
ρ↑1

lim
n→∞

(1−ρ)









X
(1)
n,1
...

X
(1)
n,N









= lim
ρ↑1

lim
n→∞

(1−ρ)πn(ξ(ρ))·
1

πn(ξ(ρ))









X
(1)
n,1
...

X
(1)
n,N









(35)

= lim
ρ↑1

lim
n→∞

(1 − ρ)πn(ξ(ρ)) · lim
ρ↑1

lim
n→∞

1

πn(ξ(ρ))









X
(1)
n,1
...

X
(1)
n,N









= 1 ·
b(2)

b(1)







λ̂1

...

λ̂N






Γ(α, 1), (36)

where the last equality in (36) follows from Theorem 1 and the fact that (10) implies

lim
ρ↑1

lim
n→∞

(1 − ρ)πn(ξ(ρ)) = lim
ρ↑1

1 − ρ

1 − ξ(ρ)
· lim

n→∞

1 − (ξ(ρ))n

ξ(ρ)
= 1 · 1 = 1, (37)

by using the properties formulated in Lemma 3. 2

The next result generalizes Theorem 2, which gives the asymptotic scaled queue-length distribution at an
arbitrary polling instant at Q1, to the aymptotic queue-length distribution at an arbitrary polling instant at
Qk (k = 1, . . . , N).

Theorem 3
For the GG-model, the steady-state joint queue-length distribution at polling instants at Qk (k = 1, . . . , N)
satisfies the following limiting behavior:

(1 − ρ)









X
(k)
1
...

X
(k)
N









→d

b(2)

b(1)























(ρ̂1 + · · · + ρ̂k−1)























λ̂1

...

λ̂k−1

λ̂k

...

λ̂N























+





















0
...
0

λ̂k

...

λ̂N











































Γ(α, 1) (ρ ↑ 1), (38)

where

α = r
b(1)

b(2)
. (39)

Proof: For k = 1, . . . , N , denote by X∗
k (z1, . . . , zN ) the PGF of (X

(k)
1 , . . . , X

(k)
N ), the joint queue length at

an arbitrary polling instant at Qk. Then it is readily verified that, for |zi| ≤ 1, i = 1, . . . , N , k = 1, . . . , N ,

X∗
k(z1, . . . , zN) =

k−1
∏

i=1

R∗
i





N
∑

j=1

λj(1 − zj)



 (40)

× X∗
1



B∗
1





N
∑

j=1

λj(1 − zj)



 , . . . , B∗
k−1





N
∑

j=1

λj(1 − zj)



 , zk, zk+1, . . . , zN



 . (41)

To this end, consider the customer population at a polling instant P ∗
k at Qk (k > 1); note that for k = 1 the

result was shown in Theorem 2 and is therefore not considered here again. Then this population consists
of three independent parts: (1) the customers that were present at Qi (i = k, k + 1, . . . , N) at the last
preceding polling instant at Q1, (2) the customers who arrived during the service times of the customers
that were present at Qi (i = 1, 2, . . . , k − 1) at the preceding polling instant at Q1, and (3) the customers
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who arrived during the past switch-over times Ri (i = 1, 2, . . . , k − 1). Then (40) follows directly by using
standard generating function manipulations. Theorem 3 then follows directly from Theorem 2 by using (32)
and taking the proper limits. 2

We are now ready to obtain the main result for the GG-model.

Theorem 4
For the GG-model, the waiting-time distribution satisfies the following limiting behavior: For i = 1, . . . , N ,

(1 − ρ)Wi →d W̃i (ρ ↑ 1) (42)

where the LST of W̃i is given by, for Re(s) > 0,

W̃ ∗
i (s) =

1

(1 − ρ̂i)rs

{(

µ

µ+ s(ρ̂1 + · · · + ρ̂i)

)α

−

(

µ

µ+ s(1 + ρ̂1 + · · · + ρ̂i−1)

)α}

, (43)

where

α = r
b(1)

b(2)
, and µ =

b(1)

b(2)
. (44)

Proof: Denote by X
(i)
i and Y

(i)
i the number of customers at Qi at the beginning and at the end of a visit

period to Qi, respectively, and denote by Ni be the number of customers at Qi at an arbitrary customer
departure epoch from Qi. Denote the corresponding PGFs by X∗

i (·), Y ∗
i (·) and N∗

i (·). Then the following
result was obtained by Borst and Boxma [8]: For |z| ≤ 1, i = 1, . . . , N ,

N∗
i (z) =

(1 − ρi)(1 − z)B∗
i (λi(1 − z))

B∗
i (λi(1 − z)) − z

Y ∗
i (z) −X∗

i (z)

(1 − z)λi(1 − ρi)r/(1 − ρ).
(45)

Then from Theorem 3, taking the i-th component only, we have that in the limiting case ρ ↑ 1,

(1 − ρ)X
(i)
i →d

b(2)

b(1)
· λ̂i(1 + ρ̂1 + · · · + ρ̂i−1) · Γ(α, 1). (46)

Then, to determine the number of type-i customers Y
(i)
i at the end of a visit of the server to Qi, note that

during the visit of the server to Qi, each of the X
(i)
i customers is effectively replaced a joint set of customers

with PGF B∗
i

(

∑N

j=1 λj(1 − zj)
)

; focusing on customers at Qi only, it is readily seen that at the end of a visit

period to Qi each of the type-i customers present at the beginning of that visit period has been effectively
by a number of type-i customers with marginal PGF B∗

i (λi(1− zi)), with average ρi, which is easily seen to
imply that in the limiting case ρ ↑ 1,

(1 − ρ)Y
(i)
i →d

b(2)

b(1)
· λ̂i(ρ̂1 + · · · + ρ̂i) · Γ(α, 1). (47)

Combining (45)-(47), using the distributional form of Little’s formula and the observation that a departing
customer sees the time average [32] is then easily seen to lead to (43), which completes the proof of Theorem
4. 2

3.1.2 Implications

Theorem 4 leads to a number of interesting implications that will be discussed below.

Corrollary 1 (Insensitivity properties)
For i = 1, . . . , N , the asymptotic waiting-time distribution W̃i,

(1) is independent of the visit order (assuming the order is cyclic),
(2) depends on the variability of the service-time distributions only through b(2), and
(3) depends on the switch-over time distributions only through r.

Note that similar insensitivity properties are generally not valid for stable systems (i.e., ρ < 1), in which
case the waiting-time distributions do depend on the visit order, the complete service-time distributions and
each of the individual switch-over time distributions. Apparently, these dependencies are of lower order, and
hence their effect on the waiting-time distributions becomes negligible, in heavy traffic.
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Corollary 2 (Zero switch-over times)
For the case of zero switch-over times, the LST of W̃i for the GG-model is given by the following expression:
For i = 1, . . . , N , Re(s) ≥ 0,

lim
r↓0

W̃i(s) =
1

(1 − ρ̂i)s

b(1)

b(2)
log

(

µ+ s(1 + ρ̂1 + · · · + ρ̂i−1)

µ+ s(ρ̂1 + · · · + ρ̂i)

)

, (48)

where α and µ are defined in (44), and where log(·) is an inverse function of the (complex) function
l(z) := exp(z).

Corrollary 3 (Expected asymptotic delay)
For the GG-model, the asymptotic expected delay at Qi is given by the following expression: For i = 1, . . . , N ,

E[W̃i] =
1

2



1 + 2

i−1
∑

j=1

ρ̂j + ρ̂i





(

b(2)

b(1)
+ r

)

. (49)

Remark 1 (Pseudo-conservation law):
The pseudo-conservation law (PCL) for the present model is as follows (cf. [6]): For ρ < 1,

N
∑

i=1

ρiE[Wi] = ρ

N
∑

i=1

λib
(2)
i

2(1 − ρ)
+ ρ

r(2)

2r
+ ρ2 r

1 − ρ
+

N
∑

i=2

ρi

i−1
∑

j=1

r
(1)
j . (50)

By taking heavy-traffic limits, it follows directly that

N
∑

i=1

ρiE[W̃i] =
b(2)

2b(1)
+ r. (51)

Then it is easy to verify that equation (49) indeed satisfies (51), which supports the validity of Theorem 4.

3.2 Cyclic polling models with general branching-type service policies

In this section we consider the cyclic polling model introduced at the beginning of Section 3, with general
branching-type service policies that satisfy the following property (cf. [29]):

Branching property
If the server arrives at Qi to find ki customers there, then during the course of the server’s visit, each of
these ki customers will effectively be replaced in an i.i.d. manner by a polulation of customers having joint
probability generating function (PGF) hi(z) = hi(z1, . . . , zN ), which can be any N -dimensional PGF.

We assume that the service disciplines are work conserving, in the sense that the server always works during
a visit to a queue. From the branching property, a visit period of the server starting with ki original cus-
tomers, say C1, . . . , Cki

, consist of ki mutually independent sub-busy period, each of which is characterized
by the joint PGF-LST: For i = 1, . . . , N , Re(u) > 0, |v| ≤ 1,

ψi(u, v) := E
[

e−uTivLi
]

, (52)

where Ti is the duration of a sub-busy period, and Li is the so-called sub-busy period residue, i.e., the
number of type-i children of the original customer that generates this sub-busy period.

This class of service policies contains a variety of classical service policies, including the exhaustive, gated,
binomial-gated [19] and binomial-exhaustive [29] policies, amongst others. For gated and exhaustive service
at Qi, we have for |zk| ≤ 1 (k = 1, . . . , N),

hi(z) = B∗
i





N
∑

j=1

λj(1 − zj)



 and hi(z) = Θ∗
i





∑

j 6=i

λj(1 − zj)



 , (53)

respectively, where Θ∗
i (·) denotes the LST of a busy period in an M/G/1 queue with arrival rate λi and

service time distribution B∗
i (·). Similarly, for the case of binomial-gated service (with parameter 0 < pi ≤ 1)

and binomial-exhaustive service (with parameter 0 < qi ≤ 1) we have for |zk| ≤ 1 (k = 1, . . . , N),

hi(z) = (1 − pi)zi + piB
∗
i





N
∑

j=1

λj(1 − zj)



 and hi(z) = (1 − qi)zi + qiΘ
∗
i





∑

j 6=i

λj(1 − zj)



 , (54)
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respectively. Adopting the terminology introduced in [38], we define the exhaustiveness of the service policy
at Qi (i = 1, . . . , N) by

fi := 1 −E[Li], (55)

where Li is the sub-busy period residue, defined in (52). The exhaustiveness fi has the following simple
interpretation: each customer present at Qi at the beginning of a visit of the service Qi is effectively replaced
by a number of customers at Qi whose mean value is 1 − fi. In other words, fi can be seen as

1 − fi :=
E[number of customers at Qi at the end of a visit to Qi]

E[number of customers at Qi at the beginning of that visit to Qi]
. (56)

It is readily verified from equations (52)-(56) that for the case of exhaustive and gated service we have fi = 1
and fi = 1 − ρi, respectively (see also Remark 2 below). Notice also that the work conserving property
implies the following relation between the sub-busy period duration Ti and the sub-busy period residue Li:
For i = 1, . . . , N ,

E[Ti] = (1 −E[Li])
b
(1)
i

1 − ρi

= fi

b
(1)
i

1 − ρi

. (57)

3.2.1 Analysis

To establish the relation with the general MTBP-model described in Section 2, we observe that for the
model considered here the joint queue-length process at embedded polling instants at Q1 can be described
as an N -dimensional MTBP with immigration in each state (cf. [29]). This process is characterized by the
offspring generating functions, for |zk| ≤ 1 (k = 1, . . . , N), i = 1, . . . , N ,

f (i)(z1, . . . , zN ) = hi(z1, z2, . . . , zi, f
(i+1)(z1, . . . , zN), . . . , f (N)(z1, . . . , zN )), (58)

with

hi(z1, . . . , zN) := ψi





∑

j 6=i

λj(1 − zj), zi



 , (59)

where ψi(·, ·) is defined in (52), and the immigration function, for |zk| ≤ 1 (k = 1, . . . , N),

g(z1, . . . , zN) =

N
∏

i=1

R∗
i

(

i
∑

k=1

λk(1 − zk) +

N
∑

k=i+1

λk(1 − f (k)(z1, . . . , zN ))

)

. (60)

To derive the limiting distribution of the joint queue-length vector at polling instants at Q1, we need to
specify the following parameters: (1) the mean matrix M̂ and its corresponding (normalized) left and right
eigenvectors v̂ and ŵ, and (2) the parameters ĝ and A. These parameters are obtained in the following two
lemmas.

Lemma 4
For the cyclic branching-type polling model, the mean matrix M is given by the following expression:

M = M1 · · ·MN , (61)

where for i = 1, . . . , N ,

Mi =







































1 0 · · · 0 0 0 · · · · · · 0

0 1
. . .

... 0 0 · · · · · · 0
...

. . .
. . . 0 0 0 · · · · · · 0

0 · · · 0 1 0 0 · · · · · · 0

λ1fiϕi λ2fiϕi · · · λi−1fiϕi 1 − fi λi+1fiϕi

...
... λNfiϕi

0 · · · · · · 0 0 1 0 · · · 0

0 · · · · · · 0 0 0 1
. . . 0

0 · · · · · · 0 0 0
. . .

. . . 0
0 · · · · · · 0 0 0 · · · 0 1







































, (62)
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with ϕi := b
(1)
i /(1 − ρi). Moreover, if we define for i = 1, . . . , N ,

ui :=
λi(1 − ρi)(1 − fi)

fi

+ λi

N
∑

j=i+1

ρj , (63)

then the normalized right and left eigenvectors of M̂ are given by

ŵ =







ŵ1

...
ŵN






= |b|−1









b
(1)
1
...

b
(1)
N









, and v̂ =
|b|

δ







û1

...
ûN






, (64)

with

δ := û>ŵ =
N
∑

i=1





ρ̂i(1 − ρ̂i)(1 − f̂i)

f̂i

+ ρ̂i

N
∑

j=i+1

ρ̂j



 , (65)

and where b and |b| are defined in (20).

Proof: To prove (61) and (62), consider a tagged type-i customer, say Ci, present at Qi at the begin-
ning of a service period at Qi. Following the branching property, Ci generates a sub-busy period with joint
PGF-LST ψi(·, ·), defined in (52). During this sub-busy period, the average number of children Ci has at
Qj (j 6= i) is λjE[Ti] = λjfiϕi, by using (57). Moreover, it is readily seen that the number of type-i children
of Ci is exactly the residue of the sub-busy period generated by Ci, and its mean value equals E[Li] = 1−fi.
Based on these observations, equations (61) and (62) are easily seen to hold, for i = 1, . . . , N . To proof that

ŵ is a right eigenvector at M̂, note that it follows directly from (62) that, for i = 1, . . . , N ,
∑

j 6=i

λ̂j f̂iϕ̂ib
(1)
j + b

(1)
i (1 − f̂i)f̂iϕ̂i

∑

j 6=i

λ̂jb
(1)
j + b

(1)
i (1 − f̂i)f̂ib

(1)
i + b

(1)
i (1 − f̂i) = b

(1)
i , (66)

so that M̂iŵ = ŵ (i = 1, . . . , N), and hence, M̂ŵ = ŵ, which shows that ŵ is indeed a right eigenvector of

M̂. Similar arguments can be used to show that v̂ is a left eigenvector of M̂ (along the lines discussed in the
Appendix of [37]). The details are omitted for compactness of the presentation, and are left as an exercise
to the reader. This completes the proof of Lemma 4. 2

Lemma 5
For the cyclic branching-type polling model,

ĝ>ŵ = |b|−1r, (67)

and

A = |b|−1δ−1 ·
b(2)

b(1)
. (68)

Proof: Assume ρ = 1. To show (67) we first observe that it follows from (60) that the mean number of
type-j customers that immigrate during a cycle is given by

ĝj =

N
∑

i=1

r
(1)
i

(

λ̂jI{j≤i} +

N
∑

k=i+1

λ̂km̂k,j

)

, (69)

where IE stands for the indicator function on the event E. This implies

ĝ>ŵ :=
N
∑

j=1

ĝjŵj = |b|−1
N
∑

j=1

ĝjb
(1)
j = |b|−1

N
∑

i=1

r
(1)
i



λ̂jb
(1)
j I{j≤i} +

N
∑

k=i+1

λ̂k

N
∑

j=1

m̂k,jb
(1)
j



 (70)

= |b|−1r

N
∑

i=1

ρ̂i = |b|−1r, (71)

by using (64), (69), and the fact that
∑N

j=1 m̂k,jb
(1)
j = b

(1)
k , which is an immediate consequence of the second

part of Lemma 1, see (19). Finally, the proof of (68) can be obtained along similar lines as the proof of (25)
in (26)-(29), but with notationally cumbersome derivations. The details are omitted for compactness of the
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presentation. 2

Lemma 6
For the cyclic branching model, the maximum eigenvalue ξ = ξ(ρ) has the following properties:

(1) ξ < 1 if and only if ρ < 1, ξ = 1 if and only if ρ = 1 and ξ > 1 if and only if ρ > 1;
(2) ξ(ρ) is a continuous function of ρ;
(3) limρ↑1 ξ(ρ) = ξ(1) = 1;
(4) the derivative of ξ(ρ) at ρ = 1 is given by

ξ′(1) = lim
ρ↑1

1 − ξ(ρ)

1 − ρ
=

1

δ
, (72)

where δ is defined in (65).

Proof: See Appendix B. 2

We are now ready to present the main result for the model under consideration.

Theorem 5
For the cyclic branching-type polling model, the joint queue-length vector at polling instants at Q1 has the
following asymptotic behavior:

(1 − ρ)









X
(1)
1
...

X
(1)
N









→d

b(2)

b(1)
1

δ







û1

...
ûN






Γ(α, 1) (ρ ↑ 1), (73)

where

α = rδ
b(1)

b(2)
. (74)

and where δ and ûi (i = 1, . . . , N) are defined in (65) and (63), respectively.

Proof: To start, note that the joint-queue-length process X(1) := {X(1)
n = (X

(1)
1,n, . . . , X

(1)
N,n), n = 0, 1, . . .}

at embedded polling instants at Q1 constitutes an N -dimensional MTBP with offspring function f (i)(z) and
immigration function g(z) defined in (58) and (60), and with mean matrix M defined in (61)-(62). Moreover,
is it easy to verify that the assumptions of Theorem 1 are satisfied (with M = N). Then using Lemmas 4
to 6 and Theorem 1 it follows that

lim
n→∞

1

πn(ξ(ρ))









X
(1)
n,1
...

X
(1)
n,N









→d A







v̂1
...
v̂N






Γ(α, 1) (ρ ↑ 1), (75)

where α, v̂ and A are given in (74), (64) and (68), respectively. Hence, similar to the derivation of Theorem
2, relation (73) follows from the following sequence of equations:

lim
ρ↑1

(1 − ρ)









X
(1)
1
...

X
(1)
N









= lim
ρ↑1

lim
n→∞

(1 − ρ)









X
(1)
n,1
...

X
(1)
n,N









(76)

= lim
ρ↑1

lim
n→∞

(1 − ρ)πn(ξ(ρ)) · lim
ρ↑1

lim
n→∞

1

πn(ξ(ρ))









X
(1)
n,1
...

X
(1)
n,N









= δ · A







v̂1
...
v̂N






Γ(α, 1) (77)

=
1

δ
·
b(2)

b(1)







û1

...
ûN






Γ(α, 1). (78)
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Here, the second equality in (77) follows from (75) and the fact that

lim
ρ↑1

lim
n→∞

(1 − ρ)πn(ξ(ρ)) = lim
ρ↑1

1 − ρ

1 − ξ(ρ)
lim

n→∞

1 − (ξ(ρ))n

ξ(ρ)
= δ · 1 = δ, (79)

which follows directly by using (10) and the properties listed in Lemma 6. Finally, equation (78) follows
from (64) and (68). This completes the proof of Theorem 5. 2

Theorem 6
For the cyclic branching-type polling model, the waiting-time distribution satisfies the following limiting be-
havior: For i = 1, . . . , N ,

(1 − ρ)Wi →d W̃i (ρ ↑ 1) (80)

where the LST of W̃i is given by

W̃ ∗
i (s) =

1

(1 − ρ̂i)rs

{(

µi

µi + s(1 − f̂i)

)α

−

(

µi

µi + s

)α
}

(Re(s) > 0), (81)

where

α = rδ
b(1)

b(2)
, µi = δ

b(1)

b(2)
f̂i

1 − ρ̂i

, (82)

and where δ is given in (65).

Proof: Without loss of generality, we focus on the waiting time distribution at Q1. Adopting the no-
tation used in the proof of Theorem 4, relation (45) is also applicable to the cyclic branching-type model
under consideration (and hence also for the special case i = 1), so it remains to determine the limiting

behavior for X
(1)
1 and Y

(1)
1 , i.e. the number of type-1 customers present at the beginning and the end of a

visit period to Q1, respectively. To this end, note that Theorem 4 implies that in the limiting case ρ ↑ 1,

(1 − ρ)X
(1)
1 →d

b(2)

b(1)
·
1

δ
· u1 · Γ(α, 1). (83)

Then, using the branching structure of the service policity at Q1 it is then readily seen that, for ρ ↑ 1,

(1 − ρ)Y
(1)
1 →d (1 − f̂1) ·

b(2)

b(1)
·
1

δ
· u1 · Γ(α, 1). (84)

To see the latter, note that at the end of the visit period V1 at Q1, each type-1 customer that was present at
the beginning of V1 has been replaced by a population of customers whose PGF is given by ψ1(·, ·), defined in
(52). Focusing on type-1 customers only, each type-1 customer present Q1 at the beginning of V1 is replaced
by, on average, 1−f1 type-1 customers at the end of V1. Then, combining (83)-(84), using the distributional
form of Little’s formula and the observation that a departing customer sees the time average [32] is easily
seen to lead to (80)-(81), recalling that we assumed i = 1 without loss of generality. 2

The results presented in Theorem 6 are new and have not been observed before in the general context
of the model considered. We emphasize that the results are valid in the general parameter setting of the
model defined above. Remarkably, the results can be obtained in closed form, and moreover, are strikingly
simple, and explicitly show the impact of the system parameters on the asymptotic delay at each of the
queues.

3.2.2 Implications

Theorem 6 leads to a number of interesting implications that will be addressed below.

Corollary 5 (Insensitivity properties)
For i = 1, . . . , N , the asymptotic waiting-time distribution W̃i,

(1) depend on the service policies only through the exhaustiveness factors f1, . . . , fN ,
(2) is independent of the visit order (assuming the order is cyclic),
(3) depends on the variability of the service-time distributions only through b(2), and
(4) depends on the switch-over time distributions only through r.
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Recall from Corollary 4 that in general these insensitivity properties do not hold for stable systems, in
which case the waiting-time distributions depend on the complete distribution of the sub-busy periods de-
fined in (52), the visit order, the complete service-time distributions and each of the individual switch-over
time distributions. Apparently, these dependencies are of lower order, and hence their effect on the waiting-
time distributions becomes negligible, in heavy traffic.

Corollary 6 (Zero switch-over times)
For the special case of zero switch-over times, we have: For i = 1, . . . , N , Re(s) > 0,

lim
r↓0

W̃i(s) =
δ

(1 − ρ̂i)s

b(1)

b(2)
log

(

µi + s

µi + s(1 − f̂i)

)

, (85)

where α, µi and δ are defined in (82) and (65), respectively, and where log(·) is an inverse function of the
(complex) function l(z) := exp(z).

Corollary 7 (Mean asymptotic delay)
For the cyclic branching model, the asymptotic expected delay at Qi is given by the following expression: For
i = 1, . . . , N ,

E[W̃i] =
(1 − ρ̂i)

(

2

f̂i

− 1
)

∑N
j=1 ρ̂j(1 − ρ̂j)

(

2
f̂j

− 1
)

b(2)

b(1)
+

1

2
r(1 − ρ̂i)

(

2

f̂i

− 1

)

. (86)

Note that this result was also shown in [39], where we obtained the result via the Descendant Set Approach
[16].

We end this subsection with a number of remarks.

Remark 2 (Generalization of known results):
Theorem 5 generalizes and unifies known results that have been shown before. Van der Mei [36] derived
the result for the special case of mixtures of gated and exhaustive service at each queue: if E denotes the
set of queues that receive exhaustive service and its complement G the denoted the set of queues that re-
ceived gated service, then is readily verified from equation (53) that fi = 1 for i ∈ E, and fi = 1 − ρi for
i ∈ G, which is easily seen that in that case δ =

(

1 −
∑

i∈E ρ̂
2
i +

∑

i∈G ρ̂
2
i

)

/2. Similarly, from equation (54)
it follows that for the case of binomial-gated service at Qi with probability pi (0 < pi ≤ 1) occurs as a
special case with fi = pi(1 − ρi), and for the fractional exhaustive policy with parameter qi (0 < qi ≤ 1) we
have fi = qi; to the best of the author’s knowledge these results have not been shown before in the literature.

Remark 3 (Pseudo-conservation law):
The pseudo-conservation law (PCL) for the present model is as follows (cf. [42]): For ρ < 1,

N
∑

i=1

ρiE[Wi] = ρ

N
∑

i=1

λib
(2)
i

2(1 − ρ)
+ ρ

r(2)

2r
+

r

2(1 − ρ)

[

ρ2 −

N
∑

i=1

ρ2
i

]

+

N
∑

i=1

E[Mi], (87)

where the mean amount of at Qi at a server departure instant at Qi is, for ρ < 1, i = 1, . . . , N ,

E[Mi] =
rρi(1 − ρi)(1 − fi)

fi(1 − ρ)
. (88)

By taking heavy-traffic limits, it follows directly that

N
∑

i=1

ρiE[W̃i] =
b(2)

2b(1)
+
r

2

N
∑

i=1

ρ̂i(1 − ρ̂i)(1 − f̂i)

(

2

f̂i

− 1

)

. (89)

Then it is easy to verify that equation (86) indeed satisfies (89), which supports the validity of Theorem 6.

Remark 4 (Direct calculation of mean values):

The mean values of X
(k)
i (i, k = 1, . . . , N) can also be obtained directly via simple balancing arguments. To

this end, note first that for i = k simple balancing arguments lead to the following equations: For ρ < 1,
i = 1, . . . , N ,

E[X
(i)
i ] = λir + λi

∑

j 6=i

E[X
(j)
j ]E[Tj ] +E[X

(i)
i ]E[Li], (90)
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which is readily seen to lead to the following expression (cf. also [42]): For ρ < 1, i = 1, . . . , N ,

E[X
(i)
i ] =

r

1 − ρ

ρi

E[Ti]
=
λir(1 − ρi)

fi(1 − ρ)
. (91)

Notice that for the special case i = 1 it follows from Theorem 5 that

lim
ρ↑1

(1 − ρ)E[X
(1)
1 ] =

b(2)

b(1)
·
1

δ
· û1 · α =

b(2)

b(1)
·
λ̂1(1 − ρ̂1)

f̂1
· rδ

b(1)

b(2)
=
rλ̂1(1 − ρ̂1)

f̂1(1 − ρ)
, (92)

where the second equality follows from the fact that

û1 =
λ̂1(1 − ρ̂1)(1 − f̂1)

f̂1
+ λ̂1(1 − ρ̂1) =

λ̂1(1 − ρ̂1)

f̂1
. (93)

Note that equation (92) is indeed in line with (91). More generally, from simple balancing arguments it
follows directly that, for ρ < 1, i, k = 1, . . . , N ,

E[X
(k)
i ] =

λir(1 − ρi)(1 − fi)

fi(1 − ρ)
+

λir

1 − ρ

k−1
∑

j=i+1

ρj . (94)

Then it is readily verified from Theorem 5 that for the case k = 1 (without loss of generality), for i = 1, . . . , N ,

lim
ρ↑1

(1 − ρ)E[X
(1)
i ] =

1

δ
·
b(2)

b(1)
· ûi · α = rûi =

λ̂ir(1 − ρ̂i)(1 − f̂i)

f̂i

+ λ̂ir

N
∑

j=i+1

ρ̂j , (95)

which is in line with Theorem 5.

3.3 Discussion and further remarks

Model extensions: The results presented in Sections 3.1 and 3.2 can be readily extended to a broader
set of models. The requirements for the derivation of heavy-traffic limits similar to Theorems 2 to 6 are
that (1) the evolution of the system at specific moments can be described as a multi-dimensional branching
process with immigration, and (2) that the systen is work conserving. In addition to the models addressed
above, this class of models includes as special cases for example models with gated/exhaustive service and
non-cyclic periodic server routing [43], models with (simultaneous) batch arrivals [39, 21], continuous polling
models [17], models with customer routing [31], globally-gated models with elevator-type routing [1], models
with local priorities [30], amongst many other model variants. Basically, all that needs to be done for each
of these model variants is to determine the parameters α, û and the derivative of ξ = ξ(ρ) at ρ = 1, which
is usually straightforward.

Generality of the results: The question raises which polling models fall within the class of branching-type
models for which the approach presented is this paper is applicable. As stated above, the key requirements
are the existence of a suitable embedded process such that the evolution of the state of the system can be
described by an MTBP, and that the system is work conserving. Although most polling systems that are
used in practice are indeed work conserving, it is not inconceivable that there exist non work-conserving
polling models for which an embedded process does satisfy an MTBP-structure. In those cases, properties
similar to those stated in Lemma’s 4 and 6 are no longer valid, so that the translation of Theorem 1 to results
for polling models similar to Theorems 3 and 5, which explicitly use Lemma’s 4 and 6, may be more com-
plicated. Moreover, the required MTBP-structure of a proper embedded processes implies that the arrival
processes should be memoriless, and hence must be Poisson, or some batched variant of the Poisson process.
For example, models with renewal processes with non-exponential interarrival times generally violate the
required branching structure, and hence, fall beyond the scope of the branching-type models for which our
results hold (see also the remarks about this in Section 4 below).

Choice of the embedded process: In general, the MTBP need not always be the joint queue-length
vector at embedded polling instants at a fixed queue, with M = N . For example, in the case of periodic
server routing with polling table π := (π1, . . . , πL) of length L ≥ N a proper choice for the MTBP is the
M := L-dimensional joint queue-length is a fixed pseudo-queue [43]. As another example, in the case of
two-stage polling models with cyclic routing [25], one should most likely consider the M := 2N -dimensional
state vector describing the numbers of customers at both stages of all N types at embedded polling instant at
a fixed queue; here, the state of the system cannot be described completely by an N -dimensional state vector.
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Assumptions on the finiteness of moments: Theorems 4 and 5 are valid under the assumption that
the second moments of the service times and the first moments of the switch-over times are finite; these
assumptions are an immediate consequence of the assumptions on the finiteness of the mean immigration

function g and the second-order derivatives of the offspring function K
(i)
j,k, defined in (5) and (7), respectively.

It is interesting to observe that the results obtained in by Van der Mei [36] via the use of the Descendant
Set Approach (DSA) assumes the finiteness of all moments of the service times and switch-over times; these
assumptions were required, since the DSA-based proofs in [36] are based on a bottom-up approach in the sense
that the limiting results for the waiting-time distributions are obtained from the asymptotic expressions for
the moments of the waiting times obtained in [38, 37]. Note that in this way the DSA-based approach differs
fundamentally from the top-down approach taken in the present paper, where the asymptotic expressions for
the moments can be obtained from the expressions for the asymptotic waiting-time distributions in Theorems
4 and 5.

Local and global branching: Although the GG-model discussed in Section 3.1 the joint queue-length
vector at successive polling instants at a fixed queue constitutes an MTBP, the GG-model does not occur
as a special case of the branching model discussed in Section 3.2. To this end, note that for the GG-model
the service policy at Qi does not satisfy the local branching property described in Section 3.2, for i > 1. To
see this, consider an arbitrary polling instant at Qi (i > 1), which marks the beginning of a visit Vi to Qi.

Then the number of customers present at that moment, say L
(total)
i , can be written as

L
(total)
i = L

(front)
i + L

(behind)
i , (96)

where L
(front)
i , L

(behind)
i stands for the number of type-i customers that in front of and behind the global

gate, respectively. Then at the end of Vi all L
(front)
i customers that were standing in front of the gate have

been served and hence have been effectively replaced by a population of customers whose joint PGF is given

by B∗
i (
∑N

j=1 λj(1 − zj)), whereas the remaining L
(behind)
i customers have not been served, and hence, are

“effectively replaced” by a population whose PGF equals zi.

Approximations: The results presented in Theorems 4 and 5 suggest the following simple approxima-
tions for the waiting-time distributions for stable systems: For ρ < 1, i = 1, . . . , N ,

Pr{Wi < x} ≈ Pr{W̃i < x(1 − ρ)}, (97)

and similarly for the moments: for ρ < 1, i = 1, . . . , N , k = 1, 2 . . .,

E[W k
i ] ≈

E[W̃ k
i ]

(1 − ρ)k
, (98)

where closed-form expressions E[W̃
(k)
i ] can be directly obtained from Theorems 4 and 5 by k-fold differentia-

tion. Extensive validation of these appoximations fall beyond the scope of this paper. We refer to [36, 40, 42]
for extensive discussions about the accuracy of these approximations for the special case of exhaustive and
gated service.

4 Topics for Further Research

The results presented in this paper provide a significant step towards the development of a unified theory
of polling in heavy traffic. Nonetheless, the results raise a number of challenging open questions for further
research. First, in this paper it is assumed that the second moments of the service-time distributions are
finite, forced by the second-moment assumption on the offspring function, needed for the validity of Theo-
rem 1. An interesting area for further research is to obtain heavy-traffic results for heavy-tailed service-time
distributions with infinite variance. In this context, interesting results have been obtained by Boxma et
al. [5], who study the tail behavior of the waiting times in polling systems with so-called regularly varying
service times and switch-over times, and by Boxma and Cohen [7], who derive the heavy-traffic limiting
distribution for the waiting times in the single-server queue with heavy-tailed service-time distributions.
Second, in order to use the theory of MTBPs the arrival processes must be Poisson (or batched Poisson).
Interestingly, in special cases similar heavy-traffic results have been obtained under the weaker assumption
of independent renewal processes, where also the gamma-distribution appears to play a key role (see for
example [12, 44]). Note, however, that the proofs of these results for N > 2 are based on partial conjec-
tures. Moreover, for several polling models it was found that the heavy-traffic limits of a Poisson-type model
and its renewal counterpart only differ by a simple scaling constant (see for example [43, 44] for non-cyclic
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periodic polling models). Hence, based on these insights we may formulate strong conjectures about the
asymptotic behavior of polling models in the general setting of the present paper, with renewal arrivals.
Finally, a related area of of research is the analysis of the waiting times in polling systems with multiple
(say m > 1) servers. Multiple-server polling models are notoriously hard, and do not leave any hope for an
exact analysis. Interestingly, based on numerical experimentation it was obseved in [24, 9, 41] that if the
servers follows the same route they tend to cluster together, particularly when the system is heavily loaded.
These results suggest that in the limiting case all servers tend to effectively work as a single server that
works m times as fast. This, in turn, suggests that we may use our heavy-traffic results for single-server
polling models to develop simple approximations for the delay figures at each of the queues. Preliminary
experimentation with simulations show promising results, opening up an interesting area for further research.

Acknowledgment: The author wishes to thank Ton Dieker for his useful suggestions.
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Appendix A: Proof of Lemma 3

Part 1 was shown in [29]. Part 2 follows from the fact that all entries of M are continuous functions of ρ,
which implies that continuity of ξ = ξ(ρ) with respect to ρ, which implies the continuity of ξ(ρ) with respect

to ρ (see for example [2]). The fact that ξ(1) = 1 follows directly from the fact that M̂b = b, which is an
immediate consequence of the fact that the GG-model described in Section 3.1 is work conserving. Finally,
to prove Part 4 we adopt the concept and notation of the Descendant Set Approach (DSA) from [16]. The
DSA focuses on an arbitrary polling instant of the server at Q1, called the reference point, and focuses on
X1, the number of type-1 customers in the system at that moment. Denoting by Ai,c the contribution to X1

of a type-i customer that was present in the system at a polling instant c cycles before the reference point,
the mean values αi,c := E[Ai,c] can be obtained via the following recursive relations (cf. [16] for details):
For i = 1, . . . , N ,

αi,−1 := I{i=1}, (99)

and for c = 0, 1, . . .,

αi,c = b
(1)
i

N
∑

j=1

λjαj,c−1. (100)

Then if we define, for ρ < 1,

∆ :=

N
∑

i=1

λi

∞
∑

c=0

αi,c, (101)

then substitution of (99) and (100) immediately leads to the observation that, for ρ < 1,

∆ = ρ (∆ + λ1) =
λ1ρ

1 − ρ
. (102)

Alternatively, based on known properties for the maximum eigenvalue we can decompose αi,c into a dominant
and a recessive part as follows (see for example [2, 40]): for ρ < 1,

αi,c = ξc+1wiv1 + si,c (103)

where si,c is a lower-order term in the sense that there exists K (0 < K <∞) and ξ∗ (0 < ξ∗ < ξ) such that
|si,c| < Kξc

∗ for all c = 0, 1, . . ., which is readily seen to imply that, for i = 1, . . . , N ,

∞
∑

c=0

si,c <∞. (104)

From (103) we have, for ρ < 1 (and hence ξ < 1, see part 1 of Lemma 3),

∆ =
ξ

1 − ξ

N
∑

i=1

λiwiv1 +

N
∑

i=1

λi

∞
∑

c=0

si,c. (105)
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Then by premultiplying ∆ in (102) and (105) by a factor 1 − ρ, taking the limit for ρ ↑ 1 and using (64),
(104) and parts 1, 2 and 3 of Lemma 3 we obtain

λ̂1ρ̂ = ξ̂ρ̂λ̂1 lim
ρ↑1

1− ρ

1 − ξ
+ 0 = λ̂1 lim

ρ↑1

1 − ρ

1 − ξ
, (106)

which immediately implies

lim
ρ↑1

1 − ξ

1 − ρ
= 1. (107)

This completes the proof of Lemma 3. 2

Appendix B: Proof of Lemma 4

Parts 1, 2 and 3 follow from similar arguments as those of Lemma 3. To prove Part 4, for the cyclic branching
model the Desendant Set variables αi,c (defined above) satisfy the following recursive equations (cf. also
[40]): For i = 1, . . . , N , αi,−1 := I{i=1}, and for c = 0, 1, . . .,

αi,c = E[Ti]





N
∑

j=i+1

λjαi,c +

i−1
∑

j=1

λjαj,c−1



+E[Li]αj,c−1 (108)

= fi

b
(1)
i

1 − ρi





N
∑

j=i+1

λjαj,c +
i−1
∑

j=1

λjαj,c−1



+ (1 − fi)αi,c−1. (109)

Then if ∆ is defined as in (101) it is readily verified that, for ρ < 1 (and hence also ξ < 1, see part 1 of
Lemma 4),

∆ =
λ1(1 − ρ1 − f1(1 − ρ))

f1(1 − ρ)
. (110)

Then similar to the proof of Lemma 3 above we can write, for ρ < 1,

αi,c = ξc+1wiv1 + si,c, (111)

where si,c satisfies (104). This implies that, for ρ < 1,

∆ =
ξ

1 − ξ
v1

N
∑

i=1

λiwi +

N
∑

i=1

λi

∞
∑

c=0

si,c. (112)

Then following similar arguments as in the proof of Lemma 3 in Appendix A, combining (64), (94), (110),
(112) and parts 1, 2 and 3 of Lemma 4 we obtain

lim
ρ↑1

1 − ξ

1 − ρ
=

1

δ
. (113)

This completes the proof of Lemma 4. 2
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