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INVARIANCE PRINCIPLE FOR ASSOCIATED RANDOM FIELDS• 

A. V. Bulinski (Moscow, Russia.) and M. S. Keane (Amsterdam, The Netherlands) UDC 519.2 

In 1984, C. M. Newman posed the problem of proving the invariance principle in distribution for associated random 
fields(i.e .• fields satisfying the so-caUed FKG-inequalities) X = {Xi, j e zd} when d ~ 3. The solution of this 
problem for wide-sense stationary associated random fields is obtained here under slightly more restrictive conditions 
than those used by C. M. Newman and A. L. Wright for the strictly stationary case where d = 1 and d = 2. 

1. Introduction and the Maiu Result 

The concept of association or positive dependence is widely used at presenL. This concept arose independently in 
reliability theory and statistical physics, where one prefers to say that the r. v .'s satisfy FKG-inequalities. Recall that 
a. finite collection of real-valued r. v. 's Y1 ••••• Yn is called associated if 

cov(f(Y1 ..... )~1).g(Y1, ... , Yn)) '2'. 0 

for any coordinatewise nondecrea.sing functions f. g : R" - R, whenever the covariance exists. An infinite family 
of r.v.'s is associated if every finite subfamily has this property. Note that any family of independent r.v.'s is always 
associated. The main advantage of dealing with positively dependent r.v. 's is not only the possibility of studying 
interesting models describing random fields which need not possess any mixing properties, but also thP. simplicity of 
conditions which guarantee the validity of many classical results of probability theory. One can refer in this vein to the 
beautiful CLT established by Newman (12J (see also [13, 5] for references therein). 

In 1984, Newman [13, p. 138] posed the problem of proving the invariance principle in distribution (or FCLT) for 
strictly stationary associated random fields X = {Xi, j E zd} when d ~ 3. As far as we know, no progress was 
achieved in this direction. The solution of this problem is obtained in the present pa.per for wide-sense stationary 
associated random fields under slightly more restrictive. conditions than were used by Newman and Wright (14] for the 
strictly stationary case when d = l and d = 2. For this purpose we establish a new ma.xima.1 inequality and also prove 
the generalization of the Cox-Grimmett CLT [9]. We also mention in passing the Birkel [l] result for d = l in the 
nonstationary case under uniform integrability condition for squares of certain sums(see also (2, 8] and [10] for further 
development in the cased= I). Scaling limits for a.5sociated random measures are studied in [7]. 

Without loss of generality, we ran assume that EXj = 0 for all j. Define in the Skorokhod space D([O, ljc:l) the 
partial sum processes 

[nti) [nt.i} 

Wn(t) = 11-d/2 L ... L Xj, n EN, 
j 1=l j4:l 

where t = (t1, ... , td) E (0. l]d, (i1 ... .. jd) E Nd, and [· J is the integer-part function. 
Using the well-known Newman inequality (see the Ap1>endix) for joint characteristic functions of associated r.v. 's, 

it is not difficult( see (12]) to prove, in the stationary case. for any d ~ 1. the weak convergence of finite-dimensional 
distributions of Wn ( ·) to the corresponding ones of o-W( ·) as n - oo, provided that 
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HP.re W(.) stands for a standard d-parameter Wiener process {or Brownian sheet), i.e., mean zero Gaussian process 
with 

d 

cov(W(t), W(t')) =IT min{tki t~} 
k=I 

fort= (L 1 ••••• lJ), t'::;;: (t11 ••••• l~) E [O,oo)d. 
The case (f = O means that Xj = O a.s. for all j. So we exclude this trivial case. Define the Cox-Grimmett [9] 

coefficient 

u( m) =sup [ cov(X;, Xq ), 
J q: llg-Jll?:m 

where llall = max1<l:<d lakl for a= (a1 .... , ad) E Rd. 
Now we can state our main result. 

THEOREM. Let X = { Xi. j E z.t} be an associated wide-sense stationary random field. Let 

Then the FCLT is valid. Le-., 

Ms= sup E(Xj )s < oo for some s > 2 
j 

u(m) = O(m- 11 ) for some v > 0 (as m- oo). 

Wn(·) l2.. irW(·) in D([O, l]d) · as n-+ oo. 

Here (J' is given by { l) and a.s usual -13._ denotes converge-nee in distribution. 

(2) 

(4) 

(5) 

Remark 1. This statement is valid for all d ~ 1. Note also that the summability condition (1) implies u(m) - U 
as m _,, oo. 

Proof. To establish (5), we have to prove that the finite-dimensional distributions of Wn( ·) converge weakly and 
establish the tightness of the distributions of Wn(·). The first part is rather simple and is contained in the Appendix 
for the sake of completeness. Note also that to prove tightness in the case d ~ 3, we cannot use the semimartingalP. 
approach of [14), which works only for d = 1 and d = 2. 

Let A be a. family of parallelepipeds in Ri of the form V = (a, b], i.e., V = ( a1, b1] x · · · x (ad, ba]. where 0 S ak ~ 
bi:< 00, a,t.bk E NU {O}, k= l, ... ,d. For VE A. denote IV!= IT~= 1 (bk -ak) and 

S(i')= LXi. MW)= max{\S'(Q}i: Q =(a, q] CV}. ( ()) 

j E~' 

LEMMA 1. Let X be a field satisfying the conditions of the theorem stated above. Then there exists x0 such tliat 
for all V E A and .r ~ xo 

(7) 

Here .i:o depends on d. s, ,\[J, u(·)(tliat is on en aml v if u{m) $ r.0 m-v form EN) and does not depend on\/. 
Proof. Analogously to [14. p. 365]. one has for y.::: > 0. 

P(S(r) ~ y) S P(S(V) 2: ::) + P(S(V) ~ y,S(V)-S'(V) ~ y- z) 

:S P(S(r) 2: :}+ P(S(r)? y)P(S(V')-S(V') ?'.: y- ::). (8) 

where S[V).::: ma.x{S(Q): Q = (a. q] C V}. We use here that S(V) a.nd S'(V) - S(V) are nondecreasing functions 
in Xi. j E r. and that cov(l[y,':'>l 1 (~}.1[1 .~ i(-tJ)) :5 0 for any y, t E R if~ and ry are associated (18 (-) is the indicator 
function of a set B). 

Markov's inequality yields for y > ::: and r ~ s, 
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(9) 

[f d == l or d == 2 and r > 2, 6 > 0, r + 6 ~ s, then, due to [4L we have. under conditions (3) and (4), the following 
sharp bound: 

where c does not depend on V and 

if 0 :; v < dvo, 
if v ~ dv0 , 

(10) 

( 11) 

a.nd v0 == (r+ o)(r-2)/(26). According to Remark 3 [4], the estimate {lO)(with ihe same "I as in (11)) applies also in 
the cased '2 3 when llo < (d-2)- 1 . Taker> 2 and 8 > 0 in such a way that r + 6 $ s, d(r+ 8)(r -2)/(26) $ JJ and 
(r + 6)(r - 2)/(28) < (d- 2)- 1 (ford 2: 3), e.g., one can take 1•::: 2 + 62 for positive 5 small enough. Tims one has the 
"classical behavior" of the absolute moments of order ,. of partial sums S'(i') (i.e., the estimate of the type O(Wlr/2 ) 

as in the case of i.i.d. r.v.'s having finite rth absolute moment). 
The d-dimensional version of the Erdi:is-Stechkin inequality obtained by Moricz [11] (see Corollary la) states that if 

for some 0: > 1, r? 1, Vj 2: 0, j E Nd, and every VE A. one has 

( 11) 

then 

E(M { nir ~ (5/2)d( l - 2t1-a)r)-dr (I>j) (>I 

jEV 

where M(V) is defined in (6). So, setting Vj = c0 > 0, j E Nd, and a::: r/2 > 1, we get from (10)-(13) that. for some 
constant C > 0 and all V E .4, 

E(M(VW ~ cwirt2 • 

From (8), (9), and (14) as S(V) ~ Af W) one has for all VE A and y > z, 

Taking.::= y/2, y = . .x!V!t. one obtn.ins 

Then for all x large enough, 

P(S(V) ~ .rWI+) ~ 2P(S'(I/) ~ xJVI~ /2). 

( 14) 

Taking into account that {-X.j, j E Nd} is also an associated field satisfying the conditions of the theorem, we come 
to the inequality (7), and the lemma is µroved 

Now to prove the tightness of distribu titions of H',1( ·). it. is sufficient (see. e.g .. (15, Theorem 14]) to show that. for 
every£> 0, 

lim lim :;up P{Jf ~ > =:-) == 0, 
i.-O+ t1---.= 

(15) 

when• M!::: sup{!H'n(I) - Wn(eJj : I. /1 E [O. l]d. rlt - I'll <ii}. Evidently. instead of ( 15) it. is enough to prove that 
for any c > 0, 

L := lim L lim supP( sup IWn(t) - Wtl(j/£)1>e:)=0. 
l--:<J t}~j~l-l n-ro tEQdjl 

(16) 
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where o = (0, ... ,0), 1 = (1, ... , l), l = (e, .... f). Qt(j) = (j/£,{j + 1)/l], e E N, and 0 $ J $ f- l means 
0 $. ii: 5 f - 1 fork = 1 \ ... 'd. 

Fort E QtU), one has (0, t] = LJier Bl(t), where i = (i1, ... , id) EI::;;:: {O, l}d and 

d 

B;(t) =II (i1<ik/f. !iktk - j1:(ik - l))/~. 
1::1 

Thus, 

P( sup IWn(l) - W,,(jJOI > £) $; L P(M(Vf(n))?: c:2-dnd/2), {17) 
tEQ1(j) iElo 

where /0 = l\{O} and Vj(n} is the largest VEA such that V C nB~ := nB~((i + 1)/£). 
Applying (7) and the bound li-'1(n)I $. nde- 1 for i E lo, one gets for all e large enough 

P(M{Vj(n))?: £rdnd12) $. 4P(JS(V/(n))I?: c:rddjVj(n)!!). ( 18) 

Now we use the following generalization of the Cox-Grimmett theorem (Theorem 1.2 in (9)). 
LEMMA 2. Let X(N} = {Xj(N), j E zd} be a. sequence of a.ssociated(for each NE N) centered random fields 

such that 

sup sup El Xj ( N )13 < ·'.Xl for some s > 2 
,Y j EZd 

sup UN(m) - 0 as m-> oo, 
N 

where UN(m) is defined for every field X(N) according to (2). Let 

V(N) = (alNl, btNl] - oo, 

b . . (b(N) (N)) N d t at 1s, rmni<k<d k - ak -- oo as -+ oo an 

where u(N)2 = var S(N) and S(:Vl = L;ev(NJ X1(.V). Tlien 

S(N)/11(N) _E.... ~"' N(O, 1) as N - oo. 

( I g) 

(20) 

(21) 

( 22) 

(2:3) 

Remark 2. Conditions (I 9} and (22) are less restrictive than their counterpart (i) in [9]. Namely, we do not suppose 
that s = :3 in ( 19); also if 

inf inf var Xj(N) > 0, 
N jE\."1.V1 

(24) 

then {22) is fulfilled for associated fields X(N). If X( .V ). N = 1, 2, .. ., are wide-sense stationary associated random 
fields, then {24) is equivalent to the hypothesi.s infN var X0(N) > 0. 

The proof of Lemma 1 follows the main lines of thr proof of Theorem 1.2 in [9], so we indicate only what one has to 
change. We recall some notations from [9, pp. 515, fi 18]. Let£ be a positive integer. Define m::: m(N, f) = (mt, ...• md ). 

where m.1: = m1::(N.€)::: [(b~Nl - a~,v 1 )/~, i·j(N,£) = {q: a(NJ + (j- l)/f < q:::; alN) + j/£}, Yi(N)::: Yj{N,e) = 
LqE\",tN,l) Xq(N), S(N. () = I:1sjsm lj(.V). Cf(N, £)2 = var S(N, e), s(N, f) 2 = L1sism var Yj(N). 

for any fini~e- sets Vi. ~ '.J C zti, Olli" has 

cov( L Xj(~V), L Xq(N)) ~ min{!Vij, W21}u..,,(O), (25) 
J Et"1 qEr~ 

where !Vil denotes the cardinality of Vi. i = 1.2. So, from the relation (2.8) in [9), applying (21), (22), and (25), Wf': 

immediately come for each £ ~ l to tht> relation 
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q(N)2 == cr(N,e)2 + o(l\/{N)I) as N - oo. 

Using (22),we get 

u(N)2 -u(N,f)2 as N-oo (forevery P.~l). (26) 

Now from (26) and relations (2.11 ). (2.12) of [9] we conclude that for some constant c > O a.nd each e large enough, 

t 

1 ~ limsup cr(N) 2 /s(N, C) 2 ~ 1 + cdr 1 L u(k). 
N-rxJ 1::1 

{27) 

For independent copies Y;(N), one applies Lyapunov's theorem using absolute moments of order r. We choo~ r > 2 
and 6 > 0 in such a way that r + fi ~ min{s, 3}i and we are able to use the estimate of the type {10) with r = r·/2. 
Thus 

(28) 

where c > 0 does not. depend on .V and \:j(:V, e) (we takP into account the uniform conditions (19), (20)). So from (:22). 
(27), and (21) one has 

where r. > 0 is some constant. Lemma 2 is proved. 
Remark 3. Convergence rates in the CLT for associated random fields, when sums are taken over finite subsets 

VN having arbitrary configurations, are studied in (5, 6J. 
Now we return to the proof of our main result. Note that 

(29) 

for every P. E N and a.11 i E I, where u3 is given by ( 1 ). One can deduce (29) from a more general result describing thl'.' 
growth of varian.ces of pa.rtial sums l:; e vN X;, where X = { X;, j E za} is a wide-sense stationary random field and 
Vtv - oo in a "regular manner"; see, e.g., [3]. 

Hence for all i E lo, according to (29) and Lemma 2, one has as n - oo 

P(IS(i·/(n))j > Erdftji-'./(n)lt) - P(e > c:2-detCT-1 ), 

where e ""'N(O. l). Using the well-known inequality 

1 - =.:. 
P(~>.r):S r.cr. l, 

:r.v21r 

one infers from (17), (18), (30), and (:H) that the 1.h.s. of (16) 

L < lim Rd(c:r4f!0"- 1 /f,r)- 1 exp{-(c:2r 24u-2 i)/2}=0. 
- f-<:\J 

This completes the proof of the theorem. 

Appendix 

We prove that for any m E N and all t 1 .... , tm E [O. l jd. 

(W11 (t i) ..... W11 (lm )) _.E_ (lr(ti) ..... a'(lm)) as n - oo. 

(:io) 

( 31) 

(32) 

1t is sufficif'nl to establish that if t'1 ..... i ;11 C (0. I]d arP. disjoint (nonempty) parallelepipeds of the form Vi= (a1' 1• bill]. 
f = 1. .... m. then 

((nl := n-·i,''..!(.':i(nri) .... ,.':i(nt~11 )) !!._ ( := a{W(Vi) ..... l.V(~~i}) as ri- :x-: (33) 

here vV( VL) I .... W( ~~l) are independent and W( Vi) - ,\/(0, !Vil), where IVil = rr~=l (b~l.l - a~0 ), f = 1. .... m. 
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for all n = (0: 1 .... , nm) E Rm, according to Newman·s inequality, 

{34) 

where(-.·) stands for the inner product in Rm and (knJ = n-dl2S(nVi), k = l, · . .,m. . 
Assume that p(Vi,, \il) = inf{IJx- y\I: x E ij,.y E il} 2: -r > 0 for all k,e = L. .. ,m(k #-i).Then applying (25) 

we have 

cov {(~" 1, (}" l) 5 n-d min{ln Vil. In V!l}u( rn) ::::; u( rn) --+ 0 a.s n --+ oo. (35) 

By the analogue of the relation (29) and Lemma 2, one gets, for each C<k ER, k = l, ... , m, 

. (•I 2 ll\/ IJ/2 Ee'eck(l - e\(),a • as n--+ oo. ( 36) 

Thus (34)-(36) imply (33). 
. ITd (l) The general case can be rer!uce<l to the previous one by means of standard arguments. Namely, let Vi = k= 1 ( ak • bn and /1 = {k: b~ll _ a~IJ > O}. Define for all o > 0 small enough Vi(o) = TI~= 1 (a~t)(O).b~t)(b)]. where a~t\(6) = 

a~ll + 6 < bk'1 - 6 = b1ti(o) if k E It and a~lJ(o) = a~11 = b~l) = a~l 1 (o) if k E {l, ... ,d}\ft. Denote (1" 1(8) = 
n-d/2(S(nl/i(6)), .... S(nVm(5))). Csing (25), we have for all n EN and some c > 0, 

E((k° 1 - (~nl(fi)) 2 ~ cndJVi: \ Vi,(b)ln-d ~ 2cfi, k = L ... , m, 

where('"'= ((~" 1 ..... (~: 1 ) is gi~·en by (33). Consequently. (t 11 l(6) ..!!... ((nl for each n as 6 ...... 0+. Now it is ea.<Jy to 
show that. for each !\' E Rm. 

m ., ·(·)) II ~ ~ Ee'(),~ - exp(-(n::i:Jlltll/2)-+ 0 as n-+ oo, 
l=l 

which is equivalent to (33). 
Note that we can also prove (32) applying the Cramer-Wold device and using Lemma 2 with the analogue of relation 

(29). 
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