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INVARIANCE PRINCIPLE FOR ASSOCIATED RANDOM FIELDS*
A. V. Bulinski (Moscow, Russia) and M. S. Keane (Amsterdam, The Netherlands) UDC 519.2

In 1984, C. M. Newman posed the problem of proving the invariance principle in distribution for assoctated random
fields(i.e.. fields satisfying the so-called FKG-inequalities) X = {X;, j € Z°) when d > 3. The solution of this
problem for urde-sense stationary associaled random fields is obtained here under slightly more restrictive conditions
than those used by C. M. Newman and A. L. Wright for the strictly stationary case where d = | and d = 2.

1. Introduction and the Main Result

The concept of association or positive dependence is widely used at present. This concept arose independently in
reliability theory and statistical physics, where one prefers to say that the r.v.'s satisfy FKG-inequalities. Recall that
a finite collection of real-valued r.v.’s ¥,..., Y, is called associated if

OV(F(Y1e. . Yl g(¥,e..  Ya)) 20

for any coordinatewise nondecreasing functions f.g: R" — R, whenever the covariance exists. An infinite family
of r.v.’s is associated if every finite subfamily has this property. Note that any family of independent r.v.'s is always
associated. The main advantage of dealing with positively dependent r.v.’s is not only the possibility of studying
interesting models describing random fields which need not possess any mixing properties, but also the simplicity of
conditions which guarantee the validity of many classical results of probability theory. One can refer in this vein to the
beautiful CLT established by Newman [12] (see also {13, 3] for references therein).

In 1984, Newman [13, p. 138] posed the problem of proving the invariance principle in distribution (or FCLT) for
strictly stationary associated random fields X = {X;, j € Z%} when d > 3. As far as we know, no progress was
achieved in this direction. The solution of this problem is obtained in the present paper for wide-sense stationary
associated random fields under slightly more restrictive conditions than were used by Newman and Wright [14] for the
strictly stationary case when d = | and d = 2. For this purpose we establish a new maximal inequality and also prove
the generalization of the Cox-Grimmett C'LT [9]. We also mention in passing the Birkel [1] result for d = 1 in the
nonstationary case under uniform integrability condition for squares of certain sums (see also {2, 8] and [10} for further
development in the case d = 1). Scaling limits for associated random measures are studied in [7].

Without loss of generality, we can assume that BEX; = 0 for all j. Define in the Skorokhod space D([0, 1}%) the
partial sum processes '

[aty]  [ntd]

Walt)=n"%23%" %" X;, neN,

=l Je=l

where t = (£1,...,tq) € [0. 04 Gi.....Jd) € N4, and [-] is the integer-part function.

Using the well-known Newman inequality (see the Appendix) for joint characteristic functions of associated r.v.’s,
it is not difficult (see [12]) Lo prove, in the stationary case. for any d > 1. the weak convergence of finite-dimensional
distributions of W, (-} to the corresponding ones of oW(-) as n — oo, provided that

a?'::Zcov(,\'g.Xj) < . (1)
J
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Here W(-) stands for a standard d-parameter Wiener process (or Brownian sheet), i.e., mean zero Graussian process
with

d
cov(W(1), W(t') = ] min{te, t}}
k=1

fort = (fy..... ta) ' =t ... t)) € [0,0)°. .
The case ¢ = 0 means that X; = 0 as. for all j. So we exclude this trivial case. Define the Cox~Grimmett [9]
coefficient

u(m) = sup Z cov(Xj, Xy), m 2> 0, (2)
! g flg-jlizm
where |[al| = maxice<aag| for a = (a1,....aq4) € RY.
Now we can state our main result.

TureorEM. Let X = {Xj. j € Z%} be an associated wide-sense stationary random field. Let

Ms =supE(X;)’ < oo for some s>2 (3)
J
and
u(m) = 0O(m™") forsome v>0 (asm— ). (4)
Then the FCLT is valid, i.e.,
Wa() = oW () in D(0,1]¥) as n—oo. (5)

Here o is given by (1) and as usual 2 denotes convergence in distribution.

Remark 1. This statement is valid for all d > 1. Note also that the summability condition (1) implies u(m) — 0
as m — 0o,

Proof. To establish (5), we have to prove that the finite-dimensional distributions of W,(-) converge weakly and
establish the tightness of the distributions of Wy(-). The first part is rather simple and is contained in the Appendix

for the sake of completeness. Note also that to prove tightness in the case d > 3, we cannot use the semimartingale
approach of [14], which works only for d = 1 and d = 2.

Let A be a family of parallelepipeds in RS of the form V = (a, 8], i.e., V = (a;,b1] X -+ x (g, ba}, where 0 < a; <
by < 00, ap. b e NU {0}, k=1,...,d. For V € A, denote lVl = H::I(bk —a;) and

SVY=Y X5 M) =max{IS(Q)}: Q=(a,qdC V). (6)
Jev

LEmMMA 1. Let X be a field satisfying the conditions of the theorem stated above. Then there exists zq such that
forall VEAandr>zg

P(M(V) > 2|VIH) < 2P(IS(V)| > 2(|V]F/2). (7)

Here o depends on d. s, M,. u(-)(that is on ¢y and v if u{m) < com™" for m € N) and does not depend on V.
Proof. Analogously to [14. p. 365]. one has for y.z > 0.

P(S(V) 2 y) SP(S(V) 2 5) + P(S(V) > 4. 5(V) = S(V) 2 y - 2)
SPE) 2 A+ PS(V) 2 y)P(S(V) = S(V) > y - =), (8)
where 5(V') = max{S(Q): Q = (a.q] C V'}. We use here that 5(V) and S(V) —5(V) ate nondecreasing functions

in X;,j €V, and that cov(1fy ~)(€). 1 ~)(—1)) < 0 for any y,t € R.if € and 7 are associated (15(-) is the indicator
function of a set B). '

Markov's inequality yields for y > z and r < s,
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P(S(V)=S(V)>y~2) < (y~ 2)"EB[S(V) - S(V)I" <2y — 2) TE[F(V)I". (9)
ffd=1lord=2and r>2§>0 r+6<s, then, due to [4], we have, under conditions (3) and (4), the following
sharp bound:

EIS(V)T < ey [rnds), (10)

where ¢ does not depend on V and

r=6(1+wvd ) (r+6-2)1, if 0 <v < dy,

A 8) = {
r/2, if v > dug,

(11)

and vg = (r +6)(r —2)/(26). According to Rernark 3 [4], the estimate (10) (with the same 7 as in (11)) applies also in
the case d > 3 when vy < (d —2)~'. Taker > 2 and 6 > 0 in such a way that r+ 6 <5, d(r + 6)(r — 2)/(26) < v and
(r+8)(r—2)/(26) < (d-2)~"(for d > 3), e.g., one can take r = 2+ 67 for positive § small enough. Thus one has the
“classical behavior” of the absolute moments of order r of partial sums $(V')(i.e., the estimate of the type O(|V|"/?)
as in the case of i.i.d. r.v.’s having finite rth absolute moment).

The d-dimensional version of the Erdés-Stechkin inequality obtained by Moricz [11] (see Corollary 1a) states that if
for some a > 1, r > 1, v; 20,7 € N% and every V € A, one has
[
v,-) , (12)

EIS(I)I" < (Z
Jev
then
E(M(V))" < (5/2)%(1— 21 -oir)=¢r (Z v,-) ‘ (13)
jev

where M (V') is defined in (8). So, setting v; =g >0, j € N, and @ = r/2 > 1, we get from (10)-(13) that. for some
constant C'> 0 and all V € A4,

E(M (V)" < VIR (14)
From (8), (9), and (14) as S(V) < M (V') one has for all VV € A and y > z,

(1=27Cly = =) [VITP(S(V) > y) S P(S(V) 2 2).
Taking = = y/2. y =.z|V|?. one obtains
(1 =427 CYP(S(V) 2 2[VI%) S PS(V) 2 2|V[3/2).
Then for all z large enough,
P(S(V) > £|VIF) S IP(S(V) 2 ={V]2/2).

Taking into account that {—X;. j € N9} is also an associated field satisfying the conditions of the theorem, we come
to the inequality (7), and the lemma is proved

Now to prove the tightness of distributitions of 1V (-). it is sufficient (see. e.g., [13, Theorem 14}) to show that. for
every £ > 0,

lim limsup P(M} > ) =0, (15)

LR R

where M2 = sup{|Wa(t) = Walt)] : 1.0 € [0. 1% Hi = 1'}] < 8}. Evidently. instead of (15) it is enough to prove thal
for any £ > 0,

L:=lim Y. limsupP( sup |Walt) ~ Wa(j/O)| > ) =0, (16)

’“?‘70515,_1 n—mo  LEQe()
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where 0 = (0,...,0), 1 = (L. 1) £ = (6. 0), @ulf) = (/&G +1)/8, € € N, and 0 < j < €~ 1 means
0<je<tb~1fork=1,....d . .
For £ € Qu(j), one has (0,8 = ;e Bi(t). where i = (iy,....iq) € I := {0, 1} and

o

= [T Gese/. tiete = (i = 1)/

k=1
Thus,

P( sup [Walt) - Walj/0)] > €) < ) P(M(V{(n)) 2 27*n"%), (1)
teQe(i) ieTo

where Iy = 1\{0} and V}(n) is the largest V € A such that V C nBi := nBi((i + 1)/£).
Applying (7) and the bound |V}(n)| < n?€=! for i € Iy, one gets for all £ large enough
P(M(V;(n)) > e27n8/%) < 4P(|S(V}(n)| > e27403|V{(n)|3). (18)

Now we use the following generalization of the Cox-(irimmett theorem (Theorem 1.2 in [9]).

LemMMa 2. Let X(N) = {X;(N), j € 2%} be a sequence of associated (for each N € N) centered random fields
such that

N < forsome s5>2 (19)
N JEZ4

and

supuN(m) —0 as m— 00, {20)
where un(m) is defined for every field X(N) according to (2). Let

V(N) = (@), 6M] — oo, (21)

that is, mimsksd(b(km ~ aLN)) — 00 as N — o0 and
liminf |V(N)|"'a(N)? > 0, . (22)
N—o
where o(N)® = var S(N) and S(N) = .y X;(). Then
S(N)fo(N) 2 e~ N(0,1) as N —o. (23)

Remark 2. Conditions (19} and (22) are less restrictive than their counterpart (i) in [9]. Namely, we do not suppose
that s = 3 in (19); also if

inf lnf var X;(N) > 0, (24)
N jeVIN)

then (22) is fulfilled for associated fields X(NV). If X(V). N = 1,2,.
fields, then (24) is equivalent to the hypothesis infy var \n(N) > 0.
The proof of Lemma 2 follows the main lines of the proof of Theorem 1.2 in [9], so we indicate only what one has to
change. We recall some notations from [9, pp. 515, 518]. Let £ be a positive integer. Definem = m(N,¢) = (m,,....mq),
where m; = my(N.0) = [(8{¥' - “”)/e} v V.0 = gz a™ + (= 1)/€ < g < o) +j/8}, Y;(N) = Y;(N.0) =
Loevnva Yol N), S(N.€) = Licigm Yil 0'(!\' £)* = var S(N, ), s(N. &)? Zl(](ﬂ‘l varY(N)
For any finite sets §).1%2 C Z9. one has '

., are wide-sense stationary associated random

co»(z X;(V), Z Xo(N)) < minf{¥ ], |Va]un(0) (25}

JEVY 4EY:

where |V;] denotes the cardinality of V;. i = 1.2, So, from the relation (2.8) in [9], applying (21), (22), and (25), w
immediately come for each £ > | to the relation
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a(N)? =a(N,0 + o([V(N)]) as N — o.
Using (22),we get

a(NV? ~a(N.&)* as N — oo (forevery £> 1). (26)

Now from (26) and relations (2.11), (2.12) of [9] we conclude that for some constant ¢ > 0 and each ¢ large enough,

4
1< lihx,nsup GNP [s(N, O < 1 cdf™" Y u(k). (27)
-— 00 k-’—‘]

For independent copies Y;(N), one applies Lyapunov's theorem using absolute moments of order r. We choose r > 2
and § > 0 in such a way that r +6 < min{s, 3}, and we are able to use the estimate of the type (10) with v = r/2.
Thus

E|Y;(N)[" < e[V5(N, 072, (28)

where ¢ > 0 does not depend on .V and Vj(V, £) (we take into account the uniform conditions (19), (20)). So from (22).
(27), and (21) one has

l m, ... mgf4/2
—_— BYAN <o~ N =
s(N, &) K;m 5N < "Q‘(ml ... mgfd)r/2 0 as N—oo

where ¢ > 0 is some constant. Lemma 2 is proved.

Remark 3. Convergence rates in the CLT for associated random fields, when sums are taken over finite subscts
Vn having arbitrary configurations, are studied in (5, 6].

Now we return to the proof of our main result. Note that

var S(V{(n)) ~ a*|Vi(n)] as n—oc (29)

for every € € N and all i € I, where o is given by (1). One can deduce (29) from 2 more general result describing the
growth of variances of partial sums 3¢y, Xj, where X = {Xj, j € Z%} is a wide-sense stationary random field and
Vv — oo in a “regular manner”; see, e.g., [3].

Hence for all ¢ € Ig, according to (29) and Lemma 2, one has as n — oo

P(IS(V ()| > 27203 (Vi (m)l}) — P (€ > e27%01571), (30)
where £ ~ N(0.1). Using the well-known inequality
1

P(E > r) € —=r”
SRVX ¢

-‘-.r“J

z>0. (31)
one infers from (17), (18), {30}, and (31) that the Lh.s. of (16)
L< Jim (2740507 9m) " exp{—(e227 %072 F) 2} = 0.

This completes the proof of the theorem.

Appendix
We prove that for any m € N and all t)....,tm € [0. 12,
(Wally)er o Wallm)) =2 (W{t1)e... . W(tm)) as n— oo, (32)
It is sufficient to establish that if V1..... 1V, < [0. 1] are disjoint (nonempty) parallelepipeds of the form V; = (at®), 54,
f=1..... m, then
= Sy S ) L =W W(lm)) as n—x (33)
here W(V}),.... W(V) are independent and W (¥7) ~ V(0. {V2]), where |V3] = szl(bg) - aL”), t=1L....m
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For all @ = (ay,....am) € R™, according to Newman's inequality,

IEei(a.C""i - H Eced™ | < Z ek |oeef cov( C(n) ‘n)). (34)
=1 kL=l
where (-,-) stands for the inner product in R™ and (™' = n=42S(nV), &k = 1,.

Assume that p(Vi, Vz) = inf{|lz — yll: z€Vey€Ve) 27 >0forall k,¢=1....,m(k # ¢). Then applying (25)

we have

cov(¢, (n) Q")) < n~dmin{|n Vi, nVel}u(rn) < u(rn) — 0 as n — o, (35)

By the analogue of the relation (29) and Lemma 2, one gets, foreach oy ER, k=1,...,m

Eeiarls” L led?Vi)/2 55 oo, (36)

Thus (34)-(36) imply (33). (
The general case can be reduced to the previous one by means of standard arguments Namely, let V; = Hk ( a "
89 and I, = {k: 8"~ al” > 0. Define for all § > 0 small enough vt = TT2.,(a4(6),689(8)], where a‘“(a) =

d g <! -6= b“’( §)if k € I and al'(8) = '’ = 81 = ’(5 if k€ {1,...,d})\I,. Denote (")(5) =
n~9/? S(nbl(é)) .S(nVa(6))). Using (25), we have for all n € N and some ¢ > 0,

E((‘(n) (ﬂ)(6))2 S Cnd”’k\Vk(é”n—d S 24:6‘ k= 1, Loo,m

where ¢!? = (qm ..... Cf,;”) is given by (33). Consequently, (")(6) 2, ¢™) for each n as 6§ — 0+. Now it is easy to
show that, for each « € R™.
. ) m
Eeited'™) _ Hexp(-—ogaf[Wl/‘Z) —0 a n—oo,
=1

which is equivalent to (33).

Note that we can also prove (32) applying the Cramer-Wold device and using Lemma 2 with the analogue of relation
(29).
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