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Chapter 1

Introduction

The processor-sharing discipline was originally introduced as a modeling abstrac-

tion for the design and performance analysis of the processing unit of a computer

system. Under the processor-sharing discipline, all active tasks are assumed to be

processed simultaneously, each receiving an equal share of the server capacity. Var-

ious extensions of the standard discipline have been developed in order to capture

scenarios with heterogeneous service shares and network settings. Over the past

several years, the processor-sharing discipline has received renewed attention as a

powerful tool in modeling and analyzing dynamic bandwidth sharing among elastic

transfers in communication networks like the Internet.

The key property of the processor-sharing discipline is the simultaneous resource

sharing among all users present in the system. As a result of the simultaneous

processing, small requests can overtake large requests, and are thus protected from

experiencing excessive delays. Due to this feature, the processor-sharing discipline

is particularly suitable for reducing the adverse impact of the high variability of

service requests observed in data networks.

The sojourn time of a customer, i.e. the amount of time a customer spends

in the system from his arrival until his service completion, is the most important

performance measure for processor-sharing systems. This is a particularly relevant

performance measure for modeling data transmissions in the Internet where Quality-

of-Service requirements become increasingly stringent. The exact analysis of the

sojourn time has however proved to be extremely hard and often impossible due to

the fact that knowledge of the residual service times of all the jobs present in the

system is required.

In this thesis we study various asymptotic properties of the sojourn time dis-

tribution. We are mainly interested in the probability of the sojourn time being

extremely large. The advantage of considering the asymptotic behavior is that the

analysis often provides insight into the typical scenario for such a long sojourn time

to occur. Moreover, the resulting asymptotic formulas can be used for approximate

analysis, providing useful estimates in situations when numerical procedures become

unreliable. In order to analyze the sojourn time asymptotics, we apply several prob-

abilistic and analytic techniques, such as Laplace transforms, branching arguments,

1



2 Introduction

large-deviations methods and fluid limits.

The remainder of this introductory chapter is organized as follows. In Sec-

tion 1.1 we provide some basics on queueing systems and discuss how these may be

used to model and analyze the performance of communication networks. The basic

egalitarian processor-sharing discipline and several of its extensions are discussed

in detail in Section 1.2. In Section 1.3 we briefly explain the main concepts and

techniques that we have applied in the course of the research. Section 1.4 presents

a literature review on the performance analysis of processor-sharing queues and

bandwidth-sharing networks. Section 1.5 concludes this chapter with an outline of

this monograph.

1.1 Basic queueing concepts

In today’s society, telecommunication systems play a crucial role in all aspects

of life. Various new applications continue to emerge while both technological capa-

bilities and consumers’ demands show continuous growth. Ever since the early 20th

century, when public telephony systems first came into service, queueing-theoretic

models have been a key technique in the design and performance analysis of telecom-

munication systems. The pioneering work in queueing theory dates back to Er-

lang [50]. He developed a model to describe the performance of a telephony system

and estimate the fraction of lost calls.

To evaluate the performance of a communication system, various mathematical

queueing models may be used. In general, a queueing model describes the operation

of a number of servers of finite capacity which are used to provide service to a

population of customers. A basic model includes (stochastic) characteristics of the

customer arrivals and service requirements, and characteristics of the servers. The

terms “servers”and “customers” (the term “jobs” is also often used) may refer to

arbitrary objects involved in various sorts of queueing processes; one can think of

applications in e.g. public customer service, transportation systems, call centers,

inventory systems. In this thesis, we focus on queueing models for the transmission

of data files in a network where all transfers simultaneously share a possibly state-

dependent transmission rate. Viewing the available bandwidth as the capacity of

the server and the individual file transfers as the customers in the system, the

above-described scenario can be modeled as a classical processor-sharing system or

an extension thereof.

The behavior of a queueing system is analyzed in terms of so-called performance
measures. Some of the most commonly considered performance measures are the

queue length, the workload, the waiting time, the sojourn time, and the throughput.

The choice of the relevant performance measure depends on the system in question

and the purpose of the analysis. In some situations it is sufficient to gain insight

into the average behavior while in other cases it may be critical to obtain the entire

probability distribution of the performance measure of interest.

In order to generally characterize queueing models, we distinguish three main

components. First of all, the physical structure of the network plays an important
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role. By this we mean the amount of available resources, the network’s capacity and

the connection topology.

Second, the performance of the system depends strongly on the traffic character-

istics. The most important elements are the time between two consecutive customer

arrivals and the service requirements of the customers. Both the interarrival times

and the service requirements are commonly assumed to be sequences of independent

identically distributed random variables. Typically interarrival times and service re-

quirements are assumed to be mutually independent. In order to specify the queue

in terms of the above-mentioned entities, we use the conventional notation intro-

duced by Kendall [72]. This notation is of the form A/B/N where the first letter

refers to the distribution of the interarrival times, the second represents the distri-

bution of the service requirements, and the third stands for the number of servers

in the system. The most commonly used distributions are the exponential distribu-

tion denoted by M (for memoryless), deterministic denoted by D and the general

distribution denoted by G.

The third component which has a significant influence on the behavior of a

queueing system is the service discipline, which describes the order and the manner

in which the customers receive service. There is a wide variety of service disciplines.

One of the simplest disciplines is First Come First Served, where the customers are

served in the order of arrival. For some systems, disciplines like Last Come First

Served, Random Order of Service, etc. can be used as appropriate models. The

service discipline may also differentiate among the customers by assigning priorities

to specific classes of jobs.

We refer to the textbooks by Asmussen [7], Cohen [37], and Tijms [107] for

fundamental models and results in queueing theory.

1.2 Processor-sharing disciplines

The processor-sharing (PS) discipline first became popular by the work of Klein-

rock [76, 78], and was originally proposed as an idealization of round-robin schedul-

ing in time-sharing systems. The recent surge of interest in PS queues is motivated

by their application in the performance analysis of bandwidth-sharing schemes in

the computer communication networks such as the Transmission Control Protocol

(TCP) in the Internet, see e.g. Ben Fredj et al. [11], Núñez-Queija [87], Roberts and

Massoulié [99].

TCP uses an end-to-end flow control protocol which dynamically adjusts the

transmission rates in response to the current level of network congestion and is one

of the core principles of Internet operation. While individual packets are served

one-by-one in a FCFS manner, over somewhat longer time scales TCP ensures that

the various transfers are served simultaneously at roughly equal rates. As a result,

the service rate of a given transfer fluctuates over time as the total number of active

transfers varies when new transfers start or others complete their transmission.

The egalitarian PS (EPS) discipline can be regarded as a basic model which

approximates the behavior of a single resource shared in a fair manner. Under EPS
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all the capacity of the resource is assumed to be shared equally between all the

customers in the system. One of the main limitations of the EPS model is that it

does not apply for heterogeneous systems, where jobs may receive different service

shares. To model such situations, a number of multi-class extensions of the EPS

discipline have been proposed. The main model that allows for unequal sharing

is Discriminatory Processor Sharing (DPS), where flows of different classes receive

service at different rates.

The extension of the PS discipline from a single-node system to a network with

multiple shared links gives rise to bandwidth-sharing networks as introduced by

Massoulié and Roberts [84], [99]. In such network scenarios, the rate allocation

becomes a non-trivial problem, and is commonly assumed to be governed by a

utility maximization principle, see Kelly et al. [70], Mo and Walrand [85].

We now proceed to discuss in further detail the EPS discipline and some of its

extensions mentioned above.

1.2.1 Egalitarian processor sharing

In the EPS queue a single resource is equally shared among all jobs present in

the system. In other words, a PS server with capacity c assigns each of n > 0

customers present service rate r = c/n. Each arriving request is immediately taken

into service and continues to receive service at a varying rate which depends on

the total number of customers present until it completes, i.e. until the cumulative

amount of service received equals the original service requirement.

The PS discipline has several appealing properties. The key feature of the PS

discipline is that it prevents small jobs from being excessively delayed by large jobs.

At the same time, large jobs receive service continuously and do not experience

starvation as in priority systems. This property of the PS discipline is particularly

useful in systems with highly diverse service requests, such as data transfers in the

Internet.

r = c

n

Figure 1.1: Egalitarian processor sharing.

For the PS queue with Poisson arrivals various important properties are known.

In the stationary regime, the queue length has a geometric distribution which only

depends on the traffic load ρ = λE[B] < c (Sakata et al. [102]),

πn =

(

1 − ρ

c

)(ρ

c

)n

, n = 0, 1, . . . , (1.1)
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where λ denotes the arrival rate and B stands for the service requirement. Thus,

the queue length distribution is insensitive in the sense that it only depends on

the service requirement distribution through its mean and not any higher-order

statistics. By Little’s law, this also implies the insensitivity of the mean sojourn

time. Furthermore, the expected conditional sojourn time for a particular request

is proportional to the size of the request, which indicates the fairness of the PS

discipline. Given that the job size is equal to τ, the expected sojourn time for this

job is

E[V (τ)] =
τ

c− ρ
.

For the distribution of the sojourn time, however, there are no simple closed-form

expressions available.

It is worth mentioning that the above results on the queue length distribution

and mean sojourn time also hold in the EPS model with several traffic classes, see

e.g. Cohen [36], Kelly [68]. Suppose that the customers of class i arrive according

to a Poisson process with rate λi and have service requirements Bi, i = 1, . . . ,M.
Denote the load of class i by ρi = λiE[Bi] and the number of customers of class i
by Qi. In the multi-class case, the joint distribution of the number of customers has

a simple product form:

P(Q1 = n1, ..., QM = nM ) =

(

1 −
M
∑

i=1

ρi

c

)

(

n1 + ...+ nM

n1...nM

)

(ρ1

c

)n1

...
(ρM

c

)nM

.

The classical EPS model assumes a constant service capacity, while in many prac-

tical cases the available capacity for data transfers fluctuates dynamically due to the

presence of high-priority traffic types with time-varying capacity requirements. For

instance, in multi-service communication networks, traffic can be categorized into

streaming flows (voice, video, etc.) and elastic flows (data files, Web pages, etc.), see

e.g. Roberts [98]. Streaming flows require strict packet-level delay guarantees for the

duration of their connection time, whereas elastic traffic is less sensitive to packet-

level delays. One way to meet the Quality-of-Service requirements is by prioritizing

streaming traffic. The bandwidth left over by the transmission of streaming traffic

is made available to elastic traffic. In this case, the streaming flows ‘do not see’

the elastic flows, so their performance can be evaluated using traditional queueing

models. Assuming fair sharing among elastic flows, the performance experienced

by the elastic traffic, on large time scales, can be modeled as a PS system with a

service rate (corresponding to the bandwidth left over by the streaming flows) that

fluctuates according to some stochastic process (see e.g. Delcoigne et al. [40]).

1.2.2 Discriminatory processor sharing

The DPS discipline has gained popularity as a flexible model which allows for dif-

ferentiation among heterogeneous traffic types. The DPS model was first proposed

by Kleinrock [78] under the name Priority Processor Sharing, and is essentially a

multi-class extension of the EPS discipline, where the various classes of traffic are
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r1

r2

rM

Figure 1.2: Discriminatory processor sharing.

assigned arbitrary positive service weights. The total service capacity is shared

among all the present users in proportion to the respective per-class weights, and

thus, the per-class service rate depends on the number of users of all the classes

currently present in the system.

To give a formal description of the DPS discipline, suppose that there are M cus-

tomer classes sharing a server of capacity c. All customers present in the system are

served simultaneously with rates dependent on a vector of weights (w1, . . . , wM ) > 0.
If there are Qj customers of class j present in the system, j = 1, . . . ,M, each class-k
customer is served at rate

rk =
wkc

∑M
j=1 wjQj

, k = 1, . . . ,M.

Figure 1.2 presents the basic DPS scheme. In case all weight factors are equal, DPS

is equivalent to the multi-class EPS discipline. It is worth mentioning that although

the DPS discipline has a strong resemblance with the ordinary PS discipline, the

analysis of a DPS system is considerably more involved. In particular, the funda-

mental results for the PS system with Poisson arrivals do not extend to the DPS

queue.

Before proceeding to networks of PS queues, we also mention one other related

yet different multi-class discipline. In the GPS discipline, the per-class service rate

is also governed by pre-assigned weight factors, but in contrast to DPS, the rate

only depends on whether a queue is empty or not, and not on its exact length. Each

non-empty class now receives a certain guaranteed share of the capacity. We refer

to Van Uitert [109] for more details on GPS. We remark that the GPS discipline is

different from the Generalized Processor Sharing as considered by Cohen [36]. The

latter model, in which the service rate of each customer is determined by an arbitrary

positive function of the total queue length, is a more abstract generalization of PS

with a state-dependent service rate.
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(a) (b)

Figure 1.3: Examples of bandwidth-sharing networks: (a) linear network and (b)

tree network.

1.2.3 Bandwidth-sharing networks

A further extension of the basic PS model is provided by bandwidth-sharing

networks where flows may require simultaneous service from several resources as

introduced by Massoulié and Roberts in [84, 99]. More precisely, a network consists

of a finite number of links labeled by j = 1, . . . , J . We denote the vector of finite link

capacities by C = (C1, . . . , CJ ) . The network is offered traffic from several classes

indexed by i = 1, . . . , I. Each class is characterized by a route, i.e., a nonempty

subset of {1, . . . , J}, which represents the set of links traversed by the traffic from

that class. We introduce a J × I incidence matrix A such that Aji = 1 if link j
belongs to the route of class i, and Aji = 0 otherwise. The distinctive feature of

bandwidth-sharing networks is that the flow requires service from all resources on

its route simultaneously, which is in contrast to classical queueing networks where

a customer visits the nodes sequentially. See Figure 1.3 for an illustration.

In bandwidth-sharing networks, the capacity is allocated to the various traffic

classes according to a pre-specified rate allocation policy, while within each class the

bandwidth is fairly shared among all competing flows. Such rate allocation policy

can be regarded as generalization of a PS discipline from a single node to a network

with several shared links. Since the idea was first presented by Kelly et al. [70], rate

allocation policies based on global network utility optimization principles have been

widely used to model various resource-sharing systems and network protocols.

We consider rate allocation policies that maximize a network utility function

depending on the current population of active flows. Specifically, for a given number

z = (z1, . . . , zI) 6= (0, . . . , 0) of active flows, the per-flow rate allocation x(z) is

determined by the solution of the optimization problem:

maximize
∑I

i=1 ziUi(xi)

(P )

subject to Ax · z ≤ C, x ≥ 0,

where the utility functions Ui(·) : R+ → [−∞,∞] are strictly concave on (0,∞). By

x · z we denote a vector obtained by component-wise multiplication of vectors x and

z. With the additional convention that xi(z) = 0 when zi = 0, the rate allocation is
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uniquely determined since the above optimization problem is strictly concave.

Often it is more useful to consider the per-class rate allocation. These rates can

be obtained by multiplying the per-flow rates with the number of flows per class, or

directly, by replacing the optimization problem for the per-flow rate allocation x(z)
by an equivalent one for the per-class rate allocation Λi(z) = xi(z) · zi, i = 1, . . . , I.
The rate allocation vector Λ must satisfy the capacity constraints AΛ ≤ C.

The most commonly studied utility-based rate allocation policy is the so-called

(weighted) α-fair policy introduced by Mo and Walrand [85], where the utility func-

tions Ui(·) are given by

Ui (xi) =







wi
xi

1−α

1−α , α ∈ (0,∞)\{1},

wi log xi, α = 1,

(1.2)

where the weights wi, i = 1, . . . , I, are some positive constants and α is a fairness

coefficient. In a single-link scenario, the α-fair policies actually reduce to the DPS

discipline with weights given by w
1
α
i , and in particular, to EPS in case the weights

are equal.

The family of α-fair bandwidth-sharing strategies includes several common fair-

ness concepts as special cases. In particular, the case α = 1 and the limiting cases

α→ 0 and α→ ∞ correspond to a rate allocation that is proportional fair, achieves

maximum throughput, and is max-min fair, respectively. The special case α = 2 cor-

responds to the bandwidth allocation which achieves minimal potential delay [84].

If in addition the weights are chosen to be the reciprocal of the squared round-trip

time on the corresponding route, this α-fair bandwidth allocation can be viewed

as an appropriate model for the TCP protocol of the Internet, see e.g. Padhye et
al. [90]. In this context, it is worth noting that the transmission rates in the Internet

are not assigned by some centralized control mechanism based on explicit optimiza-

tion. Instead, the transmission rates are determined through end-to-end congestion

control protocols, implemented only in end-user nodes which may be interpreted as

solving the utility maximization problem in a distributed fashion (see Kelly [69] for

a comprehensive discussion).

In general, the α-fair rate allocation Λ or x as the solution of the optimization

problem (P) can not be obtained in explicit form. There are only a few examples of

simple network topologies for which a closed-form expression is available, see Bonald

and Massoulié [14]. Nevertheless, various useful analytical properties of the rate

allocations as function of the number of flows are known (Kelly and Williams [71]).

1.3 Methodology

In this section we briefly sketch the main methods that we apply in this mono-

graph. In Chapters 2 and 3 we use Laplace transform techniques and results for

geometric random sums and branching processes in order to obtain the asymp-

totic behavior of the sojourn time. In Chapters 4 and 6, we apply arguments from
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large-deviations theory. In Chapter 5 we analyze the behavior of bandwidth-sharing

networks by means of fluid-limit approximations. Below we present the basic ideas

of these methods and introduce some preliminaries.

1.3.1 Branching processes and Laplace transforms

In Chapters 2 and 3 we study the sojourn time in a PS system with Pois-

son arrivals by means of its LST. The LST is particularly useful for asymptotic

analysis, e.g., to determine the asymptotic behavior of tail probabilities (see e.g.

Widder [113]). The limitations of this approach are that in the first place, it is ap-

plicable only to models where an expression for the LST is available in sufficiently

explicit form, and second, obtaining the relationship between the LST and the tail

probability may be a challenging problem.

In order to simplify the derivation of the LST and the tail probability, we make

use of the branching process representation of the sojourn time. The branching pro-

cess representation and decomposition of the sojourn time into a sum of independent

random variables (called delay elements), conditioned on the number of customers

in the system, was established by Yashkov [116] for the M/G/1 PS queue and later

extended by Ott [89]. Grishechkin [56] generalized the method using Crump-Mode-

Jagers branching processes and applied it to more general service disciplines and the

PS discipline in particular. With this approach, the problem of deriving the LST

of the sojourn time reduces to the computation of certain functionals of branching

processes which are tractable enough for analysis. Furthermore, the structure of the

representation and the properties of the PS discipline allow one to apply powerful

asymptotic results for geometric random sums. The latter is discussed in detail in

Chapter 2.

The decomposition procedure is as follows. Suppose that a tagged customer with

a service requirement τ arrives at time epoch t = 0. We consider the dynamics of the

system from time 0 until the time epoch when the service of the tagged customer is

completed. The first step is to introduce a time scale transformation which allows

for the branching process representation. This time-change method is widely used

in the analysis of PS queues, cf. [87], [116]. With this approach all investigations are

performed depending on the amount of service S(t) attained by the tagged customer

during the time interval [0, t], rather than the actual time scale. Denote the number

of customers in the system (including the tagged customer) at time t on the original

time scale by Q(t). The amount of service received by the tagged customer during

the time interval [0, t] is then

s = S(t) =

∫ t

0

1

Q(u)
du. (1.3)

Below we use the symbols t and s for time epochs on the original and the transformed

time scales, respectively.

We define V (s) = inf{t ≥ 0 : S(t) ≥ s}, that is the time epoch when the

attained amount of service reaches level s. In this notation, the sojourn time of the

tagged customer is V (τ). Further, we introduce the process X(s) as the number
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τ0 τ0

Figure 1.4: Branching process representation.

of customers (including the tagged customer) at the server at the epoch when a

cumulative amount of service s is received by the tagged customer. The process

X(s) can be defined as X(s) = Q(V (s)). Evidently, the sojourn time V (τ) can be

expressed in terms of the process X(s) as

V (τ) =

∫ τ

0

X(s)ds. (1.4)

Now we show how to construct a branching process in order to describe the

behavior of the PS queue. Consider each active customer in the queue as an indi-

vidual in a certain population. Each individual has an exponentially distributed life

time. During its life time the individual produces children according to a Poisson

process with rate λ. The birth of an individual corresponds to the arrival of a new

customer and a death corresponds to a service completion. The customers present

in the system at the arrival of the tagged customer are called progenitors while the

new arrivals occurring after t = 0 are assumed to be descendants of these progen-

itors. If n progenitors are present in the system then each new arrival is declared

with probability 1/n to be a descendant of any of these progenitors. The tagged

customer is also considered as a progenitor. Each branching process is formed by

one progenitor and all its descendants (for more details see [116]). See Figure 1.4

for an illustration. The bars with thick borders represent progenitors and the bars

with regular borders represent children. The length of the bars indicates the service

requirement. Note that the total birth and death rates in the branching process (af-

ter the time change (1.3)) correspond to the arrival and departure rates in the PS

queue. Thus, under the described branching construction, the queue length process

X(s) is stochastically equivalent to the total size of the population of the branching

process at time s.

Let Q denote the number of customers in the system upon arrival of the tagged

customer. Define V0(τ) as the sum of the ages reached by the tagged customer and

its direct descendants up to time τ , and Ci(τ) as the sum of the ages (attained

amount of service) reached by the ith progenitor and its descendants up to time τ ,
i.e. during the life time of the tagged customer. Yashkov [116] established that the
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sojourn time of the tagged customer can be represented as

V (τ) = V0(τ) +

Q
∑

i=1

Ci(τ). (1.5)

Notice that the random variable V0(τ) is in fact the sojourn time of a customer

which arrives into an empty system. In general, we will call the variables V0(τ) and

Ci(τ) the delay elements.
The essential observation here is that the elements V0(τ) and Ci(τ), i = 1, 2, ..., Q,

are mutually independent. This is due to the fact that the service requirements and

the arrivals of various customers are independent. The elements Ci(τ) are also iden-

tical in distribution. Again, we refer to Yashkov’s work [116, 117] for the details

behind these results. Another exposition can be found in Chapter 3 of Núñez-

Queija [87], where this decomposition result is extended to PS queues with service

interruptions.

1.3.2 Large deviations

Large-deviations (LD) theory refers to a very powerful approach which is partic-

ularly useful for the analysis of rare-event probabilities in complex queueing systems.

The LD approach is in essence a method that transforms the problem of analyzing

the stochastic behavior of the system into the problem of optimizing a certain deter-

ministic function. The implications of the method are threefold. First, it provides

the exponential decay rate for the probability of a rare event. Second, it enables us

to understand the most likely manner in which this rare event occurs, that is to find

the most probable sample path that leads to the rare event. Finally, this approach

provides foundations for fast and efficient rare-event simulation algorithms.

LD theory is principally concerned with large fluctuations of stochastic objects

away from their average behavior, such that the probability of the fluctuations is

exponentially small. For a fundamental example of LD results we refer to Cramer’s

theorem describing the fluctuations of the empirical mean of a sequence of indepen-

dent identically distributed random variables. The theorem states that the prob-

ability of large fluctuations of the empirical mean from the expected value decays

exponentially fast as the number of random samples grows large. More details on

general LD results can be found in, e.g., Dembo and Zeitouni [41].

An important LD concept is the sample-path Large-Deviations Principle (sp-

LDP). This principle describes the limiting behavior of a sequence of probability

measures in terms of a so-called rate function. A formal statement is as follows.

Consider a sequence of stochastic processes (Xn(t), n ∈ N, t ≥ 0). Denote by Ω

a space of sample paths, for example the space C of continuous functions. We say

that Xn(·) obeys a sp-LDP with rate function I, if

lim sup
n→∞

1

n
log P(Xn(·) ∈ S) ≤ − inf

x∈S
I(x), for any closed set S ⊂ Ω, (1.6)

lim inf
n→∞

1

n
log P(Xn(·) ∈ T ) ≥ − inf

x∈T
I(x), for any open set T ⊂ Ω. (1.7)
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The function I(·) is a non-negative lower-semicontinuous function on Ω. It roughly

represents the measure of how likely the occurrence of each sample path is. The min-

imization of the rate function corresponds to the identification of the most probable

sample path.

Inequality (1.6) is the upper bound of the sp-LDP, and (1.7) is the lower bound of

the sp-LDP. It is often a challenging task to derive a sp-LDP with useful expressions

for I. It is common to first obtain the most probable sample paths in the upper bound

and in the lower bound. If the paths coincide, then the most probable path for the

rare-event probability has been found.

It is important to mention that the LD method typically applies to rare events

that result from a large number of unlikely events that occur at the same time, a

so-called conspiracy. For example, in PS systems with time-varying capacity a large

sojourn time is the result of both the arrival process generating traffic at a higher

rate than usual and the service process offering service at a lower rate than usual. In

contrast, when the flow size has a heavy-tailed distribution, in most cases the large

size of the request itself is responsible for the large sojourn time, and this scenario

can not be captured by the LD method.

1.3.3 Fluid limits

Fluid limits and fluid approximations of stochastic systems have emerged as a

key technique for analyzing stability and time-dependent behavior of multi-class

stochastic networks. Generally speaking, a fluid approximation represents a func-

tional strong law of large numbers which can be stated for a large class of stochastic

systems. This method was first applied to a two-station, two-class network by Ry-

bko and Stolyar [101]. It became popular by the work of Dai [39] who generalized

the method and established crucial stability criteria. For an extensive overview

on fluid-limit results, the reader may consult the books of Chen and Yao [32] and

Whitt [115] and references therein.

In Chapter 5 we will apply fluid models to describe the behavior of the queue

length in bandwidth-sharing networks operating in an overload regime. Instead of

formulating the fluid-limit approach in a general setting, we provide here a short

description of the fluid limits in the context of our model.

We consider a bandwidth-sharing network as in Subsection 1.2.3. Let R be

a sequence of positive real numbers increasing to infinity. With each r ∈ R we

associate a stochastic model in the following way. We suppose that all the systems

have the same vector of link capacities C, incidence matrix A and bandwidth-sharing

policy Λ with parameters (α,w). The flow size distribution in the rth system is given

by Br and the arrival rate is λr.
Let us now introduce the scaled versions of the stochastic process of interest.

For r ∈ R and t ≥ 0, let

Z
r
(t) =

1
rZ

r(rt),

where the vector Zr(t) denotes the number of active flows at time t in the rth
system. The system parameters Br and λr are assumed to converge to the limits B
and λ in an appropriate manner. For the sequence of the scaled initial conditions,
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we assume that as r → ∞,

Z
r
(0) → z(0), almost surely.

A crucial step in the fluid-limit analysis is establishing the tightness of the scaled

sequence or, more challenging but more powerful, its convergence. The analysis of

the stochastic system then reduces to the derivation and analysis of the deterministic

fluid model (in the form of functional equations) that describes the behavior of the

limit points.

The fluid-limit models present a convenient tool for establishing the stability of

complex queueing systems. It is known that the stability of multi-class queueing

networks can not be assured by the usual traffic load conditions and is dependent

on the service discipline. Some two-station counterexamples are given for instance,

in Bramson [28], Lu and Kumar [80], Rybko and Stolyar [101]. Dai [39] has shown

that the queueing network is stable in the sense that the associated Markov process

is positive recurrent for any given initial state if the corresponding fluid limit is

stable. Based on this result, stability of various priority disciplines was proved.

However, it is important to mention that the method of Dai [39] implicitly assumes

that the service discipline is a head-of-the-line discipline, and thus, is not applicable

to PS type disciplines. The complication is due to the fact that in PS systems (and

bandwidth-sharing networks) the number of active customers depends on the arrival

rate and on the entire (remaining) flow size distributions of all initial and arriving

flows.

1.4 Literature overview

In this section we review several results for the basic PS model and some of its

extensions. In Subsections 1.4.1 and 1.4.2 the focus is on the analysis of the sojourn

time. References to the literature on other performance measures can be found in

e.g. the surveys Altman et al. [4], Borst et al. [25]. Subsection 1.4.3 gives an overview

of the literature on stability and overload behavior of bandwidth-sharing networks.

1.4.1 Egalitarian processor sharing

There exists a vast amount of literature devoted to the derivation of the complete

distribution of the (conditional) sojourn time in the egalitarian PS queue. Coffman

et al. [35] first derived the expression for the LST of the sojourn time conditioned

on the service requirement and number of customers upon arrival in the M/M/1

PS queue. Sengupta and Jagerman [106] obtained the LST of the sojourn time

conditioned only on the number of customers at the arrival epochs. Yashkov [116]

found an analytic expression for the distribution function for the M/G/1 PS queue

in terms of a double LST based on the decomposition of the sojourn time into a set

of independent random variables. Schassberger [104] developed another approach

to derive the LST by considering PS as a limiting case of the round-robin disci-

pline. Using methods similar to Yashkov’s, the LST of the conditional sojourn time
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was also studied by Grishechkin [56], Ott [89] and Núñez-Queija [87]. Zwart and

Boxma [122] derived a new, more explicit expression for the LST involving a se-

ries expansion. Van den Berg [13] obtained results for the LST and the moments

of the sojourn time by considering the PS queue as a limiting model of the queue

with feedback. Using the LST results from [35], Morrison [86] derived an integral

representation for the sojourn time probability distribution. Cheung [33] obtained

bounds for all moments of the conditional sojourn time in the M/G/1 PS queue

based on the LST transform and a novel queue length decomposition approach.

For the GI/M/1 PS, Ramaswami [94] derived the LST of the unconditional sojourn

time. For a survey on the LST results we refer to [117].

Analytic inversion of these LST’s has appeared to be hard, and only partial re-

sults are available. The complexity of deriving the complete probability distribution

led to an interest in the tail behavior of the sojourn time distribution. Although

obtaining the tail behavior seems a more modest goal than obtaining the complete

distribution, this task has still proved to be quite challenging and has recently been

the subject of extensive research.

Notably, one of the major insights is that there is a fundamental difference be-

tween sojourn time asymptotics for heavy-tailed and light-tailed service requirement

distributions. A large number of studies have focused on the analysis of the tail of

the unconditional sojourn time distribution in case the service time distribution is

heavy-tailed. The asymptotic tail behavior of the sojourn time in the M/G/1 PS

queue with regularly varying service time distribution was derived in [122] and later

generalized in [87] for the case of distributions with intermediately regularly vary-

ing tails. The authors established the following asymptotic relationship between the

distributions of the sojourn time V and the service requirement B with ρ denoting

the traffic load:

P(V > x) ∼ P(B > (1 − ρ)x), (1.8)

as x→ ∞ (for any two real functions f(·) and g(·), f(x) ∼ g(x) as x→ ∞ denotes

that f(x)/g(x) → 1 as x→ ∞). This asymptotic equivalence is often referred to as

reduced-load approximation. The approximation may be heuristically interpreted as

follows. Suppose a (tagged) customer with a very large service requirement arrives in

the system. During his service, the system behavior may be approximately described

as a PS queue with one permanent customer. For such a queue, it is known that

the mean service rate received by the permanent (tagged) customer equals 1 − ρ
(cf. [36, 122]). Thus, in order to attain the amount of service B, the customer must

spend roughly B/(1 − ρ) time units in the system.

It is worth noting that the above heuristics only apply for queues with heavy-

tailed service time distributions, so that the customer stays in the system long

enough to reach equilibrium behavior. Moreover, the equivalence (1.8) implicitly

shows that the most probable scenario for a long sojourn time to occur is due to a

large service requirement of the customer itself.

In [65], Jelenković and Momćilović extended the equivalence result to the case

when the service time belongs to the class of subexponential distributions with tails

heavier than e−
√

x. Assuming regularly varying distributions, Guillemin et al. [62]



1.4 Literature overview 15

proved that the asymptotic equivalence also holds for PS models with admission

control and impatience as well as for state-dependent PS models (Generalized Pro-

cessor Sharing as considered by Cohen [36]). See Borst et al. [25] for a survey.

For PS queues with light-tailed service time distributions only a few results are

available. The tail asymptotics for the unconditional sojourn time in the M/M/1

PS queue are known, and are of a quite remarkable form:

P(V > x) ∼ cx−5/6
e
−αx1/3

e
−γ0x, x→ ∞, (1.9)

for positive constants c, α, γ0. Flatto [54] obtained this asymptotic tail behavior of

the waiting time in the M/M/1 Random-Order-of-Service (ROS) queue. Subse-

quently, Borst et al. [22] showed that the waiting-time distribution in the M/M/1

ROS queue, conditioned to be positive, equals the sojourn time distribution in the

M/M/1 PS queue.

Mandjes and Zwart [82] analyzed the sojourn time asymptotics in the GI/GI/1

PS queue. Using large-deviations techniques, they derived logarithmic asymptotics

for a broad class of light-tailed service time distributions. More precisely, they

proved under specific conditions that the sojourn time V obeys

lim
x→∞

1

x
log P(V > x) = inf

θ≥0
(α(θ) − θ), (1.10)

where α(s) is the so-called (asymptotic) cumulant function of total amount of work

fed to the queue, i.e.,

α(θ) = lim
x→∞

1

x
log E[e

θA(0,x)
],

with A(0, x) the amount of traffic offered to the system in (0, x].

The overload behavior of a single-server PS system was first analyzed by Jean-

Marie and Robert [64], who derived the fluid limit for the number of jobs in the

system. They showed that the queue length grows at a linear rate which depends on

the entire distribution of the service time in addition to the mean interarrival time.

Puha et al. [92] studied a single-server overloaded PS system in terms of measure-

valued processes. A similar approach was applied to the PS queue with impatient

customers in Gromoll et al. [58].

There are a few results available for the sojourn time asymptotics in PS queues

with time-varying service rate. Assuming the service time distribution to be heavy-

tailed, various extensions of the reduced-load approximations (as derived for the

situation with constant service rate) were established. Núñez-Queija [87] studied

the M/G/1 PS system in which the service rate follows an On-Off process with ex-

ponential On-periods. Other versions of the reduced-load approximation for queues

with time-varying service rate are given in e.g. Bekker et al. [10], Borst et al. [24],

Guillemin et al. [62]. Delcoigne et al. [40] evaluated the performance of PS queues

in the presence of higher-priority jobs and obtained bounds for the mean sojourn

time.
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1.4.2 Discriminatory processor sharing

The literature on the sojourn time under the DPS discipline is quite sparse.

Despite the rather simple service rate allocation policy which is closely related to

the EPS model, the analysis of the DPS system appears to be extremely difficult.

Major progress was made by Fayolle et al. [52] who obtained for the M/G/1 queue

the mean sojourn time conditioned on the service requirement in the form of a set

of integro-differential equations. Moreover, they showed that the conditional mean

sojourn time under DPS asymptotically coincides with the conditional mean sojourn

time under the PS discipline independently of the weights,

E[Vi(τ)] ∼
τ

1 − ρ
, τ → ∞.

Kim and Kim [74] derived the higher moments of the sojourn time in the M/M/1

queue as a solution to a set of linear equations. Recently, Avrachenkov et al. [8]

proved that the conditional sojourn times of the various traffic classes are stochas-

tically ordered according to the DPS weights. Rege and Sengupta [95] showed that

the sojourn time conditioned on the job size can be decomposed into independent

summands.

The sojourn time asymptotics for a general DPS queue with time-varying service

rate were analyzed by Borst et al. in [26]; the authors proved the reduced-load

equivalence in the case when the service rate process does not fluctuate too wildly

compared to the service requirement. This result was extended to a wider class

of service requirement distributions in [25]. The behavior of the DPS queue under

overload conditions was studied by Altman et al. in [5]. A heavy-traffic regime was

studied in Rege and Sengupta [96], Van Kessel et al. [108]. A comprehensive survey

on DPS is given in [4] and [25].

1.4.3 Bandwidth-sharing networks

We now present a short overview of the literature on the flow-level analysis of

bandwidth-sharing networks as described in Subsection 1.2.3. These networks pro-

vide a natural modeling framework for describing the dynamic interaction among

competing elastic flows that traverse several links along their source-destination

paths. Several studies have focused on the fundamental problem of network stabil-

ity. Assuming exponential flow size distributions and Poisson arrivals, De Veciana et
al. [110, 111] proved that weighted max-min and proportional fair bandwidth-sharing

strategies achieve stability in such networks (positive recurrence of the associated

Markov process) under the nominal condition that no individual link is overloaded.

Bonald and Massoulié [14] extended that result to a wide family of weighted α-fair

bandwidth-sharing strategies. Massoulié [83] established that the nominal stability

condition remains sufficient for the proportional fair strategy with an additional

‘routing feature’, thus further generalizing the result to phase-type flow size distri-

butions. Bramson [29] showed that the max-min fair strategy guarantees stability

under the nominal load condition for general flow size distributions and renewal

arrival processes.
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The analysis of the flow-level performance of bandwidth-sharing networks ap-

pears to be generally difficult, even for the simplest network topologies and ex-

ponential flow sizes. Although an α-fair bandwidth-sharing network bears strong

resemblance with a single-server PS system, there are two key distinctions that arise

in a network scenario: (i) the rate received by a class is no longer constant, but de-

pends on the number of flows of all classes in some intricate fashion; and (ii) the

network may show non-work-conserving behavior due to the fact that congestion at

other links may prevent a link from utilizing its full capacity, a phenomenon referred

to as ‘entrainment’ by Kelly and Williams [71].

There are a number of results available in the literature for the flow-level per-

formance of networks with insensitive rate allocations. Insensitivity is understood

in the sense that the distribution of the number of active flows does not depend

on the detailed traffic characteristics. The first results are due to Massoulié and

Roberts [84] who derived an explicit formula for the distribution of the number of

flows in linear networks with proportional fair sharing. The result was extended to a

grid network in Bonald and Massoulié [14]. The queue length results in conjunction

with Little’s law allow to compute the mean sojourn time, see e.g. [14, 17, 18].

Later, Bonald and Proutière [17] proved that the performance of all utility-based

policies is sensitive, with the exception of the proportional fair allocation in specific

network topologies (namely, homogeneous hypercubes). The authors identified nec-

essary and sufficient conditions for insensitivity in terms of a set of balance equations

and introduced an alternative “balanced fairness” allocation policy which is insensi-

tive and Pareto-efficient. Assuming Poisson arrivals, the distribution of the number

of flows under an insensitive rate allocation only depends on the traffic intensities

and is proportional to

π(x) = Φ(x)

I
∏

i=1

ρxi
i ,

where Φ(·) is a so-called balance function. Balanced fairness insensitivity can be

viewed as a generalization to a network setting of the insensitivity of a single-node

PS system with Poisson arrivals.

The difficulty of exact analysis of sensitive rate allocation policies motivated

the study of approximations of flow-level performance measures. Assuming Poisson

arrival processes and exponential flow sizes, Kelly and Williams [71] studied critical

fluid-limit models when the average load on at least one resource is equal to its

capacity. Under general distributional assumptions and load conditions, Gromoll

and Williams [60, 61] studied the fluid limit for weighted α-fair strategies, and

established stability of the fluid limit in some special cases, such as linear and tree

topologies. Chiang et al. [34] developed a fluid model extending that of [60, 61]

to more general network utility maximization policies. They established stability

of the fluid model operating under an α-fair policy with α sufficiently small and

1/(1 + α)-approximate stability for arbitrary positive values of α.
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1.5 Overview of the thesis

In this first chapter we introduced and discussed various processor-sharing mod-

els, namely egalitarian PS, DPS and bandwidth-sharing networks. We briefly de-

scribed the methods applied in this monograph and provided an overview of the

most relevant literature. In the remainder of this monograph we present asymptotic

results for the sojourn time distribution in a single-server PS system (Chapters 2–4)

and bandwidth-sharing networks (Chapters 5–6).

Before providing a more detailed overview, we like to point out that the main

focus in this thesis is on the PS queue where the service time has a “light-tailed”

distribution. As mentioned in Subsection 1.4.1, this case has received relatively little

attention compared to the case of heavy-tailed distributions. Exact asymptotics (of

highly uncommon and interesting form) were only available for the M/M/1 PS queue

and were obtained by analytical methods that did not provide insight into the nature

of the underlying rare event, cf. (1.9). Even deriving the logarithmic asymptotics

has proved to be far from straightforward [82]. The complexity and the scarcity of

the available results have triggered our interest in this topic.

In Chapter 2 we consider the M/D/1 queue, and show that the probability P(V >
x) decays exponentially fast as x becomes large. The proof involves a geometric

random sum representation of V and a connection with Yule processes, which also

enables us to simplify Ott’s [89] derivation of the Laplace-Stieltjes transform of V .

Numerical experiments show that the asymptotic approximation is highly accurate,

even for moderate values of x. Chapter 2 is based on the results published in Egorova

et al. [49].

In Chapter 3 we investigate the tail behavior of the sojourn time distribution for a

service requirement of a given length in an M/G/1 queue. An exponential asymptote

is proved for general service times in two special cases: when the traffic load is

sufficiently high and when the service requirement is sufficiently small. Furthermore,

using the branching process technique we derive exact asymptotics of exponential

type for the sojourn time in the M/M/1 queue. We obtain an equation for the

asymptotic decay rate and an exact expression for the asymptotic constant. The

decay rate is studied in detail and compared to that of other service disciplines.

Finally, we investigate the accuracy of the exponential asymptote using numerical

methods. This chapter builds upon the analysis of Egorova and Zwart [47] and some

basic results presented in Chapter 2.

In Chapter 4 we study the GI/GI/· queue operating under a PS discipline with

stochastically varying service rate. The focus is on logarithmic estimates of the

tail of the sojourn time distribution, under the assumption that the service time

distribution has a light tail. Whereas upper bounds on the decay rate can be derived

under fairly general conditions, establishing the corresponding lower bounds requires

that the service process satisfies a sample-path large-deviations principle. We show

that the class of allowed service processes includes the case where the service rate is

modulated by a Markov process. Finally, we extend our results to a similar system

operating under the DPS discipline. This chapter presents the results published in

Egorova et al. [46].
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In Chapters 5 and 6 we analyze the behavior of bandwidth-sharing networks as

introduced in Subsection 1.2.3. The presented results can be viewed as first steps in

the flow-level performance analysis of a network operating under a fair bandwidth-

sharing policy. To the best of our knowledge, the sojourn time distribution in such

systems has not been studied. The dynamic resource allocation and non-work-

conserving behavior make the analysis of the queue length and the sojourn time

extremely challenging. In Chapter 5 we analyze an overload regime with the main

focus on the queue length growth. While this may appear to be a deviation from

the main subject of this monograph, the growth rates of the queue length in an

overloaded system are in fact intimately related to the large-deviations behavior of

the queue length and sojourn time. Specifically, the most likely way for a large

queue or a long delay to occur, commonly entails a scenario where the system

temporarily deviates from the normal stochastic laws and behaves as if it experiences

overload. In order to estimate the probability of a rare event, it is often convenient to

apply a so-called change of measure, a method that allows to transform the system

characteristics in such a way that an extremely uncommon phenomenon becomes a

more frequent one. Under a particular change of measure the system may exhibit

overload behavior. For example, Mandjes and Zwart [82] applied this approach in

the single-server case, using a fluid-limit result of Puha et al. [92]. Using the overload

results from Chapter 5, we perform such a change of measure to derive the sojourn

time asymptotics in Chapter 6.

In Chapter 5 we focus on α-fair bandwidth-sharing networks where the load

on one or several of the links exceeds the capacity. In order to characterize the

overload behavior, we examine the fluid limit, which emerges from a suitably scaled

version of the number of flows of the various classes. We derive a functional equation

characterizing the fluid limit. The convergence of the scaled number of flows to the

fluid limit is proved under the assumption that the fluid limit is strictly positive.

Further, we establish the uniqueness of the fluid limit for networks with a tree

topology. For the case of a zero initial state and zero-degree homogeneous rate

allocation functions, we show that there exists a uniquely determined linear solution

to the fluid-limit equation, and obtain a fixed-point equation for the corresponding

asymptotic growth rates. The fluid-limit results are illustrated for parking lot,

linear and star networks as important special cases. Finally, we discuss extensions

to models with user impatience. This chapter is based on results in Borst et al. [23],

Egorova et al. [44, 45].

In Chapter 6 we derive the asymptotics for the sojourn time distribution in a

special type of bandwidth-sharing network: a parking lot network. Using large-

deviations techniques and the fluid-limit results from Chapter 5, we obtain the

logarithmic asymptote under the assumption that flow sizes have a light-tailed dis-

tribution. In addition, we derive stochastic bounds for the number of flows and the

workload in the system. This chapter is based upon Egorova and Zwart [48].





Chapter 2

Sojourn time asymptotics in the
M/D/1 queue

The focus of the present and the next chapter is on the asymptotic behavior of

the sojourn time distribution in the classical single-node PS queue. In this chapter

we derive exact tail asymptotics for the sojourn time distribution in the PS queue

with Poisson arrivals and deterministic service times. Specifically, we assume that

customers arrive according to a Poisson process with rate λ at a single server of unit

capacity. The service requirement is constant for all customers, denoted by D. Let

ρ = λD be the traffic intensity. We assume that ρ < 1, so that the system reaches

steady state. Our main result is that the tail behavior of the steady-state sojourn

time V is of the following form:

P(V > x) ∼ αe
−γx, x→ ∞, (2.1)

for some constants α and γ which will be explicitly characterized. Observe that

the asymptotic form is fundamentally different from the one for exponential service

requirements, cf. (1.9). Note also that the logarithmic asymptotics obtained in

[82], which are valid for a broad class of light-tailed distributions, do not extend to

distributions with bounded support, such as deterministic service requirements.

Apart from deriving the specific asymptotics, it is of interest to understand how
large sojourn times take place. In a PS queue, three events may contribute to a large

sojourn time of a (tagged) customer: (i) a large service requirement of the tagged

customer; (ii) a large number of customers present in the system upon arrival of

the tagged customer; (iii) an unusually large number of arrivals after the arrival

of the tagged customer. When service requirements are heavy-tailed, event (i) is

most likely responsible for a large sojourn time [121]. In [82], the authors show that

for a broad class of light-tailed distributions, event (iii) determines the logarithmic

asymptotics. Specifically, V becomes large if the traffic load ρ is increased to 1

during the sojourn time of the tagged customer. From the analysis in this chapter,

one can infer that the most likely way for the event {V > x} for large x to occur

not only involves more work feeding into the system between time 0 and x, but also

21
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an increased number of customers at time 0, i.e. the event {V > x} occurs by a

combination of the events (ii) and (iii) mentioned above.

The analysis in both the present chapter and the next is based on two key ideas.

The first cornerstone is the branching method introduced by Yashkov [116]. The

branching process representation and decomposition of the sojourn time into a sum

of independent random variables (called delay elements), conditioned on the number

of customers in the system, was established in [116] for the M/G/1 PS queue. The

method was further applied in e.g. [87, 89, 95]. For the M/D/1 PS model we make

the additional observation that the underlying branching process is a Yule process,

which has been treated by, e.g., Ross [100]. We use this connection to obtain a

simplified derivation of the Laplace-Stieltjes Transform (LST) of the delay elements

associated with V , which also leads to a relatively simple derivation of Ott’s result

([89], formula (5.16)) for the LST of V .

The branching process decomposition enables us to represent the sojourn time

in terms of a random sum of independent and identically distributed delay elements.

Because the number of customers in the system has a geometric distribution, we

can apply existing powerful asymptotic results for geometric random sums to obtain

the tail behavior of V ; this is the second cornerstone of the present analysis.

The remainder of this chapter is organized as follows. In Section 2.1 we provide

basic results for geometric random sums. In Section 2.2, we give a closed-form

expression for the LST’s of the distribution of the delay elements of the branching

process decomposition, which is described in Chapter 1. The main result is presented

and proved in Section 2.3. In addition, the asymptotic behavior under heavy traffic

is considered. It is shown that the large-deviations and heavy-traffic limits are

interchangeable. In Section 2.5 we present the results from numerical experiments.

We compute the values of P(V > x) using transform inversion and compare them

with the values predicted by (2.1). These experiments demonstrate a remarkable

accuracy of the obtained approximation (2.1) even for moderate values of x.

2.1 Preliminaries

This section contains some preliminary results on the branching processes repre-

sentation and the geometric random sums, which serve as a basis for the analysis in

both the present chapter and the next. We assume that customers arrive according

to a Poisson process with rate λ at a single PS server with unit capacity. Denote by

B the generic service time. We assume that the queue is stable, i.e., that the traffic

load in the system is less than one, ρ = λE[B] < 1.

In order to obtain the sojourn time tail asymptotics we apply the so-called

“tagged-customer” approach. We describe the dynamic behavior of the system on

the time interval between the arrival and the departure of a selected customer. Let

us now consider a tagged customer with a service requirement τ (abbreviated as

τ -requirement) that arrives into the system at the time epoch t = 0. Let V (τ) be

its sojourn time.

Following the branching decomposition procedure as explained in Section 1.3, we
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can represent the sojourn time of the tagged customer in a more tractable summation

form,

V (τ) = V0(τ) +

Q
∑

i=1

Ci(τ), (2.2)

where Ci(τ) is the amount of service received by a certain progenitor and its descen-

dants during the sojourn time of the tagged customer, V0(τ) is equal to the amount

of service received by the tagged customer and its direct descendants, and Q is the

number of customers in the system at t = 0.
For convenience, denote V1(τ) =

∑Q
i=1 Ci(τ). Since the queue length distribution

in a PS queue with Poisson arrivals is known, cf. (1.1), the probability distribution

of V1(τ) can be written as

P(V1(τ) > x) = P

(

Q
∑

i=1

Ci(τ) > x

)

=

∞
∑

n=0

(1 − ρ)ρn
(1 − Fn(x)), (2.3)

where F denotes the cumulative distribution function of Ci(τ), and Fn(x) is the

n-fold convolution of F with itself. The random variable V1(τ) is called a geometric

random sum and such random sums arise in many applied probability settings, the

most prominent one being the M/G/1 FCFS queue and the Cramér-Lundberg risk

model. From the results in Kalashnikov and Tsitsiashvili [66], it is known that if the

Cramér condition holds, the tail of the distribution of such a sum is asymptotically

(as x → ∞) equivalent to an exponential function. In particular, in relation to the

delay elements in the M/G/1 PS system, the following theorem holds.

Theorem 2.1.1. Let the Cramér condition hold, i.e. suppose that there exists a
γ = γ(τ) > 0 such that

E[e
γ(τ)Ci(τ)

] =
1

ρ
. (2.4)

(i) If h(τ) = ρ
∫∞
0
xeγ(τ)xdF (x) = ρ d

dsE[esCi(τ)]|s=γ(τ) < ∞, and F is non-
lattice, then the asymptotic relation

P(V1(τ) > x) ∼ α(τ)e−γ(τ)x, x→ ∞, (2.5)

holds with

α(τ) =
1 − ρ

h(τ)γ(τ)
. (2.6)

(ii) If h(τ) = ∞, then

lim
x→∞

P(V1(τ) > x)eγ(τ)x
= 0. (2.7)

The above theorem provides an explicit expression for the tail behavior of the

delay element V1(τ). With this result, the derivation of the tail asymptotics of

the sojourn time V (τ) reduces to two main tasks: (i) to verify the conditions of

the approximation for V1(τ) (which for some systems appears to be a challenging

problem), (ii) to combine the latter asymptotics with the LST of V0(τ).
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In the remainder of the chapter we assume the service time to be constant. Hence,

in the following sections the shorter notation will be used omitting the superfluous

τ ≡ D.

2.2 Laplace-Stieltjes transform of the sojourn time distribu-
tion

In this section we derive the LST of the sojourn time in the M/D/1 PS queue.

In fact, the explicit formula for the LST of V is well known. It was derived by Ott

[89] as a special case of the M/G/1 PS queue:

E[e
−sV

] =
(1 − ρ)(λ+ s)2e−(λ+s)D

s2 + λ(s+ s(1 − ρ) + λ(1 − ρ))e−(λ+s)D
. (2.8)

However, in this section we will give a new simplified proof of this formula using the

branching decomposition and existing results for Yule processes. Some intermediate

results provided by this decomposition will be applied in the derivation of the tail

asymptotics. In fact, the main goal of this section is to obtain the LST of the delay

elements.

The remainder of this section is organized as follows. First we consider the

situation when the tagged customer enters an empty system. We derive the LST of

the sojourn time of this customer in Subsection 2.2.1. In Subsection 2.2.2 we turn

to the general case when there is an arbitrary number of customers in the system

upon arrival of the tagged customer and finally we prove Ott’s formula (2.8).

2.2.1 Sojourn time of the first customer

In this subsection we derive the LST of the sojourn time of the first customer,

i.e. the customer that enters an empty system. Notice that in this situation the

above-defined process {X(t); t ∈ [0,D]}, where t is amount of service received by

the first customer, can be identified with a Yule process on [0,D] starting with one

ancestor. Recall that a Yule process is a pure birth process in which each individual

in the population independently gives birth at constant rate. In our model the births

correspond to customer arrivals. Until the service requirement of the first customer

is completed, a number of other customers may arrive but none leave the system

before that time, since under the PS discipline with constant service requirements

customers depart from the system in order of their arrival.

The next proposition gives the LST of the first customer’s sojourn time.

Proposition 2.2.1.

E[e
−sV0 ] =

λ+ s

λ+ se(λ+s)D
. (2.9)

Proof. The integral representation (1.4) of V0 can be rewritten as follows:

V0 = D +

X(D)−1
∑

k=1

(D − tk),
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where (tk, k ≥ 1) are the arrival times of customers that enter the system during

the service of the first customer.

Since {X(t); t ≥ 0} is a Yule process, its marginal distribution is known (see

e.g. [100], p. 236). At time t the population size is geometrically distributed with

parameter e−λt:

P(X(t) = i) = (1 − e
−λt

)
i−1

e
−λt, t ∈ [0,D]. (2.10)

Furthermore (see again [100]), the conditional joint probability density of the arrival

times t1, t2, . . . , tn, given the number of customers, X(t) = n+ 1, is given by

p(s1, s2, . . . , sn|X(t) = n+ 1) =

n
∏

i=1

f(si), si ≤ t, (2.11)

where

f(x) =
λe−λ(t−x)

1 − e−λt
, 0 ≤ x ≤ t.

In order to obtain the expression for the LST of V0, we condition on the number

of customers in the system upon departure of the first customer,

E[e
−sV0 ] = E[e

−s
∫ D
0

X(t)dt
] = E[e

−s
(

D+
∑X(D)−1

k=1 (D−tk)
)

]

=

∞
∑

n=0

E[e
−s
(

D+
∑X(D)−1

k=1 (D−tk)
)

|X(D) = n+ 1]P(X(D) = n+ 1), (2.12)

where, due to independence of the tk, k = 1, . . . , n, the conditional expectation is

E[e
−s(D+

∑X(D)−1
k=1 (D−tk))|X(D) = n+ 1] =

n
∏

k=1

E[e
−s(D−tk)|X(D) = n+ 1]e

−sD.

Computing the inner term of the above product, we get

E[e
−s(D−tk)|X(D) = n+ 1] =

∫ D

0

e
−s(D−x)λe−λ(D−x)

1 − e−λD
dx

=
λ

λ+ s

1 − e−(λ+s)D

1 − e−λD
. (2.13)

Hence,

E[e
−s(D+

∑X(D)−1
k=1 (D−tk))|X(D) = n+ 1] =

(

λ

λ+ s

)n(
1 − e−(λ+s)D

1 − e−λD

)n

e
−sD.

Substituting the latter expression into (2.12) we obtain the LST of the sojourn time,

E[e
−sV0 ] =

∞
∑

n=0

(

λ

λ+ s

)n(
1 − e−(λ+s)D

1 − e−λD

)n

e
−sD

(1 − e
−λD

)
n
e
−λD

=
e−(λ+s)D

1 − λ
λ+s (1 − e−(λ+s)D)

.

Simple rewriting gives (2.9). �
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Remark 2.2.1. An analog of the above result is given in Kella et al. [67]. The

authors consider an M/G/1 queue with an arbitrary symmetric queueing discipline

(processor sharing is a special case). Let B be a generic service time, D1 the time

epoch of the first departure from the system. Assume that the system is empty at

time 0. Then for any positive s,

E[e
−sD1 ] =

λ

λ+ sE[e(λ+s)B ]
.

The expression is related to the LST of V0 as

E[e
−sD1 ] =

λ

λ+ s
E[e
−sV0 ],

which is a natural result, since D1 = A1 + V0, where A1 is the time epoch of the

first arrival.

The LST of V0 is recently studied in Van Leeuwaarden et al. [79] by investigating

a connection between the M/D/1 PS queue and renewal age processes.

2.2.2 Sojourn time of an arbitrary customer

Let us now turn to the derivation of the LST of the sojourn time of a customer

who enters the system and sees a number of customers already in service upon its

arrival. Denote its sojourn time by V. Suppose that the number of customers in

the system upon its arrival is Q. As before, X(t) is the number of customers at the

epoch when an amount of service t is received by the tagged customer, t ∈ [0,D].
Then X(0) = Q, X(0+) = Q+ 1.

Proof of Formula (2.8). Conditioning on the number of customers in the system

upon arrival of the tagged customer, we can write the LST as

E[e
−sV

] =

∞
∑

n=0

E[e
−sV |Q = n]P(Q = n), (2.14)

where P(Q = n) is given by (1.1).

Now we use a branching decomposition of the sojourn time. If n jobs are present

in the system at t = 0, then the sojourn time is decomposed into a sum of indepen-

dent delay elements associated with n+ 1 progenitors:

V |(Q=n) = V0 +

n
∑

i=1

Ci.

With this representation the conditional expectation in (2.14) simplifies to

E[e
−sV |Q = n] = E[e

−sV0 ]
(

E[e
−sCi ]

)n
.

Let us now derive the transform of the random variable Ci. Let Br
i be the

remaining service requirement of the ith progenitor at the moment of the tagged
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arrival. Br
i = Br, i = 1, . . . , Q, is uniformly distributed on the interval [0,D].

Conditioning on Br, we get

E[e
−sCi ] =

1

D

∫ D

0

E[e
−sCi |Br

= t]dt. (2.15)

Given Br = t, we can express the conditional expectation E[e−sCi |Br = t] as in

the previous section. However, in this situation we must distinguish between the

intervals [0, t] and [t,D]. Since no departures happen before t, on the interval [0, t]
we can apply ordinary Yule process properties as for V0. On the interval [t,D], we

represent the number of customers in the system as a Yule process as well: the Yule

process Y (s), s ∈ [0,D−t], which starts from a number of customers at the moment

s = 0: Y (0) = X(t) − 1.
Rewriting the conditional expectation

E[e
−sCi |Br

= t] = E[e
−s
∑X(t)

k=1 (t−tk)
e
−s
∑X(D)

k=X(t)+1
(t−tk)

],

and using the memoryless property and (2.10), we have

E[e
−sCi |Br

= t] = E[(e
−s
∑X(t)

k=1 (t−tk)
e
−s((X(t)−1)(D−t)+

∑Y (D−t)−Y (0)
k=1 (D−t−tk))

]

=

∞
∑

m=0

E[e
−s

∑m+1
k=1 (t−tk)|X(t) = m+ 1]

×E[e
−s(m(D−t)+

∑Y (D−t)−Y (0)
k=1 (D−t−tk))|X(t) = m+ 1](1 − e

−λt
)
m

e
−λt.

Applying (2.13) with D replaced by t, we can simplify this expression to obtain

E[e
−sCi |Br

= t] =

∞
∑

m=0

e
−(λ+s)t

(

λ(1 − e−(λ+s)t)

λ+ s

)m

× E[e
−s(m(D−t)+

∑Y (D−t)−Y (0)
k=1 (D−t−tk))

].

For the expectation term in the right-hand side we perform a computation using

the Yule process that starts from m individuals (Ross [100]). If the population starts

from i individuals, the population size at epoch t is the sum of i i.i.d. geometric

random variables with parameter e−λt. Hence, the population size at epoch t has a

negative binomial distribution with parameters i and e−λt. As before the distribution

of arrival times tk is defined by (2.11). Using these facts, we obtain:

E[e
−s(m(D−t)+

∑Y (D−t)−Y (0)
k=1 (D−t−tk))

] =

=

∞
∑

l=0

E[e
−s(m(D−t)+

∑ l
k=1(D−t−tk))|Y (D − t) = l +m]P(Y (D − t) = l +m)

=

∞
∑

l=0

e
−(s+λ)m(D−t)

(

λ

λ+ s

)l

(1 − e
−(λ+s)(D−t)

)
l (l +m− 1)!

(m− 1)!l!

=

(

(λ+ s)e−(λ+s)(D−t)

s+ λe−(λ+s)(D−t)

)m

.
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Thus, substituting the latter into the expression for E[e−sCi |Br = t] we get

E[e
−sCi |Br

= t] =

∞
∑

m=0

e
−(λ+s)t

(

λ(1 − e−(λ+s)t)

λ+ s

)m(
(λ+ s)e−(λ+s)(D−t)

s+ λe−(λ+s)(D−t)

)m

=
λ+ se(λ+s)(D−t)

λ+ se(λ+s)D
, (2.16)

and

E[e
−sCi ] =

1

D

∫ D

0

E[e
−sCi |Br

= t]dt =
ρ(λ+ s) − s+ se(λ+s)D

D(λ+ s)(λ+ se(λ+s)D)
. (2.17)

Substituting (2.9) and (2.17) into (2.14), we obtain the sojourn time transform

E[e
−sV

] =
(λ+ s)(1 − ρ)

λ+ se(λ+s)D

∞
∑

n=0

ρn

(

ρ(λ+ s) − s+ se(λ+s)D

D(λ+ s)(λ+ se(λ+s)D)

)n

=
(1 − ρ)(λ+ s)2

s2e(λ+s)D + λ(s+ s(1 − ρ) + λ(1 − ρ))
,

which coincides with Ott’s formula (2.8). �

2.3 Tail behavior of the sojourn time

In this section we investigate the behavior of P(V > x) as x→ ∞. The following

theorem is the main result of this chapter.

Theorem 2.3.1. As x→ ∞,

P(V > x) ∼ αe
−γx, (2.18)

where γ is the real solution of the equation

λD(λ− s) + s− se(λ−s)D

D(λ− s)(λ− se(λ−s)D)
=

1

ρ
, s ≥ 0, (2.19)

and

α =
(1 − ρ)(λ− γ)

2λ(1 − ρ) − γρ(2 − ρ)
. (2.20)

Our derivation is based on the LST results obtained in the previous section. In

particular, we will use the moment generating functions (MGF) of the decomposition

random variables V0 and Ci, appearing in the representation (2.2) of V:

E[e
sV0 ] =

λ− s

λ− se(λ−s)D
, (2.21)

E[e
sCi ] =

λD(λ− s) + s− se(λ−s)D

D(λ− s)(λ− se(λ−s)D)
. (2.22)
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This section is organized as follows. In Subsection 2.3.1 we analyze the singular-

ities of the above MGF s with respect to s. This enables us to prove Theorem 2.3.1

with a version of the Cramér-Lundberg theorem for geometric random sums. The

proof is given in Subsection 2.3.2.

2.3.1 Singularities of the delay element LST’s

Before we proceed with the proof of Theorem 2.3.1, we need to characterize the

singularities of the MGF s E[esV0 ] and E[esCi ]. It is sufficient to consider only real

values of s, since

|E[e
sV0 ]| ≤ E[e

Re(s)V0 ], |E[e
sCi ]| ≤ E[e

Re(s)Ci ].

We begin with E[esV0 ]. Let us consider the denominator of E[esV0 ] as a separate

function f(s) = λ − se(λ−s)D. Obviously, singularities of the MGF can only occur

at zeros of the denominator. The trivial zero of f(s) is s = λ. Notice however, that

this is a removable singularity of E[esV0 ]: using L’Hospital’s rule we obtain that

lim
s→λ

E[e
sV0 ] =

1

1 − ρ
.

We now show that there exists another zero of the function f(s). The derivative

of f(s) is determined as f ′(s) = (Ds− 1)e(λ−s)D and f ′(s) = 0 at s =
1
D . Further-

more, f(0) = λ, f(∞) = λ, f(λ) = 0 and by stability, λ < 1
D . Since f ′(s) < 0 for

s < 1/D and f ′(s) > 0 for s > 1/D, we can conclude that there is a unique point

γ0 >
1
D > λ such that f(γ0) = 0. An important fact is that this point is a pole of

the MGF: E[eγ0V0 ] = ∞.

To analyze the behavior of E[esCi ], let us first consider the conditional MGF

E[esCi |Br = t], t ∈ [0,D], cf. (2.16):

E[e
sCi |Br

= t] =
λ− se(λ−s)(D−t)

λ− se(λ−s)D
.

We already know the zeros of the denominator: λ and γ0. Again, λ is a removable

singularity, since

lim
s→λ

E[e
sCi |Br

= t] =
1 − ρ+ λt

1 − ρ
, t ∈ [0,D].

It remains to check if E[esCi |Br = t] has a singularity when s = γ0. For this

purpose we consider the numerator as a separate function, ft(s) = λ− se(λ−s)(D−t).

As a function of the parameter t, the numerator ft(s) increases for values s < λ and

decreases for s > λ. Since f0(γ0) ≡ f(γ0) = 0 and γ0 > λ, it follows that ft(γ0) is

strictly negative for any t > 0. Hence, γ0 is a pole: E[eγ0Ci |Br = t] = ∞.

Summarizing this subsection we have

Proposition 2.3.1. There exists a unique value γ0 > λ that satisfies the equation

λ− se(λ−s)D
= 0, (2.23)
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and that is an abscissus of convergence of both E[esV0 ] and E[esCi |Br = t], ∀t ∈
[0,D], and consequently, of E[esCi ].

We are now ready to give a proof of Theorem 2.3.1.

2.3.2 Proof of Theorem 2.3.1

The statement of the theorem follows from two known results. First, we obtain

the exponential asymptotics for V1(τ) using Theorem 2.1.1. Substituting expression

(2.22) for E[esCi ] into Equation (2.4) we obtain

E[e
γCi ] =

λD(λ− γ) + γ − γe(λ−γ)D

D(λ− γ)(λ− γe(λ−γ)D)
=

1

ρ
.

Since the function E[esCi ] monotonically increases from 1 to ∞ on the interval

[0, γ0) (by Proposition 2.3.1), for any nonzero value of ρ there exists a unique real

solution γ of Equation (2.4), γ < γ0. Notice also that this solution γ is an abscissus

of convergence of E[esV1 ].

The MGF E[esCi] is finite and differentiable at point s = γ, γ < γ0, which

implies that h < ∞. Finally, F is non-lattice, since P(Ci = Br) > 0, and Br has a

density. Hence, condition (i) of Theorem 2.1.1 is satisfied and we can determine the

coefficient α and the asymptotics for P(V1 > x).
Taking the derivative of the MGF, performing some simplifications and using

the definition of γ, we obtain,

P(V1 > x) ∼ (1 − ρ)(λ− γe(λ−γ)D)

2λ(1 − ρ) − γρ(2 − ρ)
e
−γx, x→ ∞. (2.24)

We can now derive an expression for the tail behavior of the sojourn time V.
Since V1 has an asymptotically exponential tail, P(V1 > x) = P(eV1 > y) ∼ αy−γ ,
where y = ex, and E[e(γ+ε)V0 ] <∞ for any 0 < ε < γ0 − γ we can apply Breiman’s

theorem (see [30]):

P(V > x) = P(V0 + V1 > x) = P(e
V0e

V1 > e
x
) ∼ E[e

γV0 ]P(V1 > x), x→ ∞.

Combining this with Equation (2.9) for E[eγV0 ], we obtain (2.18). �

We close this section with some useful observations.

Remark 2.3.1. An interesting issue, raised in the introduction, is how the number

of customers in the system plays a role in the occurrence of a large sojourn time.

Mandjes and Zwart [82] have shown that, in PS queues with phase-type service times

for example, the initial number of customers is of o(x) when V > x. In this remark,

we show that this picture drastically changes when service times are deterministic.

The proof of Theorem 2.3.1 indicates that the realizations of the Ci’s in the

branching representation (2.2) are sampled from the exponentially tilted density

eγxdP(Ci ≤ x)/E[eγCi ].
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Under this density, the expected value of the Ci is

E[Cie
γCi ]/E[e

γCi ] = ρE[Cie
γCi ] =: c(γ).

Thus, in order for V to be of size x, N should be around x/c(γ).

Remark 2.3.2. When s = λ, the denominator and the numerator of Equation

(2.22) are both equal to zero. Using L’Hospital’s rule we get

lim
s→λ

E[e
sCi ] =

2 − ρ

2(1 − ρ)
.

Solving the equation

2 − ρ

2(1 − ρ)
=

1

ρ
,

we obtain that, for ρ = 2 −
√

2, Equation (2.19) has a solution γ = λ.

Since the asymptotic constant α in (2.18) has a removable singularity at this

value, the tail behavior of V becomes:

P(V > x) ∼ 1 − ρ

ρ(2 − ρ)
e
−λx

=
1

2
e
−λx, x→ ∞. (2.25)

Remark 2.3.3. The asymptotic behavior of the first customer sojourn time dis-

tribution was also obtained in Kella et al. [67] and in Van Leeuwaarden et al. [79].

Using different approaches, the authors showed that

P(V0 > x) ∼ λ− γ0

λ(1 − γ0D)
e
−γ0x, (2.26)

where γ0 6= λ is solution of Equation (2.23).

2.4 Implications of Theorem 2.3.1

In this section we discuss a number of implications of our main result. First, we

take a look at the relationship between the decay rate in the M/D/1 PS queue and

decay rates in queues with FCFS and LCFS disciplines. Secondly, we consider the

behavior of the decay rate γ and the pre-factor α in heavy traffic.

2.4.1 Other service disciplines

First we consider the FCFS service discipline. A fundamental result of Stolyar

and Ramanan [93] states that FCFS is optimal among all work-conserving disci-

plines, in the sense that it maximizes the decay rate of the sojourn time distribution.

The inequality γFCFS > γPS can also be easily verified by the following argument.

Recall ([7], Theorem XIII.5.2) that γFCFS is a solution of the equation ρE[esBr

] = 1,
where Br is the remaining service time. Using Equation (2.4) and the definition of

Ci we get:

E[e
γF CF SBr

] = E[e
γP SCi ] > E[e

γP SBr

].
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The decay rate inequality γFCFS > γPS follows from the monotonicity of the MGF s.

For any work-conserving service discipline the sojourn time is bounded from

above by a residual busy period, which implies that the decay rate of the residual

busy period gives the lowest possible value. Recently Mandjes and Nuyens [81]

showed that this lower bound is attained by the decay rate of the sojourn time

in the LCFS and the Foreground-Background (FB) queues. A similar result was

obtained in [82] for the GI/G/1 PS queue for a class of light-tailed service time

distributions excluding deterministic service requirements. However, in [82] it was

shown that in the M/D/1 queue the decay rate under the LCFS discipline and the

decay rate in the PS case satisfy the strict inequality γLCFS < γPS . Thus, the decay

rate of the sojourn time in the M/D/1 PS queue is strictly smaller than the decay

rate under FCFS and strictly larger than the one under LCFS,

γLCFS < γPS < γFCFS .

Table 2.1 shows decay rates for the M/D/1 queue with PS, FCFS and LCFS

disciplines. For convenience, we take D = 1. The decay rate in the M/D/1 LCFS

queue is given by γLCFS = − log ρ− (1 − ρ) (Cox and Smith [38]).

ρ 0.2 0.4 0.6 0.8

PS 1.9227 1.0462 0.5578 0.2331

FCFS 2.6604 1.6188 0.9474 0.4308

LCFS 0.8094 0.3163 0.1108 0.0231

Table 2.1: Asymptotic decay rates for the M/D/1 queue with PS, FCFS and LCFS

disciplines.

The small value of γLCFS for ρ = 0.8 is related to the fact that γLCFS =

O((1 − ρ)2) as ρ → 1, as opposed to γFCFS = O((1 − ρ)). In the next subsection,

we show that in heavy traffic γPS behaves like γFCFS .

2.4.2 Heavy traffic

Let us now study the sojourn time of a customer in heavy traffic, i.e. when the

traffic intensity ρ→ 1.

Proposition 2.4.1. Let γ and α be defined as in Theorem 2.3.1. Then, as ρ→ 1,
the decay rate γ ∼ λ(1 − ρ) and the coefficient α→ 1.

Proof. Obviously, when the traffic intensity ρ → 1, the decay rate γ converges to

zero (see Equation (2.4)). Let us study the behavior of γ near zero in more detail.

We expand the left-hand side of (2.4) into a two-term Taylor series: E[eγCi ] =

E[1+γCi +O(γ2)]. The second-order term is O(γ2) uniformly in ρ, since the second

moment E[C2
i ] is finite if ρ = 1. The smoothness of the MGF E[eγCi ] near zero

implies that all moments of Ci are finite. To calculate the first moment E[Ci],
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let us take the derivative of the MGF at zero: E[Ci] =
2−ρ
ρλ → 1

λ , and due to

ρE[eγCi ] = ρ+ γE[Ci] +O(γ2) = 1, we get that

γ(1/λ+ o(1)) = 1 − ρ,

implying that γ ∼ λ(1 − ρ).
Substitution of the expression for γ into (2.20) gives the behavior of the asymp-

totic constant α:

α =
(1 − ρ)(λ− γ)

2λ(1 − ρ) − γρ(2 − ρ)
∼ (1 − ρ)(λ− λ(1 − ρ))

2λ(1 − ρ) − λ(1 − ρ)ρ(2 − ρ)
→ 1.

�

Remark 2.4.1. The above heavy-traffic behavior is related to a result of Yashkov

[118]. He derived a heavy-traffic limit result for the sojourn time in the M/G/1 PS

queue conditioned on the service requirement. Replacing s in (2.8) by (1 − ρ)s and

taking the limit ρ→ 1 we have:

lim
ρ→1

E[e
−(1−ρ)sV

] =
λ

λ+ s
. (2.27)

Since the limiting value is the LST of the exponential distribution with parameter

λ, we obtain the heavy-traffic approximation

P(V > x) ≈ e
−λ(1−ρ)x. (2.28)

Hence, summarizing Proposition 2.4.1 and Remark 2.4.1,

lim
ρ→1

lim
x→∞

P((1 − ρ)V > x)

αe−γx/(1−ρ)
= lim

x→∞
lim
ρ→1

P((1 − ρ)V > x)

αe−γx/(1−ρ)
= 1.

This suggests that the asymptotics given in Theorem 2.3.1 provide a good ap-

proximation for the sojourn time tail behavior if ρ is close to 1. The numerical

results in the next section confirm this.

2.5 Numerical results

In this section we present some numerical results. In particular, we compare the

behavior of the sojourn time tail computed numerically from Ott’s formula (2.8) with

the asymptotics we have obtained. In Ott’s formula the sojourn time distribution

is expressed in terms of its LST.

The inversion of LST s was considered to be numerically challenging for a long

time. However, nowadays there are a number of reliable and effective inversion

methods which allow for computing probabilities and other quantities without any

complication. We will compute the sojourn time distribution using the inversion
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algorithm of Den Iseger [42] and will perform a cross-check with the algorithm pro-

posed by Abate and Whitt [2]. Both methods are known to provide high accuracy,

and indeed produce similar results. Since the sojourn time distribution has a jump

at point D, we will apply the modified Den Iseger algorithm for functions with

discontinuities.

Table 2.2 shows computational results for various arrival rates and service re-

quirements normalized to D = 1. For each value of ρ, the first column shows, for

different values of x, the approximation (2.18) for P(V > x). The second column

presents the estimates derived with the Den Iseger inversion algorithm.

ρ = 0.4 ρ = 0.6 ρ = 0.8
x asympt. LST inv. asympt. LST inv. asympt. LST inv.

5 1,0935-02 1,0936-02 9,0507-02 9,0507-02 3,6738-01 3,6738-01

10 5,8474-05 5,8474-05 5,5656-03 5,5656-03 1,1452-01 1,1452-01

15 3,1267-07 3,1267-07 3,4225-04 3,4225-04 3,5699-02 3,5699-02

20 1,6718-09 1,6718-09 2,1046-05 2,1046-05 1,1128-02 1,1128-02

25 8,9398-12 8,9398-12 1,2942-06 1,2942-06 3,4689-03 3,4689-03

30 4,7802-14 4,8072-14 7,9587-08 7,9587-08 1,0813-03 1,0813-03

35 2,5560-16 2,1127-16 4,8941-09 4,8941-09 3,3708-04 3,3708-04

40 1,36677-18 1,2177-18 3,0096-10 3,0096-10 1,0507-04 1,0507-04

Table 2.2: Asymptotic approximation and numerical results.

The results show remarkable accuracy of the asymptotic tail approximation. The

numbers obtained with LST inversion and the asymptotic formula differ sometimes

less than 10−16, which is in fact the maximum accuracy of the inversion algorithm.

Moreover, the asymptotics perform well even for relatively small values of x. Al-

ready for x = 10 the error is of the order 10−13. Results with similar accuracy of

exponential asymptotics in FCFS queues are presented in the paper of Abate et
al. ([1], Table 1).

x asympt. LST inv. HT (2.28)

10 6,17856022-01 6,17856022-01 6,21885056-01

30 2,19011860-01 2,19011860-01 2,40508463-01

50 7,76332889-02 7,76332889-02 9,30144892-02

70 2,75187267-02 2,75187267-02 3,59725188-02

90 9,75458251-03 9,75458251-03 1,39120487-02

Table 2.3: Asymptotic approximations and numerical results for ρ = 0.95.

Table 2.3 presents results for high load, ρ = 0.95. As before, the service require-

ment D is equal to 1. We consider two approximations: the asymptotic approxima-

tion (2.18) (first column), and the heavy-traffic asymptotics (2.28) (third column).



2.5 Numerical results 35

The second column shows the results from the numerical inversion. Remarkably,

the heavy-traffic asymptotics perform less accurately than (2.18).





Chapter 3

Tail behavior of conditional
sojourn times

In this chapter we investigate the tail behavior of the sojourn time distribution for a

given service requirement in the M/G/1 PS queue. In order to emphasize this con-

ditioning we will use the notation M/G(τ)/1 for the underlying queue, although we

stress that all other customers still have generally distributed service requirements.

The analysis in this chapter is based on the same ideas as in the previous chapter:

using the branching process decomposition, we first represent the sojourn time as

a geometric random sum of delay elements, and secondly, we make use of existing

asymptotic results for such sums. However, the task of verifying the conditions

under which these asymptotic results are valid, is significantly more challenging

here. To obtain rigorous results in the general setting, we need to make additional

assumptions. Assuming that either the traffic load is close to one, or that the

service requirement is sufficiently small, we show in Section 3.1 that the asymptotic

tail behavior

P(V (τ) > x) ∼ α(τ)e−γ(τ)x, x→ ∞, (3.1)

is valid for generally distributed service times.

Sections 3.2 and 3.3 are devoted to the case of exponential service times, for

which no further assumptions are necessary. We obtain an equation (of quite an

unusual trigonometric form) for the asymptotic decay rate γ(τ) and an exact (though

complicated) expression for the asymptotic constant α(τ). In Section 3.2, we derive

expressions for the delay elements of the sojourn time and in Section 3.3 we formulate

the main asymptotic result for the M/M(τ)/1 queue.

Finally, in Sections 3.4 and 3.5 we present some numerical results. First, we

analyze the behavior of the decay rate depending on the value of τ and compare it

with decay rates for an M/M(τ)/1 system with a different service discipline such as

Shortest Remaining Processing Time (SRPT), Foreground-Background (FB), FCFS

and LCFS. In Section 3.5, we compare the asymptotic result to exact values of

P(V (τ) > x), obtained by numerical LST inversion. We also compare the accuracy

of the asymptotics and the heavy-traffic approximation. The results show that the

exponential asymptotics provide a good approximation.

37
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3.1 Tail behavior in the M/G(τ)/1 queue

In this section we present some results for the sojourn time in a system with a

general service requirement distribution. Under the condition that the traffic load

is sufficiently high, we prove that the sojourn time tail behaves asymptotically as an

exponential function. We also consider the situation when the service requirement

of the given customer is close to zero.

In order to obtain the sojourn time tail asymptotics we follow the same approach

as in Chapter 2. We consider a tagged customer with a service requirement of length

τ which arrives at t = 0. Using the branching process decomposition procedure as

described in Section 1.3, we represent the sojourn time of the tagged customer as a

geometric random sum of independent delay elements, cf. (2.2). Subsequently, we

apply existing asymptotic results for such sums. We refer to Sections 1.3 and 2.1

for a detailed discussion.

The further derivations in the present chapter predominantly rely on Theorem

2.1.1. In the following proposition, we prove the Cramér condition (2.4) for the case

where the traffic intensity is sufficiently large.

Proposition 3.1.1. Let h(τ) = ρ d
dsE[esCi(τ)]|s=γ(τ). For any value of τ there exists

a ρ(τ) < 1 such that for all ρ > ρ(τ), there exists a solution γ(τ) of Equation (2.4)
with h(τ) <∞.

Proof. Due to the convexity of the MGF, it suffices to show that for any fixed

value of τ there exists a sufficiently large ρ < 1 such that there exists an s̄ for

which
1
ρ < E[es̄Ci(τ)] < ∞. Observe that Ci(τ) is stochastically dominated by the

busy period Pτ in a system with services defined as min(B, τ) given that the first

customer in the busy period has a service requirement τ. Therefore, the inequality

E[esCi(τ)] ≤ E[esPτ ] holds. Due to Theorem 7.1 in [3], Pτ has a decay rate ŝ(τ, λ),
defined as the solution of the equation λ(d/ds)(E[es min(B,τ)]) = 1, and since P(Pτ >
x) ∼ const · x−3/2e−ŝ(τ,λ)x, we deduce E[eŝ(τ,λ)Pτ ] <∞. Hence, E[eŝ(τ,λ)Ci(τ)] <∞.

To bound the MGF of Ci(τ) from below, notice that for any τ, Ci(τ) ≥ min(Br, τ),
where Br is the residual service time. Hence, E[eŝ(τ,λ)Ci(τ)] ≥ E[eŝ(τ,λ) min(Br,τ)].
If P(B > τ) > 0, then E[min(B, τ)] < E[B] and the modified queue is still stable.

Hence ŝ(τ, 1
E[B] ) > 0, and

lim
λ→1/E[B]

E[e
ŝ(τ,λ)Ci(τ)

] ≥ lim
λ→1/E[B]

E[e
ŝ(τ,λ) min(Br,τ)

]

= E[e
ŝ(τ,1/E[B]) min(Br,τ)

] > 1.

Thus, choosing ρ > 1

E[e
ŝ(τ, 1

E[B]
) min(Br,τ)

]
, we can find a solution of Equation (2.4). �

The following theorem is a straightforward consequence of the above proposition.

Theorem 3.1.1. For any value of τ there exists a ρ(τ) such that for all ρ > ρ(τ)
we have

P(V (τ) > x) ∼ α(τ)e−γ(τ)x, x→ ∞, (3.2)
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where γ(τ) is the solution of Equation (2.4) and the constant α(τ) is given by

α(τ) =
1 − ρ

h(τ)γ(τ)
E[e

γ(τ)V0(τ)
]. (3.3)

Proof. By Proposition 3.1.1, for all ρ > ρ(τ), there exists a solution γ(τ) of (2.4)

and h(τ) < ∞. Further, the distribution function F of the delay element Ci(τ) is

non-lattice, since P(Ci(τ) = Br) > 0, and the residual service time Br has a density.

Hence, the conditions of part (i) of Theorem 2.1.1 are satisfied, and we obtain that

as x→ ∞,
P(V1 > x) ∼ α1(τ)e

−γ(τ)x,

where α1(τ) is given by (2.6).

The condition P(B > τ) > 0 implies that P(Br > τ) > 0. Since we consider all

elements only on the interval [0, V (τ)], the elements Ci(τ) and V0(τ) coincide (in

distribution) if Br > τ, and

∞ >
E[eγ(τ)Ci(τ)]

P(Br > τ)
≥ E[eγ(τ)Ci(τ)1(Br > τ)]

P(Br > τ)
= E[e

γ(τ)Ci(τ)|Br > τ ] = E[e
γ(τ)V0(τ)

].

Applying Breiman’s theorem [30] under the weaker condition E[eγ(τ)V0(τ)] <∞ (see

[43]), we obtain that

P(V (τ) > x) = P(e
V0(τ)

e
V1(τ) > e

x
) ∼ E[e

γ(τ)V0(τ)
]P(V1(τ) > x), x→ ∞,

which completes the proof. �

Using a similar approach, we can prove exponential asymptotics for the sojourn

time of a customer with a very small service requirement.

Theorem 3.1.2. For sufficiently small values of τ,

P(V (τ) > x) ∼ α(τ)e−γ(τ)x, x→ ∞,

where γ(τ) is a solution of Equation (2.4) and the constant α(τ) is given by (3.3).

Proof. The elements Ci(τ) can be bounded from above by the delay element CD
i (τ)

in the M/D/1 PS system with service requirements of size τ. The results in Chapter

2 for the decay rate in the M/D/1 PS queue imply that there exists an ŝ(τ) > 0 such

that E[eŝ(τ)CD
i (τ)] = 1/ρD = 1/(λτ). Further, the same argument as in the proof of

Proposition 3.1.1 is applicable. However in this case λ, E[B] and ρ are fixed and the

parameter τ is varying: E[eŝ(τ)Ci(τ)] > E[eŝ(τ) min(Br,τ)] > eŝ(τ)τP(Br > τ). The

equation for the decay rate ŝ(τ) (see Equation (2.19)) is

λτ(λ− s) + s− se(λ−s)τ

(λ− s)(λ− se(λ−s)τ )
=

1

λ
.

Taking s = cτ and letting τ ↓ 0 we see that lim infτ↓0 ŝ(τ)τ ≥ c for any c, and

consequently, limτ↓0 ŝ(τ)τ = ∞. Hence, the decay rate ŝ(τ) is increasing faster than
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linear in 1/τ when τ becomes small. Thus, we can conclude that for any ρ ∈ (0, 1)

there exists a τ0 such that E[eŝ(τ)Ci(τ)] > 1/ρ holds for all τ < τ0, which by con-

vexity of the MGF implies the existence of a solution of (2.4) for all τ < τ0. The

statement of the theorem then follows by the same argument as in Theorem 3.1.1. �

In the following sections, we focus on the behavior of the sojourn time in the

M/M(τ)/1 queue.

3.2 The delay elements for exponential service times

The goal of this section is to obtain the LST of the delay elements in the

M/M(τ)/1 queue using the approach presented in Yashkov [116], where the gen-

eral expression for the LST of the sojourn time of a τ -requirement in the M/G/1

queue is derived. The LST of the sojourn time itself is of less importance for our

tail behavior investigation; it has been derived in Coffman et al. [35].

Define ϕ(s, τ) = E[e−sCi(τ)] and δ(s, τ) = E[e−sV0(τ)] as the LST’s of the random

variables Ci(τ) and V0(τ), respectively.

Theorem 3.2.1. The delay elements of the sojourn time in the M/M(τ)/1 PS
queue have LST’s given by the expressions:

δ(s, τ) =
2g(s)e−(λ+s−µ) τ

2

(µ− λ+ s) (e1/2τg(s) − e−1/2τg(s)) + g(s)(e1/2τg(s) + e−1/2 τg(s))
(3.4)

and

ϕ(s, τ) =
(µ− λ− s)(e1/2τg(s) − e−1/2τg(s)) + g(s)(e1/2τg(s) + e−1/2 τg(s))

(µ− λ+ s)(e1/2τg(s) − e−1/2τg(s)) + g(s)(e1/2τg(s) + e−1/2 τg(s))
, (3.5)

where g(s) =
√

(λ+ µ+ s)2 − 4λµ.

Proof. In order to derive the LST’s of the delay elements we follow Yashkov [116].

Under the condition that the number of customers in the system upon arrival of the

tagged customer is n and the remaining service time of the ith progenitor at t = 0

is xi, the sojourn time V (τ) can be represented as

V (τ) = V0(τ) +

n
∑

i=1

Ci(xi, τ).

Since the random variables V0(τ) and Ci(xi, τ) are independent, we can write

E[e
−sV (τ)|n, x1, ..., xn] = δ(s, τ)

n
∏

i=1

ϕ(s, xi, τ).
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Unconditioning, we obtain that the LST of the sojourn time is

v(s, τ) = (1 − ρ)δ(s, τ)

[

1 − ρ

∫ ∞

x=0

ϕ(s, x, τ)
(1 −B(x))

E[B]
dx

]−1

= (1 − ρ)
δ(s, τ)

1 − ρϕ(s, τ)
,

where ϕ(s, τ) is the LST of the delay element Ci(τ).
We now proceed to derive the expressions for δ(s, τ) and ϕ(s, τ). Due to Equa-

tions (3.9) and (3.14) in [116] we have

ϕ(s, x, τ) =

{

δ(s, τ)/δ(s, τ − x), x < τ,
δ(s, τ), x ≥ τ.

Using Formula (3.16) of [116] we obtain that

δ(s, τ) = e
−(s+λ)τψ(s, τ)−1,

where the Laplace transform ψ̃(q, s) of the function ψ(s, τ) given by

ψ̃(q, s) =

∫ ∞

0

e
−qτψ(s, τ)dτ,

is a solution of the following equation (see Equations (3.18)–(3.19) in [116])

qψ̃(q, s) − 1 + λψ̃(q, s)β(q + s+ λ) +
λ(1 − β(q + s+ λ))

q + s+ λ
= 0,

where β(·) is the LST of the service time. Substituting β(s) =
µ

µ+s , we obtain

ψ̃(q, s) =
q + s+ µ

q2 + (µ+ λ+ s)q + λµ
.

To derive an expression for ψ(s, τ) we must invert the LST ψ̃(q, s) with respect

to q. This can be easily done using partial-fraction decomposition of the latter

expression. That will lead us to the LST of a sum of two exponential functions. As

a result we get

ψ(s, τ) =
Ae−Bτ + Ce−Dτ

g(s)
, (3.6)

where A = (µ+s−λ+g(s))/2, B = (µ+s+λ−g(s))/2, C = (−µ−s+λ+g(s))/2,
D = (µ+ s+ λ+ g(s))/2, and g(s) =

√

(µ+ λ+ s)2 − 4λµ.
Knowing ψ(s, τ) we can determine the LSTs δ(s, τ) and ϕ(s, x, τ):

δ(s, τ) = e
−(s+λ)τ g(s)

Ae−Bτ + Ce−Dτ
,

ϕ(s, x, τ) =











e−(s+λ)x Ae−B(τ−x)+Ce−D(τ−x)

Ae−Bτ+Ce−Dτ , x < τ,

e−(s+λ)τ g(s)
Ae−Bτ+Ce−Dτ , x ≥ τ.
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Expression (3.4) for the LST δ(s, τ) follows in a straightforward manner. In or-

der to derive the LST ϕ(s, τ) of the delay element Ci(τ), we integrate with respect

to the residual service time x. After some simplifications we obtain Formula (3.5). �

In order to investigate the sojourn time tail behavior we will need the MGF’s of

the delay elements rather than the LST’s. The results of the previous section yield

that the MGF of the delay element E[esCi(τ)] is

E[e
sCi(τ)

] =
(µ− λ+ s)(e

1
2 τf(s) − e−

1
2 τf(s)) + f(s)(e

1
2 τf(s) + e−

1
2 τ f (s))

(µ− λ− s)(e
1
2 τf(s) − e−

1
2 τf(s)) + f(s)(e

1
2 τf(s) + e−

1
2 τf(s))

, (3.7)

where f(s) = g(−s) (Theorem 3.2.1),

f(s) =
√

(µ+ λ− s)2 − 4λµ.

Let us study the function f(s) in more detail.

The expression under the square root is a quadratic function with zeros at sl =

λ+ µ− 2
√
λµ ≡ µ(1−√

ρ)2 and sr = λ+ µ+ 2
√
λµ ≡ µ(1 +

√
ρ)2. The function is

negative on the interval

s ∈ (λ+ µ− 2
√

λµ, λ+ µ+ 2
√

λµ)

and positive otherwise.

Taking into account the fact that the function f(s) is purely imaginary inside

the interval [sl, sr], we can rewrite the MGF in two forms depending on the sign of

the radicand.

Corollary 3.2.1.

E[e
sCi(τ)

] =
(µ− λ+ s) sin[

1
2τ f2(s)] + f2(s) cos[

1
2τ f2(s)]

(µ− λ− s) sin[
1
2τ f2(s)] + f2(s) cos[

1
2τ f2(s)]

, if s ∈ [sl, sr],

E[e
sCi(τ)

] =
(µ− λ+ s) sinh[

1
2τ f1(s)] + f1(s) cosh[

1
2τ f1(s)]

(µ− λ− s) sinh[
1
2τ f1(s)] + f1(s) cosh[

1
2τ f1(s)]

, otherwise,

where f1(s) =
√

(µ+ λ− s)2 − 4λµ and f2(s) =
√

−(µ+ λ− s)2 + 4λµ.

The next result is useful to analyze the MGF around the point sr.

Corollary 3.2.2. For all values of s > 0 where E[esCi(τ)] is finite,

E[e
sCi(τ)

] =

∑∞
n=0

( τ
2 )2n

(2n)! d(s)
n
[

(µ−λ+s)
(2n+1)

τ
2 + 1

]

∑∞
n=0

( τ
2 )2n

(2n)! d(s)
n
[

(µ−λ−s)
(2n+1)

τ
2 + 1

] , (3.8)

where d(s) = (µ+ λ− s)2 − 4λµ.
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Proof. The representation follows from the Taylor expansion for the exponential

function:

ex − e−x

2
=

∞
∑

n=0

x2n+1

(2n+ 1)!
,

ex + e−x

2
=

∞
∑

n=0

x2n

(2n)!
.

Using Equation (3.5) we can now rewrite the MGF ϕ(s, τ) as

ϕ(−s, τ) =

∑∞
n=0

[

(µ− λ+ s)
( τ
2 )2n+1

(2n+1)! f(s)2n+1 +
( τ
2 )2n

(2n)! f(s)2n+1
]

∑∞
n=0

[

(µ− λ− s)
( τ
2 )2n+1

(2n+1)! f(s)2n+1 +
( τ
2 )2n

(2n)! f(s)2n+1
] .

Dividing both numerator and denominator by f(s), we get only even powers under

the sum

ϕ(−s, τ) =

∑∞
n=0

( τ
2 )2n

(2n)! f(s)2n
[

(µ−λ+s)
(2n+1)

τ
2 + 1

]

∑∞
n=0

( τ
2 )2n

(2n)! f(s)2n
[

(µ−λ−s)
(2n+1)

τ
2 + 1

] ,

which yields the desired representation as f(s) =
√

d(s). �
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In this section we present our main result.

Theorem 3.3.1. Define τ0 =
1√
λµ

1−√ρ

1+
√

ρ . For all τ > 0,

P(V (τ) > x) ∼ α(τ)e−γ(τ)x, x→ ∞. (3.9)

(i) If τ 6= τ0, γ(τ) > 0 is the solution of

tan

(τ

2

√

−(λ+ µ− s)2 + 4λµ
)

=

√

−(λ+ µ− s)2 + 4λµ

λ− µ+ s 1+ρ
1−ρ

, if τ > τ0, (3.10)

or

tanh

(τ

2

√

(λ+ µ− s)2 − 4λµ
)

=

√

(λ+ µ− s)2 − 4λµ

λ− µ+ s 1+ρ
1−ρ

, if τ < τ0, (3.11)

and

α(τ) =
2(1 − ρ)

γ(τ)

[(λ+ µ− γ(τ))2 − 4λµ]e−(−γ(τ)+λ−µ) τ
2

K(τ)
, (3.12)

with

K(τ) = (1 + ρ)

×
[

f(γ(τ))(ef(γ(τ)) τ
2 − e−f(γ(τ)) τ

2 ) + γ(τ) τ
2 (λ+ µ− γ(τ))(ef(γ(τ)) τ

2 + e−f(γ(τ)) τ
2 )
]

−(1 − ρ)(λ+ µ− γ(τ))

×
[

(ef(γ(τ)) τ
2 + e−f(γ(τ)) τ

2 )(1 +
(µ−λ)τ

2 ) + (ef(γ(τ)) τ
2 − e−f(γ(τ)) τ

2 )f(γ(τ)) τ
2

]

(3.13)
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and f(s) =
√

(µ+ λ− s)2 − 4λµ.

(ii) If τ = τ0, the decay rate and the asymptotic constant are given by

γ(τ0) = (
√
µ+

√
λ)

2, (3.14)

α(τ0) =
12 (

√
µ+

√
λ)
√
ρ λ e

1− 1√
ρ

6 (µ
√
µ+ λ

√
λ) + (

√
µ−

√
λ)3

. (3.15)

If the conditions stated in Theorem 2.1.1 hold in the case of exponential service

times, the statement of the above theorem follows almost immediately. We will

now show that the Cramér condition indeed holds, i.e. that there exists a positive

solution to the equation E[esCi(τ)] =
1
ρ .

3.3.1 Cramér condition

Let us first determine some useful thresholds that will play an essential role in

our proof.

Proposition 3.3.1. If τ < τ0 =
1√
λµ

1−√ρ

1+
√

ρ , then the solution γ(τ) of Equation

(2.4), if it exists, is larger than sr = (
√
µ+

√
λ)2, and if τ > τ0, a solution must be

inside the interval [sl, sr] = [(
√
µ−

√
λ)2, (

√
µ+

√
λ)2].

Proof. We claim that the solution γ(τ) of Equation (2.4), if it exists, is always

larger than the threshold sl = λ + µ − 2
√
λµ. Let γ0 be the leftmost pole of the

MGF E[esCi(τ)]. Since the MGF is increasing in s on [0, γ0] we only need to show

that

E[e
sCi(τ)

]|s=sl
<

1

ρ
. (3.16)

The value of the MGF at sl is

E[e
sCi(τ)

]|s=sl
=

1 + τµ− τ
√
λµ

1 − τλ+ τ
√
λµ

. (3.17)

Thus, inequality (3.16) simplifies to λ+ τλ(µ−√
λµ) < µ+ τµ(

√
λµ− λ). Due to

the stability assumption it is sufficient to show that λ(µ − √
λµ) < µ(

√
λµ − λ).

Notice that this is equivalent to λ+ µ− 2
√
λµ > 0 and, hence, the claim is true.

Let us now check the behavior of the MGF at the right boundary sr = λ+ µ+

2
√
λµ. We compare the value of the MGF with 1/ρ:

E[e
sCi(τ)

]|s=sr
=

1 + τµ+ τ
√
λµ

1 − τλ− τ
√
λµ

=
1

ρ
. (3.18)

This yields that the MGF at s = sr is equal to 1/ρ if

τ0 =
µ− λ√

λµ(λ+ µ+ 2
√
λµ)

=
1√
λµ

(
√
µ−

√
λ)(

√
µ+

√
λ)

(
√
µ+

√
λ)2

=
1√
λµ

1 −√
ρ

1 +
√
ρ
.
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The statement of the proposition follows from the monotonicity of the MGF with

respect to both s and τ. �

In the next proposition we prove the existence of the decay rate γ(τ).

Proposition 3.3.2. For any τ there exists a solution of Equation (2.4).

Proof. Let us first assume that τ > τ0. Hence, a solution of Equation (2.4) can

only be inside the interval [sl, sr]. On this interval Equation (2.4) takes the following

form

(µ− λ+ s) sin[
1
2f(s)τ ] + f(s) cos[

1
2f(s)τ ]

(µ− λ− s) sin[
1
2f(s)τ ] + f(s) cos[

1
2f(s)τ ]

=
1

ρ
, (3.19)

where f(s) = f2(s) =
√

−(µ+ λ− s)2 + 4λµ. After a simple computation we ob-

tain that this equation is equivalent to

tan

(τ

2
f(s)

)

=
f(s)

λ− µ+ s 1+ρ
1−ρ

. (3.20)

Let us consider the left-hand side (denoted by FL) and the right-hand side (de-

noted by FR) of the latter equation in more detail. Depending on the value of τ, the

qualitative behavior of FL changes. We will determine the intervals for τ on which

FL behaves differently and prove the Cramér condition on each interval.

The function FR is independent of τ. As a function of s, FR has a pole at

s∗ = (µ − λ)
1−ρ
1+ρ . On the interval [sl, s

∗], FR is decreasing from 0 to −∞, and on

[s∗, sr] it is decreasing from +∞ to 0.

Let us now study the behavior of FL as a function of s and τ. The tangent has

infinite jumps when its argument is equal to
π
2 + πk, k ∈ N. We are only interested

in the first jump, k = 0. Note that, due to symmetry of f(s) around s0 = λ+µ, FL

is also symmetric as a function of s on the interval [sl, sr] with respect to the center

of the interval, s0 = λ+ µ.
The first jump of FL occurs when

τ

2
f(s′) =

π

2
,

that is when

s′ = λ+ µ−
√

4λµ− π2

τ2
.

We will consider two cases separately: (1) - when FL has an infinite jump inside the

interval [sl, sr], (2) - when it does not have such a jump. We derive the conditions

and values of τ for which these situations can occur.

(1-a) First suppose that FL has an infinite jump before the infinite jump of FR,

that is s′ < s∗. That is equivalent to

s′ = λ+ µ−
√

4λµ− π2

τ2
< (µ− λ)

1 − ρ

1 + ρ
= s∗,
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Figure 3.1: Functions FL and FR under different conditions on τ , λ = 1.2, µ = 2.

and hence,

τ >
π

2
√
λµ

µ+ λ

µ− λ
:= τ1.

Thus, for any τ > τ1 the function FL jumps before FR. Notice that FR is negative

up to s∗ and FL is positive up to s′ and negative after s′ increasing from −∞.
Hence we can conclude that under this condition on τ there is always a solution of

the equation FL = FR. That means that there is a solution γ(τ) of the Equation

(2.4) and it is located inside the interval [sl, s
′].

Consider now a different situation. Suppose that FL has no infinite jumps inside

the interval [sl, sr]. This is equivalent to the statement

τ

2
f(s) <

π

2
,
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Figure 3.2: Functions FL and FR under different conditions on τ , λ = 1.2, µ = 2.

for all s ∈ [sl, sr], i.e.

τ < min
s∈[sl,sr]

π

f(s)
=

π

2
√
λµ

:= τ2.

(1-b) Consequently, for any τ ∈ [τ2, τ1] (see Figure 3.1 (b)) there is a jump of FL in

the interval [s∗, λ+µ) (before λ+µ since FL is symmetric). Due to the properties of

both functions for these τ there is always a point γ(τ) at which FL and FR intersect,

γ(τ) ∈ [s∗, λ+ µ).
(2) Thus, for any τ ∈ [τ0, τ2] the function FL has no jumps in [sl, sr]. Comparing

the values of FL and FR at the center of the interval there are two cases possible in

this situation (see Figure 3.2 (a,b)): (a) FR|s=λ+µ < FL|s=λ+µ and (b) FR|s=λ+µ >
FL|s=λ+µ.

The values of the functions at this point are:

FL|s=λ+µ = tan(τ
√

λµ),
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FR|s=λ+µ =
µ− λ

2
√
λµ

.

(2-a) Consider the first case. Let us derive conditions under which this event may

occur. Due to the monotonicity of the tangent, the inequality

FL|s=λ+µ = tan(τ
√

λµ) >
µ− λ

2
√
λµ

= FR|s=λ+µ

reduces to

τ >
1√
λµ

arctan

(

µ− λ

2
√
λµ

)

:= τ3.

Hence, for all τ ∈ [τ3, τ2] the value of FR at the center point is lower than

the value of FL. Observe that FR is decreasing on [s∗, sr] and FL is increasing

on [sl, λ + µ]. Therefore, these two functions must intersect at a point γ(τ) on the

interval [s∗, λ+ µ].
(2-b) Consider now the second case (Figure 3.2 (b)): FL|s=λ+µ < FR|s=λ+µ. It

is easy to check that the derivatives FL
′
and FR

′
are equal to infinity when s = sr.

For τ ∈ [τ0, τ3] it is impossible for FL and FR to intersect before the point λ + µ.
So we now consider s ∈ [λ+µ, sr]. For such s and τ both FR and FL are decreasing

as functions of s and

FR|s=sr
= FL|s=sr

= 0,

FR|s=λ+µ > FL|s=λ+µ.

These functions can intersect if and only if in some neighborhood of the point sr

the decrease of FL is faster than the decrease of FR, that is if and only if FL
′ < FR

′.
The derivatives are given by

FL
′
=

τ(λ+ µ− s)

2f(s) cos2(
τ
2 f(s))

,

FR
′
=

4 (λ− µ)λ sµ

f (2λµ− µ2 + sµ− λ2 + λ s)
2 .

Thus, we have

FL
′
=

τ(λ+ µ− s)

2f(s) cos2(
τ
2 f(s))

<
4 (λ− µ)λ sµ

f(s) (2λµ− µ2 + sµ− λ2 + λ s)
2 = FR

′,

τ

cos2(
τ
2 f(s))

>
8 (µ− λ)λ sµ

f(s)(s− λ− µ) (2λµ− µ2 + sµ− λ2 + λ s)
2 .

When s → sr, cos(
τ
2 f(s)) converges to one from below. Hence, the right-hand

side of the latter inequality is larger than or equal to τ , while in this case τ >
τ0 =

µ−λ√
λµ(λ+µ+2

√
λµ)

. Notice that when s → sr the left-hand side of the inequality

converges to τ0. Hence, the inequality holds for all s close enough to sr.
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Figure 3.3: Functions FL and FR under conditions τ < τ0, λ = 1.2, µ = 2.

Thus, we have considered Equation (2.4) in four possible cases under the con-

dition that τ > τ0 and have shown that in all these cases there is a solution of

Equation (2.4) and it lies inside the interval [sl, sr].
(3) The only case left to consider is when τ < τ0. For such values of τ, Equation

(2.4) takes the form:

E[e
sCi(τ)

] =
(µ− λ+ s) sinh[

1
2τf(s)] + f(s) cosh[

1
2τf(s)]

(µ− λ− s) sinh[
1
2τf(s)] + f(s) cosh[

1
2τf(s)]

, (3.21)

or equivalently,

tanh

(τ

2
f (s)

)

=
f (s)

λ− µ+ s 1+ρ
1−ρ

, s ∈ [sr,∞), (3.22)

where now f(s) = f1(s) =
√

(λ+ µ− s)2 − 4λµ.
A useful observation is that when s → ∞, the left-hand side GL converges to

one and the right-hand side GR converges to
1−ρ
1+ρ , which is less than one for all

ρ > 0. The derivatives of both functions are infinite at the point s = sr and both

functions are strictly increasing for s > sr (see Figure 3.3). To prove the inequality

we will use the same technique as in the previous case. We will show that there is

a neighborhood of sr in which the derivatives satisfy G′L < G′R, that is

τ

cosh
2
(

τ
2 f(s))

<
8 (µ− λ)λ sµ

f(s)(s− λ− µ) (2λµ− µ2 + sµ− λ2 + λ s)
2 .

Notice that for s → sr the function cosh(
τ
2 f(s)) converges to one from above,

and so the left-hand side of the inequality is less than or equal to τ , which is in this

case less than τ0. The inequality follows from the observation that the right-hand

side converges to τ0 when s→ sr.
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Thus, we have shown that for all τ > 0 there exists a solution of Equation (2.4).�

Now we are ready to complete the proof of Theorem 3.3.1.

3.3.2 Proof of Theorem 3.3.1.

(i) Due to Propositions 3.3.1 and 3.3.2 we know that the Cramér condition is

satisfied. The decay rate γ(τ) is a solution of the following equation:

(µ− λ+ s)(e
1
2 τf(s) − e−

1
2 τf(s)) + f(s)(e

1
2 τf(s) + e−

1
2 τ f (s))

(µ− λ− s)(e
1
2 τf(s) − e−

1
2 τf(s)) + f(s)(e

1
2 τf(s) + e−

1
2 τf(s))

=
1

ρ
, (3.23)

where f(s) =
√

(µ+ λ− s)2 − 4λµ.

Since both the numerator and the denominator in (3.8) for E[esCi(τ)] are con-

tinuous functions, the MGF becomes infinite only when the denominator equals

zero. The fact that E[eγ(τ)Ci(τ)] = 1/ρ implies that the denominator is non-zero at

s = γ(τ), and hence, due to continuity, is non-zero in some neighborhood of it. From

this we conclude that there is a neighborhood of γ(τ) in which the MGF stays finite,

and consequently,
d
dsE[esCi(τ)]

∣

∣

s=γ(τ)
<∞. The distribution of Ci(τ) is non-lattice,

since P(Ci(τ) = Br) > 0, and the residual service time Br has a density. Thus, the

conditions (i) of Theorem 2.1.1 are satisfied and we can conclude that as x → ∞,
the probability P(V1(τ) > x) decays exponentially fast with the asymptotic decay

rate γ(τ) and the asymptotic constant determined by Equation (2.6).

The fact that the MGF E[esV0(τ)] has the same abscissa of convergence as

E[esCi(τ)] (since B has unbounded support), implies that E[eγ(τ)V0(τ)] is finite for

any τ in some neighborhood of γ(τ). Applying Breiman’s theorem [30], we obtain

P(V (τ) > x) ∼ 1 − ρ

h(τ)γ(τ)
E[e

γ(τ)V0(τ)
]e
−γ(τ)x, x→ ∞. (3.24)

Let us now compute the prefactor. We first need to determine the derivative of

the MGF of Ci(τ) at γ(τ). For convenience we use the following notation. Let us

denote the denominator in Equation (3.7) by D(s, τ) and the numerator by N(s, τ).
The exponents e+ and e− denote ef(s)τ/2 and e−f(s)τ/2 respectively. Then

d

ds
E[e

sCi(τ)
]

∣

∣

∣

∣

s=γ(τ)

=

[

N ′(s, τ)D(s, τ) −N(s, τ)D′(s, τ)

D2(s, τ)

]∣

∣

∣

∣

s=γ(τ)

=

[

N ′(s, τ)

D(s, τ)
− D′(s, τ)

ρ ·D(s, τ)

]∣

∣

∣

∣

s=γ(τ)

=
ρN ′(s, τ) −D′(s, τ)

ρD(s, τ)

∣

∣

∣

∣

s=γ(τ)

,

where the derivatives are taken with respect to s,

N ′(s, τ) = (µ−λ+s)(e+
+e
−

)
τ

2
f ′(s)+(e

+−e
−

)+f ′(s)
(

(e
+

+ e
−

) + f(s)(e+ − e
−

)
τ

2

)

,
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D′(s, τ) = (µ−λ−s)(e+
+e
−

)
τ

2
f ′(s)−(e

+−e
−

)+f ′(s)
(

(e
+

+ e
−

) + f(s)(e+ − e
−

)
τ

2

)

,

and f ′(s) = (λ+ µ− s)/f(s). Hence,

d

ds
E[e

sCi(τ)
]

∣

∣

∣

∣

s=γ(τ)

=

=
1

ρD(γ(τ), τ)f(γ(τ))

[

(1 + ρ)
[

(f(γ(τ))(e+ − e
−

) + γ(τ)
τ

2
(λ+ µ− γ(τ)))(e+

+ e
−

)

]

−(1 − ρ)(λ+ µ− γ(τ))
[

(e
+

+ e
−

)(1 + (µ− λ)
τ

2
) + (e

+ − e
−

)f(γ(τ))
τ

2

]]

.

Let us denote the expression between brackets by K(τ),

d

ds
E[e

sCi(τ)
]

∣

∣

∣

∣

s=γ(τ)

=
1

ρD(γ(τ), τ)f(γ(τ))
K(τ).

Since E[esV0(τ)] ≡ δ(−s, τ) =
2f(s)e−(−s+λ−µ)τ/2

D(s,τ) by Equation (3.4), we obtain from

Equation (3.24):

α(τ) =
1 − ρ

γ(τ)K(τ)
2f2

(γ(τ))e−(−γ(τ)+λ−µ)τ/2,

which gives Equation (3.12).

(ii) The expression for the delay rate is given in Proposition 3.3.1, γ(τ0) = sr.
Let us now compute the prefactor α(τ).

As before, N(s, τ) and D(s, τ) denote the numerator and the denominator in

Equation (3.5). Denote by N1(s, τ) the numerator and by D1(s, τ) the denominator

in Equation (3.8). Observe that N(s, τ) = f(s) · N1(s, τ) and D(s, τ) = f(s) ·
D1(s, τ).

The constant α(τ) is determined (Equations (3.4) and (3.24) ) as

α(τ) =
1 − ρ

γ(τ) d
dsϕ(s, τ)|s=γ(τ)

2f(γ(τ)) e−(−γ(τ)+λ−µ)τ/2

D(s, τ)
.

Since
d
dsϕ(s, τ) =

N ′
1(s,τ)D1(s,τ)−D′

1(s,τ)N1(s,τ)

D2
1(s,τ)

, N1(γ(τ),τ)
D1(γ(τ),τ) = 1/ρ, and D(s, τ) = f(s) ·

D1(s, τ), we obtain

α(τ) =
2(1 − ρ) e−(−γ(τ)+λ−µ)τ/2 f(γ(τ))

D(γ(τ), τ) γ(τ)

D2
1(γ(τ), τ)

N ′1(γ(τ), τ)D1(γ(τ), τ) −D′1(sr, τ)N1(sr, τ)

=
2 (1 − ρ) e−(−γ(τ)+λ−µ)τ/2

γ(τ)

ρ

ρN ′1(γ(τ), τ) −D′1(γ(τ), τ)
, (3.25)

where N ′1(s, τ) and D′1(s, τ) are the derivatives of N1(s, τ) and D1(s, τ) with respect

to s.
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Let us now compute these derivatives:

N ′1(s, τ) =

∞
∑

n=1

(
τ
2 )2nd(s)n−1

(2n− 1)!
(µ+λ− s)

[

(µ− λ+ s) τ
2

(2n+ 1)
+ 1

]

+

∞
∑

n=0

(
τ
2 )2n

(2n)!

[ τ
2d(s)

n

2n+ 1

]

,

D′1(s, τ) =

∞
∑

n=1

(
τ
2 )2nd(s)n−1

(2n− 1)!
(µ+λ− s)

[

(µ− λ− s) τ
2

(2n+ 1)
+ 1

]

−
∞
∑

n=0

(
τ
2 )2n

(2n)!

[ τ
2d(s)

n

2n+ 1

]

.

In particular, when τ = τ0, we see that γ(τ0) = sr and d(sr) = 0. Consequently,

the expressions simplify to

N ′1(sr, τ0) =
(

τ0

2 )2

2
2(µ+ λ− sr)

[

(µ− λ+ sr)

3

τ0
2

+ 1

]

+
τ0
2

=
(
√
µ−

√
λ)(6λ− (

√
µ−

√
λ)2)

6λ
√
µ(
√
µ+

√
λ)2

,

D′1(sr, τ0) =
(

τ0

2 )2

2
2(µ+ λ− sr)

[

(µ− λ− sr)

3

τ0
2

+ 1

]

− τ0
2

=
−(

√
µ−

√
λ)(6µ+ (

√
µ−

√
λ)2)

6µ
√
λ(
√
µ+

√
λ)2

.

The difference ρN ′1(sr, τ0) −D′1(sr, τ0) equals

ρN ′1(sr, τ0) −D′1(sr, τ0) =
(
√
µ−

√
λ)(6 (µ

√
µ+ λ

√
λ) + (

√
µ−

√
λ)3)

6µ
√
λµ (

√
µ+

√
λ)2

.

Substitution of τ0, sr, ρN
′
1(sr, τ0) −D′1(sr, τ0) into (3.25) gives

α(τ0) =
12 (1 − ρ)λ

√
λµ e

1− 1√
ρ

(
√
µ−

√
λ)(6 (µ

√
µ+ λ

√
λ) + (

√
µ−

√
λ)3)

.

Obviously, the computed value is a strictly positive finite number. Further simpli-

fication leads to (3.15). This completes the proof. �

3.4 Other service disciplines

In this section we investigate the behavior of the decay rate γ(τ) by solving

Equations (3.10) and (3.11) numerically. Furthermore, we perform a comparison

of the PS decay rate with the decay rates in the M/M(τ)/1 queue under different

service disciplines: in particular, the Shortest Remaining Processing Time (SRPT)

and the Foreground-Background (FB) disciplines.

The decay rate of the conditional sojourn time V (τ) under the SRPT and FB

disciplines has been studied in Nuyens and Zwart [88] and Mandjes and Nuyens [81],



3.4 Other service disciplines 53

respectively. For the SRPT discipline, Nuyens and Zwart [88] have shown that the

decay rate of the conditional sojourn time VSRPT (τ) = [VSRPT |B = τ ] coincides

with the decay rate of the residual busy period γp
SRPT (τ) in the queue with service

time Bτ
SRPT = B1(B < τ). Mandjes and Nuyens [81] have derived a similar result

for the FB discipline. They proved that if the generic service time has an exponential

moment then the sojourn time VFB(τ) has the same decay rate γp
FB(τ) as the

residual busy period in the queue with service time Bτ
FB = min(B, τ). It is known

that the decay rate of the busy period can be determined as

γp
(τ) = −κ(θ0),

where κ(s) = λ(E[esBτ

]− 1)− s, and θ0 > 0 is a solution of the equation κ′(θ0) = 0

(or equivalently λ(E[esBτ

])′s = 1).
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Figure 3.4: Decay rate as a function of τ in the M/M(τ)/1 queue with the PS,

SRPT, FB and FCFS service disciplines, µ = 2: (a) λ = 0.2, (b) λ = 1.

Figure 3.4 presents the decay rate γ(τ) as a function of τ for the above-mentioned

disciplines. The generic service time is exponential with parameter µ = 2. Figure
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3.4 (a) shows the decay rates under very low traffic load, ρ = 0.1, and Figure 3.4

(b) is for ρ = 0.5. In the figures, the horizontal lines show the decay rate in the

M/M/1 FCFS queue (dash-dotted line) and the decay rate of the busy period (solid

line referred to as BP). The decay rate of the M/M/1 FCFS queue is equal to

γFCFS = µ− λ and the decay rate of the busy period is γp = (
√
µ−

√
λ)2.

Figure 3.5 shows the decay rates when the traffic intensity is reasonably high,

(a) ρ = 0.9, (b) ρ = 0.95. From the figures we clearly see that when the service re-

quirement τ becomes larger, the decay rates for all disciplines decrease and converge

to the decay rate of the busy period γp. Thus, the sojourn time of a customer with

a large service requirement behaves approximately like the residual busy period.
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Figure 3.5: Decay rate as a function of τ in the M/M(τ)/1 queue with the PS,

SRPT, FB and FCFS service disciplines, µ = 2: (a) λ = 1.8, (b) λ = 1.9.

All graphs show that for moderate values of τ the largest decay rate is achieved

by SRPT. For larger service requirements the FCFS discipline provides the largest

decay rate. Thus, there is a critical value of τ such that for the smaller requirements
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SRPT has the largest decay rate and for larger ones FCFS. Analytic results in

[88] and our simulations show that in the M/M/1 queue for the majority of the

customers (at least 85%) SRPT provides a larger decay rate in comparison to FCFS.

Interestingly, for the unconditional sojourn time, the large-deviations results imply

on the contrary that large sojourn times are more likely under SRPT than under

FCFS. If the decay rate is used as performance measure, PS does not appear to be

the optimal discipline for service requirements of any size. See Figures 3.4 (b) and

3.5 (a,b).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

(a)

τ* (ρ
)

 

 
PS
FB
SRPT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

(b)

τ*P
S
(ρ

)

 

 
SRPT
FB

Figure 3.6: Decay rate τ∗ as a function of ρ in the M/M(τ)/1 queue: (a) - intersec-

tion with FCFS decay rate, (b) - intersection with PS decay rate

However, in Figure 3.4 (a) we see a somewhat different picture. For a certain

range of service requirements, not too long and not too short, the decay rate for

the PS discipline is the largest. This may be explained as follows. In this case the

traffic load is very low implying a small number of customers in the system. Hence,

the customers with moderate service requirements receive a sufficiently high service
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rate and are protected from being delayed by larger or smaller requirements as in

FCFS and SRPT queues, respectively.

Let us introduce τ∗PS as the value of τ at which the PS decay rate γ(τ) is equal to

the FCFS decay rate, i.e. the value at which γ(τ) crosses level µ−λ. Define similarly

τ∗SRPT and τ∗FB . Figure 3.6 shows the behavior of τ∗PS and τ∗SRPT as a function of

the traffic load ρ. As we can see, for traffic load ρ < 0.3 the PS decay rate reaches

the value µ− λ later than the SRPT decay rate. This means that for such ρ, there

exists a positive ερ, such that in the interval [τ∗PS − ερ, τ
∗
PS ] the PS discipline has

the largest decay rate (compared to FCFS and SRPT). Comparing the PS decay

rate to the FB one (see Figure 3.6 (a)), the decay rate shows similar behavior. In

this case the threshold load is ρ < 0.86.
Figure 3.6 (b) shows τ∗PS , the value of τ at which the decay rates γSRPT (τ)

under the SRPT discipline and γFB(τ) under the FB discipline are equal to the

decay rate γ(τ) under PS. As we see, the higher the value of ρ, the narrower is the

range of the service requirements for which the PS discipline provides the largest

decay rate.

Let us now summarize the results. In the PS queue, as well as in SRPT and

FB, the decay rate γ(τ) of the conditional sojourn time decreases and converges to

the decay rate of the busy period as τ → ∞. From the large-deviations point of

view, in most cases (except when the traffic load is quite low) the decay rate under

the PS discipline is not optimal for any service requirement τ. For larger service

requirements, FCFS has the highest decay rate, and for smaller service requirements,

SRPT performs the best. For the unconditional sojourn time in the M/M/1 queue

however, it is known [88] that the decay rate under the PS discipline coincides with

the decay rate under SRPT (and FB as well) and is strictly smaller than the one

under FCFS. The decay rate under PS, SRPT and FB is given by the decay rate of

the residual busy period.

3.5 Numerical results

Finally, we will study the accuracy of the exponential approximation (3.9) of the

sojourn time in the M/M(τ)/1 queue:

P(V (τ) > x) ≈ α(τ)e−γ(τ)x.

The exponential asymptotics are compared to exact values of P(V (τ) > x) computed

by numerical LST inversion. We will use the inversion algorithm of Abate and

Whitt [2]. In this method the probability distribution function is presented as an

infinite sum of complex-valued terms. For the summation of this infinite series the

classical Euler summation method is applied. This method is known to provide high

accuracy.

Table 3.1 shows the numerical results for various service requirements τ . For

simplicity we normalize the generic service time, µ = 1, and take arrival rate λ = 0.9.
For τ = 0.8 and τ = 2 the first column shows the probability P(V (τ) > x) obtained

by numerical inversion. The second column shows the exponential asymptotics
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τ = 0.8 τ = 2

x LST inv. asympt. x LST inv. asympt.

5 5.49-01 5.77-01 10 6.34-01 7.25-01

10 2.82-01 2.96-01 100 4.72-03 5.41-03

20 7.41-02 7.79-02 150 3.10-04 3.56-04

40 5.14-03 5.39-03 200 2.04-05 2.34-05

80 2.47-05 2.59-05 250 1.33-06 1.54-06

100 1.70-06 1.79-06 300 9.43-08 1.01-07

120 1.24-07 1.24-07 310 5.78-08 5.89-08

Table 3.1: Comparison of the exponential asymptotics to results of numerical inver-

sion.

derived in Theorem 3.3.1. The numbers show reasonably good accuracy of the

asymptotic tail approximation. The relative error is on average about 5-10%.

τ = 0.8 τ = 2

x LST inv. asympt. HT x LST inv. asympt. HT

10 5.42-01 5.56-01 5.35-01 10 8.04-01 8.59-01 7.79-01

20 2.84-01 2.92-01 2.87-01 100 7.70-02 8.20-02 8.21-02

50 4.10-02 4.22-02 4.39-02 200 5.67-03 6.03-03 6.74-03

100 1.63-03 1.68-03 1.93-03 300 4.18-04 4.44-04 5.53-04

150 6.45-05 6.66-05 8.48-05 400 3.08-05 3.26-05 4.54-05

200 2.54-06 2.65-06 3.73-06 500 2.26-06 2.40-06 3.73-06

240 1.96-07 2.01-07 3.06-07 600 1.73-07 1.76-07 3.06-07

250 1.05-07 1.05-07 1.64-07 640 6.24-08 6.21-08 1.13-07

Table 3.2: Comparison of the exponential asymptotics to results of numerical inver-

sion and heavy-traffic asymptotics.

Table 3.2 shows results for heavy traffic, in particular ρ = 0.95. In addition to

the results from numerical inversion and asymptotics, the table presents results of

the heavy-traffic approximation. From the results in [105, 118], it is known that

under heavy traffic the sojourn time distribution in the M/G/1 PS queue behaves

as

P(V (τ) > x) ≈ e
− (1−ρ)x

τ , x→ ∞. (3.26)

These values are presented in the columns labeled HT.

The accuracy of the asymptotic approximation (3.9) is better for higher traffic

load. It is also much more accurate than the heavy-traffic approximation for larger

x, while for small x the heavy-traffic approximation performs better.





Chapter 4

Sojourn time tails in queues with
varying service rate

In the previous chapters we analyzed the sojourn time behavior in PS queues with

constant server capacity. We obtained the exact asymptotics for the tail of the prob-

ability distribution of the sojourn time. In the present chapter we consider a more

general situation and assume that the capacity of the server varies in time. Such

models can be regarded as an appropriate flow-level approximation for modeling

the elastic data transfers in integrated communication networks with a mixture of

elastic and streaming traffic. We refer to Section 1.2 for further background.

In the present chapter we study the asymptotic properties of the sojourn time

distribution of the elastic flows. The main goal is to generalize the result of Mandjes

and Zwart [82] to a setting in which the available service capacity varies according

to some stochastic process. Mandjes and Zwart [82] derived the logarithmic asymp-

totics of the sojourn time in the GI/GI/1-PS queue with constant service capacity

(see (1.10)), under technical assumptions which guarantee that the tail distribution

of the service time is not too light and not too heavy. We extend the logarithmic

asymptotics in [82] by constructing lower and upper bounds, which asymptotically

coincide. The upper bounds can be established under rather general conditions,

whereas the lower bound requires that the service process obeys a sample-path

large-deviations principle. Again the service requirements should be from a light-

tailed distribution (but not too light).

As a special case, we study service processes that have a so-called Markov-fluid

structure. Under the additional assumption of the arrival process being Poisson, we

derive for these service processes an explicit upper bound on the tail probability of

the sojourn time, rather than just an upper bound on the exponential decay rate.

Our proofs predominantly rely on large-deviations tools, such as the classical

Chernoff bound, as well as the application of sample-path large-deviations principles.

An important role, however, is also played by the insight that, for overloaded PS

systems, the queue length increases roughly at a linear rate. As a by-product, the

proofs show that the sojourn time asymptotics resemble busy-period asymptotics (in

the sense that their exponential decay rates coincide). Although our results are an

59
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extension of the results in [82], we have actually simplified the proofs; in particular,

we have eliminated the need to use detailed fluid-limit results for overloaded PS

queues, as used in [82]. To obtain our results for the Markov-fluid case we use a

change-of-measure argument. We twist the distributions of the arrival and service

processes in such a way that the tagged customer sees a critically loaded system.

Finally, our methods allow us to obtain an extension of the result to the DPS

discipline. As for the single-class case, we allow the service rate to be random,

but note that the obtained asymptotic results are also new for the standard DPS

queue with a fixed service rate. More specifically, we show that the decay rate of

the sojourn time is weight-independent (and hence the same for customers of any

class).

The organization of this chapter is as follows: The model is described in Section

4.1. In Section 4.2 we present our main results on the logarithmic asymptotics for

the case with general service rate. In addition, we consider the special case in which

the service rate varies according to a Markov-fluid process. The proofs can be found

in Sections 4.3 and 4.4. In Section 4.5 we generalize the result to the DPS queue.

4.1 Model description and preliminaries

In this section we introduce the necessary notation and state some preliminary

results.

Let An, n ∈ N, be the time between the (n − 1)-st and n-th arrival after time

zero. To emphasize that an arrival occurred in the past, we also use the notation

A−n, n ∈ N, for the time between the (n − 1)-st and n-th arrival before time zero.

Furthermore, let Bn, n ∈ Z, be the service requirement of the nth customer; recall

that B0 corresponds to the tagged customer. We assume that (An)n and (Bn)n

are mutually independent sequences, each consisting of i.i.d. random variables. We

introduce the random walks SA
n = A1+. . .+An and SB

n = B1+. . .+Bn, and similarly,

with respect to events in the past, SA
−n = A−n + . . .+A−1, S

B
−n = B−n + . . .+B−1.

We denote the random variable corresponding to a generic interarrival time (service

time) by A (B, respectively).

We set

N(t) := max{n ∈ N : SA
n ≤ t}

representing the number of arrivals in the time interval (0, t]. Denote by A(0, t),
t > 0, the total amount of work fed into the queue in the time interval (0, t], i.e.,

A(0, t) =

N(t)
∑

i=1

Bi.

Analogously, C(t1, t2) is defined as the total service provided in the time interval

(t1, t2] with t2 > t1,

C(t1, t2) =

∫ t2

t1

R(u)du,
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where R(u) denotes the (random, non-negative) service rate available at time u.
Later we also consider the system in the past, i.e., before time zero; then we use the

notation A(−t, 0) for the total amount of work fed into the system on [−t, 0). Note

that the tagged arrival which occurred at time 0 is included in neither A(0, t) nor

A(−t, 0). The cumulative arrival and service processes are assumed to be indepen-

dent of each other.

Throughout the chapter we assume the cumulative service process to satisfy the

following conditions:

1. the cumulative service process has stationary increments, i.e., the distribution

of C(t1 + δ, t2 + δ) does not depend on δ;

2. the service rate R(·) is bounded from above, i.e. there exists rmax such that

R(u) ≤ rmax for all u;

3. the asymptotic cumulant function of C(0, x) exists:

c(s) := lim
x→∞

1

x
log E[e

sC(0,x)
].

Furthermore, the system is assumed to be stable, i.e. the long-run average work

offered to the system, say α, is smaller than the average offered service, say c, where

α := lim
t→∞

EA(0, t)

t
, c := lim

t→∞
EC(0, t)

t
.

Define the MGF s ΦB(s) := E[esB ] and ΦA(s) := E[esA]. Since both ΦA(·) and

ΦB(·) are strictly increasing and strictly convex functions, the inverse functions

Φ←A (·) and Φ←B (·) are well-defined. We assume that either A or B does not have

a deterministic distribution. An important result is that the cumulant function of

the amount of work fed to the system can be expressed explicitly in terms of the

moment generating functions of A and B.

Lemma 4.1.1. For s ≥ 0, the asymptotic cumulant function α(s) of A(0, x), x > 0,
is given by

α(s) := lim
x→∞

1

x
log E[e

sA(0,x)
] = −Φ

←
A

(

1

ΦB(s)

)

. (4.1)

If either A or B is non-deterministic, then α(·) is strictly convex.

The result of Lemma 4.1.1, as stated by Whitt [114], was proved in [82].

In the sequel, we separately consider the special case in which the service process

is given by a Markov-fluid process. Such a process can be described as follows.

Consider a continuous-time Markov process on a finite state space {1, 2, . . . , d}. The

transition rate matrix is denoted by Q = (qij)i,j=1,2,...,d, where qij ≥ 0 (i 6= j)
and qii = −∑j 6=i qij . We assume that the Markov process is irreducible, and π
denotes its steady-state distribution. When the Markov process is in state i, the

server provides service at constant rate ri ≥ 0. Let R be the diagonal matrix with
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coefficients ri on the diagonal. Denote the mean rate by c =
∑d

i=1 riπi. We denote

this class of processes by Mf(Q,R); if the service process is of this type, we write

C(·, ·) ∈ Mf(Q,R). Results from Kesidis et al. [73] yield the following standard

properties.

Property 4.1.1. Let C(·, ·) ∈ Mf(Q,R). Then the following statements hold:

1. The MGF of the service available in an interval of length x is given by

E[e
sC(0,x)

] = πe
(Q+sR)x1,

where 1 is the all-one vector of dimension d.

Denote by c1(s), . . . , cd(s) the eigenvalues of the matrix Q + sR. Hence, the
MGF can be represented as, for appropriate numbers m1, . . . ,md,

E[e
sC(0,x)

] =

d
∑

i=1

mie
ci(s)x.

2. For all real s there exists a limiting MGF:

lim
x→∞

1

x
log E[e

sC(0,x)
] = c(s).

Moreover, c(s) = max{c1(s), . . . , cd(s)}, i.e., c(s) is the largest real eigenvalue
of Q+ sR; the corresponding eigenvector is componentwise positive.

3. There exists a finite K such that

E[e
sC(0,x)

] ≤ Ke
c(s)x.

For instance, K =
∑d

i=1mi.

4.2 Main results

In this section we present the main results of the chapter. We focus on the

sojourn time V of a tagged customer (with service requirementB0), which we assume

to arrive at time 0. We characterize the logarithmic asymptotic behavior of the tail

probability P(V > x) as x→ ∞, under the assumption that the service requirement

has a light-tailed distribution.

To put things in perspective, we first recall the asymptotic behavior of the so-

journ time distribution in a PS queue with constant (rather than fluctuating) service

capacity. Mandjes and Zwart [82] derived the following logarithmic estimates under

the assumption that the service requirement distribution has a light tail.

Theorem 4.2.1. ([82]) Consider the GI/GI/1 PS queue with unit service rate. If
there exists a solution ν∗ > 0 to the equation α′(s) = 1, and for each constant c > 0

lim
x→∞

1

x
log P(B > c log x) = 0,
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then

lim
x→∞

1

x
log P(V > x) = inf

s≥0
(α(s) − s) = α(ν∗) − ν∗. (4.2)

Our main goal is to derive a generalization of the above result for a queue

with varying service rate. Under similar assumptions on the arrival and service

requirement processes, and in addition certain assumptions on the service process,

we can prove the following extension of (4.2):

lim
x→∞

1

x
log P(V > x) = inf

s≥0
(α(s) + c(−s)). (4.3)

Despite the simple form, the proof of the above result is quite technical. The

proof consists of two parts, derivation of an upper bound (i.e., (4.3) with “=”replaced

by “≤”) and derivation of a lower bound (i.e., (4.3) with “=”replaced by “≥”) which

asymptotically coincide.

The proof of the upper bound is essentially based on classical Chernoff-bound

arguments, and applies without imposing additional conditions on the service pro-

cess. The proof of the lower bound, however, is substantially harder. There we first

truncate the service requirement distribution (and then let the truncation threshold

increase to ∞), so that we enforce linearly bounded queue length growth. Thus,

the problem is reduced to finding the corresponding busy-period asymptotics. The

derivation of these busy-period asymptotics requires an additional assumption on

the service process: we require the service process to obey a so-called sample-path

large-deviations principle (more precisely: only the large-deviations lower bound is

required here).

In the following subsections we will present results for the system with general

service process, but also (more explicit) results for the case the service process is

Markov fluid. The proofs are deferred to Sections 4.3 and 4.4.

4.2.1 Upper bound

We first present the asymptotic upper bound for the sojourn time distribution

in a GI/GI/· system with a generally distributed service process. We need to make

the following assumption.

Assumption 4.2.1. There exists a ν > 0 such that α(ν) + c(−ν) < 0.

This assumption ensures that the service requirements are light-tailed and that

the system is stable. To be more precise, what the assumptions states is that in

some neighborhood to the right of the origin the cumulant functions stay finite.

This implies (due to Lemma 4.1.1) that there exists a neighborhood of the origin in

which the MGF ΦB(·) is well-defined (as an aside, note that this implies that B is

light-tailed). Since the function g(s) = α(s) + c(−s) is strictly convex and equals

0 at s = 0, the assumption implies that g(·) has a negative derivative at s = 0,
α− c < 0, and hence, the system is stable.

Due to strict convexity of the cumulant function, we can define ω∗ > 0 such that

ω∗ = arg inf
s≥0

(α(s) + c(−s)).
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Since α(s) + c(−s) equals zero at s = 0 and has a strictly negative derivative at

s = 0, we also have α(ω∗) + c(−ω∗) < 0.
The next theorem gives the logarithmic upper bound for P(V > x) in terms of

the cumulant functions.

Theorem 4.2.2. If Assumption 4.2.1 is satisfied, then

lim sup
x→∞

1

x
log P(V > x) ≤ α(ω∗) + c(−ω∗). (4.4)

Besides the general upper bound on the exponential decay rate, as presented in

Theorem 4.2.2, we have a tighter result (namely bounds on the probability P(V >
x) itself, uniformly in x) for an important special case. This result requires an

additional assumption; it implies Assumption 4.2.1 and existence of ω∗.

Assumption 4.2.2. There exists a solution ν∗ > 0 to α(ν∗) + c(−ν∗) = 0.

As a special case we consider Poisson arrivals (rather than renewal arrivals; the

arrival process is thus a compound Poisson process) and Markov-fluid service. We

remark that the constant K, as used in Theorem 4.2.3, will be explicitly given in

the proof of the result.

Theorem 4.2.3. Suppose the arrival process is given by a compound Poisson process
(with rate λ) and the service process is in Mf(Q,R). Then, under Assumption 4.2.2,

P(V > x) ≤ Ke
(a(ω∗)+c(−ω∗))x, (4.5)

uniformly in x ≥ 0, and α(ω∗) = λ(ΦB(ω∗) − 1).

4.2.2 Lower bound

Let us now turn to the results for the lower bound on P(V > x). Here we need

the following assumption.

Assumption 4.2.3. For each constant c > 0, we have

lim
x→∞

1

x
log P(B > c log x) = 0.

It is readily checked that this assumption is satisfied by most distributions of

interest, such as phase-type, Gamma, Weibull distributions, etc. However, it is

noted that it is violated by distributions with extremely light tails. For instance,

the assumption does not hold for service times for which P(B > x) is of the form

exp(−ex), and by service requirement distributions with bounded support (including

deterministic service requirements).

The derivation of the lower bound is considerably more involved than the cor-

responding upper bound. Importantly, it requires extra structure of the process

C(·, ·), namely that the process C(·, ·) must satisfy the lower bound of a sample-
path large-deviations principle.
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Definition 4.2.1. Denote by AC the space of all absolutely continuous functions
(see e.g. [41]), i.e.,

AC =

{

f ∈ C([0, 1]) :
if
∑k

l=1 |tl − sl| → 0, sl ≤ tl ≤ sl+1 < tl+1,

then
∑k

l=1 |f(tl) − f(sl)| → 0

}

.

Define the space Ω := {f ∈ [0, 1] → R, f ∈ AC, f(0) = 0}.
Let the process Zx(·) be given through

Zx(u) :=
1

x

∫ ux

0

c(s)ds =
1

x
C(0, ux).

The process Zx(·) obeys a sample-path large-deviations principle (sp-LDP) if for all
S ⊂ Ω:

lim sup
x→∞

1

x
log P(Zx(·) ∈ S) ≤ − inf

f∈S

∫ 1

0

Λ(f ′(t))dt, (4.6)

lim inf
x→∞

1

x
log P(Zx(·) ∈ S) ≥ − inf

f∈So

∫ 1

0

Λ(f ′(t))dt, (4.7)

where Λ(t) := sups∈R(st− c(s)), S is the closure and So is the interior of set S. We
say that (4.6) is the upper bound of the sp-LDP, and (4.7) is the lower bound of the
sp-LDP.

Assumption 4.2.4. The process Zx(·), defined through Zx(u) := C(0, ux)/x, sat-
isfies the lower bound of the sp-LDP (4.7).

The next theorem presents the main result of the present chapter; its upper

bound was already stated in Theorem 4.2.2.

Theorem 4.2.4. If Assumptions 4.2.1, 4.2.3 and 4.2.4 are satisfied, then

lim
x→∞

1

x
log P(V > x) = α(ω∗) + c(−ω∗).

Although, to our best knowledge, no sp-LDP was established for a Markov-fluid

process, we were still able to prove the corresponding logarithmic lower bound.

Theorem 4.2.5. If Assumptions 4.2.1 and 4.2.3 are satisfied and C(·, ·) ∈ Mf(Q,R),
then

lim inf
x→∞

1

x
log P(V > x) ≥ a(ω∗) + c(−ω∗). (4.8)

Thus, combining the results in Theorems 4.2.3 and 4.2.5, we conclude that if the

service process is of Markov-fluid type, the logarithmic asymptote (4.3) holds under

Assumptions 4.2.1 and 4.2.3.

Remark 4.2.1. In this chapter we assume that the tagged customer (with service

time B0) and customers arriving into the system after time 0 (with generic service

time B) have the same service requirement distribution. However, this assumption

is not necessary as will become clear from our proofs. If the distributions of B0 and

B are different, the result still holds if just B0 satisfies Assumption 4.2.3; it is not

necessary that B satisfies this assumption.



66 Sojourn time tails in queues with varying service rate

Remark 4.2.2. Our results allow us to compare the performance of systems with

varying service rate and with constant rate (where the mean service rate is the same

in both systems). It is a quite typical phenomenon that performance improves if a

random process is replaced by a deterministic process with the same mean.

Therefore, we now consider the GI/GI/1 PS system with fixed service rate c
(recall that this is the mean service rate of the system considered in this chapter).

Applying Jensen’s inequality we obtain that

c(s) = lim
x→∞

1

x
log E[e

sC(0,x)
] ≥ lim

x→∞
1

x
log e

E[sC(0,x)]
= lim

x→∞
1

x
E[sC(0, x)] = sc.

Hence,

lim
x→∞

1

x
log P(V > x) = inf

s≥0
(α(s) + c(−s)) ≥ inf

s≥0
(α(s) − sc),

where the latter is the exponential decay rate in the system with the constant

service rate c. If the function c(−s) is strictly convex, it can be shown that the

above inequality is strict. Thus, we conclude that, informally speaking, the random

service rate increases the probability of a long sojourn time.

We now provide the proofs of the results presented above.

4.3 Proof of the upper bound

We start by proving the upper bound.

Proof of Theorem 4.2.2. The event {V > x} implies that the queue does not

empty before time x. Evidently, as we assume the system to be in steady state

(with respect to the arrival process), the workload present at time 0, say W , can be

identified with the FCFS waiting time. In other words, W has the representation

W = supt≥0(A(−t, 0) − C(−t, 0)). Hence, we can write

P(V > x) ≤ P(W +B0 +A(0, x) − C(0, x) > 0)

= P

(

sup
t>0

(A(−t, 0) − C(−t, 0)) +B0 +A(0, x) − C(0, x) > 0

)

. (4.9)

Now note that the process A(0, x) jumps at the arrival epochs and is constant in

between, while we assumed the process C(0, x) to be non-decreasing. Hence, the

difference A(0, x)−C(0, x) has positive jumps at arrival epochs and is non-increasing

in between. Therefore, the supremum can only be attained at arrival epochs. This

yields that expression in the right-hand side of (4.9) is equivalent to

P

(

sup
n∈N

(

A(−SA
−n, 0) − C(−SA

−n, 0)
)

+B0 +A(0, x) − C(0, x) > 0

)

.

Remark that the quantities A(−SA
−n, 0) and A(0, x) are independent. Now applying
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the standard union bound, this expression is further bounded by

∞
∑

n=1

P
(

A(−SA
−n, 0) − C(−SA

−n, 0) +B0 +A(0, x) − C(0, x) > 0
)

=

∞
∑

n=1

P
(

A(−SA
−n, 0) +B0 +A(0, x) − C(−SA

−n, x) > 0
)

,

where we recall that −SA
−n denotes the time of the nth arrival in the past. Now

we can apply the Chernoff bound to (each term in) the last expression, so that we

arrive at

P(V > x) ≤
∞
∑

n=1

E[e
ω∗(A(−SA

−n,0)+B0+A(0,x)−C(−SA
−n,x))

]

=

∞
∑

n=1

∫ ∞

0

E[e
ω∗(A(−SA

−n,0)+B0+A(0,x)−C(SA
−n,x))|SA

−n = y]dP(SA
−n ≤ y)

=

∞
∑

n=1

∫ ∞

0

(E[e
ω∗B

])
n+1E[e

ω∗A(0,x)
]E[e

−ω∗C(−y,x)
]dP(SA

−n ≤ y),

where in the last equality A(−SA
−n, 0) is interpreted as the sum of n service require-

ments. Now applying the definition of the cumulant function c(·), we obtain that

for any ε > 0 for x large enough the expression in the previous display is bounded

from above by

∞
∑

n=1

∫ ∞

0

(

E[e
ω∗B

]

)n+1

e
(α(ω∗)+ε)x

e
(c(−ω∗)+ε)(x+y)dP(SA

−n ≤ y).

Evaluating the integral and using the definition of SA
−n, we see that the last expres-

sion equals

∞
∑

n=1

(

E[e
(c(−ω∗)+ε)A

]

)n

e
(α(ω∗)+c(−ω∗)+2ε)x

(E[e
ω∗B

])
n+1

= E[e
ω∗B

]e
(α(ω∗)+c(−ω∗)+2ε)x

∞
∑

n=1

(ΦB(ω∗)ΦA(c(−ω∗ + ε)))
n
.

Now observe that the summation over n does not depend on x; we therefore now

verify whether this sum is finite. Note that (apply Lemma 4.1.1)

α(ω∗) + c(−ω∗) = −Φ
←
A

(

1

ΦB(ω∗)

)

+ c(−ω∗) < 0.

Hence, due to continuity of the MGF s, we see that for ε small enough the product

under the sum is less than one, and hence the geometric series is converging. Fur-

thermore, E[eω∗B ] < ∞. Thus, we conclude that P(V > x) can be bounded from

above by

P(V > x) ≤Me
(α(ω∗)+c(−ω∗)+2ε)x,
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where M < ∞ is some positive constant. Taking logarithms, dividing by x, letting

x→ ∞ and ε ↓ 0, we obtain

lim sup
x→∞

1

x
log P(V > x) ≤ α(ω∗) + c(−ω∗).

This proves the upper bound. �

We now turn to the proof of Theorem 4.2.3. Let us first state the basic result for

the workload distribution which is useful for our proof. Denote by X(t) the state of

the underlying Markov process at time t; X(t) ∈ {1, 2, . . . , d}.

Proposition 4.3.1. If C(·, ·) ∈ Mf(Q,R) and Assumption 4.2.2 is satisfied, then
there exists a constant K > 0 such that for any initial state of the service process
X(0) = i, i ∈ {1, 2, . . . , d}, uniformly in x it holds that

P

(

sup
t≥0

A(−t, 0) − C(−t, 0) > x|X(0) = i

)

≤ Ke
−ν∗x. (4.10)

Proof of Proposition 4.3.1. We present a proof that is based on a change-of-measure

argument; there are several alternative approaches possible. This change of measure

is such that the event {W > x} becomes more likely than under the old measure.

We introduce a process

T (x) := inf{t : A(−t, 0) − C(−t, 0) > x}.

Then we can write

P(W > x) = P(T (x) <∞).

Let us first twist the interarrival time and service requirement distributions. Define

a new probability measure Pω for ω > 0 such that

Pω(A ∈ dx) = P(A ∈ dx)e−α(ω)x/ΦA(−α(ω)),

Pω(B ∈ dx) = P(B ∈ dx)eωx/ΦB(ω).

In order to construct the change of measure for the service process, let us first

define the largest real eigenvalue of the matrix Q+ ωR, which coincides with c(ω),

where the corresponding right eigenvector (v1, . . . , vd)
T is component-wise positive,

see Property 4.1.1(2). Note that the eigenvector also depends on ω, but for compact-

ness we suppress this. With the new probability measure we associate the modified

Markov process with transition matrix Q∗ defined as (for i 6= j)

q∗ij = qijvj/vi,

q∗ii = qii + riω + c(−ω).

It is not hard to verify that these rates indeed constitute a generator matrix (use

that c(ω) is eigenvalue of Q+ ωR).
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We have the following fundamental identity

P(W > x) = Eω[LT (x)1{T (x) <∞}], (4.11)

see e.g. Theorem XIII.3.2 in [7]; here Eω denotes the expectation under the new

measure Pω, and L ≡ LT (x) is the likelihood ratio process stopped at T (x), which

we specify below.

In this proof we take the parameter ω (the ‘exponential twist’) to be equal to

ν∗. Suppose that in [−T (x), 0) there were n arrivals; denote ai, bi, i = 1, . . . , n, the

interarrival times and corresponding service requirements. Also suppose that there

were m transitions of the Markov process governing the service process; let, in the

time interval [−T (x), 0), the Markov process X(·) visit states i0, i1, . . . , im. Define

by tij
, j = 1, . . . ,m, the time which the service process spends in state ij . Then,

considering the likelihood ratio LT (x) stopped at time T (x), we can write

LT (x) =
vi0

vim

×
(

e
ν∗∑m

j=1 rij
tij

+c(−ν∗)
∑m

j=1 tij

)

×
(

e
α(ν∗)

∑n
i=1 ai

)

×
(

e
−ν∗∑n

i=1 bi

)

× (ΦA(−α(ν∗))ΦB(ν∗))n
.

As −T (x) corresponds to an arrival epoch, we have that
∑

ai = T (x),
∑

bi =

A(0, T (x)). Also, recall from Lemma 4.1.1 that ΦA(−α(ν∗))ΦB(ν∗) = 1. Recall the

new measure was chosen so that the event {T (x) < ∞} occurs with probability 1.

We thus find

LT (x) ≤
vi0

vim

×
(

e
−ν∗(A(0,T (x))−C(0,T (x)))

)

×
(

e
α(ν∗)T (x)+c(−ν∗)

∑m
j=1 tij

)

.

Taking into account that {1{T (x) <∞} = 1} implies A(−T (x), 0)−C(−T (x), 0) >
x, in conjunction with α(ν∗) = −c(−ν∗), we have identified a K > 0 such that

LT (x)1{T (x) <∞} ≤ Ke
−ν∗x.

We conclude that the identity (4.11) implies that indeed P(W > x) ≤ Ke−ν∗x,
irrespective of the value of X(0) = i. �

Proof of Theorem 4.2.3. Since the event {V > x} implies that the queue does not

empty before time x, we obtain by using the Chernoff bound

P(V > x) ≤ P(W +B0 +A(0, x) − C(0, x) > 0) ≤ E[e
ω∗(W+B0+A(0,x)−C(0,x))

]

= E[E[e
ω∗(W+B0+A(0,x)−C(0,x))

]|X(0)].

Conditioning on the state of the Markov process at time 0 provides the indepen-

dence between the workload process and the arrival and service process after time

0. Therefore, the last expression in the previous display is equal to

E[e
ω∗B0 ]E

[

E[e
ω∗W |X(0)]E[e

ω∗(A(0,x)−C(0,x))|X(0)]

]

= E[e
ω∗B0 ]

d
∑

i=1

E[e
ω∗W |X(0) = i]E[e

ω∗(A(0,x)−C(0,x))|X(0) = i]πi,
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where we recall that π is the equilibrium distribution of X(·). Since α(s) + c(−s)
equals zero at s = 0, and has a strictly negative derivative at s = 0, it follows that

ω∗ < ν∗. Then, Proposition 4.3.1 implies that there is a K1 such that

E[e
ω∗W |X(0)] =

∫ ∞

0

P(e
ω∗W > x|X(0))dx =

∫ ∞

0

P(W > (log x)/ω∗|X(0))dx

≤ 1 +

∫ ∞

1

P(W > (log x)/ω∗|X(0))dx ≤ 1 +

∫ ∞

1

K1e
−(ν∗/ω∗) log xdx

< 1 +K1

∫ ∞

1

x−ν∗/ω∗
dx =: K2 <∞.

Consequently,

P(V > x) ≤ K2 · E[e
ω∗B0 ]E[e

ω∗A(0,x)
]E[e

−ω∗C(0,x)
]. (4.12)

Note that due to Assumption 4.2.2, E[eω∗B ] < ∞. Since the process A(0, x) is a

compound Poisson process we have

E[e
ω∗A(0,x)

] = e
α(ω∗)x

= e
λx(ΦB(ω∗)−1).

Due to Property 4.1.1(3), there exists a K3 <∞ such that

E[e
ω∗C(0,x)

] ≤ K3e
c(ω∗)x.

Combining this with (4.12), we have identified a K > 0 such that, uniformly in

x ≥ 0, P(V > x) ≤ Ke(α(ω∗)+c(−ω∗))x, where α(ω∗) = λ(ΦB(ω∗)− 1), as desired. �

4.4 Proof of the lower bound

We now proceed with proving the lower bound results.

Proof of Theorem 4.2.4. Our proof consists of five steps: (i) we truncate the service

requirement distribution to find a lower bound on P(V > x) which, by virtue of

Assumption 4.2.3, reduces the problem to finding a lower bound on a related busy-

period problem for the system with truncated service requirements; (ii) next, we

show that long busy periods are due to large deviations of both the arrival process

and the service process; (iii) after that, we analyze the large deviations of the arrival

process, and pay special attention to the technicality of dealing with the truncated

service requirements; (iv) we then invoke the sp-LPD lower bound (Assumption

4.2.4) to analyze the large deviations of the service process; (v) finally, we combine

all results to establish the stated.

Step (i). We truncate the service requirement distribution, by introducing a new

stochastic process Ak(0, x), k > 0, as follows:

Ak(0, x) :=

N(x)
∑

i=1

Bi1{Bi < k}.
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By definition of the PS queue with varying service capacity,

P(V > x) = P

(

B0 >

∫ x

0

1

1 +Q(u)
dC(0, u)

)

,

where Q(u) is the number of customers in the system at time u excluding the tagged
customer.

If we have Ak(0, u) − C(0, u) > εu, then also Ak(0, u) > εu, and as all service

requirements are at most of size k, we find a linear lower bound on the number of

customers present at time u: Q(u) ≥ εu/k. We thus obtain

P(V > x) ≥ P

(

B0 >

∫ x

0

1

1 +Q(u)
dC(0, u), Ak(0, u) − C(0, u) > εu, u ∈ (0, x)

)

≥ P

(

B0 >

∫ x

0

1

1 + εu/k
dC(0, u)

∣

∣

∣

∣

Ak(0, u) − C(0, u) > εu, u ∈ (0, x)

)

× P(Ak(0, u) − C(0, u) > εu, u ∈ (0, x)).

By applying integration by parts and standard calculus,

∫ x

0

1

1 + εu/k
dC(0, u) =

C(0, x)

1 + εx/k
+
ε

k

∫ x

0

C(0, u)
1

(1 + εu/k)2
du

≤ C(0, x)

1 + εx/k
+
ε

k
rmax

∫ x

0

u

(1 + εu/k)2
du

≤ rmaxx

1 + εx/k
+
rmaxk

ε

(

1

1 + εx/k
− 1 + log

(

1 +
ε

k
x
)

)

=
rmaxk

ε
log

(

1 +
ε

k
x
)

.

Hence,

P(V > x) ≥ P

(

B0 >
rmaxk

ε
log

(

1 +
ε

k
x
)∣

∣

∣Ak(0, u) − C(0, u) > εu, u ∈ (0, x)

)

(4.13)

× P(Ak(0, u) − C(0, u) > εu, u ∈ (0, x)).

Now observe that in the first probability in the right-hand side of the previous

display, the value of B0 does not depend on the condition, so that we finally arrive

at the lower bound

P

(

B0 >
krmax

ε
log

(

1 +
ε

k
x
)

)

× P(Ak(0, u) − C(0, u) > εu, u ∈ (0, x)). (4.14)

Due to Assumption 4.2.3 we conclude that the first probability in (4.14) asymptot-

ically behaves as eo(x). Therefore, we are left with analyzing the second probability,

which could be interpreted as the probability of a busy period exceeding x in the

system with truncated service requirements and a service rate perturbed by ε.
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Step (ii). We bound the second factor in (4.14) as follows:

P(Ak(0, u) − C(0, u) > εu, u ∈ [0, x]) ≥ P1(x) · P2(x);

here P1(x) := P(Ak(0, u) − bu > 0, u ∈ (0, x)), P2(x) := P(C(0, u) < (b− ε)u, u ∈
(0, x)), and b < c is any fixed number. We have thus decomposed the probability of

a long busy period into a large deviation of the arrival process and a large deviation

of the service process; the intuitive explanation is that the occurrence of a long busy

period is the result of both the arrival process generating traffic at a higher rate

than usual and the service process offering service at a lower rate than usual. We

emphasize that the value of b is free now, but in Step (v) we choose an appropriate

value. We now deal with each of the probabilities separately; in Step (iii) we analyze

P1(x), and in Step (iv) P2(x).

Step (iii). Consider P1(x). Denote by Pk the busy period in the system with

truncated service requirement (at threshold k) and constant service rate b. In [91]

the asymptotics for large busy periods in this system were derived; it is readily

checked that the corresponding conditions apply for truncated service requirements.

We thus find

lim inf
x→∞

1

x
log P(Ak(0, u) − bu > 0, u ∈ (0, x))

= lim inf
x→∞

1

x
log P(Pk > x) = inf

s≥0
(αk(s) − bs) = γk

b < 0,

where

αk(s) := lim
x→∞

1

x
log E[e

sAk(0,x)
].

We now show that γk
b → γb := infs≥0(α(s) − bs) as k → ∞. To this end, define

fk(s) := αk(s) − bs. Clearly, fk(s) → f(s) = α(s) − bs pointwise as k → ∞ and

fk(s) is increasing in k. Consequently, we have that the limit of γk
b for k → ∞ exists

and that

γ∗b := lim
k→∞

γk
b = lim

k→∞
inf
s≥0

fk(s) ≤ inf
s≥0

f(s) = γb.

It remains to be shown that the reverse inequality holds. For this we follow an

argument similar to the proof of Proposition 2.2 in Nuyens and Zwart [88].

Note that the function fk(·) is continuous in s. Moreover, it is non-decreasing in

k, and thus so is γk
b ≡ infs≥0 fk(s). Clearly, infs≥0 fk(s) ≤ fk(0) ≤ f(0) = 0, and

hence γ∗b ≡ limk→∞ infs≥0 fk(s) ≤ 0.
Now denote by Bk the service requirement truncated at k. Take k0 such that

P(Bk > bA) > 0 for k > k0. Then there exist δ, η > 0 such that P(Bk − bA ≥ δ) ≥
η > 0 for k > k0. Hence, for k > k0,

ΦBk(s)ΦA(−bs) = E[e
sBk

]E[e
−sbA

] = E[e
s(Bk−bA)

] ≥ ηesδ,

and consequently, for s large enough,

ΦA(−bs) ≥ 1

ΦBk(s)
.
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Since Φ
−1
A (−s) is increasing in s, we find that for s and k large enough,

αk(s) − bs = −Φ
−1
A

(

1

ΦBk(s)

)

− bs ≥ −Φ
−1
A (ΦA(−bs)) − bs = 0,

and γ∗b > −∞. Therefore, the level sets Lk = {s ≥ 0 : fk(s) ≤ γ∗b } are non-empty,

compact sets that are nested with respect to k, which implies that there exists at

least one point, say s0, in their intersection. By definition of s0, we have fk(s0) ≤ γ∗b
for every k. Since fk converges pointwise, we find

γb = inf
s≥0

f(s) ≤ f(s0) = lim
k→∞

fk(s0) ≤ γ∗b .

Thus, we conclude that γk
b → γb as k → ∞, and

lim inf
x→∞

1

x
log P1(x) = inf

s≥0
(α(s) − bs).

Step (iv). We now analyze the asymptotic behavior of P2(x). First observe that

we can rewrite P2(x) as follows:

P2(x) = P(C(0, u) < (b− ε)u, u ∈ (0, x)) = P(C(0, ux) < (b− ε)ux, u ∈ (0, 1))

= P

(

1

x
C(0, ux) < (b− ε)u, u ∈ (0, 1)

)

= P

(

1

x
C(0, ·x) ∈ S

)

,

where S := {f ∈ Ω : f(u) < (b − ε)u, u ∈ (0, 1)}. As we assumed that C(0, ·x)/x
obeys the lower bound of the sp-LDP (Assumption 4.2.4) we have

lim inf
x→∞

1

x
log P

(

1

x
C(0, ux) ∈ S

)

≥ − inf
f∈So

I(f) =: −I∗, I(f) :=

∫ 1

0

Λ(f ′(t))dt,

where we recall that Λ(t) = sups∈R(st − c(s)). Since the infimum of I(f) over all

f ∈ So is not larger than I(f∗) for any particular f∗ ∈ So, taking f∗(u) := (b− ε̄)u
with ε̄ := ε(1 + δ) for some small δ > 0, we obtain the lower bound

−I∗ ≥ − sup
s∈R

((b− ε̄)s− c(s)).

Observe that since the constant b is chosen such that b < c, the supremum is attained

for s ≤ 0. Hence, we may write

lim inf
x→∞

1

x
log P2(x) ≥ −I∗ ≥ − sup

s≤0
((b− ε̄)s− c(s))

= − sup
s≥0

(−(b− ε̄)s− c(−s)) = inf
s≥0

((b− ε̄)s+ c(−s)).

Step (v). By combining the results for P1(x) and P2(x) we find that, for any

b < c,

lim inf
x→∞

1

x
log P(Ak(0, u) − C(0, u) > εu, u ∈ (0, x))

≥ inf
s≥0

(α(s) − bs) + inf
s≥0

((b− ε̄)s+ c(−s)). (4.15)
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Take ε > 0 sufficiently small and note that log ΦB(·) is convex, (log ΦB(·))′ =

Φ′B(·)/ΦB(·) is increasing and, due to Assumption 4.2.2, is finite and continuous in

a neighborhood of ω∗. Similar arguments yield that Φ′A(·)/ΦA(·) is an increasing,

finite and continuous function as well, and α(·) is continuous and increasing. Thus,

there exists an ε > 0 for which there is ω = ωε such that ΦB(ωε) <∞, Φ′B(ωε) <∞,
and α′(ωε) − c′(−ωε) = ε̄. Since α(·) + c(−·) is a strictly convex function (this

follows from the fact that α(·) is strictly convex and c(−·) is convex), α′(·)− c′(−·)
is increasing and hence, ωε is the unique solution. The continuity properties imply

that limε→0 ωε = ω∗.
Let us now take b := α′(ωε) in (4.15). Note that this choice satisfies the require-

ment b < c: since the cumulant function c(·) is a convex function, its derivative is

increasing, and consequently, for ε̄ small, b = c′(−ωε) + ε̄ < c′(0) = c.
Now consider the first optimization in (4.15): infs≥0(α(s)−α′(ωε)s). It is readily

checked that its first-order condition is α′(s) = α′(ωε), which is obviously met for

s = ωε (and there is at most one solution, so ωε is the unique minimizer). The first-

order condition for the second optimization in (4.15) is then α′(ωε) − c′(−s) = ε̄,
which is by definition solved for s = ωε. We conclude that

inf
s≥0

(α(s) − bs) + inf
s≥0

((b− ε̄)s+ c(−s)) = inf
s≥0

(α(s) + c(−s) − ε̄s).

Now let ε → 0, δ → 0 (and hence also ε̄ → 0). Due to continuity we have that

ωε → ω∗, and consequently,

lim inf
x→∞

1

x
log P(Ak(0, u) − C(0, u) > εu, u ∈ (0, x)) ≥ α(ω∗) + c(−ω∗).

This completes the proof. �

Proof of Theorem 4.2.5. The proof strongly resembles that of Theorem 4.2.4. We

leave it to the reader to check that only the argumentation in Step (iv) needs to be

modified. This step relies on the validity of the lower bound of the sp-LDP, and to

our best knowledge, an sp-LDP for the processes in Mf(Q,R) is not available from

the literature. Therefore we need a different approach to analyze the large deviation

P2(x) of the service process C(·, ·). The main idea of this modification is to apply

results of Chang [31] for Markov-type processes in discrete time. For that we need

to cast our model into Chang’s framework. This is done as follows.

Consider, as before, P2(x) = P(C(0, u) < (b − ǫ)u, u ∈ (0, x)). For any fixed

M < x and CM < (b− ε)M ,

P2(x) ≥ P(C(0, u) < (b− ǫ)u, u ∈ (0, x), C(0,M) < CM ,X(M) = j),

as the event in the right-hand side is fully contained in that of the left-hand side.

Now consider separately the intervals (0,M ] and (M,x). By using the conditional

independence and a straightforward time-shift, we have that the previous probability

is not smaller than

P(C(0, u) < (b− ǫ)u, u ∈ (0,M), C(0,M) < CM ,X(M) = j) × P̄2(x), where
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P̄2(x) := P(C(0, u) < (b− ǫ)u+ (b− ε)M − CM , u ∈ (0, x−M) | X(0) = j).

Observe that the former probability is constant in x; therefore we need to concen-

trate just on P̄2(x). Now the fact that the service rate is bounded by rmax entails

C(0, u) ≤ C
(

0,
⌊u

δ

⌋

δ
)

+ rmaxδ,

for any δ. As a consequence, P̄2(x) majorizes

P

(

C(0, iδ) + rmaxδ < (b− ǫ)iδ + (b− ε)M − CM , i = 0, . . . ,

⌈

x−M

δ

⌉

| X(0) = j

)

.

Let us take δ < ((b− ε)M − CM )/rmax. Then the probability in the previous display

is not smaller than

P

(

C(0, iδ) ≤ (b− ǫ)iδ, i = 0, . . . ,

⌈

x−M

δ

⌉

| X(0) = j

)

.

Now it can be verified that C(0, iδ) is a discrete-time process fitting in the frame-

work of the sp-LDP of Chang [31]. Applying the sp-LDP lower bound on the last

probability, it is straightforward to prove that the decay rate (in x) of the latter

probability is indeed

− sup
s≥0

((b− ǫ)s− c(s)),

as desired. Proceeding with Step (v) as before completes the proof. �

4.5 Extension to Discriminatory Processor Sharing

We now consider the extension of our analysis to the GI/GI/· queue with varying

service rate operating under DPS. The proof indicates that essentially the same

argumentation can be used as in the case of PS (as dealt with in the previous

sections).

Suppose that there are M customer classes sharing the available capacity. The

aggregate arrival process is assumed to be a renewal process as considered in Section

4.2. An arriving customer is of type k with probability pk, k = 1, . . . ,M . All

customers present in the system are served simultaneously with rates controlled by

a vector of weights (g1, . . . , gM ) > 0. If there are Qj customers of class j present

in the system, j = 1, . . . ,M, each class-k customer is served at rate gk/
∑M

j=1 gjQj

(see also Subsection 1.2.2).

The service times Bn in Section 4.1 denote the unconditional service require-

ments (for our purposes, we do not need to specify the conditional service require-

ments distributions). Thus, the asymptotic cumulant generating function of the

aggregate arrival process is still given by α(s).
The proofs of the previous section show that the logarithmic sojourn time asymp-

totics coincide with the logarithmic busy-period asymptotics. The following theorem
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states that the same result holds in the DPS queue, regardless of the specific values

of the weight factors.

Suppose the tagged customer belongs to class 1. Denote by V1 its sojourn time,

and B1
0 its size.

Theorem 4.5.1. If Assumptions 4.2.1, 4.2.3 and 4.2.4 are satisfied, then

lim
x→∞

1

x
log P(V1 > x) = inf

s>0
(α(s) + c(−s)).

Thus, the large-deviations estimate does not change when one assigns different

weights to the various customer classes. This may not be surprising since we already

obtained the insight that on a large-deviations scale, the behavior of the sojourn time

resembles that of the busy period. The decay rate of the latter is obviously weight-

independent (as the length of a busy period is the same for all work-conserving

service disciplines, such as DPS).

On the one hand, this asymptotic insensitivity might be considered as a negative

fact. It says that independent of the particular weights assignment, the DPS disci-

pline does not reduce the likelihood of extremely long sojourn times. Long sojourn

times are inevitable, since they are typically caused by the large amount of work

brought by customers during the service of the tagged customer. On the other hand,

the insensitivity property may be regarded as a positive result, because it implies

that preferential treatment of classes with large weights does not carry the penalty

of increasing the occurrence of long sojourn times for classes with smaller weights.

Proof of Theorem 4.5.1. The proof of the upper bound uses the same arguments

as for the single-class PS queue, which we will not repeat here. The proof of the

lower bound is similar to that of Theorem 4.2.4. We truncate the work process by

accepting only customers with the service requirements of size smaller than k into

the system and proceed in a similar fashion as before. The only extra step involves

the minimal weight gmin = minj=1,...,M gj ,

P(V1 > x)

≥ P

(

B1
0 >

∫ x

0

g1dC(0, u)

1 +
∑M

j=1 gjQj(u)

∣

∣

∣

∣

∣

Ak(0, u) − C(0, u) > εu, u ∈ (0, x)

)

× P(Ak(0, u) − C(0, u) > εu, u ∈ (0, x))

≥ P

(

B1
0 >

∫ x

0

g1dC(0, u)

1 + gmin

∑M
j=1Qj(u)

∣

∣

∣

∣

∣

Ak(0, u) − C(0, u) > εu, u ∈ (0, x)

)

× P(Ak(0, u) − C(0, u) > εu, u ∈ (0, x)).

Since the service requirements are not larger than k, under the above condition,

the total number of customers can be bounded from below in terms of the workload

as
M
∑

j=1

Qj(u) ≥
εu

k
.
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It is now straightforward to verify that the first probability behaves as eo(x) when

x → ∞. The second probability gives the desired decay rate. For details see Theo-

rem 4.2.4. �





Chapter 5

Fluid limits for bandwidth-sharing
networks in overload

In Chapters 2-4 we evaluated the flow-level performance of elastic data transfers on

a single bottleneck link by means of the classical processor-sharing model. In the

remainder of the thesis we turn our attention to networks of processor-sharing links

as considered by Massoulié and Roberts [84, 99]. Such bandwidth-sharing networks

provide a natural extension for modeling the dynamic interaction among competing

elastic flows that traverse several links along their source-destination paths. For a

detailed description of bandwidth-sharing networks we refer to Section 1.2.3.

In the present chapter we focus on bandwidth-sharing networks where the load

on one or several of the links exceeds the capacity. Obviously, with adequate pro-

visioning, a network should not experience overload, or even approach overload, in

normal operating conditions. However, even in a properly dimensioned system with

a low typical load, the actual traffic volume may substantially fluctuate over time

and exhibit transient surges, see also Bonald and Roberts [20]. Furthermore, an

understanding of the overload behavior plays a crucial role in analyzing the per-

formance in terms of long transfer delays or low flow throughputs as caused by

large queue build-ups. The most likely way for such rare events to occur, com-

monly entails a scenario where the system temporarily appears to deviate from the

normal stochastic laws and behaves as if it experiences overload, see for instance

Anantharam [6].

As discussed earlier in Section 1.2.3, the intricate rate allocation and the non-

work-conserving behavior of the network not only render the flow-level performance

largely intractable, but also complicate the analysis of the overload behavior. For

example, even on links with excess capacity, the workloads may grow because of the

non-work-conserving behavior mentioned above. In addition, while the total number

of flows must grow in overload conditions, the exact nature of the growth patterns

of the various classes is far from clear, and may even potentially involve oscillatory

effects in certain cases as observed in Bramson [28] and Lu and Kumar [80] for

example.

In order to characterize the growth dynamics, we examine the fluid limit, which

79
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emerges when the flow dynamics are scaled in both space and time. Gromoll and

Williams [60] provided a characterization of the limit points of the scaled sequence

in terms of measure-valued processes. We propose a related but slightly different

fluid model, and derive a functional equation characterizing the fluid limit. We show

that any strictly positive solution must be unique, which in particular implies the

convergence of the scaled number of flows to the fluid limit for nonzero initial states

when the load is sufficiently high. In addition, we establish the uniqueness of the

fluid limit for tree networks. For the case of a zero initial state and zero-degree

homogeneous rate allocation functions, we show that there exists a linear solution

to the fluid-limit equation, and obtain a fixed-point equation for the corresponding

asymptotic growth rates. It is proved that the solution to the fixed-point equation is

also a solution to a related strictly concave optimization problem, and hence exists

and is unique. Finally, we discuss extensions to models with user impatience, which

has a particularly pronounced impact in overload conditions, see also Bonald and

Roberts [20].

The remainder of the chapter is organized as follows. In Section 5.1 we present

a detailed description of the network, the bandwidth-sharing strategy, and the flow

dynamics. In Section 5.2 we introduce the fluid scaling, define the notion of a fluid-

model solution, and prove that any limit point of the scaled sequence satisfies the

fluid-model equation. In Section 5.3 we prove uniqueness of the strictly positive

fluid-model solution. In Section 5.4 we focus on the case of a zero initial state. In

Section 5.5 we prove the uniqueness of the fluid limit for a network with a tree

topology. In Section 5.6 we study the fluid limits in a parking lot network. In

Section 5.7 we focus on networks with a linear topology. Section 5.8 is devoted to

the special case of a star network. In Section 5.9 we elaborate on the numerical

experiments that we conducted to illustrate and support the analytical findings.

We discuss extensions to models with user impatience in Section 5.10. Proofs of the

results in Sections 5.2–5.5 are presented in Appendices 5.A–5.E.

5.1 Model description

In this section we present a detailed model description. For compatibility, we

adhere to the notation used in [34, 60] to the extent possible.

Network model
We consider a bandwidth-sharing network as described in Section 1.2.3. The net-

work consists of a finite number of links labeled by j = 1, . . . , J and is offered traffic

from several classes indexed by i = 1, . . . , I. Denote by C = (C1, . . . , CJ ) the vector

of link capacities. Each class is characterized by a route, i.e., a nonempty set of

links traversed by the traffic from that class. Let A be a J × I incidence matrix

such that Aji = 1 if link j belongs to the route of class i, and Aji = 0 otherwise.

For now, we do not make any specific assumptions on the topology of the network

or the structure of the route sets.
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Rate allocation policy
Denote by x(z) = (x1(z), . . . , xI(z)) the vector of rates received by each indi-

vidual flow of the various classes as function of the population of active flows

z = (z1, . . . , zI). Denote by Λ(z) = (Λ1(z), . . . ,ΛI(z)), with Λi(z) = zixi(z), the

vector of aggregate rates allocated to the various classes. A class-i flow that is con-

tinuously active throughout the time interval [s, t], receives a cumulative amount of

service

Si(s, t) =

∫ t

s

xi(Z(u))du,

with Z(t) = (Z1(t), . . . , ZI(t)) representing the population of active flows at time t.
We further introduce T (t) = (T1(t), . . . , TI(t)), with Ti(s, t) = Ti(t) − Ti(s) repre-

senting the aggregate cumulative amount of service received by class-i flows during

the time interval [s, t],

Ti(s, t) =

∫ t

s

Λi(Z(u))du.

The bandwidth sharing among competing flows is governed by a utility-maximizing

strategy. Specifically, for a given population z = (z1, . . . , zI) 6= (0, . . . , 0) of active

flows, the rate allocation vector x(z) is determined as the solution of the optimiza-

tion problem (P ) defined in Section 1.2.3. With the additional convention that

xi(z) = 0 when zi = 0, the rate allocation is uniquely determined since the opti-

mization problem is strictly concave.

The family of α-fair policies as described in Section 1.2.3 are the most commonly

studied utility-maximizing policies. Recall that the per-flow rate allocation vector

x(z) for an α-fair policy is the solution of the optimization problem (cf. (1.2))

maximize
∑I

i=1 wiziUi(xi)

(P ′)
subject to AΛ ≤ C, Λ ≥ 0,

with

Ui(xi) =











x1−α
i

1−α , α ∈ (0,∞) \ {1},

log xi, α = 1.

In the present chapter we consider rate allocation policies that satisfy the fol-

lowing assumption.

Assumption 5.1.1. The utility functions Ui(·) are such that the per-class rate
allocation vector Λ(z) = z ·x(z) is (i) a continuous function of z on R

I
++ = (0,∞)I ,

and (ii) zero-degree homogeneous, i.e., Λ(az) = Λ(z) for any scalar a > 0, z ≥ 0.

Kelly and Williams [71] established that α-fair utility functions satisfy prop-

erty (i) of Assumption 5.1.1, and Chiang et al. [34] extended this property to the

case when the parameter α varies among the different classes. Furthermore, in the

present chapter we prove the Lipschitz continuity of the rate allocation function on
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the set R
I
++ for a large class of utility functions. A sufficient condition for prop-

erty (ii) to be satisfied is that Ui(κxi) = V (κ)Ui(xi) for all i = 1, . . . , I and some

function V (·). This is a natural property, implying that the relative utilities are

scale-invariant, which is satisfied by α-fair utility functions as long as the parame-

ter α is common to all classes.

Flow dynamics
The traffic of the various classes consists of elastic file transfers. A flow is a con-

tinuous transfer of a file through the links along the route associated with its class.

The duration of the flow thus depends on its size and the simultaneous service rate

it receives on all the links along its route.

Class-i flows arrive according to a delayed renewal process of rate λi. Let Aik

be the arrival epoch of the kth class-i flow. Define Ei(t) = max{k : Aik < t} as

the number of class-i flows that arrive during the time interval (0, t]. Let Bik be

the size of the kth class-i flow, i.e., the total amount of service required to complete

the transfer. The random variables Bi1, Bi2, . . . are independent and identically

distributed copies of a generic random variable Bi with mean 1/µi. Denote by

ρ = (ρ1, . . . , ρI) with ρi := λi/µi the vector of traffic intensities.

Let B̄il be the residual size of the lth initial class-i flow at time 0. We assume

that for each class i the initial number of flows and the initial workload are finite,

i.e., Zi(0) <∞ and
∑Zi(0)

l=1 Bil <∞.

The residual size at time t of the lth initial flow and the kth arriving flow of

class i, assuming Aik ≤ t, are given by Bil(t) =
(

Bil − Si(0, t)
)+

and Bik(t) =

(Bik − Si(Aik, t))
+

, respectively.

The number of active class-i flows at time t may be related to the arrival times,

service requirements, and received service amounts as:

Zi(t) =

Zi(0)
∑

l=1

1
(

Bil(t) > 0
)

+

Ei(t)
∑

k=1

1 (Bik(t) > 0)

=

Zi(0)
∑

l=1

1
(

Bil > Si(0, t)
)

+

Ei(t)
∑

k=1

1 (Bik > Si(Aik, t)) . (5.1)

Likewise, the aggregate cumulative amount of service received by class-i flows

during the time interval [0, t] may be expressed as:

Ti(t) =

Zi(0)
∑

l=1

min
(

Bil, Si(0, t)
)

+

Ei(t)
∑

k=1

min (Bik, Si(Aik, t)) . (5.2)

Load conditions
In the present paper we focus on an overload scenario where the stability condition

Aρ < C is violated for at least one of the links. While the total number of flows

must grow in such a scenario, the exact nature of the growth patterns of the various

classes is not so evident. In the next sections we will examine the growth dynamics

in terms of the fluid limit.
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5.2 Fluid model

In this section we introduce the fluid limit, which arises from a scaled sequence

of the stochastic processes (Z(t), T (t); t ≥ 0), and derive a characterization of the

fluid limit in the form of a set of integral equations.

Following Gromoll and Williams [60], we consider a sequence of models as de-

scribed in the previous section associated with a sequence r ∈ R of positive numbers

increasing to infinity. The numbers r ∈ R are attached as superscripts to the cor-

responding model parameters and stochastic processes. Each model has the same

arrival rates and network characteristics in terms of the vector of link capacities C
and the incidence matrix A. The flow size distributions are allowed to vary with r

but converge: Br
i

d→ Bi and µr
i → µi as r → ∞. The scaled initial conditions are

assumed to converge as well: Z
r
(0) → z(0) as r → ∞. We consider the behavior of

the system on the law-of-large-numbers scale, or fluid scale, and define the scaled

processes

Z
r
(t) =

1
rZ

r(t),

S
r
(s, t) = Sr(rs, rt),

T
r
(t) =

1
rT

r(rt).

(5.3)

Since the rate allocation vector is a zero-degree homogeneous function, the scaled

amount of service received by a class-i flow that is continuously active during the

time interval [s, t] is

S
r

i (s, t) =

∫ t

s

Λi(Z
r
(u))

Z
r

i (u)
du.

Gromoll and Williams [60] established that the sequence of scaled processes

(Z
r
(t), T

r
(t); t ≥ 0) is tight. Moreover, they provided a characterization of the

limit points in terms of a so-called state descriptor, a Borel measure that contains

information on the residual sizes of all active flows.

We propose a related but different fluid model, and derive a functional equation

that is satisfied by the limit points of the scaled sequence (Z
r
(t), T

r
(t); t ≥ 0).

In order to define the fluid model, we first introduce a slightly modified version

of the rate allocation functions which may be interpreted as the service rates on

the fluid scale. The service rate Ri(z) received by class i is defined as follows:

Ri(z) ≡ Λi(z) if zi > 0, where Λi(z) = zixi(z) and x(z) is the solution of the

optimization problem (P ); and Ri(z) ≡ ρi if zi = 0. The above distinction reflects

the fact that at the fluid scale, zi = 0 requires that class i receives service at rate ρi,

rather than 0.

We define

x∗i (z) =

{

xi(z), if zi > 0,
∞, if zi = 0.

(5.4)
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In the remainder of the chapter we consider

Si(s, t) =

∫ t

s

x∗i (z(u))du

as the cumulative amount of service received at the fluid scale by a class-i flow that

is continuously active throughout the time interval [s, t].
Further we introduce τi(s, t) = τi(t)−τi(s) representing the aggregate cumulative

amount of service received by class i at the fluid scale during the time interval [s, t].
Gromoll and Williams [60] derived

τi(s, t) =

∫ t

s

(Λi(z(u))1(zi(u) > 0) + ρi1(zi(u) = 0)) du =

∫ t

s

Ri(z(u))du.

Definition 5.2.1. A nonnegative continuous function z(·) is a fluid-model solution

if it satisfies the functional equation

zi(t) = zi(0)P
(

Bi > Si(0, t)
)

+ λi

∫ t

0

P (Bi > Si(s, t)) ds. (5.5)

Moreover,

τi(t) = zi(0)E[min(Bi, Si(0, t))] + λi

∫ t

0

E[min(Bi, Si(s, t))]ds, (5.6)

and
I
∑

i=1

Ajiτi(s, t) ≤ Cj(t− s) (5.7)

for all t ≥ s ≥ 0.

Define M(C) = {z ∈ R
I
+ : AR(z) ≤ C}. An important implication of Inequality

(5.7) is that a fluid-model solution z(·) ∈ M(C) almost everywhere (see also [60]).

The main result of the present section is the following characterization of the

limit points of the scaled sequence (Z
r
(t), T

r
(t); t ≥ 0).

Theorem 5.2.1. The limit point of any convergent subsequence of (Z
r
(t), T

r
(t); t ≥

0) is almost surely a solution of the fluid-model Equations (5.5)–(5.7).

To prove the above theorem, we apply the fluid scaling to the set of Equations

(5.1)–(5.2) satisfied by the pre-limit processes. Taking subsequently r → ∞, we

deduce Equations (5.5)–(5.6). Similarly, Inequality (5.7) follows from the fact that

the pre-limit cumulative unused capacity U(s, t) = C(t−s)−AT (s, t) is nonnegative

for any s < t. The proof is presented in Appendix 5.A.

Remark 5.2.1. In case of exponential flow sizes, the fluid-model Equations (5.5)–

(5.6) take a simpler form:

zi(t) = zi(0) + λit− µiτi(t), (5.8)
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or equivalently, for almost every t ≥ 0,

z′i(t) = λi − µiRi(z(t)). (5.9)

We refer to Kelly and Williams [71] for a detailed discussion of this model.

Remark 5.2.2. It is worth observing that Chiang et al. [34] considered a slightly

different scaling, commonly referred to as ‘large-capacity scaling’, where the arrival

rates of the various classes and link capacities are scaled by r. This may be in-

terpreted as a slightly different way of scaling time, and yields the same fluid-limit

equation, but has the advantage that the rate allocation vector is not required to

be zero-degree homogeneous.

5.3 Uniqueness of fluid-model solutions

In this section we establish the uniqueness of the fluid-limit solution in two

scenarios of interest.

In preparation for the proof of uniqueness, we first state two important auxiliary

results. For fixed 0 < δ < M, define Z := {z ∈ R
I : δ ≤ zi ≤ M, i = 1, . . . , I} =

(δ,M)I .

Proposition 5.3.1. Assume that the utility functions Ui(·) are twice differentiable
on R

I
++ = (0,∞)I . Then the rate allocation vector Λ(·) is Lipschitz continuous on

the set Z.

Proposition 5.3.2. Assume that the utility functions Ui(·) are twice differentiable
on R

I
++. Then any fluid-limit solution that is strictly positive must be unique.

The proofs of the above propositions are provided in Appendices 5.B and 5.C.

5.3.1 Per-class overload conditions

We first prove convergence of the scaled sequence in situations where each indi-

vidual class is overloaded. Denote by Cmin
i = min{Cj : Aij = 1} the minimum link

capacity along the route of class i.

Theorem 5.3.1. Assume that the utility functions Ui(·) are twice differentiable
on R

I
++. If z(0) > 0 and ρi > Cmin

i for all i = 1, . . . , I, then the scaled sequence

(Z
r
(t); t ≥ 0) converges almost surely to a solution of the fluid-model Equation (5.5).

Proof. Since the sequence (Z
r
(t); t ≥ 0) is tight, it suffices to show that any limit

point is unique in order to establish the convergence. To the contrary, suppose that

there are two different limit points, z(t), h(t), with z(0) = h(0).

It is easily verified that the residual flow sizesBik(t) and B̄il(t) at time t are larger

than the corresponding quantities in an isolated single-server PS system with service

capacity Cmin
i and class-i traffic only. In particular, the number Zi(t) of class-i flows

at time t is larger than in the isolated PS system. The results in [64] imply that in
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case ρi > Cmin
i the latter number grows at a strictly positive rate. It follows that

zi(t), hi(t) ≥ zi(0) > 0 for all t ≥ 0. In addition, Theorem 5.2.1 shows that z(t) and

h(t) are almost surely solutions of the fluid-model Equation (5.5). Proposition 5.3.2

then implies that z(t) = h(t), contradicting the initial supposition. �

5.3.2 Fluid-model solution with permanent flows

Theorem 5.3.2. Let the utility functions Ui(·) be twice differentiable on R
I
++. The

fluid-model equations

zε
i (t) = εi + λi

∫ t

0

P(Bi > Sε
i (s, t))ds, (5.10)

τε
i (t) =

∫ t

0

Ri(z
ε
(u))du = εiS

ε
i (0, t) + λi

∫ t

0

E[min(Bi, S
ε
i (s, t))]ds, (5.11)

have a unique solution zε(t), zε(t) ∈ M(C).

Proof. The proof is based on the derivations in Appendix 5.C. The idea is to

consider the time interval [0, t′], for some suitably chosen t′ > 0, and then show

that Equation (5.10) has a unique solution for all t ∈ [0, t′]. Applying an induction

argument we extend the proof to the entire time line.

In order to prove the existence of a solution of the above equations, we construct

a mapping Ψ : CI
b [0, t′] → CI

b [0, t′], for some fixed t′ > 0 :

Ψ
ε
i (z, t) = εi + λi

∫ t

0

P(Bi > Sz
i (s, t))ds, i = 1, . . . , I, t ∈ [0, t′].

We use superscript z to emphasize that Sz(·, ·) is determined for vector z. The set

CI
b [0, t′] is the set of continuous bounded functions on the interval [0, t′]. We let

z0(·) = ε. We recursively define the sequence of functions zn(·) = Ψε(zn−1, ·), for

each n ≥ 1. Observe that zn(·) is a continuous function and zn(t) ∈ [ε, ε+ λt′], for

all t ∈ [0, t′].
Consider the distance between two successive functions. By definition,

||zn+1 − zn|| = ||Ψε
(zn, ·) − Ψ

ε
(zn−1, ·)||,

where the norm is defined as ||f || = supt∈[0,t′],i∈I |fi(t)|, f ∈ CI [0, t′]. Since zn(·) is

bounded away from zero, invoking Inequalities (5.64)–(5.66) in the proof of Propo-

sition 5.3.2 (Appendix 5.C), we obtain that

||Ψε
(zn, ·) − Ψ

ε
(zn−1, ·)|| ≤ 1

4
||zn − zn−1||,

if t′ = mini∈I
(

ci

4λiγi

)

, where ci = mint∈[0,t′] xi(z(t)) and γi is a Lipschitz constant

of xi(·) (see Appendix 5.B for an explicit expression). Thus, we derive for all m > n,

||zm − zn|| ≤ 2

(

1

4

)n

||z1 − z0||.
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The above inequality shows that zn is a Cauchy sequence. Hence, by completeness

of CI
b [0, t′], zn converges as n→ ∞.

Let z∗(·) = limn→∞ zn(·). We now show that the function z∗(·) is a solution of

the equation z∗(t) = Ψε(z∗, t). By construction,

||zn+1 − Ψ
ε
(z∗, ·)|| = ||Ψε

(zn, ·) − Ψ
ε
(z∗, ·)|| ≤ 1

4
||zn − z∗||.

This implies that zn → Ψε(z∗, ·) as n→ ∞. Since zn → z∗ and the limit is unique,

we deduce z∗ = Ψ(z∗, ·). Thus, for any t ∈ [0, t′] there exists a solution of Equa-

tion (5.10). Uniqueness of the solution of the equation z∗ = Ψε(z∗, ·), follows by the

argument in Appendix 5.C.

Suppose now Equation (5.10) has a unique solution z∗ on the time interval [0, kt′].
The next step is to consider the interval [kt′, (k + 1)t′]. We introduce a sequence of

functions zn, n ≥ 0, such that zn(t) = z∗(t) if t ≤ kt′, and z0(kt′ + t) = z∗(kt′),
zn(kt′ + t) = Ψε(zn−1, kt′ + t) if t ∈ [0, t′]. The mapping Ψε can now be written for

any t ∈ [0, t′] as

Ψ
ε
(z, kt′ + t) = εi + λi

∫ kt′

0

P (Bi > Sz
i (s, kt′) + Sz

i (kt′, kt′ + t)) ds

+ λi

∫ kt′+t

kt′
P (Bi > Sz

i (s, kt′ + t)) ds.

Noting that Szn

(s, kt′) = Szm

(s, kt′) for any m,n, and applying Inequalities (5.64)–

(5.66) to each integral, we obtain

||Ψε
(zn, ·) − Ψ

ε
(zn−1, ·)|| ≤ 1

2
||zn − zn−1||,

which by the above argument implies existence and uniqueness of the solution of

Equation (5.10) on the interval [0, (k + 1)t′] and hence, on the entire time line.

Furthermore, since function z∗ is a solution of Equation (5.10) and z∗ ≥ ε, it

trivially follows by definition of the rate allocation that z∗ ∈ M(C). �

5.4 Fluid-model solution with zero initial state

In this section our focus is on the case of a zero initial state. In this important

special case, the fluid model equations admit a linear solution.

The next theorem states that there exists exactly one linear solution of the fluid-

limit Equations (5.5)–(5.7).

Theorem 5.4.1. Assume that z(0) = 0 and that Λ(az) = Λ(z) for any scalar
a > 0 and vector z ∈ R

I
+. Then the fluid-limit Equations (5.5)–(5.7) admit a linear

solution

z(t) ≡ mt,
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where the vector m = (m1, . . . ,mI) forms the unique solution in the set M(C) of
the fixed-point equation

Ri(m) = ρiE
[

e
− mi

Ri(m)
B∗

i

]

, i = 1, . . . , I, (5.12)

and B∗i represents a residual class-i flow size, i.e., a random variable with density
µiP(Bi > x) and Laplace-Stieltjes Transform (LST) E

[

e−xB∗
i

]

= µi(1−E
[

e−xBi
]

)/x.

The above theorem holds for arbitrary network topologies and arbitrary flow

size distributions. In a single-link scenario, i.e., J = 1, it reduces to known results

for single-server processor-sharing type systems. In particular, in the single-class

case, i.e., I = 1, we have, dropping the class index, R(m) = 1. The fixed-point

Equation (5.12) specializes to

1 = ρE[e
−mB∗

],

which corresponds to the result in [64]. In the multi-class case, we have Ri(m) =

wimi/
∑I

k=1 wkmk, and Equation (5.12) takes the form

wimi
∑I

k=1 wkmk

= ρi E
[

e
−w−1

i

∑ I
k=1 wkmkB∗

i

]

, i = 1, . . . , I,

which agrees with the fixed-point equation in [5] for overloaded discriminatory

processor-sharing queues.

The remainder of the section is organized as follows. We first provide a heuristic

interpretation of the fixed-point Equation (5.12). Next, we give the proof of Theo-

rem 5.4.1. We then proceed to discuss some qualitative properties of the asymptotic

growth rates.

5.4.1 Heuristic interpretation

The fixed-point Equation (5.12) may be heuristically derived in a similar way as

explained by Jean-Marie [63]; we are not aware of an article where this derivation

has been published.

Suppose that
Z(r)

r → m (or equivalently,
Zr(t)

r → mt) almost surely as r → ∞
for some vector m = (m1, . . . ,mI). Then, for large t, a class-i flow will receive

service at a rate of approximately
Ri(mt)

mit
. Let an

i be the arrival epoch of the n-th

class-i flow. Then the size Bn
i of that flow and its sojourn time V n

i may be related

as:

Bn
i =

∫ an
i +V n

i

an
i

Ri(mu)

miu
du.

Since the rate allocation function is zero-degree homogeneous, i.e., Ri(mu) =

Ri(m), it follows that

mi

Ri(m)
Bn

i =

∫ an
i +V n

i

an
i

1

u
du = log(an

i + V n
i ) − log an

i .
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Taking the exponent on both sides, we obtain

V n
i = an

i

(

e
mi

Ri(m)
Bn

i − 1

)

.

The number of active class-i flows at time t may then be expressed as Zi(t) = #{n :

an
i +V n

i ≥ t, an
i ≤ t} = #{n : t ≥ an

i ≥ te
− mi

Ri(m)
Bn

i }. Because an
i ≈ n/λi for large n,

we have

Zi(t) = #{n : t ≥ n/λi ≥ te
− mi

Ri(m)
Bn

i } ≈ λit
(

1 − E
[

e
− mi

Ri(m)
Bi

])

.

Dividing both sides by t and letting t tend to infinity, we deduce

mi = λi

(

1 − E
[

e
− mi

Ri(m)
Bi

])

=
ρimi

Ri(m)
E
[

e
− mi

Ri(m)
B∗

i

]

, (5.13)

which is equivalent to Equation (5.12).

Remark 5.4.1. In the case of exponential flow sizes, Equation (5.12) specializes to

mi = λi − µiRi(m), i = 1, . . . , I, (5.14)

which makes sense, since µiRi(m) is indeed the departure rate of class-i flows. This

is also consistent with the convention Ri(m) = ρi when mi = 0.

5.4.2 Proof of Theorem 5.4.1

The statement of Theorem 5.4.1 follows from the next two lemmas.

Lemma 5.4.1. If the rate allocation function is zero-degree homogeneous, then
Equations (5.5)–(5.7) admit a linear solution given by

zi(t) = mit, i = 1, . . . , I,

where mi is a solution of Equation (5.12) in the set M(C).

Proof. Since the rate allocation policy is zero-degree homogeneous, the fact that

m ∈ M(C), i.e.
∑I

i=1AjiRi(m) ≤ Cj , implies z(t) = mt ∈ M(C) for almost every

t ≥ 0. Consequently, Equation (5.7) is satisfied.

Suppose zi(t) = mit, where mi is some constant. Substituting this into Equa-
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tion (5.5) and using the fact that R(mu) = R(m), we obtain that

zi(t) = mit

= λi

∫ t

0

P

(

Bi >

∫ t

s

Ri(miu)

miu
du

)

ds

= λi

∫ t

0

P

(

Bi >
Ri(m)

mi

∫ t

s

1

u
du

)

ds

= λi

∫ t

0

P

(

−Bi
mi

Ri(m)
< log

s

t

)

ds

= λit

∫ 1

0

P

(

−Bi
mi

Ri(m)
< log u

)

du

= λit

∫ 1

0

P
(

e
−Bi

mi
Ri(m) < u

)

du

= λit
(

1 − E
[

e
−Bi

mi
Ri(m)

])

=
miρit

Ri(m)
E
[

e
− mi

Ri(m)
B∗

i

]

,

which yields that m is a solution of Equation (5.12). If we assume zi(t) = mit, so

that Ri(z(t)) = Ri(mt), then substituting into Equation (5.6), and using the fact

that R(mu) = R(m), we obtain

τi(t) = Ri(m)t

= λi

∫ t

0

E

[

min

(

Bi,

∫ t

s

Ri(mu)

miu
du

)]

ds

= λi

∫ t

0

E

[

min

(

Bi,
Ri(m)

mi

∫ t

s

1

u
du

)]

ds

=
λiRi(m)

mi

∫ t

0

E

[

min

(

mi

Ri(m)
Bi,− log

s

t

)]

ds

=
λitRi(m)

mi

∫ 1

0

E

[

min

(

mi

Ri(m)
Bi,− log u

)]

du

=
λitRi(m)

mi

∫ 1

0

∫ ∞

0

P

(

min

(

mi

Ri(m)
Bi,− log u

)

> v

)

dvdu

=
λitRi(m)

mi

∫ 1

0

∫ − log u

0

P

(

mi

Ri(m)
Bi > v

)

dvdu

= ρit

∫ 1

0

P

(

mi

Ri(m)
B∗i < − log u

)

du

= ρit

∫ 1

0

P
(

e
− mi

Ri(m)
B∗

i > u
)

du

= ρitE
[

e
− mi

Ri(m)
B∗

i

]

,
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which also yields that m is a solution of Equation (5.12). �

Lemma 5.4.2. Equation (5.12) has a unique solution m = (m1, . . . ,mI) in the set
M(C).

The proof of the above lemma is presented in Appendix 5.D. The idea of the

proof is to show that the rate allocation vector R(m) associated with a solution m
in the set M(C) of the fixed-point Equation (5.12) is also a solution of a related

strictly concave optimization problem, and hence exists and is unique. Uniqueness

of R(m) together with Equation (5.12) then implies uniqueness of the vector m.
Besides proving uniqueness, the latter relationship also provides a way for actually

computing the asymptotic growth rates mi, since the vector R(m) can be calculated

by solving a concave programming problem

maximize G(R) =
∑I

i=1Gi(Ri)

(Q)

subject to AR ≤ C, R ≤ ρ, R ≥ 0,

(5.15)

where the function Gi : [0, ρi] → R is determined by its derivative

G′i(x) = U ′i





1

β−1
i

(

x
ρi

)



 ,

and β−1
i (·) is the inverse of the LST βi(y) = E

[

e−yB∗
i

]

. The details on the above

construction can be found in Appendix 5.D.

We conclude this section with some observations about qualitative properties of

the growth rates.

Remark 5.4.2. If the arrival rates and the flow sizes of all classes are scaled by

common factors K > 0 and 1/K, respectively, thus keeping the traffic intensities

constant, then the asymptotic growth rates scale by K. This makes sense as the

scaling simply amounts to a change of time scale.

Remark 5.4.3. Suppose we focus on a particular class and, dropping the class

index, examine the impact of the variability of the flow size B on the asymptotic

growth rate m for a fixed mean flow size E [B] and service rate R. It may be deduced

from the fixed-point Equation (5.13) that the growth rate is non-increasing in the

variability of the flow size in the sense of the LST ordering. A random variable X
is said to be larger or more variable than a random variable Y in the LST ordering

if E
[

e−sX
]

≥ E
[

e−sY
]

for all s ≥ 0. Note that the LST ordering is implied by

the more common convex ordering, which provides a measure for the degree of

variability of a distribution. This monotonicity property does not directly extend

to a network setting where the service rate R depends on the growth rate m.

Remark 5.4.4. If mi = 0, then the asymptotic growth rates mj , j 6= i, are identical

to those in a corresponding system with both class-i traffic and all links j with

Aji > 0 removed, which makes sense as none of these links are bottlenecks if mi = 0.
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Remark 5.4.5. Suppose we consider a sequence of systems where the arrival rate of

a particular class i in the k-th system is scaled in such a manner that limk→∞ λ
(k)
i =

0, while the flow size may be scaled in an arbitrary way, so that it is not necessarily

the case that limk→∞ ρ
(k)
i = 0. It may then be deduced that limk→∞m

(k)
i = 0,

and thus, in view of Remark 5.4.4, m
(k)
j → mj , j 6= i, with mj representing the

asymptotic growth rate of class j in a corresponding system with class i removed.

5.5 Uniqueness of the fluid-model solution for tree networks

We now proceed to show convergence of the scaled sequence in so-called tree net-

works. Tree networks are practically useful as a model for communication networks

which exhibit a certain hierarchical structure such as access networks consisting of

several multiplexing stages [17]. A tree network has a central link (usually referred

to as the root of the tree) which belongs to all routes. The key property is that a

tree can be decomposed into a set of subtrees, which represent a tree structure in

itself. Figure 5.1 (a) shows one example of a tree topology.

(a) (b)

Figure 5.1: Example of tree network: (a) tree network (b) graph representation.

In the context of bandwidth-sharing networks, it will be convenient to define a

tree network in terms of links and classes or routes, consisting of subsets of links, as

represented by the incidence matrix. Note that in graph theory a tree is also defined

as an acyclic network, but the network is described in terms of a set of vertices (or

nodes) and a set of edges (or node pairs), rather than routes. The two notions

may be formally related as follows. If we take a tree network in the graph-theoretic

sense, pick an arbitrary vertex as root, and consider a collection of vertex paths

with the root as common end point, then we obtain a tree network in our setting,

with what we refer to as links somewhat confusingly corresponding to the vertices

rather than the edges of the graph. See Figure 5.1 (b) for a graph representation of

a tree network depicted in Figure 5.1 (a).

We build upon the following representation of a tree network.

Definition 5.5.1. A bandwidth-sharing network with J links and I traffic classes
has a tree topology if its incidence matrix A can be represented in the following
manner:
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1. if J = 1, A is a 1 × I unit vector,

A = (1, 1, . . . , 1),

2. if J > 1, there exists an integer m > 0 such that

A =





















1 1 · · · 1 1

A(1)

A(2)

·
·

·
A(m) B





















(5.16)

where B is a (J − 1) ×N zero matrix, N ≥ 0, and each A(k) is an incidence
matrix of a tree network.

This representation reflects that the network contains a single link which belongs

to the routes of all classes and which is connected to m (second-level) links which

in their turn constitute m disjoint subtrees. It may also contain N classes which

traverse the root link only.

The incidence matrix corresponding to the network presented in Figure 5.1 can

be written as

A =













1 1 1

1 1 0

1 0 0

0 1 0

0 0 1













, (5.17)

where the subtree matrices are given by

A(1)
=





1 1

1 0

0 1



 , and A(2)
= (1). (5.18)

Tree networks have a few useful properties.

Proposition 5.5.1. Tree networks operating under a weighted α-fair policy are
monotone, i.e. if z ≤ ẑ, zi > 0, then xi(z) ≥ xi(ẑ).

In plain words, a network is monotone if adding a flow of any class reduces the

rates allocated to all flows, or equivalently, removing a flow increases the rates of

all flows. Whether or not the monotonicity property is satisfied depends on both

the network topology and the rate allocation policy. Observe that if the network is

monotone in the above sense, the per-flow rate allocation on a fluid scale satisfies a

similar ordering property. For any z ≤ ẑ, x∗(z) ≥ x∗(ẑ). For all positive components

of the vector z the inequality follows from monotonicity. For zero components the

inequality holds trivially, since x∗i (z) = ∞ if zi = 0.
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Proposition 5.5.2. Tree networks are rate-preserving, i.e., if z ≤ ẑ, z, ẑ ∈ M(C),

then
∑I

i=1Ri(z) ≤
∑I

i=1Ri(ẑ).

In a rate-preserving network adding a flow of any class increases the aggregate

rate, or equivalently, removing a flow reduces the aggregate rate. Note that the rate

preservation property trivially holds in (work-conserving) single-node systems.

The proofs of the above propositions are presented in Appendix 5.E.

Our goal is to prove uniqueness of fluid-model solutions for tree networks with a

zero initial state. This in conjunction with the tightness result of [60] would imply

the convergence of the scaled sequence. We need to make an additional assumption

on the flow size distribution.

Assumption 5.5.1. The flow size distribution has a bounded hazard rate, i.e., there
exists an M ∈ (0,∞) such that

fBi
(x)

P(Bi > x)
< M, ∀x ≥ 0. (5.19)

This assumption is satisfied by a large class of distributions, including phase-

type, log-normal, Pareto distributions, etc.

The main result of this section is the following theorem.

Theorem 5.5.1. Consider a tree network. Let m = (m1, . . . ,mI) ∈ M(C) be
the unique solution of the fixed-point Equation (5.12). Assume mi > 0 for all
i = 1, . . . , I. Suppose Z

r
(0) → 0 as r → ∞. Then the scaled sequence (Z

r
(t); t ≥ 0)

converges almost surely to the unique solution

z(t) = mt

of the fluid-model equations

zi(t) = λi

∫ t

0

P(Bi > Si(s, t))ds (5.20)

and

τi(t) =

∫ t

0

Ri(z(u))du = λi

∫ t

0

E[min(Bi, Si(s, t))]ds. (5.21)

In preparation for the proof of the above theorem, we first state two important

auxiliary results.

Lemma 5.5.1. Consider a monotone network. Assume the flow size distribution
has a bounded density. Let z(t), z(t) ∈ M(C) a.e., satisfy Equations (5.20)–(5.21)
and let zε(t) be a solution of the fluid-model Equations (5.10)–(5.11). Then, for all
t ≥ 0,

z(t) ≤ zε
(t). (5.22)
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Proof. Let us construct a sequence of functions zε,n(·), n > 0, in the following

manner. Let zε,0(t) = z(t) be a solution of Equation (5.20). Lemma 5.4.1 implies

that there exists at least one such solution. For a fixed t ≥ 0, introduce the function

Ψε(·, t) :→ [ε,∞),

Ψ
ε
i (z, t) = εi + λi

∫ t

0

P (Bi > Si(s, t)) ds,

where Si(s, t) =
∫ t

0
x∗i (z(u))du. Define

zε,n
(t) = Ψ

ε
(zε,n−1, t), n ≥ 1.

We show that the sequence is non-decreasing by induction. Clearly,

zε,1
i (t) = Ψ

ε
i (z, t) = εi + zi(t) ≥ zε,0

i (t).

Suppose zε,n(t) ≥ zε,n−1(t). Since the network is monotone, this implies x∗(zε,n(t)) ≤
x∗(zε,n−1(t)). Hence,

zε,n+1
i (t) = εi + λi

∫ t

0

P

(

Bi >

∫ t

s

x∗i (z
ε,n

(u))du

)

ds

≥ εi + λi

∫ t

0

P

(

Bi >

∫ t

s

x∗i (z
ε,n−1

(u))du

)

ds = zε,n
(t).

Since zε,n(t) is non-decreasing in n and bounded from above on any finite time

interval, there exists a function zε,∗(t) such that

lim
n→∞

zε,n
(t) = zε,∗

(t).

Let us now show that the function zε,∗(t) is continuous in t. Fix h > 0. Then we

have

|zε,∗
(t+ h) − zε,∗

(t)| = lim
n→∞

|zε,n
(t+ h) − zε,n

(t)|

≤ λi

∫ t+h

t

P(Bi > Si(s, t+ h))ds+ λi

∫ t

0

P(Si(s, t) < Bi < Si(s, t+ h))ds. (5.23)

The first term is bounded from above by λih. Consider now the second term. Since

the flow size distribution has a bounded density, there exists an M ∈ (0,∞) such

that fBi
(u) ≤M, for all u ≥ 0, i = 1, . . . , I. Hence,

∫ t

0

P(Si(s, t) < Bi < Si(s, t+ h))ds =

∫ t

0

∫ Si(s,t+h)

Si(s,t)

fBi
(u)duds

≤M

∫ t

0

(Si(s, t+ h) − Si(s, t))ds = MSi(t, t+ h)t.
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From zε,∗
i (t) ≥ εi, by monotonicity we derive x∗i (z

ε,∗(t)) ≤ Cmin
i

εi
, Cmin

i =

min{Cj : Aji > 0}. Consequently,

∫ t

0

P(Si(s, t) < Bi < Si(s, t+ h))ds ≤ MCmin
i

εi
ht.

Thus, as h → 0, the right-hand side of (5.23) tends to zero, yielding continuity of

the function zε,∗(t).
We now show that zε,∗(t) satisfies Equations (5.10)–(5.11). Since the sequence

zε,n(t) is bounded away from zero and is non-decreasing in n, x∗(zε,n(t)) is continu-

ous and non-increasing in n. Then, Sε,n
i (s, t) → Sε,∗

i (s, t) by monotone convergence.

Hence, Ψε(zε,n, t) → Ψε(zε,∗, t), implying

zε,∗
(t) = Ψ

ε
(zε,∗, t). (5.24)

Now since the function zε,∗(t) is continuous and satisfies the fluid-model Equa-

tion (5.10), Theorem 5.3.2 yields zε,∗(t) ≡ zε(t), a unique solution of Equation (5.10).

Since the sequence zε,n(t) is non-decreasing and for all n, zε,n(t) ≥ z(t), we deduce

that for all t > 0, z(t) ≤ zε(t). �

Lemma 5.5.2. Consider a tree network. Let Bi satisfy Assumption 5.5.1. Let z(t),
z(t) ∈ M(C) a.e., satisfy Equations (5.20)–(5.21) and let zε(t) be a solution to the
fluid-model Equations (5.10)–(5.11). Let m = (m1, . . . ,mI) ∈ M(C) be the unique
solution of Equation (5.12). Assume mi > 0 for all i = 1, . . . , I. Then, for all t ≥ 0,
i = 1, . . . , I,

zε
i (t) − zi(t) ≤ κ(ε, t), (5.25)

where

κ(ε, t) = K

I
∑

i=1

(

εi

mi

(

1 + max

(

log

(

mit

εi

)

, 0

)))

, (5.26)

for some constant K ∈ (0,∞).

Proof. Since the tree network is monotone (Proposition 5.5.1), Lemma 5.5.1 implies

zi(t) ≤ zε
i (t), t ≥ 0.

This in particular yields that
∑I

i=1Ri(z(t)) ≤
∑I

i=1Ri(z
ε(t)) for almost every t ≥ 0

because the network is rate-preserving by Proposition 5.5.2. Hence,

I
∑

i=1

τi(t) ≤
I
∑

i=1

τε
i (t) (5.27)

for all t ≥ 0.

Monotonicity yields x∗(z(t)) ≥ x∗(zε(t)) and consequently, Si(s, t) ≥ Sε
i (s, t) for

all s ∈ [0, t], t ≥ 0. For compactness, denote ψi(t) =
∫ t

0
P (Sε

i (s, t) < Bi < Si(s, t)) ds.
The fluid-limit equations yield

zε
i (t) − zi(t) = εi + λi

∫ t

0

P (Sε
i (s, t) < Bi < Si(s, t)) ds = εi + λiψi(t), (5.28)
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and

τi(t) − τε
i (t) = −εiS

ε
i (0, t) + λi

∫ t

0

(E[min(Bi, Si(s, t))] − E[min(Bi, S
ε
i (s, t))]) ds.

(5.29)

Consequently, due to Assumption 5.5.1,

E[min(Bi, Si(s, t))] − E[min(Bi, S
ε
i (s, t))] =

∫ Si(s,t)

Sε
i (s,t)

P(Bi > x)dx

≥ 1

M

∫ Si(s,t)

Sε
i (s,t)

fBi
(x)dx =

1

M
P (Sε

i (s, t) < Bi < Si(s, t)) .

Hence,

τi(t) − τε
i (t) ≥ −εiS

ε
i (0, t) +

λi

M
ψi(t).

Let us now consider the term εiS
ε
i (0, t) in more detail,

εiS
ε
i (0, t) = εi

∫ t

0

x∗i (z
ε
(u))du.

By Lemma 5.5.1, zε(t) is bounded from below by any solution z(t) of Equa-

tions (5.20)–(5.21), and in particular, by z(t) = mt, where m > 0 is a solu-

tion of Equation (5.12). Moreover, zε
i (t) ≥ εi. Thus, using the fact that zε

i (t) ≥
max(mit, εi), mi > 0, we derive

εiS
ε
i (0, t) ≤ εi

∫ t

0

Cmin
i

max(miu, εi)
du = εiC

min
i

(

∫

εi
mi

0

1

εi
du+

∫ t

εi
mi

1

miu
du

)

=
εiC

min
i

mi

(

1 + log

(

mit

εi

))

,

if t > εi

mi
, and εiS

ε
i (0, t) ≤ Cmin

i t ≤ Cmin
i

εi

mi
, otherwise. Invoking (5.27), we obtain

I
∑

i=1

(τi(t) − τε
i (t)) ≥

I
∑

i=1

(

−εiC
min
i

mi

(

1 + max

(

log

(

mit

εi

))

, 0

)

+
λi

M
ψi(t)

)

,

I
∑

i=1

λi

M
ψi(t) ≤

I
∑

i=1

(

εiC
min
i

mi

(

1 + max

(

log

(

mit

εi

)

, 0

)))

,

and hence, for all i = 1, . . . , I,

λi

M
ψi(t) ≤

I
∑

i=1

(

εiC
min
i

mi

(

1 + max

(

log

(

mit

εi

)

, 0

)))

:= κ̂(ε, t).

Substituting this into (5.28), we find

zε
i (t) − zi(t) = εi + λiψi(t) ≤ εi +Mκ̂(ε, t).
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�

We are now in a position to prove Theorem 5.5.1.

Proof of Theorem 5.5.1. Since the sequence (Z
r
(t); t ≥ 0) is tight, and Theo-

rem 5.2.1 shows that any limit point is almost surely a solution of the fluid-limit

Equations (5.20)–(5.21), it suffices to show the latter equation has a unique so-

lution. To the contrary, suppose that there are two different fluid-limit solutions

z(t) and h(t), with z(0) = h(0) = 0. Then there exist i, t and δ > 0 such that

|zi(t) − hi(t)| > δ. Because of the symmetry, we may assume zi(t) − hi(t) > δ.
Let zε

i (t) be the solution of the fluid-model Equations (5.10)–(5.11). Lemma 5.5.1

implies z(t), h(t) ≤ zε(t) for all t ≥ 0. Moreover, it follows from Lemma 5.5.2 that

zi(t), hi(t) ≥ zε
i (t) − κ(ε, t).

Thus, we derive

zi(t) − hi(t) = zi(t) − zε
i (t) + zε

i (t) − hi(t) ≤ κ(ε, t),

with κ(ε, t) as in (5.26). Note that κ(ε, t) tends to zero when ε → 0. Taking ε > 0

sufficiently small so that κ(ε, t) < δ then yields a contradiction. �

Remark 5.5.1. In the present chapter we established uniqueness of the fluid limit

for networks with a tree topology operating under a weighted α-fair policy. However,

our derivations show that under the assumptions of Theorem 5.5.1 the fluid limit is

unique for any monotone and rate-preserving bandwidth-sharing network.

5.6 Fluid limits in the two-link parking lot

In the present section our focus is on a so-called parking lot network. We con-

sider a two-link network with link capacities c1 = 1, c2 = c < 1. Class-1 flows

require service from link 1 only, while class-2 flows demand capacity on both links

simultaneously. See Figure 5.2 for an illustration.

The name of the network topology is motivated by parking lots which consist of

several parking areas connected by a single exit route [103]. The visitors with the

cars parked in the first lot only need to traverse one segment of the exit link, the

visitors parked in the second parking lot need to traverse two segments, etc.

1 c

Figure 5.2: 2-link parking lot network.
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This network presents one particular example of a tree topology. The rate allo-

cations under any unweighted α-fair policy (Appendix 5.E) are given by

Λ1(z) = max

(

1 − c, z1

z1+z2

)

, z1 > 0,

Λ2(z) = min

(

c, z2

z1+z2

)

.

(5.30)

In this section we assume that the load on the root link exceeds the capacity

and the load of class 1 exceeds the minimum guaranteed service rate, i.e.,

ρ1 + ρ2 > 1, ρ1 > 1 − c. (5.31)

Our interest in these specific load conditions is related to the large-deviations anal-

ysis of the parking lot network in Chapter 6. In order to derive the logarithmic

asymptotics for the sojourn time, we perform a change of measure which induces

overload of the network as described above.

Proposition 5.6.1. Under Assumption (5.31), M(C) = {z ∈ R
2
+ : R1(z)+R2(z) ≤

1, R2(z) ≤ c} ⊂ (0,∞)2.

Proof. Suppose to the contrary that there exists z ≥ 0 in M(C), such that zi = 0

for some i ∈ {1, 2}. We consider three cases.

First let z1 = 0, z2 = 0. By definition of R(z) we have R1(z) = ρ1, R2(z) = ρ2.
Since ρ1 + ρ2 > 1, (0, 0) /∈ M(C).

Suppose now z1 > 0, z2 = 0. In this case, R1 = 1, R2 = ρ2, implying (z1, 0) /∈
M(C). Observe that (z1, 0) /∈ M(C) under any load conditions.

The remaining case is z1 = 0, z2 > 0. We have R1 = ρ1, R2 = c. Since ρ1 > 1−c,
we have R1 +R2 > 1, and (0, z2) /∈ M(C). �

Asymptotic growth rates
Let us now consider a fluid-model solution z, satisfying Equations (5.5)–(5.6) with

z(0) = 0. We determine the asymptotic growth rates mi, i = 1, 2. As shown in the

proof of Lemma 5.4.2, there exist nonnegative Lagrange multipliers pj associated

with the links so that the mi and the corresponding rate allocations Ri together

with the pj form a solution to the system of equations







































m1 = R1p1,

m2 = R2(p1 + p2),

p1(R1 +R2 − 1) = 0,

p2(R2 − c) = 0,

(5.32)
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in conjunction with the set of fixed-point Equations (5.12). The latter equations in

fact allow us to express the mj ’s in terms of the Rj ’s, yielding















































β−1
1

(

R1

ρ1

)

= p1,

β−1
2

(

R2

ρ2

)

= p1 + p2,

p1(R1 +R2 − 1) = 0,

p2(R2 − c) = 0,

(5.33)

where β−1
i (·) is the inverse of the LST βi(y) = E

[

e−yB∗
i

]

. In total the above system

provides four equations for four unknown variables Ri, i = 1, 2, and pj , j = 1, 2.
Proposition 5.6.1 implies that under the overload assumptions (5.31) the solution

of the system of Equations (5.32) is strictly positive. We distinguish between two

scenarios: (I) R2 < c, (II) R2 = c. It is important to note that the inequality

Ri(m) < ρi must be satisfied when mi > 0. Hence, due to the positivity of the

solution m, scenario (I) occurs if and only if ρ2 < c, while scenario (II) occurs if

and only if ρ2 > c. The solutions may then be represented as

(I) R1 =
m1

m1+m2
, R2 =

m2

m1+m2
, p1 = m1 +m2, p2 = 0, if ρ2 < c,

(II) R1 = 1 − c, R2 = c, p1 =
m1

1−c , p2 =
m2

c − m1

1−c , if ρ2 > c.

Exponential flow sizes
In order to determine the growth rates explicitly, we specify the flow size distribution

in the set of Equations (5.33). Let us assume exponentially distributed flow sizes.

In the above scenario (I), the growth rates of both classes may be represented in

terms of the single variable n = m1 +m2 as

mi = λi − µi
mi

n
=

λin

µi + n
, i = 1, 2. (5.34)

Summing the above equations results in

n =
λ1n

µ1 + n
+

λ2n

µ2 + n
,

which yields the quadratic equation

n2
+ n(µ1 + µ2 − λ1 − λ2) + µ1µ2 − λ1µ2 − λ2µ1 = 0.

The latter equation has indeed a unique positive solution since the zero-order con-

stant is non-positive by the assumption ρ1 + ρ2 > 1.
In scenario (II) when ρ2 > c, we have a trivial solution

m1 = λ1 − (1 − c)µ1, m2 = λ2 − cµ2.
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1 2 J

Figure 5.3: Linear network.

5.7 Asymptotic growth rates in linear networks

We now turn to network topologies for which the rate allocation cannot be

expected to be monotone. Since we strongly conjecture that an analogue of Theo-

rem 5.5.1 still holds for non-monotone bandwidth-sharing allocations, we consider

it worthwhile to investigate properties of the asymptotic growth rates for several

practically relevant topologies.

In the present section we focus on the special case of a linear network as illus-

trated in Figure 5.3. Linear networks provide a useful model for traffic that traverses

several links and experiences bandwidth competition from independent cross-traffic.

The network consists of links 1, . . . , J , each of unit capacity, and is offered traffic

from classes 0, 1, . . . , J . Class-j flows require service from link j only, j = 1, . . . , J ,

while class-0 flows demand capacity on all links simultaneously. The rate allocation

is governed by the proportional fair policy with unit class weights, i.e., the objective

function is given by Gz(Λ) =
∑J

i=0 zi log(Λi). We assume that the load on at least

one of the links exceeds the capacity, i.e., maxj=1,...,J ρj > 1 − ρ0. The capacity

constraints take the form Λ0 + Λj ≤ 1 for all j = 1, . . . , J . For now, we allow the

flow sizes to have general distributions.

We are interested in determining the asymptotic growth rates mi of the various

classes. As shown in the proof of Lemma 5.4.2, there exist nonnegative coefficients

(Lagrange multipliers) pj associated with the various links so that the mi and the

corresponding rate allocations Ri together with the pj form a solution to the system

of equations






















m0 = R0

∑J
j=1 pj ,

mj = Rjpj , j = 1, . . . , J,

pj(R0 +Rj − 1) = 0, j = 1, . . . , J,

(5.35)

in conjunction with the set of fixed-point Equations (5.67). The latter equations in

fact allow us to express the mj ’s in terms of the Rj ’s, yielding































β−1
0

(

R0

ρ0

)

=
∑J

j=1 pj ,

β−1
j

(

Rj

ρj

)

= pj , j = 1, . . . , J,

pj(R0 +Rj − 1) = 0, j = 1, . . . , J.

(5.36)
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In total the above system provides 2J + 1 equations for 2J + 1 unknown variables

Ri, i = 0, . . . , J , and pj , j = 1, . . . , J .

In order to solve the above system of equations, we consider the nonempty subset

J+ := {j : pj > 0} of links with strictly positive Lagrange multipliers. (The

subset J+ cannot be empty, since that would imply ρ0 + ρj ≤ 1 for all j = 1, . . . , J ,

and contradict the overload assumption.) Observe that pj = 0 means mj = 0. As

stated in Property 5.4.4, the growth rates of classes 0 and j ∈ J+ thus correspond

to those in a scenario with classes j 6∈ J+ as well as links j 6∈ J+ removed. In

particular, when J+ = {j+}, the growth rates of classes 0 and j+ are identical to

those in a single-node processor-sharing system with classes 0 and j+.

For compactness, denote n =
∑

j∈J+
pj . Then the solution to the system of

Equations (5.35) may be represented as

R0 =
m0

n
; Rj ≡ SJ+

= 1 − m0

n
if j ∈ J+; Rj = ρj if j 6∈ J+;

pj =
mj

Rj
, j = 1, . . . , J. (5.37)

Summing the last equality in Equation (5.37) over j ∈ J+, it follows that n =

m0 +
∑

j∈J+
mj .

What remains is to determine the subset J+ in terms of the system parameters.

Note that j ∈ J+ implies R0 +Rj = 1, and thus necessitates ρ0 + ρj ≥ 1. However,

the latter inequality is not sufficient for j ∈ J+, since it is possible that mj = 0 when

other classes at other links sufficiently throttle the service rate of class 0. In order

to characterize the subset J+, observe that ρj ≤ SJ+
for all j 6∈ J+ and ρj > SJ+

for all j ∈ J+. In view of the inherent symmetry, we may assume without loss of

generality that the links are indexed such that ρ1 ≤ ρ2 ≤ · · · ≤ ρJ . Denote by σj

the common service rate obtained by classes j, . . . , J in a system with links j, . . . , J
and classes 0 and j, . . . , J only, σj = 1 − Λ0(mj , . . . ,mJ ) = 1 − m0

m0+
∑J

k=j mk
. Then

the subset J+ is of the form {j+, . . . , J}, with j+ := max{j : ρj−1 ≤ σj}. In case

B0 ≡ BJ , it is easily verified that σJ = λJ/(λ0 + λJ).

The above characterization of the subset J+ may be interpreted as follows. If

ρj−1 ≤ σj , then competition from classes j, . . . , J alone against class 0 is sufficient

to throttle the rate of class 0 to an extent that what remains available for classes

1, . . . , j − 1 exceeds their respective loads, and hence m1 = · · · = mj−1 = 0. This

scenario occurs when the loads of classes 1, . . . , j − 1 are relatively low and the

loads of classes j, . . . , J are sufficiently high. Note that this may occur even when

ρ0 + ρi > 1 for some classes i = 1, . . . , j − 1. Although these classes rely on service

from overloaded links, they remain stable thanks to the much stronger competition

at other higher-loaded links. In contrast, if ρj−1 > σj , then competition from classes

j, . . . , L alone is not sufficient to provide stability to class j−1, and hence mj−1 > 0.

Remark 5.7.1. For any subset K ⊆ L = {1, . . . , J}, we may construct a reduced

version of the original linear network with similar characteristics but classes i ∈ K
removed. We attach superscripts L and L \ K to the variables associated with the

original and reduced version of the network, respectively. It is easily verified that
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Figure 5.4: Fluid-model solutions for a 3-link linear network and (a) a PS node, (b)

a 2-link linear network.

S
L\K
JL\K

+

≤ SLJL
+

for any subset K, which implies that m
L\K
0 ≤ mL0 and m

L\K
i ≥ mLi

for all i ∈ L\K. In other words, removing competing classes reduces the asymptotic

growth rate of class 0 and increases the asymptotic growth rates of the remaining

classes, which is intuitively plausible. It might seem natural to expect that a similar

monotonicity property holds for the entire fluid-limit trajectories, but that turns out

not to be the case, as is graphically illustrated in Figure 5.4. This may be explained

from the fact that when class 0 becomes smaller by removing competing classes,

this actually also has a beneficial effect on the remaining classes.

Two-link network
As an illustrative example, we now elaborate on the case of a two-link (three-class)

network, i.e., J = 2. In that case we need to distinguish between two scenarios: (I)
only one Lagrange multiplier is strictly positive; and (II) both Lagrange multipliers

are strictly positive. Note that it cannot occur that both Lagrange multipliers are
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zero, since that would imply ρ0 + ρi < 1, i = 1, 2, and contradict the overload

assumption max{ρ1, ρ2} > 1 − ρ0. As noted above, ρ0 + ρ1 > 1, ρ0 + ρ2 > 1 is

needed for case (II) to arise. These two inequalities are however not sufficient for

case (II) to occur, since it is possible that mi = 0 even when ρ0 + ρi > 1, for

either i = 1 or i = 2 (not both). The exact demarcation between cases (I) and (II)
is determined by slightly more involved conditions which will be further discussed

below.

For compactness, denote m := m0 +m1 +m2 and n = m0 +mi. The solutions

in the above two scenarios may then be represented as

(I) (R0, Ri, R3−i) =

(m0

n
,
mi

n
, ρ3−i

)

, pi = n, p3−i = 0,

and

(II) (R0, R1, R2) =

(

m0

m
,
m1 +m2

m
,
m1 +m2

m

)

, p1 = p2 =
m2

m1 +m2
m.

Note that in case (I) the growth rates of classes 0 and i are identical to those in a

scenario with both link 3 − i and class 3 − i removed, i.e., a single-node processor-

sharing system with classes 0 and i only, cf. Property 5.4.4.

Exponential flow sizes
In order to determine the growth rates explicitly, we need to specify the flow size

distributions of the various classes that occur in the set of Equations (5.36). In

the case of exponential flow sizes the growth rates of the various classes may be

represented in terms of the single variable n as

m0 = λ0 − µ0
m0

n
=

λ0n

µ0 + n
, (5.38)

mj = λj − µj
n−m0

n
= λj − µj

(

1 − λ0

µ0 + n

)

, j ∈ J+. (5.39)

Summing the above equations results in

n =
λ0n

µ0 + n
+

∑

j∈J+

(

λj − µj

(

1 − λ0

µ0 + n

))

,

which yields the quadratic equation

n2
+ νn+ κ = 0, (5.40)

with

ν := µ0 +

∑

j∈J+

µj − λ0 −
∑

j∈J+

λj ,

κ :=

∑

j∈J+

µj(µ0 − λ0) − µ0

∑

j∈J+

λj .
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Figure 5.5: Star network with three links.

Substituting the positive solution in Equations (5.38)–(5.39) gives expressions for

the asymptotic growth rates. To see that there is indeed a unique positive solution,

recall that a quadratic equation of the type (5.40) has a unique positive solution

when the zero-order constant is nonpositive, which may be written as

ρ0 +

∑

j∈J+

ρj
µj

∑

j∈J+
µj

≥ 1. (5.41)

Noting that

∑

j∈J+

ρj
µj

∑

j∈J+
µj

≥
∑

j∈J+

min
k∈J+

ρk
µj

∑

j∈J+
µj

= min
k∈J+

ρk,

the inequality (5.41) is seen to hold by virtue of the fact that ρ0 + ρj ≥ 1, j ∈ J+.

5.8 Asymptotic growth rates in star networks

In this section we focus our attention on the special case of a star network. As

mentioned earlier, star networks offer a convenient abstraction for scenarios where

the core is highly over-provisioned and congestion predominantly occurs at the edge

with comparatively low-capacity access links. The network is composed of J links,

each of unit capacity, and is offered traffic from J(J − 1)/2 classes labeled as {i, j},
i, j = 1, . . . , J , i 6= j. The route of class {i, j} simply consists of the two links i
and j. We assume that the load on at least one of the links exceeds the capacity,

i.e., maxj=1,...,J σj > 1, with σj :=
∑

k 6=j ρ{j,k}. The rate allocation is governed by

the proportional fair policy with unit class weights, i.e., the objective function is

given by Gz(Λ) =
∑

j 6=k z{j,k} log(Λ{j,k}). The capacity constraints take the form
∑

k 6=j Λ{j,k} ≤ 1 for all j = 1, . . . , J .

For star networks, the proof of Lemma 5.4.2 shows that the Lagrange multipli-

ers pj associated with the links in the network and the corresponding rate alloca-
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tions R{j,k} satisfy the following system of equations











β−1
{j,k}

(

R{j,k}
ρ{j,k}

)

= R{j,k}(pj + pk), j 6= k,

pj(
∑

k 6=j R{j,k} − 1) = 0, j = 1, . . . , J.

(5.42)

In total the above system provides J(J + 1)/2 equations for J(J + 1)/2 unknown

variables R{j,k}, j 6= k, and pj , j = 1, . . . , J . In the case of exponential flow sizes,

the set of fixed-point equations takes the explicit form in Equation (5.14). The

above system of equations then simplifies to







λ{j,k} − µ{j,k}R{j,k} = R{j,k}(pj + pk), j 6= k,

pj(
∑

k 6=j R{j,k} − 1) = 0, j = 1, . . . , J.
(5.43)

As before, we need to consider the subset of links with strictly positive Lagrange

multipliers in order to solve the above system of equations.

Three-link network
As an illustrative example, we now focus on the case of a star network with three

links and three classes, which is topologically equivalent to a triangular network as

depicted in Figure 5.5. In that case we need to distinguish three scenarios, (I), (II)
and (III), depending on whether one, two or all three of the Lagrange multipliers

are strictly positive, respectively. It cannot occur that all three Lagrange multipliers

are zero, since that would imply
∑

k 6=j ρ{j,k} < 1, j = 1, 2, 3, and contradict the

overload assumption.

With minor abuse of notation, we define mi := m{1,2,3}\{i}, Ri := R{1,2,3}\{i},
and ρi := ρ{1,2,3}\{i}. The above system of Equations (5.42) may then be rewritten

as






mi = Ri(pj + pk), {i, j, k} = {1, 2, 3},

pj(Ri +Rk − 1) = 0, {i, j, k} = {1, 2, 3}.
(5.44)

For compactness, denote m := m1 +m2 +m3, and n = mi +mj . The solutions in

the above three scenarios may be then represented as

(I) (Ri, Rj , Rk) =
(

mi

n ,
mj

n , ρk

)

,

pi = pj = 0, pk = n,

(II) (Ri, Rj , Rk) =

(

mi

m ,
mj+mk

m ,
mj+mk

m

)

,

pi = 0, pj =
mj

mj+mk
m, pk =

mk

mj+mk
m,

(III) R1 = R2 = R3 =
1
2 ,

pi =
∑

j 6=imj −mi > 0, i = 1, 2, 3.
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The above results reveal an interesting trichotomy in the behavior of the trian-

gular network. In case (I) the network behaves as a single-node processor-sharing

system with classes i and j only. The conditions for case (I) to occur in terms

of the system parameters also coincide with the corresponding ones in the linear

network with |J+| = 1. Case (II) corresponds to the case of the linear network

with |J+| = 2. The conditions for this case to arise subsume the corresponding

ones in the linear network, but include an additional condition that the loads of the

three classes should be slightly unbalanced. If the latter condition is violated, i.e.,

the loads of the three classes are nearly equal, then case (III) arises, which has no

counterpart in the linear network. In this case, each of the three classes behaves as

in an isolated processor-sharing system with capacity
1
2 .

5.9 Numerical results

In this section we discuss the numerical experiments that we performed to cor-

roborate and illustrate the analytical findings. We present simulation results to

demonstrate the convergence of the scaled number of flows to the fluid limit. In

addition, we examine the impact of the traffic intensities and the variability of the

flow sizes on the asymptotic growth rates. Throughout the numerical experiments

we focus the attention on a two-link linear network operating under the proportional

fair policy with unit class weights.

Exponential flow sizes
We first consider the case of exponential flow sizes, and specifically investigate the

impact of the traffic intensity on the asymptotic growth rates.

Figures 5.6–5.7 plot the asymptotic growth rates m0, m1, m2 for exponential

flow sizes as function of the traffic intensity. We let all classes have the same mean

flow size and let the arrival rates vary. Figures 5.6 (a,b) show the growth rates in a

situation where the loads of classes 0 and 2 are fixed and the load of class 1 is varied.

The figures reveal natural qualitative trends. As the load of class 1 increases, the

competition with class 0 becomes stronger, and as a result both queues grow at a

higher rate. The reduced service rate of class 0 in turn leaves more capacity available

for class 2, and thus its growth rate decreases, ultimately reaching stability.

Figure 5.7 shows the growth rates in a situation where the loads of classes 1

and 2 are fixed and the load of class 0 is varied. As the load of class 0 increases,

both classes 1 and 2 receive less service. Consequently, all three classes build up

queues at a higher rate.

In particular, the figures illustrate the stability properties of the linear networks

discussed in Section 5.7. Recall that the link overload conditions ρ0 + ρ1 > 1,

ρ0 + ρ2 > 1 are necessary but not sufficient for the number of flows z1 or z2 to

grow. For instance, in Figure 5.6 (b) the asymptotic growth m1 becomes positive

only when ρ1 reaches the value of 0.3. While the first link is already overloaded due

to the large number of class-0 flows, the strong competition with class 2 provides

sufficient bandwidth for class 1 to remain stable. Note that if m1 = 0 the network
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Figure 5.6: Asymptotic growth rates m0, m1, m2 as function of ρ1.

behaves as a single-node processor-sharing system with classes 0 and 2 only. Thus,

the stability condition for class 1 in this case is determined as ρ1 < 1−Λ0 =
ρ2

ρ0+ρ2
.

Figure 5.8 plots the value of Zi(t)/t as function of t obtained by simulation. The

horizontal lines represent the asymptotic growth rates m0, m1, and m2 as computed

from Equation (5.40). All classes have exponential flow sizes with unit mean. The

traffic intensities are ρ0 = 1.2, ρ1 = 0.5, ρ2 = 0.7.

Hyperexponential flow sizes
We now turn to the case of hyperexponential flow sizes, and investigate the impact

of the variability of the flow sizes on the asymptotic growth rates by varying the

parameter values of the hyperexponential distribution.

The flow sizes of all classes have the same hyperexponential distribution: the

flow size is exponential with mean 1/ν1 with probability p, and exponential with

mean 1/ν2 otherwise. Moreover, we assume that the contributions to the mean are
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Figure 5.7: Asymptotic growth rates m0, m1, m2 as function of ρ0.
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t as function of time, ρ0 = 1.2, ρ1 = 0.5,

ρ2 = 0.7.

balanced, i.e., p/ν1 = (1 − p)/ν2, so that as p→ 0, ν1 =
2p

E[B] → 0 and ν2 → 2
E[B] .

We fix the mean flow size E [B] = 2, and vary the value of p in the interval [0, 1/2].

Note that when p =
1
2 , the flow size becomes simply an exponential random variable

with mean 2 and squared coefficient of variation σ2 = 1. However, as p tends to 0,

the squared coefficient of variation grows like 1/p.



110 Fluid limits for bandwidth-sharing networks in overload

Figures 5.9 (a,b) plot the growth rates m0, m1, m2 as function of the squared

coefficient of variation. Two limiting cases are shown as the markers on the graphs

which provide lower and upper bounds for the asymptotic growth rates; white mark-

ers show the growth rates computed for exponential flow sizes with mean 2 (the case

p =
1
2 ); the black markers indicate the growth rates obtained for exponential flow

sizes with mean 1.
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Figure 5.9: Asymptotic growth rates m0, m1, m2 as function of the squared coeffi-

cient of variation.

The observation that the growth rates approach those for exponential flow sizes

with mean 1 may be explained as follows. Note that a particular class i with arrival

rate λi and a hyperexponential flow size distribution with parameters µi1, µi2, pi1

and pi2, with pi1 + pi2 = 1 may be equivalently replaced by two classes with arrival

rates λik = λipik and exponential flow sizes with parameter µik, k = 1, 2. Now

suppose that we consider a regime where the coefficient of variation grows large

by letting pi1, µi1 ↓ 0, with pi1/µi1 = ci1 and pi2/µi2 = ci2 fixed, meaning that

µi2 ↑ 1/ci2. Property 5.4.5 then states that the growth rates of the three origi-
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nal classes with hyperexponential flow sizes, in the limit are identical to those in

a scenario with three classes with arrival rates λi2 and exponential flow sizes with

parameter 1/ci2.

In the numerical experiments, we have focused the attention on an admittedly

simple two-link linear network. Nevertheless, the network model already appears to

be sufficiently rich to reveal several interesting features and qualitative properties

which also may be expected to occur in more complex scenarios.

5.10 User impatience

In this section we discuss an extension of the model to a scenario with user

impatience. Impatient users may abandon the system before completing service. An

impatient user is characterized by a positive random initial lead time in addition to

its flow size. Denote by Di the initial lead time of class-i flows. An impatient user

has a deadline (arrival time plus initial lead time); the user leaves the system either

when it completes service or when the deadline expires, whichever occurs first. As

mentioned earlier, user impatience has a particularly pronounced impact in overload

conditions.

The single-link single-class version of the above model has been studied in [20, 58,

59]. Following similar arguments as in those papers, we propose to approximate the

number of flows of each class by the solution z ∈ M(C) of the fixed-point equation

zi = λiE

[

min

(

Di,
zi

Ri(z)
Bi

)]

. (5.45)

This equation may be heuristically explained as follows. Let Zr
i be the steady-

state number of class-i flows in the r-th system, and let V r
i (B) be the sojourn time

of a user that does not abandon. Assume that users are relatively patient, i.e., let

their initial lead time also be scaled as Dir. Then the actual sojourn time is given

by min{V r
i (B),Dir}, and Little’s law implies

E[Zr
i ] = λiE[min(V r

i (B),Dir)]. (5.46)

Divide both sides of the equality by r. Since we observe the system in steady

state at time 0, the number of flows hardly changes over the course of a sojourn

time, and by the so-called ’snapshot principle’ we conclude that V r
i =

zi

Ri(z)Bi+o(r).

Noting that Zr
i /r → zi then gives Equation (5.45) after dividing both sides of (5.46)

by r and letting r → ∞.

To make these heuristics rigorous, requires us to unify the frameworks of [58]

and [60]. In addition, it needs to be shown that the fixed-point Equation (5.45) has

in general a unique solution in M(C). These issues will be further discussed in the

following subsection.
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5.10.1 Uniqueness

In order to prove that the fixed-point Equation (5.45) has a unique solution z,
we construct a new optimization problem which we will use to establish uniqueness

of the rate allocation vector R(z) subject to the constraint AR(z) ≤ C. We first

rewrite Equation (5.45) in a more convenient form:

Ri(z) = λiE

[

min

(

Ri(z)

zi
Di, Bi

)]

:= gi

(

Ri(z)

zi

)

. (5.47)

Since the left-hand side does not contain the term zi explicitly, we can apply a

similar argument as in the proof of Lemma 5.4.2. In this case we construct a convex

optimization problem (Q) with functions Gi(x) such that

G′i(x) = U ′i
(

g−1
i (xi)

)

,

where g−1
i (·) denotes the inverse of function gi(·):

g−1
i (xi) = min{yi ≥ 0 : λiE [min (yiDi, Bi)] = xi}, 0 ≤ xi ≤ ρi.

Now observe that given Equation (5.47)

G′i(Ri(z)) = U ′i

(

Ri(z)

zi

)

.

Following the argument in the proof of Lemma 5.4.2, we conclude that R(z) sat-

isfying Equation (5.47) obeys the KKT sufficient conditions for the optimization

problem (Q), yielding the following lemma.

Lemma 5.10.1. Equation (5.45) has a unique solution z = (z1, . . . , zI) in the set
M(C).

5.10.2 Examples

We now present some simple examples illustrating various properties of Equa-

tion (5.45). We examine several special cases that allow for explicit calculations.

In addition, we investigate what fraction of the flows successfully complete their

transfer, that is the probability Ps
i of the event {Di >

zi

Ri(z)Bi}, i = 1, . . . , I.

The following property is a direct consequence of Equation (5.45). Consider the

system operating under a zero-degree homogeneous rate allocation policy. Then

multiplication of the lead times of all classes with the same arbitrary coefficient

leads to an increase of the number of flows by this coefficient and does not affect

the success probabilities.

Property 5.10.1. Consider two systems such that (B1
i ,D

1
i ) ≡ (B2

i , aD
2
i ), i =

1, . . . , I, for some a > 0 with the same arrival rates and operating under the same
zero-degree homogeneous rate allocation policy. Then,

z1
i = az2

i , Ps,1
i = Ps,2

i , i = 1, . . . , I.
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Completely dependent lead times
We now consider the case of completely dependent lead times, i.e., we assume that

Di = θiBi for some coefficient θi > 0, independent of Bi. The coefficient θi may be

interpreted as the average service rate expected by a class-i user. In this case, the

equations for the number of active flows and success probability are

zi = ρiE

[

min

(

θi,
zi

Ri(z)

)]

, Ps
i = P

(

θi >
zi

Ri(z)

)

.

It was shown in [20, 58, 59] for a single-link scenario, that impatience can have a

substantial impact, especially if the initial lead time is a constant times the flow size.

In that case, the abandonment rate is one hundred percent. To see whether this

holds in network scenarios as well, we assume that Di = θBi for some coefficient

θ > 0, and consider the case of a two-link linear network operating under the

proportional fair policy with unit class weights. Class-0 flows require both links

simultaneously, while flows of classes 1 and 2 use only links 1 and 2, respectively.

Then the equations simplify to

z0 = ρ0 min(θ, z0 + z1 + z2),

zi = ρi min

(

θ, zi

z1+z2
(z0 + z1 + z2)

)

, i = 1, 2.
(5.48)

In addition, the constraints R0 +Ri ≤ 1 should hold for a solution of the fixed-

point Equation (5.48) to be admissible. If ρ2 < ρ1/(ρ0 + ρ1) and ρ0 + ρ1 > 1, then

it follows that z2 = 0, z0 = θρ0, z1 = θρ1 is a feasible solution of the fixed-point

Equation (5.48). We conclude that the overall abandonment rate can be lower than

one hundred percent in network scenarios, due to the fact that some classes may

only traverse links with surplus capacity. It is interesting to observe that when at

least one link is overloaded, all class-0 flows leave the system due to impatience.

Now suppose that the coefficients θi are exponentially distributed with parame-

ters ϕi. Then the solution of Equation (5.45) satisfies

ϕi
zi

ρi
=

(

1 − e
−ϕi

zi
Ri(z)

)

, Ps
i = e

− zi
Ri(z) .

Independent lead times
Assume now that the lead times are independent of the flow sizes. In this case,

Equation (5.45) can be written as

zi = λi

∫ ∞

0

P(Di > u)P

(

zi

Λi(z)
Bi > u

)

du,

or

Λi(z) = λi

∫ ∞

0

P

(

Di >
zi

Ri(z)
u

)

P(Bi > u)du.

If E[Bi] < ∞, then this is equivalent to P
(

Di >
zi

Ri(z)B
∗
i

)

=
Ri(z)

ρi
, where

B∗i represents the residual class-i flow size. Note that if Bi has an exponential

distribution, then Ps
i = Ri(z)/ρi.
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In case Di has an exponential distribution with parameter νi (and Bi a general

distribution), we see that z is the solution of

Ri(z) = ρiβi

(

zi

Ri(z)
νi

)

, (5.49)

where βi(s) = E[e−sB∗
i ]. If in addition the rate allocation function is zero-degree

homogeneous and νi ≡ ν for all i = 1, . . . , I, then we observe that the number of

flows in the system with impatience is ν times smaller than the number of flows m
in the ordinary system as characterized by Equation (5.12).

Appendix

5.A Proof of Theorem 5.2.1

In this appendix we present the proof of Theorem 5.2.1, which shows that any

limit point of the scaled sequence (Z
r
(t), T

r
(t); t ≥ 0) is almost surely a solution of

the fluid-model Equations (5.5)–(5.6).

Proof of Theorem 5.2.1
The starting point is provided by Equations (5.1) and (5.2) expressing Zi(t) and

Ti(t) in terms of the arrival times, service requirements and amounts of service

received by class-i flows.

Since these equations are similar in nature, we consider an equation of the generic

form

Fi[f ](t) =

Zi(0)
∑

l=1

f(Bil, Si(0, t)) +

Ei(t)
∑

k=1

f(Bik, Si(Aik, t)), (5.50)

which reduces to (5.1) and (5.2) in case f(x, y) = 1(x < y) and f(x, y) = min(x, y),
respectively. At this point we only assume that function f(·, ·) is monotone in the

second argument.

Applying the fluid scaling to each term in (5.50), we obtain

F
r

i [f ](t) =
1

r

rZ
r
i (0)
∑

l=1

f(Bil, S
r

i (0, t)) +
1

r

Er
i (t)
∑

k=1

f(Bik, S
r

i (A
r
ik, t)) := Ir

i + Jr
i . (5.51)

For compactness, the implicit dependence of Ir
i and Jr

i on t and the function f(·, ·)
will be suppressed where appropriate.

We now proceed to derive limr→∞ F r
i [f ](t), and distinguish two cases, depending

on whether zi(u) > 0 for all u ∈ [0, t] or not.

We first deal with the latter case, and let ηi(t) = sup (u ∈ [0, t] : zi(u) = 0). It is

useful to distinguish two further cases, depending on whether ηi(t) < t or ηi(t) = t.
We start with the former case, and fix ε > 0 such that ηi(t) + ε < t.
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We first consider the term Jr
i , which may be rewritten as

Jr
i =

1

r

Er
i (ηi(t)+ε)
∑

k=1

f(Bik, S
r

i (A
r
ik, t))+

1

r

Er
i (t)
∑

k=Er
i (ηi(t)+ε)+1

f(Bik, S
r

i (A
r
ik, t)) =: Jr

1,i+J
r
2,i.

(5.52)

We first determine limr→∞ Jr
2,i. By definition, zi(u) > 0 for all [ηi(t) + ε, t].

Hence, the bounded convergence theorem yields

lim
r→∞

S
r

i (u, v) = Si(u, v)

for all t ≥ v ≥ u ≥ ηi(t)+ε. Since S
r

i (s, t) is decreasing in s and S(·, t) is continuous

on [ηi(t) + ε, t], the convergence is uniform on [ηi(t) + ε, t], i.e., for any δ > 0 there

exists an rδ such that

sup
s∈[ηi(t)+ε,t]

∣

∣

∣S
r

i (s, t) − Si(s, t)
∣

∣

∣ ≤ δ, for all r ≥ rδ. (5.53)

We partition the interval [ηi(t)+ε, t] into N subintervals [tNj−1, t
N
j ], j = 1, . . . , N ,

for some integer N ≥ 1, in such a way that maxj=0,...,N

(

tNj − tNj−1

)

→ 0 as N → ∞.

Then,

Jr
2,i =

1

r

N
∑

j=1

Er
i (tN

j+1)
∑

k=Er
i (tN

j )+1

f
(

Bik, S
r

i (A
r
ik, t)

)

.

Suppose that tNj−1 ≤ Ar
ik ≤ tNj for some j ∈ {1, . . . , N}, some k ∈ {Er

i (ηi(t) + ε) +

1, . . . , Er
i (t)}}, and some r > rδ. It then follows from (5.53) that for r > rδ

Si

(

tNj , t
)

− δ ≤ S
r

i (Ar
ik, t) ≤ Si

(

tNj−1, t
)

+ δ. (5.54)

If the function f(·, ·) is non-decreasing in its second argument, then we derive

for r > rδ

f
(

Bik, Si

(

tNj , t
)

− δ
)

≤ f
(

Bik, S
r

i (Ar
ik, t)

)

≤ f
(

Bik, Si

(

tNj−1, t
)

+ δ
)

, (5.55)

which yields

1

r

N
∑

j=1

Er
i (tN

j )
∑

k=Er
i (tN

j−1)+1

f
(

Bik, Si

(

tNj , t
)

− δ
)

≤ Jr
2,i

≤ 1

r

N
∑

j=1

Er
i (tN

j )
∑

k=Er
i (tN

j−1)+1

f
(

Bik, Si

(

tNj−1, t
)

+ δ
)

.

Using Lemma 5.1 in [58], we obtain

lim sup
r→∞

Jr
2,i ≤ λi

N
∑

j=1

(

tNj − tNj−1

)

E[f
(

Bi, Si

(

tNj−1, t
)

+ δ
)

],



116 Fluid limits for bandwidth-sharing networks in overload

lim inf
r→∞

Jr
2,i ≥ λi

N
∑

j=1

(

tNj − tNj−1

)

E[f
(

Bi, Si

(

tNj , t
)

− δ
)

].

For s ∈ [ηi(t) + ε, t], the bounded convergence theorem implies that

lim
N→∞

N
∑

j=1

1[tN
j−1,tN

j )(s)E[f(Bi, Si

(

tNj−1, t
)

+ δ)] = E[f (Bi, Si(s, t) + δ)],

lim
N→∞

N
∑

j=1

1[tN
j−1,tN

j )(s)E[f(Bi, Si

(

tNj , t
)

− δ)] = E[f (Bi, Si(s, t) − δ)].

Letting N → ∞, we deduce

lim sup
r→∞

Jr
2,i ≤ λi

∫ t

ηi(t)+ε

E[f (Bi, Si(s, t) + δ)]ds,

lim inf
r→∞

Jr
2,i ≥ λi

∫ t

ηi(t)+ε

E[f (Bi, Si(s, t) − δ)]ds.

Passing δ ↓ 0 and ε ↓ 0, we obtain because of continuity,

lim
r→∞

Jr
2,i = λi

∫ t

ηi(t)

E[f(Bi, Si(s, t))]ds. (5.56)

If the function f(·, ·) is non-increasing in its second argument, then the inequal-

ities in (5.55) reverse, but yield the same limit.

We now determine limr→∞ Jr
1,i and limr→∞ Ir

i . Fatou’s lemma and the fact that

ηi(t) < t imply

lim inf
r→∞

S
r

i (0, t) ≥
∫ t

0

lim inf
r→∞

Λi(Z
r

i (u))

Z
r

i (u)
du = Si(0, t) = ∞. (5.57)

We partition the interval [0, ηi(t)] into M subintervals [sM
j−1, s

M
j ], j = 1, . . . ,M ,

for some integer M ≥ 1, in such a way that maxj=1,...,M

(

sM
j − sM

j−1

)

→ 0 as

N → ∞. Suppose sM
j−1 ≤ Ar

ik ≤ sM
j for some j ∈ {1, . . . ,M}, and some k ∈

{1, . . . , Er
i (ηi(t))}. It then follows from (5.57) that

lim inf
r→∞

S
r

i (A
r
ik, t) ≥ lim inf

r→∞
S

r

i (s
M
j , t) ≥ Si(s

M
j , t) = ∞. (5.58)

We now turn our attention to the specific functions of interest f1(·, ·) = 1(x > y)
and f2(·, ·) = min(x, y).

We first consider limr→∞ Jr
1,i[f2](t). For t ∈ [0, ηi(t) + ε], we have

Jr
1,i[f2](t) ≤

1

r

Er
i (ηi(t)+ε)
∑

k=1

Bik,
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Jr
1,i[f2](t) ≥

1

r

Er
i (ηi(t))
∑

k=1

min(Bik, S
r

i (A
r
ik, t)) ≥

1

r

Er
i (ηi(t))
∑

k=1

min(Bik, S
r

i (s
M
j , t)).

It follows from (5.58) that for any L1, S
r

i (s
M
j , t) > L1 for r sufficiently large.

Applying Lemma 5.1 in [58], and letting L1 → ∞, we obtain

ρiηi(t) ≤ Jr
1,i[f2](t) ≤ ρi(ηi(t) + ε).

Passing ε→ 0, we derive

lim
r→∞

Jr
1,i[f2](t) = ρiηi(t) =

∫ ηi(t)

0

E[min(Bi, Si(s, t))]ds. (5.59)

We now derive limr→∞ Ir
i [f2](t). It follows from (5.57) that for any L2, for r

sufficiently large

1

r

rZ
r
i (0)
∑

l=1

min(Bil, L2) ≤ Ir
i [f2](t) =

1

r

rZ
r
i (0)
∑

l=1

min(Bil, S
r

i (0, t)) ≤
1

r

rZ
r
i (0)
∑

l=1

Bil.

Multiplying and dividing Ir
i [f2](t) by Zr

i (0), and letting L2 → ∞, we deduce

lim
r→∞

Ir
i [f2](t) = zi(0)E[Bi] = zi(0)E[min(Bi, Si(0, t))]. (5.60)

Taking the sum of (5.59), (5.56) and (5.60) yields the right-hand side of (5.6).

The limit on the left-hand side is limr→∞ T
r

i (t) = Ti(t). This proves (5.6) in case

ηi(t) < t.
We now move to limr→∞ J1,i[f1](t):

0 ≤ Jr
1,i[f1](t) ≤

1

r

Er
i (ηi(t))
∑

k=1

1(Bik > S
r

i (A
r
ik, t)) +

1

r
(Er

i (ηi(t) + ε) − Er
i (ηi(t))) .

The first term on the right-hand side tends to 0 by (5.58), while the second term

converges to λiε according to Lemma 5.1 in [58].

Passing ε→ 0, we obtain

lim
r→∞

J1,i[f1](t) = 0 = λi

∫ ηi(t)

0

P(Bi > Si(s, t))ds. (5.61)

The term Ir
i [f1](t) follows from (5.57):

lim
r→∞

1

r

rZ
r
i (0)
∑

l=1

1
(

Bil > S
r

i (0, t)
)

= 0 = zi(0)P
(

Bi > Si(0, t)
)

. (5.62)

Taking the sum of (5.61), (5.56) and (5.62), yields the right-hand side of (5.5).

The limit on the left-hand side is limr→∞ Z
r

i (t) = zi(t). This proves (5.5) in case

ηi(t) < t.
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In case ηi(t) = t, Equations (5.5) and (5.6) immediately follow from the fact

that S
r

i (s, t) → ∞ for any s ∈ [0, t].
It remains to treat the case when zi(u) > 0 for all u ∈ [0, t]. Then S

r

i (u, v)
converges uniformly to Si(u, v) for any u, v ∈ [0, t], while the expression for Jr

i (t)
follows by the same argument as used for Jr

2,i on the interval [ηi(t) + ε, t].

For any ε > 0, there exists an rε such that S
r

i (0) ∈ (Si(0, t)−ε, Si(0, t)+ε) for all

r > rε. Multiplying and dividing Ir
i by Zr

i (0), we deduce in case f(x, y) = min(x, y),

lim sup
r→∞

1

r

rZ
r
i (0)
∑

l=1

f(Bil, Si(0)) ≤ zi(0)E[f(Bi, Si(0, t) − ε)],

lim inf
r→∞

1

r

rZ
r
i (0)
∑

l=1

f(Bil, S
r

i (0, t)) ≥ zi(0)E[f(Bi, Si (0, t) + ε)];

in case f(x, y) = 1(x < y) the reverse inequalities apply. Letting ε → 0, we find

that in both cases

lim
r→∞

Ir
i = z(0)E[f(Bi, Si(0, t))].

This completes the proof. �

5.B Proof of Proposition 5.3.1

In this appendix we provide the proof of Proposition 5.3.1, which shows that the

rate allocation function Λ(z) is Lipschitz continuous on the set Z.

We first introduce some useful notation and a definition which will play a critical

role in the proof. For x ∈ R
I , let ||x|| = maxi=1,...,I |xi|.

Definition 5.B.1. Consider the optimization problem

min
x∈Φ

f(x),

where f : X → R. Let S be a nonempty subset of the feasible set Φ such that
f(x) = f0 for all x ∈ S and some f0 ∈ R. We say that the second-order growth

condition is satisfied on S if there exists a constant ν > 0 and a neighborhood N
of S such that, for all x ∈ N ∩ Φ, the following inequality holds:

f(x) ≥ f0 + ν[dist (x, S)]
2, (5.63)

where dist (x, S) = miny∈S ||x− y||.
In particular, if S = {x0} is a singleton, then condition (5.63) takes the form

f(x) ≥ f0 + ν||x− x0||2,

for any x in a feasible neighborhood of x0.
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Proof of Proposition 5.3.1
(i) We first prove Lipschitz continuity of the per-flow rate allocation. Let x̂(z) =

(x̂1(z), . . . , x̂I(z)) be the optimal solution of problem (P ) defined in Section 1.2.3

as function of z = (z1, . . . , zI). Introduce set Xz = {x ∈ R
I : x = x̂(z), z ∈ Z}.

Denote by fz(·) the objective function Gz(·) taken with negative sign,

fz(x) = −
I
∑

i=1

ziUi(xi).

Consider the difference function fz(·)− fy(·). The derivative of the difference func-

tion with respect to xi is (yi − zi)U
′
i(xi). Define c∗i = minz∈Z x̂i(z). Note that c∗i is

well-defined and strictly positive, as the rate xi(z) is a strictly positive continuous

function on R
I
++, and the set Z is closed and bounded. Combined with the fact

that the derivative U ′i(·) is decreasing (because of concavity), this yields Lipschitz

continuity of fz(·)− fy(·) on Xz, with the Lipschitz constant κ = I||U ′(c∗)||||z− y||,
with U ′(c∗) = (U1(c

∗
1), . . . , UI(c

∗
I)).

We now proceed to verify that the second-order growth condition is satisfied

by the objective function fz(·) at the optimal point x̂(z), i.e., that there exists a

constant ν > 0 such that for any x in a neighborhood of x̂(z) holds

fz(x) − fz(x̂(z)) ≥ ν||x− x̂(z)||2.

A sufficient condition for the second-order growth at a particular point is the pos-

itivity of the second derivative of the Lagrangian around this point (Theorem 3.63

in [21]). In the present problem (with linear optimization constraints) the second

derivatives of the Lagrangian coincide with the second derivatives of the objec-

tive function −ziU
′′
i (xi), i = 1, . . . , I, which are indeed positive for any xi. The

constant ν can be determined using a Taylor series expansion around x̂(z). The

optimality of x̂(z) implies

fz(x) − fz(x̂) =

I
∑

i=1

(ziUi(xi) − ziUi(x̂i(z))) ≥ −1

2

I
∑

i=1

ziU
′′
i (x̂i(z))(xi − x̂i(z))

2.

Since −U ′′i (·) is strictly positive and x̂(z) is continuous and bounded on Z, there

exists a σ > 0 such that −U ′′i (x̂i(z)) ≥ σ, which yields

fz(x) − fz(x̂(z)) ≥
δ

2
σ

I
∑

i=1

(xi − x̂i(z))
2 ≥ δ

2
σ||x− x̂(z)||2,

and hence the second-order growth constant is ν =
δ
2σ.

Because the difference function is Lipschitz continuous with constant κ and fz(·)
satisfies the second-order growth condition with constant ν, Proposition 4.32 in [21]

implies that the optimal solution of problem (P ) satisfies

||x̂(z) − x̂(y)|| ≤ κ

ν
=
I||U ′(c∗)||

ν
||z − y||,
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for all y, z ∈ Z, i.e., the per-flow rate allocation is Lipschitz continuous on Z with

constant γ =
I||U ′(c∗)||

ν .

(ii) The Lipschitz continuity of the per-class rate allocation easily follows from

that of the per-flow rate allocation.

Specifically, part (i) of the proof gives that

∣

∣

∣

∣

∣

∣

∣

∣

Λ(z)

z
− Λ(y)

y

∣

∣

∣

∣

∣

∣

∣

∣

≤ γ||z − y||, γ > 0.

The left-hand side is bounded from below by

∣

∣

∣

∣

∣

∣

∣

∣

1

z
(Λ(z) − Λ(y))

∣

∣

∣

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

∣

∣

∣

Λ(y)

(

1

y
− 1

z

)∣

∣

∣

∣

∣

∣

∣

∣

.

Since the norm is the maximum norm, the latter is greater than or equal to

1

||z|| ||Λ(z) − Λ(y)|| − ||Λ(y)||
∣

∣

∣

∣

∣

∣

∣

∣

1

z
− 1

y

∣

∣

∣

∣

∣

∣

∣

∣

≥ 1

M
||Λ(z) − Λ(y)|| − C

1

δ2
||z − y||,

which implies ||Λ(z) − Λ(y)|| ≤M
(

γ +
C
δ2

)

||z − y||. �

5.C Proof of Proposition 5.3.2

In this appendix we present the proof of Proposition 5.3.2, which shows that

any fluid-limit solution that is strictly positive, must be unique in case the utility

functions Ui(·) are twice differentiable on R
I
++.

Proof of Proposition 5.3.2
Suppose, contrary to the statement of the proposition, that there are two different

strictly positive solutions z(t) and h(t) of Equation (5.5). Let t0 = inf(t : z(t) 6=
h(t)). The idea of the proof is to consider the time interval [t0, t0 + t′], for some

suitably chosen t′ > 0, and then show that z(t) = h(t) for all t ∈ [t0, t0 + t′], yielding

a contradiction with the definition of t0.
For notational convenience, we assume that t0 = 0 and consider the time inter-

val [0, t′] (which does not cause any loss of generality, since we could equivalently

introduce a shifted time variable t′ = t − t0). At this point, t′ is an arbitrary

positive constant. The appropriate value of this constant will be given below. By

definition of t0, we have ε = supt∈[0,t′] ||z(t) − h(t)|| > 0. Define the function

Hi(x) = zi(0)P
(

Bi > x
)

. Note that Hi(S(0, t)) corresponds to the first term in the

fluid-limit Equation (5.5) representing the number of initial class-i flows that are

still active at time t.
Using simple estimates, we have for each class i = 1, . . . , I,

|zi(t) − hi(t)| ≤
∣

∣

∣Hi(Si(0, t)) −Hi(S̃i(0, t))
∣

∣

∣
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+λi

∫ t

0

∣

∣

∣P (Bi > Si(s, t)) − P
(

Bi > S̃i(s, t)
)∣

∣

∣ ds := A1 +A2,

with S̃i(s, t) =
∫ t

s
x̂i(h(u))du.

We first derive an upper bound for the term A1.

By definition of the residual flow size, we have |Hi(x)−Hi(x
′)| ≤ zi(0)µi|x−x′|

for any x, x′ ∈ R+. Thus, the function Hi(·), i = 1, . . . , I, is Lipschitz continuous

with Lipschitz constant Li = zi(0)µi.

In order to bound the difference |Si(0, t) − S̃i(0, t)|, we first consider the inte-

grands in the definition of the functions Si(·, ·) and S̃i(·, ·). A fluid-limit solution is

bounded from above on the interval [0, t′] by

sup
i=1,...,I,u∈[0,t′]

zi(u) ≤ ||z0|| + t′
I
∑

i=1

λi.

Thus, Proposition 5.3.1 implies that the rate allocation functions are Lipschitz con-

tinuous with some constant γ:

|x̂i(z(u)) − x̂i(h(u))| ≤ γ||z(u) − h(u)|| ≤ γε. (5.64)

It follows that

∣

∣

∣Si(0, t) − S̃i(0, t)
∣

∣

∣ ≤
∫ t

0

|x̂i(z(u)) − x̂i(h(u))| du ≤ γεt ≤ γεt′, (5.65)

and hence,

A1 ≤ Liγεt
′.

We apply similar arguments to obtain an upper bound for the term A2.

Since

S̃i(s, t) ≤ Si(s, t) + γε(t− s),

we have

A2 ≤ λi

∫ t

0

P (Si(s, t) < Bi < Si(s, t) + γε(t− s)) ds.

Denote by S−1
i (r), r > 0, the inverse of Si(0, t), i.e., S−1

i (r) = inf{s : Si(0, s) ≥
r}. Because z(t) is strictly positive for all t, Si(0, s) is strictly increasing in s,
implying S−1

i (r) is well-defined and finite for all r.

For u, v > 0, consider now the integral

∫ t

0

P (Si(t) − Si(s) + u < Bi < Si(t) − Si(s) + v) ds

=

∫ Si(t)

0

P (r + u < Bi < r + v)
1

x∗i (z(S
−1
i (r)))

dr.
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Define ci = infr∈[0,Si(t)] x̂i(z(S
−1
i (r))). Note that ci is strictly positive and well-

defined since S−1
i (·) is finite and z(t) and x∗i (z) are continuous functions. Thus, the

above integral is less than or equal to

∫ Si(t)

0

P (r + u < Bi < r + v)
1

ci
dr

≤ 1

ci

∫ ∞

0

P (r + u < Bi < r + v) dr

=
1

ci

∫ ∞

0

∫ r+v

r+u

dP (B ≤ w) dr

=
1

ci

∫ ∞

0

∫ r−u

r−v

drdP (B ≤ w)

≤ 1

ci
|u− v|, (5.66)

which implies

A2 ≤ λi

ci
γεt′.

Summing the bounds for A1 and A2, we obtain

|zi(t) − hi(t)| ≤ A1 +A2 ≤
(

Li +
λi

ci

)

γεt′.

Taking

t′ = min
i=1,...,I

1

2(Li +
λi

ci
)γ
,

we have that for any i = 1, . . . , I, |zi(t) − hi(t)| ≤ ε
2 , and hence ||z(t) − h(t)|| ≤ ε

2 .

This contradicts the original supposition that supt∈[0,t′] ||z(t)−h(t)|| = ε, and implies

that z(t) = h(t) for all t ∈ [0, t′]. �

5.D Proof of Lemma 5.4.2

In this section we provide the proof of Lemma 5.4.2, which shows that Equa-

tion (5.12) has a unique solution m = (m1, . . . ,mI) in the set M(C).

Proof of Lemma 5.4.2
A crucial role in the proof is played by a related optimization problem. To formu-

late this optimization problem, we rewrite the fixed-point Equation (5.12) in the

equivalent form

mi

Ri(m)
= β−1

i

(

Ri(m)

ρi

)

, i = 1, . . . , I, (5.67)

where β−1
i (·) is the inverse of the LST βi(y) = E

[

e−yB∗
i

]

, β−1
i (βi(y)) = y. We

will establish uniqueness of the rate allocation vector R(m) = (R1(m), . . . , RI(m))
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subject to the constraint AR(m) ≤ C. By (5.67), uniqueness of solution R(m)

would imply uniqueness of the growth rate vector m = (m1, . . . ,mI).

Observe that the right-hand side only depends on m through Ri(m). This

motivates us to introduce the function Gi : [0, ρi] → R with derivative G′i(x) =

U ′i

(

1

β−1
i

(

x
ρi

)

)

. Since βi(x) is strictly decreasing in x, its inverse is strictly decreas-

ing in x as well. Because of the concavity of Ui(·), we thus conclude that Gi(·) is

strictly concave.

Now consider the optimization problem Q as defined in (5.15). This optimization

problem is strictly concave, and hence has a unique solution R = (R∗1, . . . , R
∗
I) (see

for instance [27]).

We proceed to show that the rate allocation vector R(m) = (R1(m), . . . , RI(m))

satisfying Equation (5.67) is the unique solution to the optimization problem (Q).

First recall that Ri(m) = Λi(m) when mi > 0 while Ri(m) = ρi when mi = 0,

and that AR(m) ≤ C so that R(m) is a feasible solution.

Also, the rate allocation vector Λ(m) is a solution to the optimization problem:

maximize
∑I

i=1miUi

(

Λi

mi

)

(P ′)
subject to AΛ ≤ C, Λ ≥ 0.

Let us consider the Karush-Kuhn-Tucker (KKT) necessary conditions [9] for

problem (P ′). As Λ(m) is an optimal solution, there exist Lagrange multipliers

pj(m) ≥ 0 such that

U ′i

(

Λi(m)

mi

)

=

J
∑

j=1

Ajipj(m), if mi > 0, (5.68)

pj(m)

(

I
∑

i=1

AjiΛi(m) − Cj

)

= 0, j = 1, . . . , J. (5.69)

Let us further consider the KKT sufficient conditions for problem (Q). A feasible

solution R∗ = (R∗1, . . . , R
∗
I) is a global optimum if there exist Lagrange multipliers

p∗j , q
∗
i ≥ 0 such that

U ′i





1

β−1
i

(

R∗
i

ρi

)



 =

J
∑

j=1

Ajip
∗
j + q∗i , i = 1, . . . , I, (5.70)

q∗i (R∗i − ρi) = 0, i = 1, . . . , I, (5.71)

p∗j

(

I
∑

i=1

AjiR
∗
i − Cj

)

= 0, j = 1, . . . , J. (5.72)
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Note that
∑I

i=1AjiRi(m) =
∑

i:mi>0AjiRi(m)+
∑

i:mi=0Ajiρi =
∑

i:mi>0AjiΛi(m)+
∑

i:mi=0AjiΛi(m) +
∑

i:mi=0Ajiρi =
∑I

i=1AjiΛi(m) +
∑

i:mi=0Ajiρi. Further us-

ing that
∑I

i=1AjiRi(m) ≤ Cj , Equation (5.69) yields

pj(m)

(

I
∑

i=1

AjiRi(m) − Cj

)

= 0, j = 1, . . . , J. (5.73)

In addition, if mi = 0, then for any j with Aji = 1, we have the strict inequality

I
∑

i=1

AjiΛi(m) < Cj ,

and thus Equation (5.69) forces pj(m) = 0. We deduce that

J
∑

j=1

Ajipj(m) = 0, if mi = 0. (5.74)

Further define qi(m) = 0 when mi > 0 and qi(m) = U ′i(∞) ≥ 0 when mi = 0, so

that

qi(m) (Ri(m) − ρi) = 0, i = 1, . . . , I. (5.75)

Using the fixed-point Equation (5.67), the definition of qi(m), and Equations (5.68)

and (5.74), we obtain

U ′i





1

β−1
i

(

Ri(m)
ρi

)



 =

J
∑

j=1

Ajipj(m) + qi(m), i = 1, . . . , I. (5.76)

Equations (5.73), (5.75) and (5.76) yield that R(m), together with pj(m), qi(m),

satisfies the KKT sufficient conditions (5.70)–(5.72) for problem (Q), and hence is

a global optimum. �

5.E Properties of tree networks

Consider a tree network. By Definition 5.5.1 we can partition the network into

m subtrees which are connected to the root link. The vectors of rate allocations and

the capacity constraints in the k-th subtree, k = 1, . . . ,m, are given by R(k) and

C(k), respectively.

Proof of Proposition 5.5.1
We first prove that the weighted α-fair rate allocation in a tree network may be

obtained using a weighted version of the so-called water-filling procedure. In this

procedure, the allocation to each of the class-i flows is continuously increased at rate

w
1/α
i until it is no longer feasible to do so, i.e., until the capacity of one of the links
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along the route of class i is exhausted. The class-i flows then collectively drop out,

and their rate allocation remains frozen from that point onward. The procedure

continues until eventually all flows have dropped out.

The water-filling procedure may be formally described as follows. We first in-

troduce some convenient terminology. A link is said to saturate once its capacity is

exhausted by the aggregate rate of the flows traversing it. A link is called locked out

when all the flows traversing it have dropped out. In particular, a link gets locked

out once it saturates. Note that in a tree network a link gets locked out as soon as

one of its upstream links saturates, but it may also get locked out if all the flows

traversing it have dropped out due to saturation of one or several of its downstream

links. Link j is said to be downstream from link j′ (and link j′ is upstream from j)
if the (unique) path from link j to the root link contains link j′, with the convention

that a link is neither upstream nor downstream from itself. Let Dj be the set of

links that are downstream from link j.

We now define some additional useful notation. Let z = (z1, . . . , zI) be the

population vector, with zi the number of class-i flows. Denote by r(k) the k-th ‘time

epoch’ at which a link or a group of links, represented by the set F (k), saturate,

and denote by G(k) the set of classes that drop out at that point. Define I(k+1) :=

I(k) ∪ G(k+1), with I(0) = ∅, as the set of classes that have dropped out by time

r(k+1). Define J (k+1) := J (k) ∪ F (k+1), with J (0) = ∅, as the set of links that

have saturated by time r(k+1). Then G(k+1) = {i /∈ I(k) :
∑

j∈F(k) Aij ≥ 1} and

I(k) = {i :
∑

j∈J (k) Aij ≥ 1}. Define L(k) := {j :
∑

i/∈I(k) Aijzi = 0} as the set of

links that have been locked out by time r(k). Define H(k+1) := L(k+1) \ L(k) as the

set of links that become locked out at time r(k+1).

Define C
(k)
j as the residual capacity of link j at time r(k), with r(0) = 0 and

C
(0)
j = Cj . As long as L(k) 6= J , we recursively compute

∆
(k+1)
j =

C
(k)
j

∑

i/∈I(k) Aijziw
1/α
i

,

for all j /∈ L(k),

∆
(k+1)

= min
j /∈L(k)

∆
(k+1)
j ,

G(k+1)
= arg min

j /∈L(k)
∆

(k+1)
j .

Also, for all j /∈ L(k),

C
(k+1)
j = C

(k)
j −

∑

i/∈I(k)

Aijziw
1/α
i ∆

(k)

= Cj −
k
∑

l=1

r(l)
∑

i∈G(l)

Aijziw
1/α
i − r(k+1)

∑

i/∈I(k)

Aijziw
1/α
i
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and for all j ∈ F (k+1)

r(k+1)
= r(k)

+ ∆
(k+1)

=
Cj −

∑k
l=1 r

(l)
∑

i∈G(l) Aijziw
1/α
i

∑

i/∈I(k) Aijziw
1/α
i

.

Denote by K := min{k : L(k) = J } the number of iterations, and note that K ≤ J
since at least one link must saturate at each iteration.

For later use, define the set of classes that have dropped out by time t as I(t) =

I(k∗(t)), the set of links that have saturated by time t as J (t) = J (k∗(t)), and the set

of links that have been locked out by time t as L(t) = L(k∗(t)), with k∗(t) := max{k :

r(k) ≤ t} representing the number of iterations up to time t. Thus L(t) = L(k),

I(t) = I(k) for t ∈ [r(k), r(k+1)), k = 1, . . . ,K, and L(t) = J , I(t) = I for t ≥ r(K).

The ‘time’ that class i ∈ G(k) drops out is ti = r(k), and the time that link

j ∈ H(k) gets locked out is sj = r(k). Note that

sj = sup{t : j /∈ L(t)} = max
i:Aij=1

ti, (5.77)

and

ti = sup{t : i /∈ I(t)} = min
j:Aij=1

sj .

The rate allocation of each class-i flow is

xi(z) = tiw
1/α
i . (5.78)

Also, denote by x(u), with

xi(u) = sup{t ∈ [0, u] : i /∈ I(u)}w1/α
i

the rate allocation vector at time u.

For convenience, we henceforth assume that only a single link saturates at a

time, i.e., F (k) = {j(k)}, say, for all k = 1, . . . ,K, but the arguments below may be

easily extended to the case where several links may saturate simultaneously.

For k, l = 1, . . . ,K, let the 0–1 variable Dkl = 1{j(k)∈D
j(l)} indicate whether

link j(k) is downstream from link j(l) or not. Observe that Dkl = 0 when k > l:
link j(k) cannot be upstream from link j(l) since once a link saturates all its down-

stream links are locked out and can no longer saturate at a later stage. Formally,

k > l implies j(k) /∈ L(l), while Dj(l) ⊆ L(l), and hence j(k) /∈ Dj(l) , i.e., Dkl = 0.

Recursively define

pj(K) = (r(K)
)
−α,

pj(K−1) = (r(K−1)
)
−α −DK−1,Kpj(K) ,

up to

pj(1) = (r(1))−α −D1,2pj(2) − · · · −D1,Kpj(K) ,
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i.e.,

pj(k) = (r(k)
)
−α −

K
∑

l=k+1

Dk,lpj(l) ,

k = 1, . . . ,K.

If
∑K

l=k+1Dk,l ≥ 1, then define Ik = 1 and mk := min{l : Dk,l = 1} > k. Note

that Dk,l = 0 for l = k+ 1, . . . ,mk − 1, and Dk,l = Dmk,l = 1 for l = mk + 1, . . . ,K
because of transitivity: if link j(mk) is downstream from link j(l), then link j(k) must

be downstream from it as well. Formally, if m ∈ Dl and k ∈ Dm, then k ∈ Dl.

Thus we may write

pj(k) = (r(k)
)
−α −

K
∑

l=k+1

Dk,lpj(l)

= (r(k)
)
−α − Ik(pj(mk) +

K
∑

l=mk+1

Dk,lpj(l))

= (r(k)
)
−α − Ik(pj(mk) +

K
∑

l=mk+1

Dmk,lpj(l))

= (r(k)
)
−α − Ik(r(mk)

)
−α

> 0.

Also, define pj = 0 for all j 6= j(1), . . . , j(K).

By construction,

pj(Cj −
I
∑

i=1

Aijzixi(z)) = 0

for all j ∈ J .

Note that if i ∈ Gk, then i /∈ I(k−1), i.e.,
∑

j∈J (k−1) Aij = 0, implying that

Aij(l) = 0 for all l = 1, . . . , k−1. Also, by definition, Aij(k) = 1, and Aij(l) = Dj(k),j(l)

for l = k + 1, . . . ,K. Thus we obtain

wiU
′
(xi(z)) = wi(w

1/α
i r(k)

)
−α

= (r(k)
)
−α

= pj(k) +

K
∑

l=k+1

Dk,lpj(l)

=

K
∑

l=1

Aij(l)pj(l) =

J
∑

j=1

Aijpj

for all i ∈ Gk, k = 1, . . . ,K.

In conclusion, the rate allocation produced by the water-filling procedure satisfies

the KKT conditions for the weighted α-fair utility maximization problem.

We now proceed to show the stated monotonicity property, and attach the two

population vectors y and z, with y ≤ z, as subscripts to the various sets and variables
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as defined above. We will prove that Ly(t) ⊆ Lz(t) for all t ≥ 0, i.e., if any link

is locked out for y, then it is locked out for z as well. In view of (5.77), this is

equivalent to sj,y ≥ sj,z for all j ∈ J , which in turn is equivalent to ti,y ≥ ti,z for

all i ∈ I, and hence (5.78) yields xi(y) ≥ xi(z) for all i ∈ I.

In order to establish the above property, we will use induction on the number of

links J . In case J = 1, the water-filling procedure terminates after K = 1 iteration,

and ti = s1 = r(1) for all i ∈ I, with

r(1)y =
C0

∑I
i=1 yi

≥ C0

∑I
i=1 zi

= r(1)z ,

so s1,y ≥ s1,z and ti,y ≥ ti,z for all i ∈ I.

Now assume that the above property holds for any tree network with at most

J ≥ 1 links. We will consider a tree network with J + 1 links, with the root link

labeled as 1, and show that the property holds as well.

Suppose that were not the case, and let u be the first time epoch at which the

property is violated, i.e., Ly(t) ⊆ Lz(t) for all t ∈ [0, u), but it is not the case that

Ly(u) ⊆ Lz(u). In other words, there must exist some link j∗ ∈ Ly(u) \ Ly(u−),

j∗ /∈ Lz(u), which gets locked out for y at time u, but is not yet locked out for z.
In fact, we may impose j∗ ∈ Jy(u) \Jy(u−) as some link must saturate in order for

any link to get locked out.

Now consider a reduced network that is comprised of the links indexed by the set

Jy(u−)∪Jz(u
−)∪{j∗} that have saturated for either y or z up to time u, along with

link j∗. If the water-filling procedure is executed in this network, it will take identical

actions up to time u, and thus link j∗ will saturate at time u in case of y, but not

in case of z. If the number of links in the reduced network were J or less, then the

latter event cannot occur by virtue of the induction hypothesis. Thus the reduced

network must contain J+1 links, i.e., |Jy(u−)∪Jz(u
−)∪{j∗}| = J+1, which implies

|Jz(u
−)∪Jy(u−)| ≥ J . Since Jy(u−),Jz(u

−) ⊆ Lz(u
−), and j∗ /∈ Lz(u

−), it follows

that Lz(u
−) = J and j∗ = 1, i.e., the root link saturates at time u for y, and all links

except the root link have saturated by time u for z. Let E = {i ∈ I :
∑

j 6=1Aij ≥ 1}
be the set of the classes that traverse at least one other link besides the root link.

The fact that the root link saturates at time u for y but not for z, implies:

I
∑

i=1

yixi(y;u) = C0 >

I
∑

i=1

zixi(z;u), (5.79)

and

xi(y) = xi(y;u) = u = xi(z;u) ≤ xi(z) for all i /∈ E . (5.80)

Now consider a network without the root link and the classes that do not belong

to the set E . Let xE(y) and xE(z) be the optimal rate allocation vectors in the

reduced network for (yi)i∈E and (zi)i∈E , respectively. Let xE(y; t) and xE(z; t) be

the rate allocation vectors produced by the water-filling procedure at time t in the

reduced network for (yi)i∈E and (zi)i∈E , respectively.
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Now observe that the water-filling procedure will follow identical steps in the

original network and in the reduced network up to time u, so that

xEi (y;u) = xi(y;u), xEi (z;u) = xi(z;u) for all i ∈ E .

Noting that xE(y) ≥ xE(y;u), we have

xEi (y) ≥ xi(y;u) for all i ∈ E . (5.81)

Furthermore, xE(z) = xE(z;u), because all links except the root link have satu-

rated for z by time u, so that the water-filling procedure terminates in the reduced

network, and we find

xEi (z) = xi(z;u) for all i ∈ E . (5.82)

Since the reduced network is again a tree network, or a collection of tree networks,

it is rate-preserving, and hence

∑

i∈E
yix
E
i (y) ≤

∑

i∈E
zix
E
i (z). (5.83)

Using Equations (5.79)–(5.83), we obtain

C0
=

I
∑

i=1

yixi(y;u)

=

∑

i∈E
yixi(y;u) +

∑

i/∈E
yixi(y;u)

≤
∑

i∈E
yix
E
i (y) +

∑

i/∈E
yiu

≤
∑

i∈E
zix
E
i (z) +

∑

i/∈E
zixi(z;u)

=

∑

i∈E
zixi(z;u) +

∑

i/∈E
zixi(z;u)

=

I
∑

i=1

zixi(z;u)

< C0,

which yields a contradiction. Thus the stated monotonicity property also holds in

a tree network with J + 1 links, which completes the proof. �

Proof of Proposition 5.5.2
The proof is by induction on the number of links in a tree network. By definition,

the aggregate rate is computed as

I
∑

i=1

Ri(z) =

∑

i:zi>0

Λi(z) +

∑

i:zi=0

ρi(z).
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If J = 1, the network reduces to a single work-conserving node:
∑I

i:zi>0 Λi(z) =

1 if z 6= 0. For z in the set M(C), this leaves two possible cases: z > 0 and
∑I

i=1Ri(z) =
∑I

i=1 Λi(z) = 1, or z = 0 and
∑I

i=1Ri(z) =
∑I

i=1 ρi(z) ≤ 1. Conse-

quently, for any z, y ∈ M(C), z ≥ y, we obtain
∑I

i=1Ri(z) ≥
∑I

i=1Ri(y).
Suppose now that tree networks with at most J links are rate-preserving. Con-

sider a tree with J+1 links. Since z ∈ M(C),
∑I

i=1Ri(z) ≤ C0. If
∑I

i=1Ri(z) = C0,

the inequality holds trivially. Suppose now
∑I

i=1Ri(z) < C0. This can only occur

if there are no classes that traverse the root link only, or these classes have no flows.

So we are in one of two cases: (i) the matrix B in Definition 5.5.1 is empty, or

equivalently, the set E defined in the proof of Proposition 5.5.1 includes all classes

i = 1, . . . , I; (ii) the matrix B is not empty, but zi = 0 for all classes i /∈ E . Since the

root link is not saturated, the water-filling procedure as described in the proof of

Proposition 5.5.1 produces the same rate allocation, regardless of whether the root

link is present or not. In other words, the rate allocation R(z) can be represented

as a vector of rate allocations derived independently for each subtree,

(i) R(z) = (R(1)(z(1)), . . . , R(m)(z(m))),
or

(ii) R(z) = (R(1)(z(1)), . . . , R(m)(z(m)), R(B)(0)),

where R(B)(0) = (ρi)i/∈E .
Note that z, y ∈ M(C) yields z(k), y(k) ∈ M(k)(C(k)), that is A(k)R(k)(z(k)) ≤

C(k), while z ≥ y implies z(k) ≥ y(k) for all k = 1, . . . ,m. By the induction assump-

tion, the subtrees are rate-preserving, and hence

m
∑

k=1

∑

i∈I(k)

R
(k)
i (z(k)

) ≥
m
∑

k=1

∑

i∈I(k)

R
(k)
i (y(k)

),

where I(k) = {l ∈ {1, 2, . . . , I} : class l belongs to k−th subtree}. Consequently, in

case (i),

I
∑

i=1

Ri(z) =

m
∑

k=1

∑

i∈I(k)

R
(k)
i (z(k)

) ≥
m
∑

k=1

∑

i∈I(k)

R
(k)
i (y(k)

) =

I
∑

i=1

Ri(y).

Observing that zi = 0 implies yi = 0, we obtain in case (ii),

I
∑

i=1

Ri(z) =

m
∑

k=1

∑

i∈I(k)

R
(k)
i (z(k)

) +

∑

i/∈E
ρi ≥

m
∑

k=1

∑

i∈I(k)

R
(k)
i (y(k)

) +

∑

i/∈E
ρi =

I
∑

i=1

Ri(y).

�



Chapter 6

Sojourn time asymptotics in a
parking lot network

In the present chapter we investigate the asymptotic behavior of the sojourn time

for a specific type of bandwidth-sharing network. We focus on a two-link parking

lot network as considered in Section 5.6. Although the network topology is seem-

ingly simple, it reveals a few characteristic properties which may be expected to

hold in more complex scenarios, and hopefully provides the guidelines for further

investigations.

Results for a parking lot network are especially interesting, since such a network

operating under a utility-maximizing policy is known [17] to be sensitive in the

sense that the stationary distribution of the number of flows depends on the flow

size distribution, and not just the mean flow size. For networks with sensitive

allocation policies the available results are mostly restricted to approximations for

the performance measures of interest rather than an explicit characterization. In

[19], Bonald and Proutière studied monotone networks under assumption of Poisson

arrivals and derived insensitive lower and upper bounds for the number of flows in

the system by means of sample-path comparisons. Massoulié [83] introduced a novel

rate allocation policy, which is a modification of the proportional fair policy but is

insensitive and has an explicit steady-state distribution. This policy is discussed in

further detail later in this chapter.

To the best of our knowledge, sensitive bandwidth-sharing networks have not

been studied from a large-deviations perspective. This chapter reports on some

first steps in our study of the asymptotic behavior of the number of flows, the

workload and the sojourn time in a two-link parking lot network. The derivation

of the logarithmic delay asymptotics in the present chapter can be considered as

an extension of Chapter 4 to a network scenario. With the network model we face

several complications such as the sensitivity of the distribution of the number of

flows and the non-work-conserving behavior. The analysis can be split into two

main steps:

1. In order to overcome the sensitivity issue, we utilize the results for the mod-

ified proportional fair allocation by Massoulié [83] and derive bounds for the

131
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distribution of the number of flows and the workload. Using the monotonic-

ity of the network, we derive upper bounds for the steady-state distribution

of the number of flows. The upper bound is completely determined by the

traffic loads and the capacity constraints and does not depend on other char-

acteristics of the system. In a similar manner, we show that the workload in

the modified system forms a bound for the workload in the original system.

Further, we examine finiteness of the MGF of the workload vector.

2. With the above results at hand, we apply large-deviations techniques similar

to those in Chapter 4 to derive the logarithmic asymptotics for the sojourn

time distribution. The derivation of the large-deviations upper bound is based

on the Chernoff bounds, while the derivation of the lower bound requires a

change-of measure argument and the fluid-limit results from Chapter 5. We

change the interarrival time and flow size distributions in such a way that the

root link becomes overloaded. At that stage we invoke the fluid-limit results

for the number of flows in an overloaded tree network derived in the previous

chapter.

The main result of this chapter concerns the logarithmic asymptotics for the so-

journ time distribution of the class which traverses the root link 1 only and competes

for bandwidth with flows of class 2. The rate allocation to class-2 flows is bounded

by the capacity of link 2. The obtained asymptotics indicate that there are two

qualitatively different scenarios for the large-deviations behavior. If the tilted load

of class 2 is strictly less than the capacity of link 2, the system asymptotically be-

haves as a single-link DPS system. In this first case, the decay rate of the class-1

sojourn time coincides with the decay rate in a two-class DPS node as analyzed in

Section 4.5. The second scenario corresponds to the situation when the capacity

constraint is binding. In this case, class 2 is allocated the full capacity of link 2

while class 1 receives the remaining bandwidth at link 1. The decay rate is then

composed of two decay rates in independent PS systems with corresponding flow

classes and service rates. The result shows that in both scenarios a large sojourn

time is due to a large amount of work generated by both flow classes during the

service of the flow under consideration.

This chapter is organized as follows. In Section 6.1 we present a detailed model

description and discuss the modified proportional fair allocation. In Section 6.2 we

introduce the necessary notation. In Sections 6.3 and 6.4 we derive the bounds for

the number of flows in the system and the workload, respectively. The main result

is presented in Section 6.5. Finally, Section 6.6 contains suggestions for further

research.

6.1 Model description

We consider a parking lot network as described in Section 5.6. The network

consists of two links and two classes of flows. The capacities of the links are given
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by c1 = 1 and c2 = c < 1. The route of class 1 consists of link 1, and the route of

class 2 includes both links. We refer to Figure 5.2 for an illustration.

We assume that class-i flows arrive according to a Poisson process with rate

λi. The flow sizes have a general distribution with bounded hazard rates (see As-

sumption 5.5.1 in the previous chapter). The mean flow sizes are given by 1/µi,
i = 1, 2. The traffic load of class i is ρi = λi/µi. We define the capacity set

C = {r ∈ R
2
+ : r1 + r2 ≤ 1, r2 ≤ c}, and assume that the vector (ρ1, ρ2) lies in

the interior of C, i.e.

ρ1 + ρ2 < 1, ρ2 < c. (6.1)

Utility-based allocation. We assume that the network operates under an α-fair

rate allocation policy as described in Section 1.2.3. For any unweighted α-fair rate

allocation (Section 5.6, Appendix 5.E), the rate allocations in case of a two-link

parking lot are given by

Λ1(n) = max

(

1 − c, n1

n1+n2

)

, n1 > 0,

Λ2(n) = min

(

c, n2

n1+n2

)

.

(6.2)

By convention, the per-class and per-flow rates Λi(n) and
Λi(n)

ni
are equal to zero if

ni = 0.

Modified proportional fair allocation. Massoulié [83] introduced a novel rate

allocation policy, which in some sense coincides with the proportional fair policy

but is insensitive and has an explicit steady-state distribution. Let ei be a unit

vector with 1 in component i and 0 elsewhere, i = 1, . . . , I. The rate allocation

under the modified proportional fair policy is defined as

Λ̃i(n) =

{

ew∗
C(n)−w∗

C(n−ei), if ni > 0

0, otherwise,
(6.3)

where

w∗C(n) = sup

Λ̃∈RI
+

(〈log Λ̃, n〉 − wC(Λ̃)).

The function wC(Λ̃) is equal to zero if Λ̃ ∈ C and +∞ if Λ̃ /∈ C. Note that the function

w∗C(n) coincides with the supremum of the utility function of the proportional fair

policy over the capacity set.

Let X̃ denote the number of active flows in the system with the modified pro-

portional fair policy. Since the modified proportional fair policy is insensitive, under

the stability conditions (6.1), the queue length process is regenerative and admits a

steady-state distribution. The steady-state distribution of X̃ [83] is determined by

π̃(n) ≡ P(X̃1 = n1, . . . , X̃I = nI) = Ge
−L(n), (6.4)
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where G ∈ (0,∞) denotes the normalizing constant, and

L(n) ≡ L(n1, . . . , nI) = w∗C(n) −
I
∑

i=1

log(ρi)ni. (6.5)

For the two-link parking lot network, applying (6.2), we find

L(n) = n1 log
max(1 − c, n1

n1+n2
)

ρ1
+ n2 log

min(c, n2

n1+n2
)

ρ2
, (6.6)

so that

π̃(n) = G





ρ1

max

(

1 − c, n1

n1+n2

)





n1




ρ2

min

(

c, n2

n1+n2

)





n2

.

6.2 Additional notation

The notation used in the present chapter strongly resembles that in Chapter 4.

We denote by An
i , n ∈ N, i = 1, . . . , I, the time between the (n − 1)-st and n-th

class-i arrival after time zero. Furthermore, let Bn
i , n ∈ Z, be the size of the nth

class-i flow. We assume that (An
i )n and (Bn

i )n are mutually independent sequences,

each consisting of i.i.d. random variables. We introduce the random walks SAi
n =

A1
i +. . .+An

i and SBi
n = B1

i +. . .+Bn
i . We denote the random variable corresponding

to a generic interarrival time (flow size) by Ai (Bi, respectively).

Let Ni(t) be the number of class-i arrivals in the time interval (0, t]. Recall Ni(·)
is a Poisson process with rate λi. Denote by Ai(t), t > 0, the total amount of class-i
work arriving in the time interval (0, t], i.e. ,

Ai(t) =

Ni(t)
∑

k=1

Bk
i .

Similarly, we define Ti(t) as the total service capacity available for the class-i flows

during the time interval (0, t],

Ti(t) =

∫ t

0

Λi(X(u))du,

where X(u) denotes the number of flows in the system at time u.
Define the MGFs ΦBi

(s) := E[esBi ] and ΦAi
(s) := E[esAi ] =

λi

λi−s . For s ≥ 0

denote by αi(s), the asymptotic cumulant function of Ai(x), x > 0,

αi(s) = lim
x→∞

1

x
log E[e

sAi(x)
].

Since the process Ai(x) is a compound Poisson process, the cumulant function is

known explicitly,

E[e
sAi(x)

] = e
λix(ΦBi

(s)−1), αi(s) = λi(ΦBi
(s) − 1).
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Further, for any given u > 0, we denote by δ
(u)
i the solution of the equation

α′i(s) = u.

In other words,

δ
(u)
i = (α′i)

−1
(u) = (Φ

′
Bi

)
−1

(

u

λi

)

. (6.7)

The value u = α′i(δ
(u)
i ) for some u ≥ ρi can be considered as a new traffic load

of class-i flows under exponential tilting with parameter δ
(u)
i . We will also use the

notation ρi(δ
(u)
i ) = α′i(δ

(u)
i ) = u, when we need to emphasize this interpretation.

The main focus in this chapter is on the sojourn time, say V1, of a ‘tagged’ class-1

flow (with flow size B0
1) arriving at time 0, when the system is assumed to be in

steady state. The main goal is to describe the asymptotic behavior of P(V1 > x)
as x → ∞. However, before proceeding to the sojourn time asymptotics, we derive

some results for the queue length and the workload which will be of use in proving

the main theorem.

6.3 Queue length bounds

In the present section we are mainly interested in deriving upper bounds for

the distribution of the number of flows in the network. The key idea is to use

the monotonicity of a parking lot network and the characteristics of the modified

proportional fair policy.

Massoulié [83] showed that for all n ≥ 0 the rate allocation under the pro-

portional fair policy forms an upper bound for the allocation under the modified

proportional fair policy. Thus, for all n ≥ 0,

Λ̃(n) ≤ Λ(n).

Let X(t) and X̃(t) denote the number of active flows at time t in the original and

the modified system, respectively. As the parking lot network is a special case of a

tree network, Proposition 5.5.1 implies that it is monotone. In view of the above

inequality, due to the monotonicity and Theorem 1 in Bonald and Proutière [19],

we have for all t ≥ 0,
X̃(t) ≥ X(t). (6.8)

Under the stability conditions (6.1) the queue length process admits a steady-

state distribution. In steady state,

X̃ ≥st X.

By ≥st we denote the strong stochastic ordering on R
2
+, that is X̃ ≥st X if and only

if E[f(X̃)] ≥ E[f(X)] for any increasing function f(·).
We need the following auxiliary result.
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Lemma 6.3.1.
u(1 − u)

1−c
c ≤ c(1 − c)

1−c
c (6.9)

for all u ∈ [0, 1].

Proof. Define the function f(u) as the left-hand side of the above inequality,

f(u) = u(1 − u)
1−c

c .

The derivative is determined by

f ′(u) = (1 − u)
1−c

c

(

1 − u

1 − u

1 − c

c

)

.

Noting that the derivative is positive for u < c, and negative otherwise, we conclude

that for all u ∈ [0, 1], f(u) ≤ f(c). �

In the following propositions we derive upper bounds for the marginal distribu-

tion of the class-2 queue length and the distribution of the total queue length in the

modified system. In view of Inequality (6.8), the upper bound also holds for the

original system.

Proposition 6.3.1. If ρ1 < 1 − c, then there exists a constant A > 0 such that for
any n > 0 the stationary queue length distribution satisfies

P(X̃2 = n) ≤ A
(ρ2

c

)n

. (6.10)

If ρ1 > 1 − c, then for any n > 0 the stationary queue length distribution satisfies

P(X̃2 = n) ≤ K(n)

(

ρ2

c

(

ρ1

1 − c

)
1−c

c

)n

, (6.11)

where

K(n) =
ρ1

ρ1 − 1 + c
+

√
2πne

1
12c −

(

ρ1

1 − c

)− 1−c
c n

.

If ρ1 = 1 − c, then for any n > 0 the stationary queue length distribution satisfies

P(X̃2 = n) ≤
(

1 − c

c
n+

√
2πne

1
12c

)

(ρ2

c

)n

. (6.12)

Proof. Fix n2 > 0. Define η = ⌊ 1−c
c n2⌋. Since we are only interested in bounds, we

will omit the normalizing constant G in Equation (6.4). From (6.4)–(6.6) we obtain

P(X̃2 = n2) =

∞
∑

n1=0

e
−L(n1,n2)

=

η
∑

n1=0

(ρ2

c

)n2
(

ρ1

1 − c

)n1

+

∞
∑

n1=η+1

(n1 + n2)
(n1+n2)

(n2)
n2(n1)

n1
ρn2
2 ρn1

1

:= J1 + J2.
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Consider first the term J1. Using the summation formula for geometric series,

we obtain

J1 =

(ρ2

c

)n2 1 − c

1 − c− ρ1

(

1 −
(

ρ1

1 − c

)η+1
)

(6.13)

≤
(ρ2

c

)n2 1 − c

1 − c− ρ1

(

1 −
(

ρ1

1 − c

)(

ρ1

1 − c

)
1−c

c n2
)

.

Let us now turn to the term J2. In order to bound this term, we apply Stirling’s

formula

kk
=

k!ek

√
2πk

e
−ǫk , (6.14)

where
1

12k+1 < ǫk <
1

12k . Using these approximations, we obtain

J2 ≤ ρn2
2

∞
∑

n1=η+1

(

n1 + n2

n2

)√
2π

√
n1n2√
n1 + n2

ρn1
1 e

1
12

(

1
n2

+ 1
n1

)

− 1
12(n1+n2)+1

≤
√

2πn2e
1

12c

(

ρ2

1 − ρ1

)n2
1

ρ 1

∞
∑

n1=η+1

(

n1 + n2

n2

)

(1 − ρ1)
n2ρn1+1

1

≤
√

2πn2e
1

12c

(

ρ2

1 − ρ1

)n2
1

ρ 1

∞
∑

n1=η+1

(

n1 + n2 − 1

n2

)

(1 − ρ1)
n2ρn1

1 .

The latter sum is essentially the probability that the number of failures before the

n2-th success is at least η + 1, given that the probability of failure is ρ1 and the

probability of success is 1−ρ1. Using the relationship between the negative binomial

distribution and the geometric distribution, we can rewrite this probability as

P

(

n2
∑

i=1

Gi ≥ η + 1

)

,

where Gi is a geometrically distributed random variable with P(Gi = n) = ρn
1 (1 −

ρ1), n = 0, 1, . . . . Consequently,

P

(

n2
∑

i=1

Gi ≥ η + 1

)

= P

(

1

n2

n2
∑

i=1

Gi ≥
η + 1

n2

)

≤ P

(

1

n2

n2
∑

i=1

Gi ≥
1 − c

c

)

.

(6.15)

Recall that the log moment generating function of the geometric random variable

Gi is given by

M(t) = log E[e
tGi ] = log(1 − ρ1) − log(1 − ρ1e

t
), (6.16)

with the convex conjugate

M∗(y) = sup
t

(ty −M(t)) = log

[(

y

(y + 1)ρ1

)y
1

(1 − ρ1)(y + 1)

]

. (6.17)
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Applying the Chernoff bound to the latter probability in (6.15), we obtain

P

(

1

n2

n2
∑

i=1

Gi ≥
1 − c

c

)

≤ e
−M∗( 1−c

c )n2 ,

where

M∗
(

1 − c

c

)

= log

(

(

1 − c

ρ1

)
1−c

c c

1 − ρ1

)

. (6.18)

Summarizing the above, we derive an upper bound for the term J2,

J2 ≤
√

2πn2e
1

12c e

−n2 log

(

c
ρ2

(

1−c
ρ1

) 1−c
c

)

=
√

2πn2e
1

12c

(ρ2

c

)n2
(

ρ1

1 − c

)
1−c

c n2

.

(6.19)

We now separately consider cases ρ1 < 1− c and ρ1 ≥ 1− c. Let us first assume

ρ1 < 1 − c. Combining the bounds in (6.13) and (6.19), we derive

P(X̃2 = n2) ≤ K1(n2)

(ρ2

c

)n2

, (6.20)

where

K1(n2) =

(

1 − c

1 − c− ρ1
+

(√
2πn2e

1
12c − ρ1

1 − c− ρ1

)(

ρ1

1 − c

)
1−c

c n2
)

.

Noting that the function K1(n2) is bounded from above provides the upper bound.

It remains to consider the case ρ1 > 1 − c. Using the bounds (6.13) and (6.19),

we obtain

P(X̃2 = n2) ≤ K2(n2)

(

ρ2

c

(

ρ1

1 − c

)
1−c

c

)n2

, (6.21)

where

K2(n2) =
ρ1

ρ1 − 1 + c
+

√
2πn2e

1
12c +

ρ1

ρ1 − 1 + c

(

ρ1

1 − c

)− 1−c
c n2

.

�

Corollary 6.3.1. If ρ1 ≤ 1 − c,

lim
n→∞

1

n
log P(X̃2 ≥ n) = − log

c

ρ2
. (6.22)

If ρ1 > 1 − c,

lim sup
n→∞

1

n
log P(X̃2 ≥ n) ≤ − log

(

c

ρ2

(

1 − c

ρ1

)− 1−c
c

)

. (6.23)
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The logarithmic bounds follow in a straightforward manner from Proposition 6.3.1.

Since the rate Λ2 allocated to class-2 flows is bounded by the capacity constraint c,
the queue length of class 2 is bounded from below by the queue length in a PS node

with capacity c and traffic of class 2 only. Consequently,

P(X2 ≥ n) ≥ P(XPS
2 ≥ n) =

(ρ2

c

)n

.

This implies the asymptotics if ρ1 ≤ 1 − c. The derivation in case ρ1 ≥ 1 − c relies

on Lemma 6.3.1 and the observation

ρ2

c

(

ρ1

1 − c

)
1−c

c

<
ρ2

c

(

1 − ρ2

1 − c

)
1−c

c

.

Remark 6.3.1. The asymptotics for the case ρ1 ≤ 1 − c may be regarded as a

positive result. If the load of class 1 is less than 1− c, in the large-deviations sense,

the class-2 queue in a parking lot behaves as if it always receives the maximum

rate c. Thus, the probability of having an extremely large number of class-2 flows

is not affected by the preferential rate allocation to class-1 flows. Note that this

asymptotic behavior also holds for any utility-based allocation policy.

Lemma 6.3.2. For any n > 0, the stationary total queue length distribution satisfies

P(X̃2 + X̃1 = n) ≤ (n+ 1)

(

max

(ρ2

c
, ρ1 + ρ2

))n

. (6.24)

Proof. Fix n ≥ 1. Using Equation (6.4), we obtain

P(X̃2 + X̃1 = n) =

n
∑

m=0

π(m,n−m) ≤ (n+ 1) max
m∈[0,n]

π(m,n−m)

≤ (n+ 1)e
− infm∈[0,n] L(m,n−m).

Noting that for any constant a and any vector z, L(az) = aL(z) (see (6.6)), we

derive

P(X̃2 + X̃1 = n) ≤ (n+ 1)e
−n infx∈[0,1] L(x,1−x)

= (n+ 1)e
−nL∗

,

with L∗ = infx∈[0,1] L(x, 1 − x).
Let us consider the function L(x, 1 − x) in more detail,

L(x, 1 − x) = x log
max(1 − c, x)

ρ1
+ (1 − x) log

min(c, 1 − x)

ρ2
.

Let us first assume x ∈ (1 − c, 1]. In this case,

L(x, 1 − x) = x log
x

ρ1
+ (1 − x) log

(1 − x)

ρ2
,
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L′(x, 1 − x) = log
x

ρ1
+ 1 − log

(1 − x)

ρ2
− 1 = log

x

1 − x

ρ2

ρ1
.

Since the derivative is equal to zero at x∗ =
ρ1

ρ2+ρ1
, is negative for smaller values and

positive for larger values, we conclude that L has a local minimum at x∗. This is

however under the assumption x∗ > 1−c, that is
ρ2

ρ1
< c

1−c . If x
∗ ≤ 1−c, L(x, 1−x)

is increasing on the interval [1 − c, 1].

Consider now the interval [0, 1 − c]. We have

L(x, 1 − x) = x log
1 − c

ρ1
+ (1 − x) log

c

ρ2
,

L′(x, 1 − x) = log
1 − c

ρ1
− log

c

ρ2
= log

1 − c

c

ρ2

ρ1
.

If
ρ2

ρ1
> c

1−c , the function is increasing linearly on [0, 1 − c], and it is decreasing

otherwise. So if
ρ2

ρ1
> c

1−c , the minimum on the interval [0, 1 − c] is attained at

x = 0, and otherwise at x = 1 − c.

Note also that if
ρ2

ρ1
> c

1−c , L(x, 1 − x) is increasing on [1 − c, 1]. Hence, the

global minimum of L(x, 1 − x) on the entire interval [0, 1] is given by

xmin =







x∗, if
ρ2

ρ1
< c

1−c ,

0, otherwise.

(6.25)

The optimal values are

L∗ =







log
1

ρ2+ρ1
, if xmin = x∗,

log
c
ρ2
, otherwise.

�

6.4 Workload bounds

In the present section we turn our attention to the workload characteristics. We

first compare the workloads in the networks with original and modified proportional

fair allocations. Secondly, we prove finiteness of the MGF of the workload for specific

arguments. Finally, we state an auxiliary lemma for the MGF of the workload in

an ordinary PS link.

Proposition 6.4.1. The workload W in the system with an α-fair policy and the
workload W̃ in the system with the modified proportional fair policy are related as

W ≤st W̃ .
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Proof. The proof is essentially a compilation of the arguments in [19]. Let X
and X̃ denote the number of active flows in the original and the modified systems,

respectively. Using the monotonicity of the parking lot network and Inequality (6.8),

we obtain that for all t, i = 1, 2,

Λ̃i(X̃(t))

X̃i(t)
≤ Λi(X̃(t))

X̃i(t)
≤ Λi(X(t))

Xi(t)
.

Hence, the residual flow sizes are related in the following manner, for i = 1, 2,

Br
i,j(t) =

(

Bi,j −
∫ t

ai,j

Λi(X(u))

Xi(u)
du

)+

≤
(

Bi,j −
∫ t

ai,j

Λ̃i,j(X̃(u))

X̃i(u)
du

)+

= B̃r
i,j(t),

where Bi,j , B
r
i,j(t) and ai,j < t denote the initial flow size, the residual flow size and

the arrival epoch of the j-th flow of class i, respectively. This implies

Wi(t) =

Xi(t)
∑

j=1

Br
i,j(t) ≤

X̃i(t)
∑

j=1

B̃r
i,j(t) = W̃i(t).

This implies that for any vector x ≥ 0 and any time t,

P(W1(t) > x1,W2(t) > x2) ≤ P(W̃1(t) > x1, W̃2(t) > x2).

Since under the stability conditions (6.1) the distributions converge as t → ∞, we

derive

P(W1 > x1,W2 > x2) ≤ P(W̃1 > x1, W̃2 > x2),

which yields stochastic ordering W ≤st W̃ . �

The following proposition states that the MGF with parameter δ = (δ1, δ2) of

the workload is finite, if the tilted traffic load ρ(δ) lies in the capacity set C.

Proposition 6.4.2. Consider a parking lot network operating under the modified
proportional fair policy. Suppose δ1, δ2 > 0 satisfy the equation α′1(δ1)+α′2(δ2) = 1.
Let u = α′2(δ2). Then, if u ≤ c,

E[e
δ1W̃1+δ2W̃2 ] <∞.

Proof. The MGF of the total workload can be computed as

E[e
δ1W̃1+δ2W̃2 ] = E[β∗1(δ1)

X̃1β∗2(δ2)
X̃2

] =

∞
∑

n1=0

∞
∑

n2=0

β∗1(δ1)
n1β∗2(δ2)

n2 π̃(n1, n2).

Noting that

β∗i (δi) =
ΦBi

(δi) − 1

δΦ′Bi
(0)

=
αi(δi)

δiρi
,
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and substituting Equation (6.4) for π̃, we obtain

E[e
δ1W̃1+δ2W̃2 ] =

∞
∑

n1=0

∞
∑

n2=0

((

α1(δ1)

δ1ρ1

)n1
(

α2(δ2)

δ2ρ2

)n2

× ρn1
1 ρn2

2 max

(

1 − c,
n1

n1 + n2

)−n1

min

(

c,
n2

n1 + n2

)−n2
)

=

∞
∑

n1=0

∞
∑

n2=0

((

α1(δ1)

δ1

)n1
(

α2(δ2)

δ2

)n2

× max

(

1 − c,
n1

n1 + n2

)−n1

min

(

c,
n2

n1 + n2

)−n2
)

.

We now proceed as in the proof of Lemma 6.3.1. Define η = ⌊ 1−c
c n2⌋. We first take

the sum with respect to n1.

E[e
δ1W̃1+δ2W̃2 ] =

∞
∑

n2=0

(

α2(δ2)

cδ2

)n2 η
∑

n1=0

(

α1(δ1)

(1 − c)δ1

)n1

+

∞
∑

n2=0

(

α2(δ2)

δ2

)n2 ∞
∑

n1=η+1

(

α1(δ1)

δ1

)n1
(n1 + n2)

(n1+n2)

(n2)
n2(n1)

n1

:= J1 + J2.

Consider first the term J1. Using the summation formula for geometric series, we

obtain

η
∑

n1=0

(

α1(δ1)

(1 − c)δ1

)n1

=
1

1 − α1(δ1)
(1−c)δ1

(

1 −
(

α1(δ1)

(1 − c)δ1

)
1−c

c n2+1
)

.

Hence,

J1 =

∞
∑

n2=0

(

α2(δ2)

cδ2

)n2
1

1 − α1(δ1)
(1−c)δ1

(

1 −
(

α1(δ1)

(1 − c)δ1

)
1−c

c n2+1
)

.

Let us now turn to the term J2. Applying Stirling’s formula (6.14), we obtain

J2 ≤
∞
∑

n2=0

(

α2(δ2)

δ2

)n2 √
2πn2e

1
12c

(

1

1 − α1(δ1)
δ1

)n2

δ1
α1(δ1)

×
∞
∑

n1=η+1

(

n1 + n2 − 1

n2

)(

1 − α1(δ1)

δ1

)n2
(

α1(δ1)

δ1

)n1

.

The latter sum is essentially the probability that the number of failures before

the n2-th success is at least η + 1, given that the probability of failure is
α1(δ1)

δ1
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(
α1(δ1)

δ1
< 1−u < 1) and the probability of success is 1− α1(δ1)

δ1
. Using the relationship

between the negative binomial distribution and the geometric distribution, we obtain

that the latter sum is bounded by

P

(

1

n2

n2
∑

i=1

Gi ≥
1 − c

c

)

≤ e
−M∗( 1−c

c )n2 ,

where Gi is a geometrically distributed random variable with parameter
α1(δ1)

δ1
, and

the convex conjugate (cf. (6.17)) is given by

M∗
(

1 − c

c

)

= log





(

1 − c
α1(δ1)

δ1

)
1−c

c
c

1 − α1(δ1)
δ1



 .

Summarizing the above, we derived an upper bound for the term J2,

J2 ≤
∞
∑

n2=0

(

α2(δ2)

cδ2

)n2 √
2πn2e

1
12c

(

α1(δ1)

(1 − c)δ1

)
1−c

c n2

.

Thus, we obtain for some constants A1, A2, A3

E[e
δ1W̃1+δ2W̃2 ] ≤

∞
∑

n2=0

[

A1

(

α2(δ2)

cδ2

)n2

+ (A2 +A3
√
n2)

(

α2(δ2)

cδ2

)n2
(

α1(δ1)

(1 − c)δ1

)
1−c

c n2
]

.

In order for the MGF to be finite we need

α2(δ2)

cδ2
< 1, and

α2(δ2)

cδ2

(

α1(δ1)

(1 − c)δ1

)
1−c

c

< 1.

If u ≤ c, the first inequality holds naturally,

α2(δ2)

cδ2
<
α′2(δ2)

c
=
u

c
≤ 1.

For the second inequality we have

α2(δ2)

cδ2

(

α1(δ1)

(1 − c)δ1

)
1−c

c

<
u

c

(

1 − u

1 − c

)
1−c

c

,

which does not exceed 1 for any u ∈ [0, 1] by Lemma 6.3.1. �

In a single-class single-link PS system the proof of finiteness of the MGF is

significantly simpler. The following lemma states that the MGF with argument δ of

the workload is finite, if ρ(δ) does not exceed the capacity r of the link. The proof

is based on the argument in [82] for the case r = 1.
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Lemma 6.4.1. Consider an egalitarian PS system with capacity r. Suppose the
traffic intensity ρ < r. Then

E[e
δW

] <∞,

where δ = (α′)−1(r).

Proof. Since ρ < r, the PS system with capacity r reaches steady state and the

workload W can be identified with the waiting time under FCFS. Hence, W =

supn≥0(S
B
n − rSA

n ), and

E[e
δW

] =

∫ ∞

0

P

(

sup
n≥0

e
δ(SB

n −rSA
n ) > x

)

dx ≤
∞
∑

n=0

∫ ∞

0

P
(

e
δ(SB

n −rSA
n ) > x

)

dx

=

∞
∑

n=0

E[e
δSB

n ]E[e
−δrSA

n ] =

∞
∑

n=0

(ΦA(−rδ)ΦB(δ))
n

(6.26)

=

∞
∑

n=0

(

λ

λ+ rδ
ΦB(δ)

)n

. (6.27)

Note that due to strict convexity of the cumulant function α(·), α(δ) < α′(δ)δ = rδ.
Consequently,

λ
λ+rδ ΦB(δ) < λ

λ+α(δ)ΦB(δ) = 1, which implies finiteness of the MGF.

�

6.5 Class-1 delay asymptotics

In the present section we investigate the asymptotic behavior of the sojourn time

of class-1 flows. We consider a tagged class-1 flow that arrives into the system at

time 0 and has size B0
1 . We derive the large-deviations asymptotics for the sojourn

time V1 of the tagged customer.

We need to make two technical assumptions. We assume the flow size distri-

butions have bounded hazard rates (see Assumption 5.5.1). We also assume the

following.

Assumption 6.5.1. There exists a solution δ∗1 , δ
∗
2 > 0 to







α′1(δ
∗
1) + α′2(δ

∗
2) = 1,

α′2(δ
∗
2) ≤ c,

such that Φi(δi) <∞ for all δi in a neighborhood of δ∗i , i = 1, 2.

In preparation for the main theorem we state an auxiliary lemma.

Lemma 6.5.1. Consider the function

H(u) = (α′1)
−1

(1 − u) − (α′2)
−1

(u), u ∈ [0, 1].

The equation H(u) = 0 has a unique solution u∗, and u∗ ∈ (ρ2, 1 − ρ1).
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Proof. The derivative of H(u) is given by

H ′(u) = − 1

α′′1(δ
(1−u)
1 )

− 1

α′′2(δ
(u)
1 )

,

which is strictly negative due to the strict convexity of cumulant functions. Since

ρ0 + ρ1 < 1, we obtain H(ρ2) = δ
(1−ρ2)
1 > δ

(ρ1)
1 = 0 and H(1 − ρ1) = −δ(1−ρ1)

2 <

−δ(ρ2)
2 = 0. Since the function H(·) is continuous and strictly decreasing, we con-

clude that there exists u∗ ∈ (ρ2, 1 − ρ1) such that δ
(1−u∗)
1 = δ

(u∗)
2 . �

The main result of the chapter is the following theorem.

Theorem 6.5.1. Let u∗ be the solution of the equation (α′2)
−1(u∗) = (α′1)

−1(1−u∗),
that is

(

Φ
′
B2

)−1
(

u∗

λ2

)

=
(

Φ
′
B1

)−1
(

1 − u∗

λ1

)

,

and let δ∗ = δ
(u∗)
2 = δ

(1−u∗)
1 . Then,

lim
x→∞

1

x
log P(V1 > x) =







α1(δ
∗) + α2(δ

∗) − δ∗, if u∗ ≤ c,

α1(δ
(1−c)
1 ) + α2(δ

(c)
2 ) − (1 − c)δ

(1−c)
1 − cδ

(c)
2 , if u∗ > c.

(6.28)

This result provides insight in the manner a large sojourn time occurs. Note first

that the solution u∗ corresponds to the traffic load of class 2 in an exponentially

tilted system; 1− u∗ is the traffic load of class 1. Hence, in the scenario u∗ < c, the

capacity constraint of the second link is not binding. This implies that the system

dynamics asymptotically coincide with the dynamics in a single-link DPS system.

See also Section 4.5 for the large-deviations results in a DPS system. The second

scenario, u∗ ≥ c, corresponds to the situation when the second link is saturated,

that is the class-2 rate allocation achieves its maximum c. In either scenario, the

asymptotics indicate that a large sojourn time is predominantly caused by a large

amount of work generated by both classes during the service of the tagged flow.

The proof of the theorem consists of two parts: derivation of the large-deviations

upper bound based on the Chernoff bound and derivation of the lower bound based

on a change-of-measure approach. We first present the derivation of the upper

bound.

6.5.1 Proof of the upper bound

In order to obtain an upper bound, we distinguish between two cases: (a) u∗ ≤ c,
and (b) u∗ > c.

Case (a) Let us first assume u∗ ≤ c.

The event {V1 > x} implies that the total workload of class-1 and class-2 flows

at time epoch x, W1(x) + W2(x) = B0
1 + W1 + W2 + A1(x) + A2(x) − (C1(x) +
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C2(x)), is positive. Since during the time interval [0, x] there is always class-1 work,

C1(x) + C2(x) = x. Hence, we can write

P(V1 > x) ≤ P
(

B0
1 +W1 +W2 +A1(x) +A2(x) > x

)

. (6.29)

Applying the Chernoff bound with parameter δ = δ∗ to the above probability,

we obtain

P(V1 > x) ≤ ΦB1
(δ∗)E[e

δ∗(W1+W2)]e
(α1(δ

∗)+α2(δ
∗)−δ∗)x.

The MGF of B1 is finite by definition of δ∗. Since, under the assumption u∗ ≤ c,
α′2(δ

∗) ≤ α′2(δ
c
2) = c, finiteness of the term E[eδ∗(W1+W2)] follows from Proposi-

tions 6.4.1 and 6.4.2. Taking logarithms, dividing by x, and letting x → ∞, we

obtain

lim
x→∞

1

x
log P(V1 > x) ≤ α1(δ

∗
) + α2(δ

∗
) − δ∗.

Case (b). Suppose now u∗ > c.

The event {V1 > x} implies that the workload of class-1 flows at time epoch x,
W1(x) = W1 +B0

1 +A1(x) − C1(x), is positive. Hence, we can write

P(V1 > x) ≤ P
(

W1 +B0
1 +A1(x) > C1(x)

)

= P
(

W1 +B0
1 +A1(x) > C1(x), A2(x) +W2 ≥ cx

)

+ P
(

W1 +B0
1 +A1(x) > C1(x), A2(x) +W2 < cx

)

:= I + II.

Consider first the term I. Due to (6.2), the rate allocated to class-1 flows is at

least 1 − c, implying C1(x) ≥ (1 − c)x. Consequently,

I ≤ P
(

W1 +B0
1 +A1(x) > (1 − c)x,A2(x) +W2 ≥ cx

)

.

Due to Proposition 6.4.1, we have W ≤st W̃ , where W̃ denotes the workload in the

system operating under the modified proportional fair policy. Hence,

I ≤ P
(

W̃1 +B0
1 +A1(x) > (1 − c)x,A2(x) + W̃2 ≥ cx

)

.

Since the queue length distribution under the modified proportional fair policy is

known (see (6.4)), the latter can be written as

∞
∑

n1=0

∞
∑

n2=0

π̃(n1, n2)P

(

n1
∑

i=1

Br
1,i +B0

1 +A1(x) > (1 − c)x,A2(x) +

n2
∑

i=1

Br
2,i ≥ cx

)

=

∞
∑

n1=0

∞
∑

n2=0

π̃(n1, n2)P

(

n1
∑

i=1

Br
1,i +B0

1 +A1(x) > (1 − c)x

)

P

(

A2(x) +

n2
∑

i=1

Br
2,i ≥ cx

)

.
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Applying the Chernoff bound independently to the above probabilities with param-

eters δ1 = δ
(1−c)
1 and δ2 = δ

(c)
2 , we obtain

I ≤ e
(α1(δ

(1−c)
1 )+α2(δ

(c)
2 )−(1−c)δ

(1−c)
1 −cδ

(c)
2 )x

ΦB1
(δ

(1−c)
1 )E[(β∗1(δ

(1−c)
1 ))

X̃1(β∗2(δ
(c)
2 ))

X̃2 ]

= e
(α1(δ

(1−c)
1 )+α2(δ

(c)
2 )−(1−c)δ

(1−c)
1 −cδ

(c)
2 )x

ΦB1
(δ

(1−c)
1 )E[e

δ
(1−c)
1 W̃1+δ

(c)
2 W̃2 ].

The MGF of B1 is finite by definition of δ
(1−c)
1 . Since, α′2(δ

(c)
2 ) = c, finiteness

of the MGF E[eδ1W̃1+δ2W̃2 ] follows from Proposition 6.4.2. Summarizing the above

discussion, we obtain that for some constant M1,

I ≤M1e
(α1(δ

(1−c)
1 )+α2(δ

(c)
2 )−(1−c)δ

(1−c)
1 −cδ

(c)
2 )x.

Let us now turn to term II. Due to the capacity constraints, the rate allocation

Λ2 ≤ c. Hence, we can bound the class-2 workload from below by the workload in

a single-node PS queue with capacity c and traffic generated by class-2 flows only,

W2 ≥ W
PS(c)
2 . Since class 1 is non-empty during the time interval [0, x], by the

bandwidth allocation policy, it follows that link 1 is fully utilized, i.e. x− C1(x) =

C2(x). Using the fact that C2(x) ≤W2 +A2(x), we derive

II ≤ P(W1 +B0
1 +A1(x) > (1 − c)x,A2(x) +W2 < cx)

≤ −
∫ c

0

P(W
PS(1−c)
1 +B0

1 +A1(x) > (1 − u)x)dP
(

A2(x) +W
PS(c)
2 ≥ ux

)

.

Applying the Chernoff bound with parameter δ1 = δ
(1−c)
1 to the integrand and

using integration by parts, we obtain that the latter expression can be bounded

from above by

−E[e
δ
(1−c)
1 B1 ]E[e

δ
(1−c)
1 W

P S(1−c)
1 ]

∫ c

0

e
(α1(δ

(1−c)
1 )−δ

(1−c)
1 (1−u))xdP

(

A2(x) +W
PS(c)
2 ≥ ux

)

≤ E[e
δ
(1−c)
1 B1 ]E[e

δ
(1−c)
1 W

P S(1−c)
1 ]

(

e
(α1(δ

(1−c)
1 )−δ

(1−c)
1 )x

+

∫ c

0

e
(α1(δ

(1−c)
1 )−δ

(1−c)
1 (1−u))xP

(

A2(x) +W
PS(c)
2 ≥ ux

)

δ
(1−c)
1 xdu

)

.

Applying the Chernoff bound with parameter δ2 = δ
(c)
2 to the probability under

the integral sign we obtain

II ≤ E[e
δ
(1−c)
1 B1 ]E[e

δ
(1−c)
1 W

P S(1−c)
1 ]

(

e
(α1(δ

(1−c)
1 )−δ

(1−c)
1 )x

+ E[e
δ
(c)
2 W

P S(c)
2 ]e

(α1(δ
(1−c)
1 )+α2(δ

(c)
2 )−δ

(1−c)
1 )xδ

(1−c)
1 x

∫ c

0

e
u(δ

(1−c)
1 −δ

(c)
2 )xdu

)

.
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Notice that ρ1 < 1 − c, since by Lemma 6.5.1, ρ1 ≤ 1 − u∗ and we assume

u∗ > c. Since ρ2 < c, the MGFs E[eδ
(c)
2 W

P S(c)
2 ] and E[eδ

(1−c)
1 W

P S(1−c)
1 ] are finite by

Lemma 6.4.1. Under the assumption u∗ > c, due to Lemma 6.5.1, δ
(1−c)
1 − δ

(c)
2 > 0

and the integral can be bounded from above by cec(δ
(1−c)
1 −δ

(c)
2 )x. Consequently,

II ≤ E[e
δ
(1−c)
1 B1 ]E[e

δ
(1−c)
1 W

P S(1−c)
1 ]

×
(

e
(α1(δ

(1−c)
1 )−δ

(1−c)
1 )x

+ E[e
δ
(c)
2 W

P S(c)
2 ]e

(α1(δ
(1−c)
1 )+α2(δ

(c)
2 )−(1−c)δ

(1−c)
1 −cδ

(c)
2 )x

)

.

Notice that

α1(δ
(1−c)
1 ) + α2(δ

(c)
2 ) − (1 − c)δ

(1−c)
1 − cδ

(c)
2

= α1(δ
(1−c)
1 ) − δ

(1−c)
1 + α2(δ

(c)
2 ) + c(δ

(1−c)
1 − δ

(c)
2 )

> α1(δ
(1−c)
1 ) − δ

(1−c)
1 .

Applying the principle of the largest term [41], taking logarithms, dividing by x,
and letting x→ ∞ we derive

lim
x→∞

1

x
log P(V1 > x) ≤ α1(δ

(1−c)
1 ) + α2(δ

(c)
2 ) − (1 − c)δ

(1−c)
1 − cδ

(c)
2 .

6.5.2 Proof of the lower bound

We now proceed by deriving the lower bound. Introduce a probability measure

Pδi(ε) for δi(ε) ≥ 0 in such a way that:

Pδi(ε)(Ai ∈ dx) = e
−αi(δi(ε))xP(Ai ∈ dx)/ΦAi

(−αi(δi(ε))), (6.30)

Pδi(ε)(Bi ∈ dx) = e
δi(ε)xP(Bi ∈ dx)/ΦBi

(δi(ε)), (6.31)

for i = 1, 2. The parameters δi(ε) > 0 are chosen to satisfy the following properties:

ρ1(δ1(ε)) + ρ2(δ2(ε)) = 1 + ε,

ρ2(δ2(ε)) = ρ2(δ2(0)) − ε,
(6.32)

for some sufficiently small ε > 0. Here δ2(0) = min(δ∗, δ(c)2 ).
Under the new measure the work arrival process Ai(x) is a compound Poisson

process with arrival rate λi(ε) = λi/ΦAi
(−αi(δi(ε))) = λiΦBi

(δi(ε)) and flow sizes

with the MGFs Φε
Bi

(s) = ΦBi
(s + δi(ε))/ΦBi

(δi(ε)). Hence, we can use the Wald

martingale [7] w.r.t. probability Pδ1(ε) ×Pδ2(ε) associated with the processes Ai(x),

Mδ1(ε),δ2(ε)(x) = e
α1(δ1(ε))x−δ1(ε)A1(x)

e
α2(δ2(ε))x−δ2(ε)A2(x). (6.33)
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By Theorem XIII.3.2 in [7], we have the following identity

P(V1 > x) = Eδ1(ε),δ2(ε)

[

Mδ1(ε),δ2(ε)(x)1(V1 > x)
]

.

Let us introduce the event Sε(x) = {Ai(x) ≤ (ρi(δi(ε)) + ε/2)x, ∀u ∈ [0, x], i =

1, 2}. Then,

P(V1 > x) ≥ Eδ1(ε),δ2(ε)

[

Mδ1(ε),δ2(ε)(x)1(V1 > x)1(Sc
ε(x))

]

. (6.34)

Taking logarithms in (6.34), dividing by x and letting x→ ∞, we obtain

lim infx→∞
1
x log P(V1 > x)

≥ α2(δ2(ε)) − δ2(ε)(ρ2(δ2(ε)) + ε/2) + α1(δ1(ε)) − δ1(ε)(ρ1(δ1(ε)) + ε/2)

+ lim infx→∞
1
x log Pδ1(ε),δ2(ε)(V1 > x, Sc

ε(x)).

(6.35)

Consider the last term in (6.35). We now show that Pδ1(ε),δ2(ε)(V1 > x, Sc
ε(x))

decays subexponentially, that is log Pδ1(ε),δ2(ε)(V1 > x, Sc
ε(x)) = o(x). We start by

bounding it from below,

Pδ1(ε),δ2(ε)(V1 > x, Sc
ε(x)) ≥ Pδ1(ε),δ2(ε)(V1 > x) − Pδ1(ε),δ2(ε)(S

c
ε(x)).

Consider the second probability:

Pδ1(ε),δ2(ε)(S
c
ε(x)) ≤ Pδ1(ε),δ2(ε)

(

A1(x)

x
> ρ1(δ1(ε)) + ε/2

)

+ Pδ1(ε),δ2(ε)

(

A2(x)

x
> ρ2(δ2(ε)) + ε/2

)

. (6.36)

It is easy to see that

lim
x→∞

1

x
Eδi(ε)[Ai(x)] = λiEδi(ε)Bi = ρi(δi(ε)) < ρi(δi(ε)) + ε/2, (6.37)

and

lim
x→∞

1

x
log Eδi(ε)

[

e
sAi(x)

]

= αi(δi(ε) + s) − αi(δi(ε)), (6.38)

which is finite around s = 0 by Assumption 6.5.1. Applying the Chernoff bound,

we obtain

Pδ1(ε),δ2(ε)

(

A1(x)

x
> ρ1(δ1(ε)) + ε/2

)

≤ e
γix,

where γi = infs≥0(αi(δi(ε)+s)−αi(δi(ε))−(ρi(δi(ε))+ε/2)δi(ε)), which is negative in

view of (6.37)-(6.38) and Assumption 6.5.1. Thus, we conclude that Pδ1(ε),δ2(ε)(S
c
ε(x))

decays exponentially fast in x.
Let us now consider the remaining term Pδ1(ε),δ2(ε)(V1 > x). For the tagged

class-1 flow we can write

Pδ1(ε),δ2(ε)(V1 > x) = Pδ1(ε),δ2(ε)

(

B0
1 >

∫ x

0

Λ1(e1 +Qε,p(u))

1 +Qε,p
1 (u)

du

)

,
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where Qε,p denotes the number of flows in the system with a single permanent

(tagged) class-1 flow, e1 = (1, 0). Due to the monotonicity of tree networks, the

per-flow rate allocations in the system with the permanent flow are bounded from

above by the per-flow rate allocations in the original queue. Thus, we can conclude

that the sample paths of Qε
1 and Qε,p

1 are related as Qε
1 ≤ Qε,p

1 . For δ1(ε), δ2(ε)
chosen as in (6.32), Theorem 5.5.1 and Proposition 5.6.1 imply that there exist

constants βi > 0, such that as x→ ∞, Pδ1(ε),δ2(ε) (Qε
i (x)/x ≥ βi) converges to one.

Consequently, for x large enough

Pδ1(ε),δ2(ε) (Qε,p
1 (u) ≥ β1u, u ∈ [0, x]) > 0.

Since the rate allocated to class 1 does not exceed one, the probability Pδ1(ε),δ2(ε)(V1 >
x) is greater than or equal to

Pδ1(ε),δ2(ε)

(

B0
1 >

∫ x

0

1

1 +Qε,p
1 (u)

du,Qε,p
1 (u) ≥ β1u, u ∈ [0, x]

)

≥ Pδ1(ε),δ2(ε)

(

B0
1 >

∫ x

0

1

1 + β1u
du

)

Pδ1(ε),δ2(ε) (Qε,p
1 (u) ≥ β1u, ∈ [0, x])

= Pδ1(ε),δ2(ε)

(

B0
1 >

1

β1
log (1 + β1x)

)

Pδ1(ε),δ2(ε) (Qε,p
1 (u) ≥ β1u, u ∈ [0, x]) .

Since the distribution of B1 is assumed to have bounded hazard rate, the distri-

bution of B1 under the change of measure also has bounded hazard rate,

fδ1(ε),B1
(x)

Pδ1(ε)(B1 > x)
=

eδ1(ε)xfB1
(x)

∫∞
x

eδ1(ε)yfB1
(y)dy

≤ fB1
(x)

P(B1 > x)
≤M.

Hence,

− log Pδ1(ε)(B1 > a log x) =

∫ a log x

0

fδ1(ε),B1
(u)

Pδ1(ε)(B1 > u)
du ≤Ma log x,

for any constant a > 0, and for some constant M ∈ (0,∞). This implies that the

probability Pδ1(ε),δ2(ε)(V1 > x) behaves like eo(x).

Summarizing the above discussion, we obtain

lim inf
x→∞

1

x
log P(V1 > x) ≥ α2(δ2(ε)) − δ2(ε)(ρ2(δ2(ε)) + ε/2)

+ α1(δ1(ε)) − δ1(ε)(ρ1(δ1(ε)) + ε/2).

The remaining step is to let ε→ 0. Due to continuity and monotonicity of αi(·)
and ρi(·), we obtain in the first case δ2(ε) → δ2 = min(δ∗, δ(c)2 ), δ1(ε) → δ1 =

max(δ∗, δ(1−c)
1 ). This completes the proof of the lower bound. �
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6.5.3 Example: exponential flow sizes

In this subsection we determine the decay rate of the sojourn time distribution

in the system with exponentially distributed flow sizes. In this case, the cumulant

function can be computed explicitly,

αi(s) = λi(ΦBi
(s) − 1) = λi

(

µi

µi − s
− 1

)

, i = 1, 2.

The solution δ
(u)
i of equation

α′i(δ
(u)
i ) = λi

µi

(µi − δ
(u)
i )2

= u, u > 0, i = 1, 2.

is given by

δ
(u)
i = µi

(

1 −
√

ρi

u

)

, i = 1, 2,

yielding,

αi(δ
(u)
i ) = λi

(

µi

µi − δ
(u)
i

− 1

)

= λi

(√

u

ρi
− 1

)

, i = 1, 2.

Substituting the above expressions into Equation (6.28), we obtain

lim
x→∞

1

x
log P(V1 > x)

=















−
(√

λ1 −
√

(1 − u∗)µ1

)2

−
(√
λ2 −

√
u∗µ2

)2
, if u∗ < c,

−
(√

λ1 −
√

(1 − c)µ1

)2

−
(√
λ2 −

√
cµ2

)2
, if u∗ ≥ c.

(6.39)

Note that the decay rate of the sojourn time is determined as the sum of the decay

rate of the busy period in the M/M/1 system with capacity 1 − u∗ (1 − c) and the

class-1 flows and the decay rate of the busy period the M/M/1 system with capacity

u∗ (c) and the class-2 flows.

Assuming in addition µ ≡ µ1 ≡ µ2, we can obtain an explicit expression for the

value u∗. Solving equation δ
(1−u∗)
1 = δ

(u∗)
2 , we derive

u∗ =
ρ2

ρ1 + ρ2
, δ(u

∗)
= µ(1 −√

ρ1 + ρ2).

Substitution of these expressions into Equation (6.28) gives

lim
x→∞

1

x
log P(V1 > x)

=















−
(√
λ1 + λ2 −

√
µ
)2
, if ρ2 <

c
1−cρ1,

−
(√

λ1 −
√

(1 − c)µ
)2

−
(√
λ2 −

√
cµ
)2
, if ρ2 ≥ c

1−cρ1.

(6.40)
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The above equation implies that if µ1 = µ2 and u∗ < c, the decay rate coincides

with the decay rate in the M/M/1 system with a single traffic class with the arrival

rate λ1 + λ2 and the mean flow size 1/µ.

6.6 Open questions

We conclude this chapter by discussing directions for further research.

6.6.1 Class-2 asymptotics

In the present chapter we investigated the behavior of the sojourn times of class-1

flows in a two-link parking lot. An important question that has not been addressed,

concerns the large-deviations delay characteristics of class 2. At this stage we may

only conjecture the delay asymptotics.

Conjecture 6.6.1. Let u∗ be the solution of the equation (α′2)
−1(u∗) = (α′1)

−1(1−
u∗), that is

(

Φ
′
B2

)−1
(

u∗

λ2

)

=
(

Φ
′
B1

)−1
(

1 − u∗

λ1

)

,

and let δ∗ = δ
(u∗)
2 = δ

(1−u∗)
1 . Then,

lim
x→∞

1

x
log P(V2 > x) =







α1(δ
∗) + α2(δ

∗) − δ∗, if u∗ < c,

α2(δ
(c)
2 c) − cδ

(c)
2 , if u∗ ≥ c.

(6.41)

The conjecture can be motivated in the following manner. As discussed earlier

in Section 6.5, if the workload u∗ of class 2 in a tilted system is strictly less than the

capacity of link 2, the asymptotic behavior of the system coincides with the behavior

of a DPS link. Thus, the decay rates of both classes 1 and 2 are given by the decay

rate of the residual busy period when link 1 is critically loaded, cf. Theorem 4.5.1.

If the capacity constraint is binding, i.e. u∗ = c, then asymptotically class 2 behaves

as in a single-server PS system with capacity c unaffected by class-1 flows.

The crucial difference in the analysis of class 1 and class 2 is due to the difference

in the number of links they traverse. Since class-1 flows use link 1 only, it can be

analyzed as in a two-class single-link system. We note that the large-deviations

analysis in the previous section bears a strong resemblance to the derivations in

single-server PS and DPS systems (see [82] and Chapter 4). Class 2 in its turn

utilizes two links simultaneously, which in a large-deviations sense leads to two

different regimes: critical load on link 1 and on link 2. See also the conjecture for

networks with general topology in the next subsection.

The derivation of the upper bound for class 2 is significantly more involved in

comparison to class 1. While the rate allocation policy guarantees a certain mini-

mum rate to class-1 flows, it does not provide such protection to class 2. Further-

more, the presence of class-2 flows does not necessarily imply saturation of the root

link and can not guarantee work-conserving behavior of the network. For instance,
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the bound as in Equation (6.29) is not valid for the sojourn time of class 2. The

lower bound seems to follow naturally from the rate allocation policy. Due to the

capacity constraint, the departure rate of the class-2 flows is lower than in a PS

system with capacity c. Thus, the sojourn time in a PS system with traffic of class

2 provides one natural lower bound. The other lower bound may be derived by re-

moving the capacity constraint c at the second link. However, albeit the argument

is very intuitive, it seems difficult to make it rigorous. At this point we leave this

topic for future investigations.

6.6.2 More general networks

Although in the present chapter we focused on a two-link network, the heuris-

tics developed can be extended to networks with a more general topology. The

large-deviations analysis in the previous sections indicates that there are two main

scenarios that (in combination) can cause a large sojourn time in a system with

light-tailed flow sizes. These are (i) a large amount of work upon arrival of the

tagged flow and (ii) a large amount of work brought by other flows during the so-

journ time of the tagged flow. In a single-node PS system scenario (ii) dominates

the sojourn time large-deviations [82]. Based on the similar results derived in the

present chapter, we expect the same effect in more general networks.

Conjecture 6.6.2. Introduce the set Cj(α) = {δ ∈ R
I
+ :

∑I
i=1Ajiα

′
i(δi) ≤ Cj},

j = 1, . . . , J. Then, for all k = 1, . . . , I,

lim
x→∞

1

x
log P(Vk > x) = max

j:Ajk=1
sup

δ∈Cj(α)

I
∑

i=1

Aji (αi(δi) − α′i(δi)δi) . (6.42)

In plain words, we conjecture that the most probable way for a large sojourn

time to occur is due to a critical traffic load at a link on its route. The sojourn time

decay rate can be viewed as the minimum of the per-link decay rates when each link

is viewed in isolation. The per-link decay rate is a sum of the decay rates of the

flows of all the classes which share the link in such a way that their total load or

equivalently, the total rate allocation does not exceed the link capacity. The decay

rate is fully determined by the distributions of the arrival process and the flow sizes.

In the case of a two-link parking lot, I = 2, J = 2, the conjecture takes the

following form. Take k = 1. Since class 1 uses link 1 only, we have

lim
x→∞

1

x
log P(Vk > x) = sup

δ∈C1(α)

(α1(δ1) − α′1(δ1)δ1 + α2(δ2) − α′2(δ2)δ2), (6.43)

with C1(α) = {δ1, δ2 > 0 : α′1(δ1) + α′2(δ2) ≤ 1, α′2(δ2) ≤ c}, which after the

optimization procedure gives exactly (6.28). For k = 2, we have

lim
x→∞

1

x
log P(Vk > x) = max{γ1, γ2}
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where

γ1 = sup
δ∈C1(α)

(α1(δ1) − α′1(δ1)δ1 + α2(δ2) − α′2(δ2)δ2),

γ2 = sup
δ2∈C2(α)

(α2(δ2) − α′2(δ2)δ2), C2(α) = {δ2 > 0 : α′2(δ2) ≤ c}.

This result is consistent with Conjecture 6.6.1

A rigorous proof for a general topology and general rate allocation policy is very

challenging. The first crucial step is to verify that scenario (i) has little effect on

the delay asymptotics. In principle, this task requires the knowledge of the steady-

state workload distribution. In our proof for the two-link network, we succeeded to

eliminate the problem by deriving sufficiently sharp upper bounds for the workload

which allow for the large-deviations derivations. This approach may be extended in

a straightforward manner to different network topologies with the proportional fair

rate allocation which in consequence may lead to the large-deviations asymptotics.

Another important issue is the non-work-conserving nature of the network. It

significantly complicates the analysis even in networks with a simple topology, see

the discussion in the previous subsection.

An important role in the proof is played by the insight that for bandwidth-

sharing networks under overload the queue length increases roughly at a linear

rate. For the two-link parking lot network, we have proved in Section 5.6 using a

fluid-limit approach that the number of flows grows at least at a linear rate if the

stability conditions are not satisfied. An appropriate change of measure and the

fluid-limit result enabled us to derive the asymptotic lower bound. Unfortunately

such results are only available for a certain class of networks and overload conditions,

see Chapter 5.
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[11] Ben Fredj, S., Bonald, T., Régnié, G., Roberts, J.W. (2001). Statistical band-

width sharing: a study of congestion at flow level. In: Proceedings of ACM
SIGCOMM, San Diego, 111–122.

155



156 BIBLIOGRAPHY

[12] Ben-Tal, A., Nemirovski, A. (2001). Lectures on Modern Convex Optimization.
MPS-SIAM Series on Optimization, SIAM, Philadelphia.

[13] Van den Berg, J.L. (1990). Sojourn Times in Feedback and Processor-Sharing

Queues. PhD Thesis, Utrecht University.
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Summary

The processor-sharing discipline was originally introduced as a modeling abstraction

for the design and performance analysis of the processing unit of a computer system.

Under the processor-sharing discipline, all active tasks are assumed to be processed

simultaneously, receiving an equal share of the server capacity. Various extensions

of the basic egalitarian discipline have been developed in order to capture scenarios

with heterogeneous service shares and network settings. Over the past several years,

the processor-sharing discipline has received renewed attention as a powerful tool

in modeling and analyzing dynamic bandwidth sharing among elastic transfers in

communication networks like the Internet.

The sojourn time of a customer, i.e. the amount of time a customer spends in the

system from his arrival until his service completion, is the most important perfor-

mance measure for processor-sharing systems. In this monograph we study various

asymptotic properties of the sojourn time distribution. The advantage of consid-

ering the asymptotic behavior is that the analysis often provides insight into the

typical scenario for a long sojourn time to occur. Moreover, the resulting asymp-

totic formulas can be used for approximate analysis, providing accurate estimates in

situations where numerical procedures become unreliable. In order to analyze the

sojourn time asymptotics, we apply several probabilistic and analytic techniques,

such as Laplace transforms, branching arguments, large-deviations methods and

fluid limits.

The main focus in this thesis is on the PS queue where the service time has a

light-tailed distribution. This case has received relatively little attention compared

to the case of heavy-tailed distributions. Exact asymptotics (of highly uncommon

and interesting form) were only available for the M/M/1 queue and were obtained

by analytical methods that did not provide insight into the nature of the underlying

rare event.

In Chapter 2 we analyze the asymptotic behavior of the sojourn time distribution

in the classical single-node PS queue. We derive exact tail asymptotics for the

sojourn time distribution in the queue with Poisson arrivals and deterministic service

times. The proof involves a geometric random sum representation of the sojourn

time, and a connection with Yule processes. Numerical experiments demonstrate a

remarkable accuracy of the asymptotic approximation.

In Chapter 3 we consider the M/G/1 queue, and investigate the tail behavior

of the sojourn time distribution for a request of a given length. An exponential
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asymptote is proved for general service times in two special cases: when the traffic

load is sufficiently high and when the request length is sufficiently small. Using the

branching process technique, we derive exact asymptotics of exponential type for

the sojourn time in the M/M/1 queue. We study the accuracy of the exponential

asymptote using numerical methods.

In Chapter 4 we study the GI/GI/1 queue operating under a PS discipline with

stochastically varying service rate. The focus is on logarithmic estimates of the

tail of the sojourn time distribution, under the assumption that the service time

distribution has a light tail. The analysis in this chapter relies predominantly on

large-deviations techniques. Furthermore, we extend our results to a similar system

operating under the discriminatory processor-sharing discipline.

In Chapters 5 and 6 we analyze the behavior of alpha-fair bandwidth-sharing

networks which can be regarded as generalizations of a processor-sharing discipline

from a single node to a network with several shared links. In Chapter 5 we focus on

an overload scenario where the traffic load on one or several of the links exceeds the

capacity. In order to characterize the overload behavior, we examine the fluid limit,

which emerges from a suitably scaled version of the number of flows of the various

classes. We derive a functional equation characterizing the fluid limit. We show

that any strictly positive solution must be unique, which in particular implies the

convergence of the scaled number of flows to the fluid limit for nonzero initial states

when the traffic load is sufficiently high. In addition, we establish the uniqueness

of the fluid limit for networks with a tree topology. For the case of a zero initial

state and zero-degree homogeneous rate allocation functions, we show that there

exists a uniquely determined linear solution to the fluid-limit equation, and obtain

a fixed-point equation for the corresponding asymptotic growth rates. The results

are illustrated for parking lot, linear and star networks as important special cases.

We briefly discuss extensions to models with user impatience.

In Chapter 6 we derive the asymptotics for the sojourn time distribution in a

specific type of bandwidth-sharing network: a parking lot network. Such networks

can be practically useful in modeling access networks consisting of several multi-

plexing stages. Using large-deviations techniques and the fluid-limit results from

Chapter 5, we obtain the logarithmic asymptote under the assumption that flow

sizes have a light-tailed distribution. In addition, we derive stochastic bounds for

the number of flows and the workload in the system.
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