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Abstract 

This paper will concentrate on contributions of CWI to the development of parallel Runge-Kutta (RK) methods. 
We shall describe two approaches to construct such methods. In both approaches, a conventional implicit RK 
method is used as a corrector equation whose solution is approximated by an iterative method. In the first 
approach, the iteration method uses a fixed number of iterations without solving the corrector. Assuming that 
a one-step predictor is used, this approach again results in an RK method, however, an RK method possessing 
a lot of intrinsic parallelism. In the second approach, the corrector is solved by modified Newton iteration and 
the linear systems arising in each Newton iteration arc solved by a parallel iteration process which is tuned to 
the special form of these linear systems. Furthermore, we apply the parallel iteration process in a step-parallel 
Cashion which further enhances the amount of parallelism. Finally, the application of parallel RK methods within 
the framework of waveform relaxation is hrietly discussed. 
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l. Introduction 

We will he concerned with the solution of the initial-value problem (IVP) 

dy I 
-dt = f (y), y(to) =yo, y, f E ll<l:' 

by Rungc-Kutta (RK) methods on parallel computers. Our starting point is the RK method 

( 1. l ) 

Yn = Yn- 1 + h(bT@ I)F(Y,1), R(Y,1) := Y,, - h(A@ I)F(Y,,) - e C') Yn 1 = 0. ( l .2J 

Here, A is the s-by-s Butcher matrix, b is an s-dimensional vector containing the step-point wt.:ights, 
e is the s-dimensional vector with unit entries, I is the d-by-d identity matrix, h is the step size'. 
tn - t; 11 _ 1, and 0 denotes the Kronecker product. The s components Yrii of the sll-dimcnsional 
solution vector Y,,1 (the staxe vector) represent s numerical approximations to the :-; exact solution 
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vectors y( etn-I + eh) where c := Ae denotes the abscissae vector. Furthermore, for any vector 

V = (Vi), F(V) contains the derivative values (!(Vi)). It is assumed that the components of care 

distinct and arranged in increasing order. In the following, we shall use the notation I for any identity 

matrix. However, its order will always be clear from the context. 

This paper will concentrate on contributions of CWI to the development of parallel RK methods. 

We shall describe two approaches to construct such methods. In both approaches, ( 1.2) is used as 

a corrector equation whose solution is approximated by an iterative method. In the first approach, 

the iteration method uses a fixed number of iterations and (1.2) is not necessarily solved. Assuming 

that a one-step predictor is used, this approach again results in an RK method, however, an RK 

method possessing a lot of intrinsic parallelism. In the second approach, ( 1.2) is solved by modified 

Newton iteration and the linear systems arising in each Newton iteration are solved by a parallel 

iteration process which is tuned to the special form of these linear systems. Sections 2 and 3 describe 

the construction and analysis of the parallel RK methods and the parallel iterated RK methods. In 

Section 4, the parallel iteration process is applied in a step-parallel fashion which further enhances 

the amount of parallelism. Finally, the application of parallel RK methods within the framework of 

waveform relaxation is briefly discussed in Section 5. 

2. Parallel RK methods 

Consider the method 

Y~0l = e ® Yn-1 + h(B ® J)F(°Yr~0l) + h(C 0 J)F(e 0 Yn-1 ), (2.1) 

Y~j) = e ® Yn-1+h(B0 J)F(°Yr~.i)) + h((A - B) v? I)F(Y;~J-I)), .i =I, .. ., m, (2.2) 

(2.3a) 

;vhere B and C are appropriately chosen matrices and rn, is a fixed integer. This method can be 

,nterpreted as an iterative method with a fixed number of iterations. Evidently, if m -7 oo and if 

Yr1(.i) converges, then 1";1(j) converges to the solution Y'.;1. of ( 1.2). However, for m fixed, we may also 

interpret { (2. l), (2.2), (2.3a)} as an RK method with Butcher tableau as given in Fig. 1 (a). 

0 () 

c B c n 
() A-D B O A Ii Ii 

0 () A-B D () () A B B 

OT 0·1 OT bl o·' 0·1 b1 ·- aT aT , aT := bT A- 1B. 

(a) (h) 

Fig. I. Butcher tahlcaus. (~) Mcthou {<2.IJ, (2.2), (2JaJ}; (h) method {(2.l), (2.2), (2.3b)}. 
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In the case of stiff problems it is recommendable to replace (2.3a) by the formula (see Shampine 
[49)) 

(2.3b) 

provided that A is nonsingular (we remark that for stiffly accurate RK methods where bT = eJ A, 
formula (2.3b) reduces to Yn = (e! ®I)YJm)). The step-point formulas (2.3a), (2.3b) will be referred 
to as the conventional and the Shampine step-point formula. The Butcher tableau for {(2.1), (2.2), 
(2.3b)} is given in Fig. l(b). 

Methods of the type (2.2) can also be based on more general correctors than RK formulas (for a 
survey we refer to Burrage [10-12] and to [51]). 

The order of accuracy, the linear stability and the amount of intrinsic parallelism of the methods 
{ (2.1 ), (2.2), (2.3)} are determined by the matrices A, B and C. We have the following result for the 
(nonstiff) order of accuracy (see, e.g., Jackson and N!l)rsett [35], Jackson, Kvcem!I) and N!l)rsett [34], 
Burrage [8,9], van Dorsselaer [17], and the CWI papers [22,27]). 

Theorem 2.1. The orders of accuracy of the RK methods {(2.1), (2.2), (2.3a)} and {(2.1), (2.2), 
(2.3b)} are respectively given by p := min{p*, m + q + 1} and p := min{p*, m + q}, where p* and q 

denote the orders of the corrector (1.2) and of the predictor formula for Yn(O). If ( B + C)e = c then 
q ~ 1 and if also Be= Ac, then q ~ 2. 

Results for the stiff order of accuracy are given in [25]. From now on, the order of a method is 
always meant to be the nonstiff order of accuracy. 

The linear stability properties are obtained by applying { (2.1), (2.2), (2.3)} to the basic stability test 
equation y' = >..y. For the step-point formulas (2.3a) and (2.3b), this leads to the respective stability 
functions 

Rm(z) = R(z) + zbT zm(z)Q(z)e, Rm(z) = R(z) + bT A-Izm(z)Q(z)e, 

where z := h>.. and where the matrices Z, Q and the function R are given by 

Z(z) := z(I - zB)- 1 (A - B), 

Q(z) := (J - zB)- 1 (I+ zC) - (I - zA)- 1, 

R(z) := 1 + zbT(I - zA)- 1e. 

(2.4) 

(2.5) 

Here, R(z) is the stability function of the corrector (1.2). In the following sections, we discuss the 
cases where B vanishes and where B is diagonal. 

2.1. Explicit RK methods 

For nonstiff problems, we may set B = C = 0 to obtain an explicit s(m + I)-stage RK method 
requiring sm + I right-hand side evaluations (in [22] we called such methods Parallel Iterated RK 
methods, or briefly PIRK methods, in order to indicate that they are based on iterating an RK method). 
Since in nonstiff situations it is natural to use the conventional step-point formula (2.3a), Theorem 2.1 
implies that the order of accuracy is given by p := min{p*, m + q + 1} = min{p*, m + 1 }. Each block 
of s stages of this PIRK method can be computed in parallel, so that form ~ p* - 1, we effectively 
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have an (m + I )-stage method of order m + 1 (provided that s processors are available). Hence, for 
m ~ p* - I, {(2.1), (2.2), (2.3a)} generates an explicit RK method (ERK method) the order of 
which equals its number of effective (or sequential) stages. !series and N!Zlrsett [33] showed that this 
is an optimal result, because the order p of explicit RK methods cannot exceed the number Sseq of 
sequential stages (see also N121rsett and Simonsen [47]). If we choose for the underlying corrector, the 
s-stage Gauss-Legendre method, then p* = 2s, so that the number of processors is half the order. The 
stability polynomials of optimal ERK methods are given by truncated Taylor expansions of exp(z), the 
stability regions of which can be found in the literature (cf., e.g., [19]). Experiments on four-processor 
Alliant computers were performed at the University of Trondheim [36,40] and at CWI [22]. These 
experiments showed that parallel RK methods of the above type are quite efficient. 

Remark 2.1. Optimal ERK methods can also be generated by Richardson extrapolation (see, e.g., 
[23,50)). In particular, extrapolation of the explicit midpoint rule generates an optimal ERK of order p 
which only needs [I + p/4] processors (here, [·] denotes the integer part function). However, the 
experiments in [23] indicate that they are more expensive than Gauss-Legendre-based methods. 

2.2. Diagonally implicit RK methods 

Parallel diagonally implicit RK methods arise if Bis a diagonal matrix D. Because of the "diagonal" 
implicitness, each block of s stages can be computed in parallel, so that effectively, we only have m+ 1 
implicit stages. The stability regions can be computed from the stability functions (2.4). In [24,27] 
this has been done for several choices of B = D and C. Table l specifies the main characteristics 
of a number of these parallel DIRK methods. For reasons of comparison, we also list characteristics 
of conventional DIRK methods and a parallel RK (PARK) method of !series and N121rsett [33]. In this 
table, Pst denotes the block-stage order, Sscq the number of implicit sequential stages, and K the number 
of processors needed. Furthermore, A-stability, A(r.v)-stability, L-stability, and strong A-stability and 
A(a)-stability are respectively indicated by A, A(1~), L, > A and > A(a). All these methods need 

Table I 
Characteristics of DIRK, PARK and parallel DIRK methods 

Order p" Ssl't} K Stahility Remarks 

p=3 p-1 A DIRK, N0rsctt [44] 

Ji= 3 2 p - I >A DIRK, Crouzcix [16] 

p=4 p A DIRK, Crouzcix [16J, Alexander [I] 

p=4 ]i -- 2 2 L PARK, !series an<l N0rsett [33] 

p = 3,4,5 8 p-1 8 >A Parallel DIRK, C "" 0, D = diag(c) [271 

p = 6, 7 s p-1 .~ > A(n) Parallel DIRK, C = 0, D = <liag(c) [271 

p= 3,5, 7 s p s >A Parallel DIRK, C =A - D, p(I - v- 1 A)= 0 [24] 

p ~ 6, p = 8 s p 8 L Parallel DIRK, C = 0, D =of [27,45] 

p ~ 8, p =JO s v+I s L Parallel DIRK, C = 0, D =of [27,45] 
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only one LU-decomposition per processor. The methods referred to in the fifth and sixth row of 
f this table use either Gauss-Legendre or Radau IIA as the underlying corrector, both with step-point 
s formula (2.3a). In the method~ of the last three rows, the corrector is Radau IIA with step-point formula 
f (2.3b ), and 111 the methods of the last two rows, D is detem1ined by the restricted Pade approximants 

of Nprsett [ 45] (see also [54]). 

e 

D 

e 

With respect to its order, the PARK method of Iserles and Norsett needs a surprisingly low number of 
sequential stages and yet it is £-stable. The parallel DIRK methods have the advantage of a relatively 
high stage order and step-point order. 

3. Parallel iterated RK methods 

The conventional approach of solving the corrector equation ( l.2) is the modified (or simplified) 
Newton iteration scheme 

(I - A 0 hJ )(Y(.j) - yU-t)) = -R(YU--tl) vy , n n n n ' j = 1, ... ,m., (3.1) 

where In is the Jacobian of the righthand side function f at t 11 and YrP1) is the initial iterate to 
be provided by some predictor formula. The most powerful RK methods with respect to order of 
accuracy and stability (such as those based on Gaussian quadrature) possess a full Butcher matrix 
A, so that each iteration with (3.1) requires the solution of an sd-dimensional linear system for the 
Newton correction Y~j) - Yr~j- l). If direct solution methods are used, then the costs for solving 
the linear systems usually are extremely high, particularly for large values of sd, because of the 
expensive LU-decompositions. As pointed out by Butcher in 1976, LU-costs can be reduced by using 
a transformation Y,~:f) = ( Q ®I) UrV) to obtain transformed linear systems with a matrix of coefficients 
of the form I - er 1 AQ ® hJ11 (assuming that Q is nonsingular). Hence, by choosing Q such that 

r q-- l AQ has a (block) diagonal or (block) triangular structure, the transformed systems can be split into 
j subsystems of dimension less than sd (see [13, 14]). Unfortunately, RK methods of Gauss-Legendre 
:l and Radau type possess a Butcher matrix with at most one real eigenvalue, so that the best we can 

achieve is either complex-valued subsystems of dimension d or real-valued subsystems of dimension 
2d (cf. Hairer and Wanner [19, p. 130]). To circumvent this overhead in the linear algebra part, 
N0rsett [46] introduced RK methods with an A-matrix possessing a real, one-point spectrum. Using 
the Butcher transformation [13], these methods can be implemented in such a way that only real-valued 
systems of dimension r1 have to be solved. This work was then extended by Burrage [7], who also 
derived reference formulas for error control. These so-called SIRK methods are particularly suitable 
for implementation on sequential computer systems, since they require only one LU-decomposition of 
dimension cl per Jacobian or step size update. On parallel computer systems, we may drop the "onc­
point spectrum" requirement, because the LU-decompositions needed in the transformed subsystems 
can be computed in parallel. Hence, the Butcher transformation is a means to introduce parallelism into 
RK schemes. For example, if A has a real spectrum such as the multi-implicit RK methods of N\,'\rsett 
[46] and Ore! [48]. Effectively, these methods require only one LU-decomposition of dimension cl per 
Jacobian or step size update. 

At CWI we did not change the RK method, but we changed the iteration process for solving the 
corrector equation ( 1.2). We designed parallel iteration processes with the property that only real­
valued, linear systems of dimension d are to be solved. 
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3.1. PDIRK and PTIRK methods 

In the preceding section, we used (2.2) with a fixed number of iterations and B was chosen to 
achieve high accuracy and good stability. Let us now use (2.2) as a (nonlinear) iterative solver for 
approximating the solution of the corrector (1.2) and let B be chosen to achieve fast convergence 

to the corrector solution. We remark that in an actual application, the solution y~J) of (2.2) is often 
approximated by just one modified Newton iteration. In that case, the iteration method (2.2) reduces 
to a process of the form (3 .1) with A replaced by B. 

3.1.1. PDIRK methods 
As in Section 2.2, we may choose B diagonally. This results into the Parallel Diagonal-implicit 

Iterated RK (PDIRK) methods analysed in (24]. They possess the same parallel features as the parallel 
DIRK methods. It turned out that in the case of stiff IVPs, it is crucial for a fast convergence that 
p(Z(oo)) = p(I - n- 1A) is small (here, Z(z) is defined as in (2.5)). In [24], the matrix B = D was 
determined by minimizing the value of p(I - n- 1 A) by a computer search. The resulting matrices 
D indicated that it is highly likely that there exist matrices D such that p( Z ( oo)) actually vanishes. 
This led us to pose the problem: 

Problem 3.1. For what class of Butcher matrices A do there exist diagonal matrices D with positive 
diagonal entries such that n- 1 A has a one-point spectrum at 1? 

If such a matrix D exists, then the diagonal entries of D are determined by the (nonlinear) system 
that is obtained by requiring that the equation det(D- 1 A - µI) = 0 has only zeros equal to 1. In this 
way, Lioen [ 41] showed the following result: 

Theorem 3.1. Fors-stage Radau IIA correctors with s = 2, ... , 8, there do exist diagonal matrices D 
with positive diagonal entries such that n- 1 A has a one-point spectrum at 1. 

The matrices D derived by Lioen all generate A-convergent PDIRK methods (here, a method is 
called A-convergent if its region of convergence contains the whole left halfplane, see Section 3.2.1 ). 
However, the convergence in the initial phase of the PDIRK iteration process may be rather slow. 

3.1.2. PTIRK methods 
One of the research issues of the ODE group at CWI has been the improvement of the rate of 

convergence of PDIRK methods, particularly with respect to the initial phase of the iteration process. 
One option is to choose the matrix B = T where T is lower triangular with positive diagonal entries. 
Such methods were called PTIRK methods (30]. The LU-decomposition of I-T©hln again splits into 
s parallel LU-decompositions of dimension d. If T is nondefective, then we may perform a Butcher 

transformation yJJl = (Q@ I)Yn(j), with nonsingular Q, such that Q- 1TQ is diagonal. In this way, 
we can obtain "diagonal" implicitness as in the PDIRK methods. As for the PDIRK methods, it is 
again crucial that p( Z ( oo)) = p(I - r- 1 A) is as small as possible. The following result was proved 

in [20,30]: 
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Theorem 3.2. Let A be defined by any collocation method with positive abscissae and let A = TU be 
the Crout decomposition of A with T lower triangular and U unit upper triangular. Then, p(I -r-1 A) 
vanishes and T has positive diagonal entries. 

For a large number of RK methods, we computed the convergence regions of the generated PTIRK 
method which were all found A-convergent. Moreover, the rate of convergence in the initial phase is 
considerably improved (see the experiments reported in [30]). 

3.2. PILSRK methods 

The iteration processes described in the preceding section are nonlinear solvers for RK systems. 
Quite recently, we started an alternative approach. Our point of departure is the modified Newton 
method (3 .1 ). In order to avoid linear systems of dimension 2d, we solved the linear Newton systems 
in (3.1) iteratively by an inner iteration process which only requires the solution of d-dimensional 
systems. This leads to the inner-outer iteration method 

YJO,r) = initial approximation to Yn 

For j = 1 tom 

y.:(j,0) = y.:(j-1,r) 
n n 

For v = 1 tor 

(J - B@ hJn) (Yn(j,v) - Y~j,v-l)) 

=-(I - A@ hJn) (YJj,v-!) - yJj-1,r)) - R(Yn(j-1,r))' 

either y~,v) = y~~'() + h(bT @I)F(YJj,v)) 

or y(j,v) = y(m,r) + (bT A-1 '°'I) (Y(j,v) _ e@ y(m,r)) 
n n-1 VY n n-! ' (3.2) 

where B is a free matrix with real entries and positive eigenvalues. The inner loop of (3.2) represents 

the inner iteration process with inner iterates yJj,v) and y~,v), v = 1, ... , r. We shall refer to this 
process as a Parallel Iterative Linear System method for RK systems (PILSRK method). The process 

defining the outer iterates yJj,r) and y~'r), j = 1, ... , m, will be called the outer iteration process. 

Obviously, if the inner iterates converge as r -+ oo, then they converge to the solution y~J) of (3.1 ). 
Before discussing the choice of suitable matrices B, we consider convergence and stability aspects of 
the iteration process (3.2). 

3.2.1. The region of convergence 

In order to derive convergence conditions, let u$/l be the solution of the equation 

(I - A@ hJn) (U;/l - Y~j-l,r)) = -R(YJj-l,r)), (3.1') 

and define the inner iteration error Oj,v, the modified Newton error ()j, and the total iteration error Ej,v, 

i.e., 

~. ._ y_:(j,v) _ uUl 
u;,v .- n n ' e. ·- y_:(j) - "V" 

J .- n in, 
c. ·- -v-(j,v) - "V" 
cJ,v .- .Ln .Ln (3.3) 
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with E:j,O := E:j-1,r· Furthermore, we need 

G(.<l) := F(Yn + .<l) - F(Y11 ) - (I® Jn).<l, M :=(I - B ® hJnf 1 ((A - B) ® hln), 

N1 :=(I - B ® hJ11 )- 1 (A® I), N2 :=(I - A® hJ11 )- 1 (A® I). (3.4) 

From (3.1) and (3.2) we derive the error recursions 

Oj,1-' = M oj,l-'-1, (3.5) 

where j = 1, ... , m and v = 1, ... , r. From the relation for Dj,1-' we see that the inner iteration process 
converges if the spectral radius p(M) of M is less than I. Since the spectrum a(M) of M is given by 
that of the matrix Z(z) defined in (2.5) with z E a(hJn), we are led to define the region of convergence 
of the inner iteration process by I':= {z: p(Z(z)) < 1}. We shall call Z(z) the ampl(fication matrix 
at the point z and p(Z(z)) the (asymptotic) ampl(ficationfactor at z. Its maximum in the nonpositive 
halfplane Re( z) ~ 0 will be denoted by p. If p < 1, i.e., I' contains the whole nonpositive halfplane, 
then the inner iteration process will be called A-convergent. 

Theorem 3.3. The P!LSRK method converges as r --+ oo if a(hJn) E I'. 

A simple manipulation reveals that 

Ej,r· = MrE:j-1,r + h(J - lvf1')N2G(cj-1,r), j = I, ... , m. (3.6) 

Hence, if a(hJ11 ) E I' and if c: 1,0 =Bo, then it follows from (3.5) and (3.6) that Ej,oo and BJ satisfy 
the same error recursion. Thus, if the modified Newton method (3.1) converges and if a(hJ11 ) E I', 
then the iteration process (3.2) converges as m, r --+ oo. 

3.2.2. The order of accuracy of the iterates 
To obtain further insight into the convergence behaviour, we consider the order of accuracy of the 

method (3.2) after a finite number of inner and outer iterations. Let EJ,r = O(hP(J) ). Then it follows 
from (3.4) and (3.6) that p(j) satisfies the recursion 

p(O)=q+l, p(j)=p(j-l)+min{r,2}, j=l, ... ,m, (3.7) 

where q is the order of the predictor. Since Yn(m,r) = Y11 + Em,r• we derive from (3.7) the result: 

Theorem 3.4. Let Po = min{r, 2} and let p* and q denote the orders of the corrector (1.2) and of 

the predictor formula for Yr~O,r). Irrespective the structure of B, the order of accuracy of the method 
(3.2) is given by p := min{p*, q + I + mpo} when using the conventional step-point formula and by 
p := min{p*, q + mpo} when using the Shampine step-point formula. 

This theorem shows that with respect to order of accuracy, it is recommendable to perform at least 
wo inner iterations, so that for the step-point formulas (2.3a) and (2.3b) the order of the corrector is 
eached within [(p* - q)/2] and [(p* - q + 1)/2] outer iterations (we recall that the order of accuracy 

.s understood to be the nonstiff order; for stiff order considerations of Newton-like processes we 
refer to the works of van Dorsselaer and Spijker [17,52]). For example, for Radau IIA correctors 
with extrapolation predictor of order q = s - I (see (3.11) below) and step-point formula (2.3b), 
we find that for at least two inner iterations (i.e., r ;?: 2), the order of accuracy is given by p := 
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min{2s - 1,s - I+ 2m}. Thus, the order of the corrector is attained for [(s + 1)/2] or more outer 
iterations. 

3.2.3. The PILSRK amplification factors 
Next we address the speed of convergence of the PILSRK method. Since M is not expected to 

be a normal matrix, the asymptotic amplification factor p defined above only gives information on 
the speed of convergence after many inner iterations and does not give insight into the convergence 
behaviour in the initial phase of the iteration process. However, by using a generalization of a theorem 
of von Neumann due to Nevanlinna [43] (see also [19, p. 356]), we can prove the theorem: 

Theorem 3.5. Let 11-\12 denote the Euclidean matrix norm, and let µ2 [.] be the corresponding loga­
rithmic norm. If µ2[Jn] ~ 0, then JIMrll2::::;; maxRe(z):::;o llZr(z)Jl2-

This theorem suggests characterizing the convergence behaviour of PILSRK methods by the (aver­
aged) amplification factors 

p(r) = max p(r) (z), p(r·)(z) := \/JJzr(z)Jl2- (3.8) 
Re(z):::;o 

3.2.4. Stability 
Finally, we discuss the stability of the method after a finite number of inner and outer iterations. 

Stability also plays an important role, because stability for small values of r and m implies that we 
can produce stable results at low computational costs. This is particularly important in step-parallel 
applications of the scheme (3.2) (cf. Section 4). Therefore, it is of interest to know the minimal number 
of iterations in order to ensure that (3.2) is sufficiently stable. For the test equation y' = >..y, we have 

Y;1 =(I - zA)- 1ey;1:·;), so that we deduce from (3.3) and (3.6) 

yJm,r) = Yn + zmr (YJO,r) _ Yn) = (I_ zrnr)(I _ zA)-1 ey~~·;) + zrnryJO,r). (3.9) 

The stability behaviour is highly dependent on the predictor formula for yJO,r) used. We shaII consider 

last step-point value (LSV) predictors that are only based on y~~·;) and extrapolation (EPL) predictors 

based on y~~·;) and YJ:'(). They can both be cast into the form 

yJO,r) = p ® y~~·r) + (P ® I)YJ:it» (3.10) 

where the s-by-s matrix P and the s-dimensional vector p are determined by order conditions. For 
LSV predictors we have p = e, P = 0 and order q = 0. If Cs = I, then we have for EPL predictors 

v := o, P := wv- 1, 

V:=((c-e)i- 1), W:=(ci- 1), ·i=l, ... ,s;q=s-1, (3.11) 

where powers of vectors are defined componentwise. On substitution of (3.10) into (3.9), we find for 

the test equation the relation 

Y. (m,r) _(I - A)-1 (m,r) _ zrnr(I _ A)-1ey(m,r) + zrnrpy(m,r) + zmr py(m,r)_ 
n - Z eyn-1 Z n-1 n-1 n-1 

· 1 (2 3) b · I' · f h · ( (m,r) v-(m,r)) Together with the step-pomt formu as ·- , we o tam a mear recursion or t e pair Yn , r. n . 

The stability is determined by the magnitude of the characteristic roots of this recursion. In the 
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particular case of stiffly accurate RK methods (as in Radau IIA correctors) where c8 = 1 and bT = eI A, 
we have y~i,r) = (eI@ I)Y~m,r), so that 

(3.12) 

the characteristic roots of which are given by the spectrum a(Smr(z)) of the stability matrix Smr(z). 
In applications, it is advantageous to have an £-stable method. Since A-stability automatically implies 
£-stability if p(Smr(oo)) vanishes, we are led to consider Smr(oo) = zmr(oo)(peI + P). Since Bis 
nonsingular (because 3 is assumed to have positive eigenvalues), Smr(oo) = (I -s- 1 A)mr (peI + P). 
By observing that (I - 3- 1A)mr vanishes for mr;:: s if p(I - 3- 1A) vanishes, we have the result: 

Theorem 3.6. Let c8 = 1, mr ;:: s, p(J - B- 1 A) = 0, Let the predictor formula be defined by 
{(3.10), (3.11)} and let the Shampine step-point formula be used. Then, the method (3.2) is L-stable 
whenever it is A-stable. 

Using (3.12), we can compute the maximal spectral radius in the left half plane Re( z) ~ O of the 
stability matrix Smr(z). This maximum value will be denoted by p(Smr ). We have A-stability or 
L-stability if p(Smr) = 1. 

The following subsections are devoted to the region of convergence, the amplification factors p(v), 

and to stability for a few special choices of the matrices B. The starting point for choosing B is that 
the linear systems in (3.2) are more efficiently solved than the linear system (3.1) when implemented 
on a parallel computer system. 

3.2.5. PDIRK matrices 
Suppose that we choose 3 = D, where D is a diagonal matrix with nonnegative diagonal en­

tries. The linear system in (3.2) is only "diagonally implicit" and splits into s subsystems, each of 
dimension d, which can be solved in parallel. In particular, if a direct linear solver is used, then the 
s LU-decompositions can be computed in parallel, so that effectively only one decomposition is re­
quired. Similarly, in each iteration, the s components of the righthand side and the s forward-backward 
substitutions can also be computed in parallel. 

Evidently, we may use the PDIRK matrices D employed in the PDIRK methods discussed in 
Section 3.1. However, since the PDIRK methods exhibit a poor initial convergence, we may expect 
that the inner amplification factors p(r) associated with the generated linear solver are relatively large 
for small r, particularly for larger values of s. In the first row of Table 2, these factors are listed for 
the four-stage and eight-stage Radau IIA correctors (note that p(oo) equals p). In addition, we listed 
the value r* of r for which the PILSRK amplification factor becomes less than I. 

Table 2 
PILSRK amplification factors [rP l, / 2!, rPJ, .. . , p«'0 lj for Radau IIA correctors 

B s=4 r 
. s=8 r* 

PDIRK [3.6, 2.5, 1.6, ... , 0.52] 5 [20, 12, 7.7, .. ') 0.90] > 40 

PTIRK [0.6, 0.5, 0.5, ... , 0.50] [1.0, 0.9, 0.9, .. ') 0.86] 2 

(3.14), A;1 = 0, /~I [2.2, 1.0, 0.8, ... , 0.44] 3 [14, 2.6, 1.6, ... , 0.64] 7 
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Table 3 
Values of (mr)-y 

B Predictor 1' s=2 s = 3 s=4 s=5 s = 6 s=7 s=8 

PDIRK LSV 1.1 4 6 10 17 28 58 

1.01 4 6 10 18 29 58 

5 8 10 18 29 59 

EPL 5 7 14 27 > 40 > 61 

PT IRK LSV 1.1 

I.OJ 7 8 9 11 

5 8 11 14 17 20 

EPL 3 4 10 14 26 > 43 

(3.14), A.1 = 0 LSV I. 1 2 4 

1.01 2 6 

8 19 

EPL 5 14 

The relatively large values of r* indicate that the number of iterations needed to achieve sufficient 

stability is expected to be high when using PD IRK matrices. The value of mr for which p(Smr) 

becomes and remains less than or equal to a given number 'Y will be denoted by ( mr )T For a few 

values of 'Y, Table 3 lists ( mr )1 for the LSV and EPL predictor and for a number of Radau IIA 

correctors (in order to demonstrate how fast the (mr)1 -values increase with s, we have included all 

correctors with s ::::;; 8). These values show that for s = 4 the (mr)1 -values are acceptable, but for 

s = 8, PDIRK becomes stable only after a dramatically large number of iterations. 

3.2.6. PTIRK matrices 
Next we use the PTIRK matrices T used in the PTIRK methods of Section 3.1.2. For the four-stage 

and eight-stage Radau IIA correctors, the range of inner amplification factors is given in Table 2. 

These figures clearly show the superior convergence behaviour obtained by the PTIRK matrices for 

small r. Moreover, for finite mr-values the stability is also much better as can be concluded from the 

(mr)1'-values listed in Table 3. 

3.2. 7. Matrices with positive eigenvalues 
Our most recent attempt to improve the convergence chooses for B a matrix with the only re­

quirement that its eigenvalues are positive. By performing a Butcher transformation, it is possible to 

transform the PILSRK method into 

(I - T ® hJn) (¥J1,11) - -YJj,11-1)) 

= -(I - A® hJn) (Yn(j,11-I) - yn(j-1,r)) - ( Q-1 ®I) R( (Q ® J)YJj-1,r))' (3.13) 
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where .4 = q-1 AQ and where T = q- 1 BQ is triangular or even diagonal if B is nondefoctive. 
A first result is [31 ]: 

Theorem 3.7. Let A hm·e eigt'lmtlu<'s ~' ± i11A 11 ith ~k > 0 and define nk := V ~f.+ 11~. I\- = 

{ k: l/k· j O} and B == CtJ\t 1. 1rhcre Cj is such tlwt the diagonal blocks of .4 = q- 1 AQ = (.4,A) 

are given by 

1(1 2''!· - 21(!. + <»)) ( '"', I+ ;2 if k EK, , 
AH ·- I + -,-

2~k - )01.: ---· nA· 
'\ 

(3.14aJ 

~k· ilktf. K. 

!llld 

T11 u () () 

.421 T22 0 0 
T:= 

A31 A32 T33 0 

<~k·) , 
I 

if k EK, 
(3.14bl 

ifktf.J\. 

Then: 
(a) The PILSRK method is A-convergent.for all -y > 0. 
(b) In the left halfplane Re(z) ~ 0, the asymptotic amplification factor vanishes at infinity and is 

bounded by 

p=max{l1-21(1 2 +1r 1 ~A-oi: 1 I: kEK}. 

The value of the asymptotic amplification factor p is minimized for 'Y = I. However, if 'Y = 1, then 
f},.A is defecti\~e fork E K, so that B cannot be diagonalized. At the cost of a slight increase of p, the 
lefectness of Ta can be removed by choosing ; close to but different from 1. The resulting values of p 
ire smaller than for the PlLSRK method generated by the PDIRK and PTIRK matrices (see Table 2 
and recall that p = plx l). In [JI] we analysed the case where the lower triangular blocks AiJ in f 
vanish. Using a numerical search, transformation matrices Q with minimal condition number (with 
respect to the Euclidean norm) were determined for 'Y ~ 1. The averaged inner amplification factors 
and the (mrh-values corresponding with these matrices Q are listed in the Tables 2 and 3. Table 2 
shows that the initial and asymptotic amplification factors are respectively larger and smaller than 
those associated with PTIRK matrices, while Table 3 implies that for s = 8 block-diagonal matrices 
of the form (3.14) are much more stable than the PTIRK matrices. 

4. Step-para 

In method 
number of ste 

the iterates 1 
frontal meth< 
Miranker arn 
andAugusty 
step-parallel 
scheme (3.2: 
of the residt 
of R(Yn)· 1 

For n 

y:(O 
n 

For 

) 

F 

where N ' 
scheme ha 
allows us 

that is, as 

the outer 
write: 

For 

F 
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4. Step-parallel iteration 

In methods employing step-parallel iteration, the iteration procedure is concurrently applied at a 
number of step-points, that is, the iteration process at the point t 11 is already started without waiting until 
the iterates Y,~~\ at t 71 _ 1 have converged. Step-parallel methods and its various versions (also called 
frontal methods) have been discussed and analysed in a number of papers, among which the papers by 
Miranker and Liniger [42], Bellen et al. [3,4,6], Burrage [12], Gear and Xu Xuhai [18], Chartier [ l5j, 
and Augustyn and Uberhuber [2]. Further references can be found in [12]. In the following, we survey 
step-parallel methods developed at CWI. These methods can be seen as step-parallel versions of tht: 
scheme (3 .2). The "step-parallelization" of (3.2) consists of a modification of the predictor formula and 
of the residual function R. In order to specify this modified scheme, we write R(Y,1 , Yn-1) instead 
of R(Y;,). Then the step-parallel version of (3.2) is defined by 

For n =I to N 

Y. (.O,r) = p r;' Y(l,r) +(Pc;) I)Y(.1,r) 
n v 11-I n-1 

For _j = 1 to m 

y:CJ,O) = y(J-1,r) 
n n 

For v = I tor 

(I - B 0 hJn) (Y,[j,v) - YJj,v-I)) 

= -(I - A 0 hJn) (Yn(j,v-1) - Y,~j-1,r)) - R(Y,1(.J l,r), Y;;,:"{), 
either y~,v) = y;;~( + h(bT ('.<) I)F(YJJ,"l) 
or y(j,v) = y(j,rl) + (bTA-1 (>)I) (.Y,iU,u) - e (<) y;;_~})' 

n n- (4.1) 

where N denotes the number of integration steps. In the case of one inner iteration (r. = l ), this 
· · h · · y;(J,r) · d (J.r) · (4 l) scheme has been analysed in [28,29,53]. The couplmg between t e iterates n· a~ Yr.1 m · · 

allows us to start the iteration process at the point t 11 already after just one outer iteration at fn-1 • 

that is, as soon as Y,~~,;·) is computed, we can compute y;;2·;·) and Y;~l,r) concurrently. In this way, 

h · . t v(J,r) yCJ-l,r) yU-2,rl can all be computed concurrently. In fact. we may t e outer 1te1 a es .1. 1 , 2 , 3 ' · · · 

write: 

For j = 1 to rn 

For i = 1 to min{j, N} 
. . (0,r) ... (1,r) (P 7\ J)Y(l,r) If ·1, = .'J then Y; = P 0 Yi-I + Q:, 1-1 

y:U-i+t,o) = yCi-i,r) 
i, i 

For 11 = 1 tor 
lJ )(y(j-i+l,u) _ y(j-i+l,v-1)) 

(I-B@l,n 1 r ..... 
= -(I_ A® hJi) (Y,(J-i+l,v-1) _ Y,(j-i,r)) _ R(Y,(J-1,r) 1 Y;~~i+l,r)), (-L~) 
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where we assumed m ~ N and where we omitted the step-point formula. Hence, effectively, only N + m - 1 outer iterates have to be computed, instead of Nm outer iterates as required by (3.2). The sequential (or effective) number of outer iterations per step becomes mseq = ( m + N - 1 ) N-1 ~ mN-1+1. However, the step-parallel approach requires that the predictor formula needed to start the . d ffi . 1 " _.i; " .t t y(t,r) Th' . · l' iteration at tn 1s base on a su c1ent y swe i era e n- l . is requirement imp ies that we should perform sufficiently many inner iterations in the first outer iteration. The condition m ~ N imposed on (4.2) implies that we need N processors for a parallel implementation. In practice, the number of steps may be much larger than the number of processors available. This can be accounted for by dividing the integration interval in subintervals (windows) and by applying the integration process 
successively on these subintervals. For r = t, a convergence analysis of (4.2) and related versions can be found in [28,29,53). Here, we shall consider the case r ~ I. For simplicity, we only consider step-point formulas of the form y~,r) = ( eJ 0 I) Y~j,r). An elementary derivation reveals that for the usual test equation the iteration 
error c:W· 11) := yJj,v) - Yn satisfies the relation 

(4.3) 

where M is defined in (3.4). This leads to 

(4.4) 

or equivalently, 

C:(j+l) = MN,rC:(j), 

Mr 0 0 0 
c(j,r) 

1 LrMr Mr 0 0 c(j,r) 
c:(j) := 2 MN,r := L2Mr LrMr Mr 0 r (4.5) 

£(j,r) 
L3Mr L2Mr LrMr Mr 

r r 
N 

Evidently, we have convergence whenever the spectrum a(M) of M is within the unit circle. In Section 3 we already saw that this is precisely the convergence condition for the inner iteration process. However, since MN,r is defective for N > 1, the inner amplification factors may be large for small r. Proceeding as in Section 3, we define the inner amplification factors (cf. (3.8)) 

(4.6) 
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Table 4 
Inner amplification factors [p~), p~), p~), ... , p~00 l] for Radau IIA correctors 

B N s=4 r* s=8 r* 

PDIRK 2 [3.7, 2.9, 1.8, ... ' 0.52] 6 [21, 22, 18, ... ' 0.90] > 40 

3 [4.1, 3.4, 2.0, ... ' 0.52] 6 [23, 47, 48, ... ' 0.90] > 40 

4 [4.7, 4.0, 2.3, .. ., 0.52] 6 [25, 107, 128, ... ) 0.90] > 40 

PTIRK 2 [0.8, 0.7, 0.6, ... ) 0.50] [1.2, 1.0, 1.0, ... ' 0.86] 3 

3 [0.9, 0.8, 0.7, ... '0.50] [1.3, 1.1, LO, .. ., 0.86] 4 

4 [1.0, 0.8, 0.7, ... ) 0.50] 2 [LS, 1.2, 1.1, .. ., 0.86] 5 

(3.14), .4ij = o, "'(-;::::, 1 2 [3.6, L3, 0.9, .. ., 0.44] 3 [136, 4.4, 2.2, .. ., 0.64] 9 

3 [5.1, 1.4, 1.0, ... , 0.44] 3 [1352, 6.7, 2.8, .. ., 0.64] 9 

4 [6.6, 1.5, 1.0, .. ., 0.44] 4 [13432, 9.7, 3.5, ... , 0.64] 10 

where 

zr 0 0 0 

Krzr zr 0 0 

ZN,r(z) := K2zr r Krzr zr 0 Kr :=(I - zr)(I - zAr 1 ee~. 

K3zr K2zr Krzr zr 
r r 

The analogue of Table 2 where the inner amplification factors for N = 1 are listed, is given by Table 4 

where N = 2, 3, 4 (note that p~r) = p(r)). This table shows the same trends as Table 2, but much more 

pronounced. 

5. Waveform relaxation 

The derivation of waveform relaxation (WR) methods starts with representing the IVP (1.1) in the 

form 
dy d dt = <:f>(y, y), y(to) =Yo, y, <:/> E ~ , (5.1) 

where <:f>( u, v) is a splitting function satisfying <:f>(y, y) = f (y ). This splitting function is chosen such 
that the Jacobian matrix J* = o<:f>/ou has a simple structure, so that, given an approximation y(k-l) 
to the solution y of (5.1), a next approximation y(k) is more easily solved from the system 

d~~) = <:f>(y(k),y(k-1)), y(k),y(k-1),<:/> E ~d (5.2) 

than y is solved from (5.1). Here, k = 1, 2,. .. , q, and y(o) denotes an initial approximation to 
the solution of (5.1). The iteration process (5.2) is called continuous WR iteration with WR iterates 
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y(k). This approach was introduced by Lelarasmee (38] and Lelarasmee, Ruehli and Sangiovanni­
Vincentelli [39] in 1982 and since then has intensively been analysed and applied to IVPs (see, e.g., 
[37]). WR iteration has a lot of potential parallelism. For example, a popular choice for the splitting 
function cp is such that the matrix J* is a-by-a block-diagonal (block-Jacobi WR method). Then, each 
iteration of the WR method (5.2) requires the integration of a uncoupled IVP systems which can be 
done in parallel on er processors. For a detailed survey of the potential for parallelism of WR methods, 
we refer to the recent book of Burrage [12]. Here, we present a brief description of a WR approach 
based on RK methods and its relation with the step-parallel methods of the preceding section. 

Let us integrate the IVP for (5.2) numerically by the RK method ( 1.2). Then, we obtain the scheme 

Fork= 1 to q 

For n = 1 to N 

Y;,(k) = e @y.~~l + h(A@ I)cf'("Y,,(k), Y;,(A:-Il). 
(5.3) 

Here, y~1k), Y;,(k) and ii! are the analogues of Yn-1, Y,,. and F, respectively, occurring in (I .2). As 

soon as yJk) is computed, the step-point value y}ik) can be obtained by one of the following two 
formulas (cf. (2.3)) 

Y (k) = y(k) + h(bT@ I)F(Y.(k)) y(k) = y(k) + (bT A- 1 @I) (Y.(k) - e t'7' y(k) ) (5 4) 
n n-1 n ' n n-1 n '<>' n-1 · . · 

The scheme {(5.3), (5.4)} is called the discrete WR iteration process with (discrete) WR iterates Y;,(A:) 

and y~1k). Its stability and convergence properties has recently been investigated by Bellen, Jackiewicz 
and Zennaro [4,5] and by in 't Hout [21 ]. 

Observe that (5.3) has a substantial amount of parallelism, irrespective the structure of the split­
ting function ii!. It has a similar type of step-parallelism as (4.2), because for given A:, all iterates 
y 1(k), "Yi(k-l), y;Ck-2), ... can be computed in parallel (see also [5]). Hence, effectively, (5.3) does 
not require the computation of qN iterates, but only of N + q - 1 iterates. 

Finally, we remark that the nonlinear system for Y;,(k) in (5.3) is of the same type as the system 
(1.2), so that it can be solved by modified Newton using the iterative linear system solver as described 
in Section 3. First results are published in [26]. Extensions to general implicit differential equations 
(including DAEs) are subject of current research [32]. 
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