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1 Divergences and divergence statistics

Let M (k) be the simplex of all discrete probability distributions P = (pj : 1 � j � k)
and

P̂n =

�
p̂nj

�
=
Xnj

n
: 1 � j � k

�
(1)

a statistic based on the multinomially distributed observations

Xn = (Xnj : 1 � j � k) � Multk(n; Pn)

for
Pn = (pnj : 1 � j � k) 2M (k) ; n = 1; 2; : : : (2)

If the distributions Pn are unknown, then it is often important to decide whether the
uniform hypothesis

H : Pn = U
�
= (1=k : 1 � j � k) 2M (k) ; n = 1; 2; : : : (3)

holds or not. The decision is usually based on the value of one of the �-divergence statistics

T� = T�;n = 2nD�(P̂n; U) (4)

where on the right is the �-divergence of the empirical distribution P̂n and the hypothetical
distribution U corresponding to a convex function �(t); t > 0 with � (1) = 0 and with
� (0) de�ned as the limit for t # 0. For arbitrary distributions P = (pj : 1 � j � k) and
Q = (qj : 1 � j � k) 2 M (k) the �-divergence D�(P;Q) � 0 is de�ned by the formula

D�(P;Q) =

kX
j=1

qj �

�
pj
qj

�
(5)

(for details about the de�nition (5) and properties of the �-divergences, see [9] or [12]).

Next follow several simple but important examples from the class of f�-divergences
Df�(P;Q) de�ned for all real � 2 R in accordance with (5) by the convex functions � = f�
given in the domain t > 0 by the formula

f�(t) =
j � j

�(�� 1)
�
2��1(t+ 1)� (t1=� + 1)�

�
when � 6= 0; 1 (6)
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and by the corresponding limits

f0(t) =j t� 1 j =2; (7)

f1(t) = t log t+ (t+ 1) log
2

t+ 1
; log = loge : (8)

The subclass of these functions for nonnegative parameters � � 0 was introduced in [10]
where it was proved that all corresponding f�-divergences de�ne metrics (Df�(P;Q))

�(�)

on the space of probability distributions M (k) for appropriate powers �(�) > 0 (in fact,
the f�-divergences were introduced and their metricity was proved for the probability
measures on arbitrary measurable space).

Example 1. By (6),

f�1(t) =
(t� 1)2

2(t+ 1)
(9)

The f�1-divergence is called LeCam divergence because it �rst appeared in [8]. By (5),

LC (P;Q) =
1

2

kX
j=1

qj

�
pj
qj
� 1
�2

pj
qj
+ 1

=
1

2

kX
j=1

(pj�qj )2

pj+qj
: (10)

The metricity of the square root (LC (P;Q))1=2 was proved in [7].

Example 2. The function 2f0(t) = jt� 1j (cf. (7)) de�nes the variational distance

V (P;Q) =
kX
j=1

qj

����pjqj � 1
���� = kX

j=1

jpj�qjj (cf. (5)). (11)

which plays an important role in information theory and mathematical statistics (cf. [1]
or [3]).

Example 3. The metricity of the square root (Df1(P;Q))
1=2 for the f1-divergence given

by the function (8) was established independently in [10] and [2]. In [4] this metric was
further investigated and was shown to be of the negative type, which means that it admits
an isometric embedding into a Hilbert space. Authors of [4] also coined the name Jensen
Shannon divergence for Df1(P;Q). By (5) and (8),

JS (P;Q) =

kX
j=1

qj

 
pj
qj
log

pj
qj
+

�
pj
qj
+ 1

�
log

2
pj
qj
+ 1

!
(12)

=

kX
j=1

�
pj log

2pj
pj + qj

+ qj log
2qj

pj + qj

�
:

Example 4. By (6),
f2(t) = (1�

p
t)2:
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The function 2f2(t) de�nes so-called Hellinger divergence taking in accordance with (5)

the form

H(P;Q) = 2
kX
j=1

�p
pj �

p
qj
�2
: (13)

We shall refer to it later.

In (5) is often taken the convex function � which is one of the power functions �� of
order � 2 R given in the domain t > 0 by the formula

��(t) =
t� � �(t� 1)� 1

�(�� 1) when �(�� 1) 6= 0 (14)

and by the corresponding limits

�0(t) = � ln t+ t� 1 and �1(t) = t ln t� t+ 1: (15)

The �-divergences
D�(P;Q)

�
= D��(P;Q); � 2 R (16)

based on (14) and (15) are usually referred to as power divergences of orders �: For
details about the properties of power divergences, see [9] or [12]. Next we mention the
best known members of the family of statistics (4), with a reference to the skew symmetry
D�(P;Q) = D1��(Q;P ) of the power divergences (16).

Example 5. The quadratic divergence (also called �2-divergence)

D2(P;Q) = D�1(Q;P ) =
1

2

kX
j=1

(pj � qj)2
qj

(17)

leads to the well known Pearson and Neyman statistics

T2 = T2;n =
kX
j=1

(Xnj � nqj)2
nqj

and T�1 = T�1;n =
kX
j=1

(Xnj � nqj)2
Xnj

:

The logarithmic divergence

D1(P;Q) = D0(Q;P ) =
kX
j=1

pj ln
pj
qj

(18)

leads to the log-likelihood ratio and reversed log-likelihood ratio statistics

T1 = T1;n = 2
kX
j=1

Xnj ln
Xnj

nqj
and T0 = T0;n = 2nqj

kX
j=1

ln
nqj
Xnj

: (19)

The symmetric Hellinger divergence D1=2(P;Q) = D1=2(Q;P ) = H(P;Q) given in (13)
leads to the Freeman�Tukey statistic

T1=2 = T1=2;n = 4

kX
j=1

�
X
1=2
nj � (nqj)

1=2
�2
: (20)
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Remark 6. Metric divergences D�(P;Q) must be symmetric in P;Q. The symmetry
condition is

t�(1=t) = �(t); t > 0 (cf. [13] or [9]). (21)

The metric divergences Df�(P;Q) from Examples 1 - 4 can be obtained by the sym-
metrization of some �-divergences D�(P;Q) based on the formulas

D�(P;Q) = Df (1)(P; (P +Q)=2) and D�(P;Q) = Df (2)(Q; (P +Q)=2) (22)

for the convex functions

f (1)(u) = (2� u)�
�

u

2� u

�
and f (2)(u) = u�

�
2� u
u

�
; 0 < u < 2 (23)

(cf. (9) in [13]). This leads for every convex �(t); t > 0 to the inverse formulas

D�(P; (P +Q)=2) = D�(1)(P;Q) and D�(Q; (P +Q)=2) = D�(2)(P;Q)

where

�(1)(t) =
1 + t

2
�

�
2t

1 + t

�
and �(2)(t) =

1 + t

2
�

�
2

1 + t

�
; t > 0 (24)

are the convex functions functions studied previously in [13] and [14]. As a result we get
the symmetrized version of arbitrary �-divergence

D�(P; (P +Q)=2) +D�(Q; (P +Q)=2) = D�(1+2)(P;Q) (25)

for the convex function

�(1+2)(t) = �(1)(t) + �(2)(t), t > 0: (26)

Since it holds
t�(1)(1=t) = �(2)(t) and t�(2)(1=t) = �(1)(t); (27)

the symmetry condition (21) holds for �(1+2)(t) as it is expected.

Example 7. By de�nition, for the total variation f0 = f
(1)
0 = f

(2)
0 so that the symmetrized

total variation is the total variation itself. For the symmetric Hellinger divergence the
corresponding power function �1=2 leads to new symmetrized function �(1+2)1=2 with the

corresponding �(1+2)1=2 -divergence di¤erent from the Hellinger divergence. Therefore the
symmetrized Hellinger divergence is not the Hellinger divergence itself. For the quadratic
power function �2 of (14) it holds �

(1+2)
2 (t) = f�1(t) where f�1(t) was de�ned by (9).

Therefore the LeCam divergence is nothing but the symmetrized Pearson divergence.

Remark 8. If the original �-divergence is symmetric then its symmetrized version may
be identical (e.g. the total variation) or not identical (e.g. the Hellinger divergence).
Similarly, the symmetrization may preserve an already symmetrized divergence (see again
the total variation) or it may change it (see e.g. the symmetrization of the symmetrized
Pearson divergence).
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2 Consistency of �-divergence statistics

Let us consider testing of the hypothesis H of (3) by means of some power divergence
statistic D�(P̂n; U). This testing is based on the assumption that the alternative to H
is detectable by D�(P̂n; U) in the sense that the values of the statistic signi�cantly di¤er
when H is true from the case where the alternative characterized by (2) is true. For
brevity we denote this alternative by the symbol A (we say "under H" when H is true
and "under A" in the opposite case). If the alternative A and the hypothesis H are to be
logically exclusive then at least one of the distributions Pn in (2) must be nonuniform.

If D�(P̂n; U) approximates D� (Pn; U) well for large n in the sense that the di¤erence
D�(P̂n; U)�D� (Pn; U) tends stochastically to zero, then the above mentioned detectabil-
ity is achieved if under A the nonnegative sequence D� (Pn; U) has a positive limit since
under H this sequence is identically 0. This motivates the following de�nition. In this
de�nition, and in the rest of the paper, we admit that k = kn depends on n in a non-
decreasing manner with kn �!1 but the subscript n is dropped in the sequel.

Note that unless otherwise explicitly stated, the convergences are in this paper con-
sidered for n �!1.

De�nition 9. We say that the statistic D�(P̂n; U) is consistent if the alternative is de-
tectable in the sense that there exists 0 < � <1 such that

D�(Pn; U) �! � under A (28)

and

D�(P̂n; U)
p�! 0 under H, (29)

D�(P̂n; U)
p�! � under A: (30)

Note that the test rejectingH when Tn = 2nD�(P̂n; U) exceeds a critical value xn� > 0
is consistent if the statistic D�(P̂n; U) is consistent in the sense of the present de�nition.
Indeed, (29) implies that the signi�cance level (probability of the wrong decision under
H)

s = P(Tn > xn j H) = P
�
D�(P̂n; U) >

xn
2n

���H� (31)

preserves a �xed level between 0 and 1 only if xn�=n �! 0: However, then (30) implies
that the test power (probability of the correct decision under A)

�n = P(Tn > xn j A) = P
�
D�(P̂n; U) >

xn
2n

���A� (32)

tends to 1 which means the consistency of the test.

The importance of consistency of the power divergence statistics for conclusions about
their relative Bahadur e¢ ciencies was investigated in [6]. The present consistency de�n-
ition is strictly weaker than the one considered in [6] and [11] (dealing only with � = 1

and � = 2) where (29) was replaced by E
�
D�

�
P̂n; U

�
j H
�
! 0. To this end we show

in the next example that this stronger consistency holds for � � 3 only if
n

k2
!1: (33)
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while later we prove that the present weaker consistency holds for all � > 2 already if
n=(k log k)!1:

Example 10. For � = 3 we get

ED3

�
P̂n; U

�
=
k2E

hPk
j=1 p̂

3
j

i
� 1

6
(34)

where
p̂3j = p

3
nj + 3p

2
nj (p̂j � pnj)� 3pj (p̂j � pnj)

2 + (p̂j � pnj)3 : (35)

Therefore

ED3

�
P̂n; U

�
=
k2p3nj � 1

6
+
k2

6

kX
j=1

 
3E
�
(p̂j � pnj)2

�
k

+ E
�
(p̂j � pnj)3

�!
:

Since pnj = 1=k under H, we get

E
�
D3

�
P̂n; U

�
j H
�
=
k2

6

kX
j=1

�
3
(1� 1=k) =k

nk
+

1
k
(1� 1=k) (1� 2=k)

n

�
(36)

=
k2

6n

kX
j=1

�
1

k
� 1

k3

�
=
k2 � 1
6n

:

Hence E
�
D3(P̂n; U) j H

�
tends to zero only if (33) holds.

In Section 3 we need the following auxiliary result.

Lemma 11. For 0 � x < 1; 0 � y � 1 and 1 < � < 2 it holds

jy� � x�j � �x��1 jy � xj+ (�� 1)x��2 (y � x)2 : (37)

Proof. Since (�� 1)x��2 (y � x)2 is nonnegative, it su¢ ces to prove

y� � x� + �x��1 (y � x) (38)

and
y� � x� + �x��1 (y � x) + (�� 1)x��2 (y � x)2 : (39)

But (38) is evident since the function y ! y� is convex. We shall prove that the
function

f (y) = y� �
�
x� + �x��1 (y � x) + (�� 1)x��2 (y � x)2

�
(40)

is non-positive on [0; 1]. First we observe that f(0) = f(1) = 0. By di¤erentiating f (y)
we get

f 0 (y) = �y��1�
�
�x��1+(�� 1)x��22 (y�x)

�
= �y��1+(�� 2)x��1+(2�2�)x��2y

(41)
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so that f 0 (x) = 0: Di¤erentiating once more we get

f 00 (y) = � (�� 1) y��2 + (2� 2�)x��2 = (�� 1)
�
�y��2 � 2x��2

�
: (42)

Thus f 00(y) > 0 for y < x�
�
= (�=2)

1
2�� x and f 00(y) < 0 for y > x�: Since x� < x and

f(y) is concave on [x�; 1], it is maximized on this interval at y = x where f(x) = 0.
Thus f (y) � 0 on this interval and in particular f(x�) � 0. This together with f(0) = 0
and the convexity of f (y) on the interval [0; x�] implies f (y) � 0 on this interval. This
completes the proof of the non-positivity, i.e. the proof of (39).

The main results of this paper are two general consistency theorems. One of them,
formulated for �-divergences, is given in this section. The other one, formulated for power
divergences, is given in the next section. We start with some simple particular results
useful in the proofs of general results, which however might be also of independent interest.

Theorem 12. If the detectability condition (28) holds and

n

k
�!1 (43)

then the Pearson divergence D2(P̂n; U) is consistent.

Proof. Since

E(p̂j � pnj)2 =
pnj (1� pnj)

n
� pnj

n
; 1 � j � k (44)

it is obvious that

ED2

�
P̂n; Pn

�
=

kX
j=1

E (p̂j � pnj)2

pnj
�

kX
j=1

1

n
=
k

n
: (45)

Theorem 13. If the detectability conditions (28) and (43) hold then the variational dis-
tance V (P̂n; U) is consistent.

Proof. Variational distance is a metric so that���V (P̂n; U)� V (Pn; U)��� � V (P̂n; Pn): (46)

By the Cauchy�Schwarz inequality,

V (P̂n; Pn) =

kX
j=1

���� p̂jpj � 1
���� pj = kX

j=1

���� p̂jpj � 1
���� p1=2j p

1=2
j (47)

�
 

kX
j=1

���� p̂jpj � 1
����2 pj

!1=2
�
 

kX
j=1

pj

!1=2
=
�
D2

�
P̂n; Pn

��1=2
:
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Hence

EV (P̂n; Pn) �
�
ED2

�
P̂n; Pn

��1=2
�
�
k

n

�1=2
: (48)

As well known, the right derivative �0+ of the convex function � exists and is non-
decreasing. De�ne

�0+ (1) = lim
t!1

�0+ (t) : (49)

Remark 14. It is easy to verify that a continuous convex function � : [0;1[ ! R is
uniformly continuous if and only if �0+ (1) < 1: Notice that the condition �(0) +
�0+ (1) < 1 is weaker than �(0) + �� (0) < 1 where �� (0) is continuous extension
of �� (t) = t�(1=t) to t = 0 because for every 0 < t < 1

��(t)� t
1� t � �0+ (1=t) � �0+ (1) : (50)

As proved in [13] (see also [9]), �-divergences take on values between 0 and �(0) + �� (0).
Hence the �-divergences with uniformly continuous functions � are bounded but in the
reversed direction this statement is not in general true. It is true e.g. if �(0) < 0 and the
symmetry (21) takes place.

Theorem 15. Let � : [0;1[ ! R be uniformly continuous. If the conditions (28) and
43) hold then D�(P̂n; U) is consistent.

Proof. First assume that
���0+ (0)�� <1: Then by convexity of � we have �0+ (0) � �0 (t) �

�0+ (1) for all x: De�ne � = max
����0+ (0)�� ; ���0+ (1)��	 : Then � is Lipschitz with the

Lipschitz constant � , i.e. j� (t)� � (s)j � � jt� sj for all t; s > 0: Then���D�(P̂n; U)�D�(Pn; U)
��� = �����

kX
j=1

1

k
�

�
p̂j
1=k

�
�

kX
j=1

1

k
�

�
pj
1=k

������ (51)

=
kX
j=1

1

k

������ p̂j
1=k

�
� �

�
pj
1=k

�����
�

kX
j=1

�

k

���� p̂j1=k � pj
1=k

����
= �V (P̂n; Pn):

Therefore

E
���D�(P̂n; U)�D�(Pn; U)

��� � �EV (P̂n; Pn) � ��k
n

�1=2
: (52)

If �0+ (0) = �1 choose some t0 > 0 and de�ne

�� (t) =

�
� (t) for t � t0;

� (t0) + �
0
+ (t0) (t� t0) for t < t0:

(53)

Then
0 � � (t)� �� (t) � � (0)� �� (0) (54)
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and
0 � D� (P;Q)�D�� (P;Q) � � (0)� �� (0) : (55)

The function �� is Lipschitz with the Lipschitz constant max
����0+ (x0)�� ; �0+ (1)	 : This

implies that

E
���D��(P̂n; U)�D��(Pn; U)

��� � max����0+ (t0)�� ; �0+ (1)	�kn
�1=2

: (56)

Therefore

E
���D�(P̂n; U)�D�(Pn; U)

��� � 2 (� (0)� �� (0)) + max����0+ (t0)�� ; �0+ (1)	�kn
�1=2

(57)

and
lim sup
n!1

E
���D�(P̂n; U)�D�(Pn; U)

��� � 2 (� (0)� �� (0)) : (58)

This holds for all t0 > 0: The result follows because �� (0)! � (0) for t0 ! 0:

The functions f�(t) de�ned by (6) - (8) are continuous in 0 � t <1 and di¤erentiable
at t > 0 di¤erent from 1 with the derivatives

f
0

�(t) =

8>><>>:
t�1
2jt�1j ; when � = 0 ;

j�j
�(��1)

�
2��1 � (t1=�+1)��1

t1�1=�

�
; when � 6= 0; 1 ;

log 2� log t+1
t
; when � = 1:

(59)

By the symmetry condition (21),

f�(t) = tf�(1=t); t > 0: (60)

Thus at the di¤erentiability points

f
0

�(t) = f�(1=t)�
f
0
�(1=t)

t
: (61)

Together with the above given formulas for f
0
�(t); this implies

f�(0) =

8><>:
f
0
�(1) = 1

2
; when � = 0 ;

j�j
�
� 2��1�1

��1 ; when � 6= 0; 1 ;
log 2; when � = 1:

(62)

Hence we see from Remark 14 that all functions f�(t) de�ned by (6)�(8) are uniformly
continuous. Hence all f�-divergence statistics are consistent if n=k ! 1: The above
directly studied total variation statistic as well as the Le Cam, the Jensen Shannon and
the Hellinger statistics are consistent if n=k ! 1: Similarly one can prove that all �-
divergence statistics de�ned by the symmetrized �-divergences are consistent if n=k !1:
However, the above studied Pearson statistic as well as the important log-likelihood statis-
tics are not in this class, and thus their consistency is not covered by the previous general
theorem. The general theorem presented in Section 3 is thus an important complement
of what is established in this section.
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3 Consistency of power divergence statistics

In this section we study the consistency of the class of power divergence statisticsD�(P̂n; U);
� 2 R; � 6= 0: We consider the corresponding versions of detectability and consistency,

D�(Pn; U) �! �� under A (63)

and

D�(P̂n; U)
p�! 0 under H, (64)

D�(P̂n; U)
p�! �� under A: (65)

The main result of the paper is the following theorem.

Theorem 16. If detectability condition (63) holds then D�(P̂n; U) is consistent provided

� < 0 and
n

k2�1=� log k
�!1; (66)

or

0 < � � 2 and
n

k
�!1; (67)

or

� > 2 and
n

k log k
�!1: (68)

Proof. Let � 2 R be arbitrary �xed. Under H we have D�(Pn; U) = D�(U;U) = 0: Hence
it su¢ ces to prove

j��;nj
p�! 0 under both H and A (69)

for ��;n = D�(P̂n; U)�D�(Pn; U). For simplicity we skip the subscript n in the symbols
P̂n; Pn, i.e. we substitute

P̂n = P̂ = (p̂j : 1 � j � k); Pn = P = (pj : 1 � j � k): (70)

This leads to the simpli�ed formula ��;n = D�(P̂ ; U) � D�(P;U): We can without loss
of generality assume that D�(P;U) is constant not only under H (where the constant
is automatically 0) but also under A (where the assumed detectability implies only the
convergence D�(P;U) �! ��). In other words, this assumption says that for all n =
1; 2; :::

�� = D�(P;U) =

P
1
k

�
pj
1=k

��
� 1

� (�� 1) =
1

�(�� 1)

 
k��1

kX
j=1

p�j � 1
!

(71)

under both H and A: Obviously, �� = 0 under H because then P = U �
= (1=k; ::: ; 1=k)

and 0 < �� <1 under A. Therefore it su¢ ces to prove (69) for

��;n = D�(P̂ ; U)��� with �� given by (71). (72)

If � 6= 0; 1 then (71) leads to the useful formula
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kX
j=1

p�j = [��� (�� 1) + 1] k1��: (73)

In the proof we treat the following cases separately :

i : � < 0; ii : 0 < � < 1; iii : � = 1; iv : 1 < � � 2; and v : � > 2:

Case i: � < 0: The distribution of the random variable Xj = Xnj appearing in
(1) is approximately Poisson, Po (npj) ; so that

P (p̂j � bpj) = P (Xj � bnpj) � expf�D1 (Po (bnpj) ; Po (npj))g:

But

D1 (Po (bnpj) ; Po (npj)) = bnpj log
bnpj
npj

+ npj � bnpj = n�1 (b) pj

for �1 de�ned in (15). Therefore the probability

�n
�
= P ([jEnj) (74)

of the union of events Enj = fp̂j � bpjg is upperbounded by

kX
j=1

expf�n�1 (b) pjg � k expf�n�1 (b) pming

where, by (73),

pmin �
�
(��� (�� 1) + 1) k1��

�1=�
= [��� (�� 1) + 1]1=� k(1��)=�: (75)

Consequently,

�n � k exp
n
�n�1 (b) (��� (�� 1) + 1)1=� k(1��)=�

o
= k exp

n
� n

k1�1=�
�1 (b) [��� (�� 1) + 1]1=�

o
= exp

�
log k

�
1� n

k1�1=� log k
�1 (b) [��� (�� 1) + 1]1=�

��
:

From here we see that assumption (66) implies the convergence �n �! 0. This means
that it su¢ ces to prove (69) under the condition that the random events [jEnj do not
take place, i.e. that

p̂j > bpj for all 1 � j � k: (76)

This is done in the next paragraph.

The second order Taylor expansion of y� gives

y� = x� + �x��1 (y � x) + � (�� 1) ���2 (y � x)2 =2 (77)

11



for � between x and y: Therefore

jy� � x�j � �x��1 jy � xj+ � (�� 1) ���2 (y � x)2 =2 (78)

� �x��1 jy � xj+ � (�� 1)max
�
x��2; y��2

	
(y � x)2 =2:

First we note that x! x� is convex so that y� � x� + �x��1 (y � x) : Thus we get

D�

�
P̂ ; U

�
=

P
1
k

��
p̂j
1=k

��
� 1
�

� (�� 1) =
1

� (�� 1)

�X p̂�j
k1��

� 1
�

(79)

� 1

� (�� 1)

 X p�j + �p
��1
j (p̂j � pj)
k1��

� 1
!

= �� +

P
p��1j (p̂j � pj)
(�� 1) k1�� (cf. (73)):

Under (76),��p̂�j � p�j �� � �p��1j jp̂j � pjj+ � (�� 1)max
�
p��2j ; p̂��2j

	
(p̂j � pj)2 (80)

� �p��1j jp̂j � pjj+ � (�� 1) b��2p��2j (p̂j � pj)2 :

By inserting this in (72), using the Schwarz inequality and applying (73) we obtain

j��;nj �
P
p��1j jp̂j � pj
(�� 1) k1�� +

b��2
P
p��2j (p̂j � pj)2

� (�� 1) k1�� (81)

�

�P�
p
�=2
j

�2�1=2 �P
p��2j (p̂j � pj)2

�1=2
(�� 1) k1�� +

b��2
P
p��2j (p̂j � pj)2

� (�� 1) k1��

=
[� (�� 1)�� + 1]

1=2

(�� 1)

 P
p��2j (p̂j � p)2

k1��

!1=2
+

b��2

� (�� 1)

P
p��2j (p̂j � pj)2

k1��
:

Since

E
kX
j=1

p��2j (p̂j � pj)2 =
P
p��1j (1� pj)

n
�
P
p��1j

n
; (82)

we see that under (76) the desired relation (69) holds ifP
p��1j

k1��n
�! 0 under both H and A (83)

follows from assumption (66). HereX
p��1j � kp��1min (84)

� k
�
[�� (�� 1) + 1]1=� k(1��)=�

���1
(cf. (75))

= [�� (�� 1) + 1](��1)=� k1�(��1)2=�:

12



ThereforeP
p��1j

k1��n
� [�� (�� 1) + 1](��1)=� k1�(��1)2=�

k1��n
= [�� (�� 1) + 1](��1)=� k

2�1=�

n
: (85)

Since the right hand side tends to zero under (66), we see that (83) is valid.

Case ii: 0 < � < 1: It is easy to check that in this case the function �� (t) given
in (14) is uniformly continuous so that the desired consistency follows from Theorem 15.

Case iii: � = 1: This case was treated in [6]. For the sake of completeness we
repeat the argument here. By (72),

�1;n =
kX
j=1

(p̂j log p̂j � pj log pj) =
kX
j=1

p̂j log
p̂j
pj
�

kX
j=1

(p̂j � pj) log
1

pj
(86)

so that

j�1;nj � D1(P̂n; Pn) +

�����
kX
j=1

(p̂j � pj) log
1

pj

����� : (87)

Since D1(P̂n; Pn) � 2D2(P̂n; Pn); it holds

E j�1;nj � 2ED2(P̂n; Pn) + E

�����
kX
j=1

(p̂j � pj) log
1

pj

����� : (88)

Let Xj = Xnj be the observations introduced in (1) and Cov (Xi; Xj) and Var (Xi) their
covariances and variances. Then, using Jensen�s inequality, the last term in (88) can be
bounded as follows:

E

�����
kX
j=1

(p̂j � pj) log
1

pj

����� �
0@E" kX

j=1

(p̂j � pj) log
1

pj

#21A1=2

=

 
kX

i;j=1

log pj log piCov (p̂i; p̂j)

!1=2

=

 
kX

i;j=1

log pj log pi
Cov (n̂i; n̂j)

n2

!1=2
: (89)

Further,

kX
i;j=1

log pj log pi
Cov (n̂i; n̂j)

n2
=

kX
i=1

(log pi)
2 Var (n̂i)

n2
+
X
i6=j

log pj log pi
Cov (n̂i; n̂j)

n2

�
kX
j=1

(log pj)
2 pj
n
+
X
i6=j

log pj log pi
npipj
n2

=
1

n

kX
j=1

p2i log pj +
1

n

 
kX
j=1

pj log pj

!2
: (90)

13



The function x ! x ln2 x is concave in the interval [0; e�1] and convex in the inter-
val [e�1; 1] : Therefore we we can apply the method of [5, Theorem 3.1] to verify thatPk

i=1 pi (ln pi)
2 attains its maximum for a mixture of uniform distributions on l and l� 1

points for some l � k: For l � 2 we have
kX
i=1

pi log
2 pj �

lX
i=1

1

l � 1 ln
2

�
1

l

�
=
l log2 l

l � 1 � 2 log2 k: (91)

Inequality 91 trivially holds for l = 1: The sum
Pk

i=1 pi log pj equals minus the entropy,
which has maximum log k: By combining (88), (89) and (90) we get

E j�1;nj �
2k

n
+

�
3 log2 k

n

�1=2
: (92)

Under assumptions (67) the right hand side tends to zero so that the desired relation (69)
holds.

Case iv: 1 < � � 2: Here we get from (72)

��;n =
k��1

� (�� 1)

kX
j=1

(p̂�j � p�j ) (93)

so that Lemma 11 implies

j��;nj �
k��1

� (�� 1)

kX
j=1

�
�p��1j jp̂j � pjj+ (�� 1) p��2j (p̂j � pj)2

�
(94)

�

�P�
p
�=2
j

�2�1=2 �P
p��2j (p̂j � p)2

�1=2
(�� 1) k1�� +

k��1

�

kX
j=1

p��2j (p̂j � pj)2 :

Employing the expectation formula (82) we see that under condition (76) the desired
relation (69) holds if (83) follows from assumptions (67). To prove the latter take into
account that the function x! x��1 is concave and thus the Jensen inequality implies

kX
j=1

p��1j � k
 

kX
j=1

pj
k

!��1
= k2��: (95)

Therefore P
p��1j

k1��n
� k2��

k1��n
=
k

n
: (96)

so that (67) implies (83).

Case v: � > 2: Here ��;n is given by (93) as in the Case iv. Similarly as in (77),
we use the Taylor expansion

p̂�j = p
�
j + � p

��1
j (p̂j � pj) +

�(�� 1)
2

���2j (p̂j � pj)2 (97)

14



where �j is between pj and p̂j: We need a highly probable upper bound on p̂j. For this
choose some number b > 1 and consider the random event

Enj(b) = fp̂j � bmax fpj; 1=kgg:

We shall prove that under assumptions (68)

�n(b)
�
= P ([jEnj(b)) �! 0: (98)

Obviously,

�n(b) �
X
j

P (p̂j � bmax fpj; 1=kg)

�
X
j

expf�D1 (Po (bmax fnpj; n=kg) ; Po (npj))g

=
X
j

exp f�D1 (Po (bn=k) ; Po (n=k))g

= k exp

�
�
�
bn=k log

bn=k

n=k
+ n=k � bn=k

��
= k exp

�
�n�1 (b)

k

�
= k1�n�1(b)=(k log k) (99)

for the function �1 (b) > 0 introduced in (15). Assumption (68) implies that the exponent
in (99) tends to � 1 so that (98) holds. Therefore it su¢ ces to prove (69) under the
condition that the random events [jEn;j(b) fail to take place, i.e. that

p̂j > bmax fpj; 1=kg for all 1 � j � k: (100)

This is done in the next paragraph.

Under (100) it holds �j � fbpj; b=kg and, consequently,

���2j � (max fbpj; b=kg)��2 � b��2p��2j +
b��2

k��2
: (101)

However, (97) together with (101) implies

��p̂�j � p�j �� � � p��1j jp̂j � pjj+
�(�� 1)b��2

2

�
p��2j +

1

k��2

�
(p̂j � pj)2: (102)

Hence, under (100) ��;n is bounded above by

k��1

� (�� 1)

nX
j=1

�
� p��1j jp̂j � pjj+

�(�� 1)b��2
2

�
p��2j +

1

k��2

�
(p̂j � pj)2

�
: (103)
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Using Jensen�s inequality and the expectation bound (82), the mean value of (103) can
be upperbounded by

[� (�� 1)� + 1]1=2

� (�� 1)

 P
p��1j

k1��n

!1=2
+
b��2k��1

2

kX
j=1

�
p��2j +

1

k��2

�
E
�
(p̂j � pj)2

�
� [� (�� 1)� + 1]1=2

� (�� 1)

 P
p��1j

k1��n

!1=2
+
b��2k��1

2

kX
j=1

�
p��2j +

1

k��2

�
pj
n

=
[� (�� 1)� + 1]1=2

� (�� 1)

 P
p��1j

k1��n

!1=2
+
b��2

2

k��1
Pk

j=1 p
��1
j

n
+
b��2k

2n
:

We see that under (76) the desired relation (69) holds if (83) holds under assumption
(68). By Schwarz inequality and (75),

kX
j=1

p��1j =
kX
j=1

pj
�
p��1j

���2
��1 �

 
kX
j=1

pjp
��1
j

!��2
��1

(104)

=

 
kX
j=1

p�j

!��2
��1

�
�
� (�� 1)� + 1

k��1

���2
��1

=
(� (�� 1)� + 1)

��2
��1

k��2

so that the validity of (83) under (68) is obvious and the proof is complete.
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