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Chapter 1

History and Overview

This thesis deals with algebraic aspects of cryptography, with as main topics of interest
secure message transmission and secure multi-party computation. The overview in
this chapter provides the historical context for the research that is presented in this
work.

1.1 Secure Communication

Historically, cryptography was exclusively concerned with securely communicating
messages in the presence of an adversary. As an illustration, one can consider the
historical setting where all message transmission was still being performed by couriers.
Couriers carrying messages are typically vulnerable to interception by enemy forces, so
extra means were necessary to ensure that capturing a courier would not automatically
expose the contents of the message he was carrying. The approach was to ‘scramble’
any message in advance, in such a manner that no-one intercepting the message would
be able to undo the scrambling operation and determine the contents of the original
message. To make such a method work, the scrambling method needs to be reversible
and known exclusively by the sender and the intended receiver of the message.

It is known that Julius Caesar used such a scrambling method to communicate
sensitive messages. This fact is well-preserved due to a set of biographies on the lives
of twelve successive Roman rulers called “De Vita Caesarum” written by Suetonius.
The system used by Caesar is commonly referred to as the Caesar cipher and works
as follows. Encryption (as scrambling is called nowadays) proceeds by shifting all
letters in the message three positions forward in the alphabet, for example turning
any occurrence of ‘A’ into a ‘D’ and the letter ‘Z’ into a ‘C’. To decrypt an encrypted
message, the receiver just reverses the shifts. Key to the security of this system was
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Chapter 1. History and Overview

the fact that no outsider knew what technique was used to encrypt the messages,
while it of course also helped that very few people knew how to read in the first place.

Encryption schemes have undergone an important conceptual improvement. In
the early days the security of the message was achieved by keeping the encryption
scheme private, and could be made substantially easier to break if any details about
the scheme managed to leak out. This is a particularly important issue when the
encryption method becomes automated, as is demonstrated by numerous examples of
systems that were broken during the second world war after the other side managed
to obtain one of the encryption devices. The improvement is that nowadays good
encryption schemes are made public, but are keyed in such a way that every distinct
possible key leads to a distinct encryption method. In a sense this corresponds to
having a large range of encryption methods of which a random one is privately used
to perform the actual encryption.

Applying this idea to the Caesar cipher, for example, one obtains a more flexible
scheme when one considers the range of schemes corresponding with different numbers
of shifts. Even when the shifting mechanism is made public, there are still 23 possible
shifts that might have been applied, and if arbitrary letters have been added to the
original text it can be quite some work to figure out which of these has been applied.
Of course this particular trick is of fairly limited use now with the availability of
high-powered computers, but it does demonstrate the general idea.

The idea of making the range of encryption methods public while only relying
on the knowledge of the key for security is known as Kerckhoffs’ principle, due to a
publication on encryption written by the Dutch linguist and cryptographer Auguste
Kerckhoffs in the 19th century. This approach has several advantages, as it usually
leads to easier to analyze encryption schemes and allows to create (physical) imple-
mentations of encryption schemes, requiring a key to operate, that do not allow the
scheme to be broken by reverse engineering the implementation.

In order to make an encryption scheme useful, it is necessary that the probability
of guessing the correct key can be made arbitrarily small. This is particularly made
difficult by the current state of the art of hardware, that allows to try out many keys
in sequence in a short amount of time. Such hardware can at very high speed check
whether a decryption under a certain key leads to a message that is likely to be the
original message.

The obvious solution to bypass this problem is to make the set from which the key
is chosen very large, which makes the chance of trying the correct key very small. As
an extreme example, assume that we modify the Caesar cipher in such a way that every
position in the text obtains its own unique shift, where we even allow the ‘zero-shift’
that leaves letters unchanged. If the shift for every position is chosen independently
from the other positions and uniformly at random, the scheme becomes unbreakable
as long as the chosen shifts remain completely private and the selected shifts are only
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1.1. Secure Communication

used to encrypt once. This is easy to see, as every letter in the message can potentially
map to any letter in the encrypted text without any correlation between the letters.
This system, which is a variant of the one-time-pad cryptosystem, in fact provides
perfect security. However, note that in order to use the scheme, the ‘key’ consisting
of the specific shifts to be used has to be at least as long as the message that is to be
transmitted, it needs to be exchanged before use and a new such key has to be used
every time an encryption is required.

At the time of World War II, encryption systems had become more sophisticated.
In particular, encryption and decryption procedures had become so complex that
special equipment was required to perform these operations efficiently. Furthermore,
the schemes were designed in such a way that secret keys could be reused with a
limited decrease in security between uses. However, exchanging secret keys securely
remained a sensitive problem.

In 1948, a couple of years after the end of the war, Shannon published a landmark
paper founding information theory [67]. This theory formed a mathematical basis for
the study of communication under the presence of noise or an interfering adversary.
As a corollary of this theory it turned out that in order to encrypt a message with
perfect security, the key needs to be at least as long as the message. This demonstrates
that, when one requires perfect security, the one-time-pad is essentially optimal.

As first discovered in 1993 by Maurer [58], one can circumvent this restriction
on the key-length by embracing non-perfect security, which allows for a small error
probability. Essentially, the best one can hope for is an encryption system for which
the error probability and the level of security scale with the length of the secret key.
To alleviate the key-exchange problem, the key for such a scheme should additionally
be reusable with only a negligible decrease in security between uses.

Another important problem in secure communication is authentication. Authen-
tication provides a means to let a recipient of a message verify that the message has
originated from a specific sender. Authentication is often established by techniques
that let the sender add a message-dependent stamp to the message, called a signature.
Note however that signatures typically have the stronger property that the originator
of the message can be verified by anyone rather than just the recipient of the message.

In 1976, Diffie and Hellman [27] provide a solution to the seemingly paradoxical
problem that a secret key needs to be communicated securely before the key can
be used to establish secure communication. The solution they provide relies on the
assumptions that the computational power of the adversary is bounded and that
the parties involved are able to provide authentication. As such, it is in essence a
technique to bootstrap message secrecy during communication from authentication.

In their work Diffie and Hellman additionally propose a new paradigm, called
public-key cryptography. In public-key cryptography, every participant holds both a
public key and a private key, where the private key is kept secret and the public
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Chapter 1. History and Overview

key is accessible by everyone. When anyone needs to privately send a message to a
participating receiver he simply encrypts the message using the corresponding public
key. The receiver is then able to decrypt the message using his matching private key,
while the message remains private with respect to everyone else. Diffie and Hellman
furthermore demonstrate a general method that allows public-key cryptosystems to
be used to create signatures.

Shortly after Diffie and Hellman’s publication, in 1978, Rivest, Shamir and Adle-
man [62] published the very first public-key encryption scheme, based on the hardness
of factoring, which is now known under the name RSA. It is worthwhile to note that
it has since been claimed that the idea of public-key encryption had already been de-
veloped by Ellis in 1969 and that a first version of the RSA protocol had already been
discovered in 1974 by Cocks, both at the time working at the top-secret Government
Communications Headquarters (GCHQ) in Cheltenham, Great Britain. Due to the
classified nature of the establishment the work had been kept secret until 1997.

The solutions for encryption and authentication mentioned thus far all rely on at
least one out of two assumptions, i.e., that there is a method available to exchange
secret keys prior to communication and/or that certain computational restrictions on
the adversary hold. There are two other lines of work that we only briefly mention
here.

In the bounded storage model, which was coined by Cachin and Maurer [10], one
assumes a given limit on the storage capacity of the adversary. In its simplest form,
the model involves a random source broadcasting massive amounts of data, where
the sender, receiver and adversary are listening in on the source. The sender and
receiver agree on a small number of indices that indicate which elements broadcast
by the source will be used to construct a secret key. Since the adversary does not
know which elements are relevant, the best approach for an attack is to store as much
of the broadcast data as possible with the goal of computing (part of) the secret key
later. However, since the adversary is swamped with information, such an attack
quickly becomes infeasible. It is worth noting that since the sender and receiver need
only listen in on a small part of the broadcast, they only require very small storage
capacity. Following this initial setting, the theory of communication in the bounded
storage model has further advanced, and requires increasingly advanced information
theory.

In the model of quantum cryptography one assumes the laws of quantum mechanics
hold. One particularly useful aspect of quantum mechanics is that it is impossible to
observe quantum states without disturbing them. When one designs quantum com-
munication protocols correctly, this enables the sender and receiver to detect such
disturbances caused by an eavesdropper, which allows them to achieve secure com-
munication. Some quantum cryptography, such as the key-exchange system due to
Bennett and Brassard [7], is already used in practice and in particular several im-
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plementations of quantum communication systems are already sold on the market.
However, these systems still suffer from some technical limitations. For instance, they
are not yet wireless and currently have a maximum achievable communication range.
It is worth noting that the most important computational problems that are currently
used for encryption, such as the hardness of factoring and the discrete log problem, are
in principle efficiently solvable on a quantum computer. Although some very small-
scale quantum computers already exist, allowing to store up to a maximum of ten
qubits in memory, there still remains a lot of research to be done concerning the fea-
sibility of large scale quantum computers. Damg̊ard, Fehr, Salvail and Schaffner have
recently published a paper considering the bounded quantum storage model [26], that
allows to essentially combine the advantages of the two namesakes of the model when
quantum states are communicated and the adversary is only able to store (without
observing) a very limited number of intercepted states.

In 1993, Dolev, Dwork, Waarts and Yung [29] introduce a different assumption that
does away with the need for computational assumptions or an a priori key-exchange.
In the model they consider multiple disjoint communication channels are available,
as opposed to the classical model where only one communication channel is assumed.
The protocols for this model are then required to be secure as long as only a limited
number of the channels is unsafe during the protocol execution, where the required
security can be either perfect or statistical (i.e, allowing a small error probability). In
both cases perfect privacy for the message is required, but in the statistical case an
arbitrarily small probability is allowed for the case that the protocol fails to transmit
the message. The work of Dolev et al. has since set off an entire line of research.

Although it is not currently commonplace in practice to employ multiple commu-
nication channels in order to boost security and such an approach does require ad-
ditional communication, it is not an unreasonable assumption given the many types
of communication channels that are already available now. For instance, anyone can
nowadays make more or less simultaneous use of the Internet, a telephone connection,
the post office and a private courier, where most of these types of communication are
unlikely to cross each others path at a mutual vulnerable point along the way. More
importantly, since protocols in this model achieve perfect security without reliance on
any computational assumption, they are guaranteed to remain useful regardless of ad-
vancements in computational power or the potential future rise of quantum computers
with large enough memory.

1.2 Secure Computation

In the previous section we described how research in secure message transmission
allows to combat passive eavesdropping or active interference on one or more com-
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Chapter 1. History and Overview

munication channels between two transmitting parties. We for now assume that this
problem has been resolved, providing either computational or information theoretical
security, resulting in secure and authenticated channels between any two parties that
wish to transmit messages to one another. This removes any concern communicating
parties might have for an outside intruder.

A question one can also ask however, is how to provide security against an inside
intruder, i.e., an adversary that takes control of some of the parties involved in a joint
computation process. In this case the parties we have to defend against are an integral
part of the computation and cannot be simply shut out unless it is certain they are
corrupted. This is a fundamentally different problem from secure communication,
where we try to prevent the adversary from taking part in the communication in
the first place, and as such requires fundamentally different techniques. Research in
secure computation considers this problem in its full generality.

To be more precise, secure computation takes place in the following setting. There
are n parties p1, p2, . . . , pn, usually referred to as players, that each hold their own
respective private input vector ~yi consisting of a finite number of elements from a
finite field Fq for i = 1, 2, . . . , n. Furthermore, there is an adversary that can take
control of some of the players in the network, which are then said to be corrupted. The
adversary can be passive, only reading the information obtained by corrupted players,
or active, additionally taking full control of the actions of the corrupted players.
Informally stated, the goal of secure computation is for the players to determine the
function value of some given function F applied to their inputs under the presence
of the adversary, while keeping the inputs ~y1, ~y2, . . . , ~yn as private as possible and
guaranteeing correctness of the output.

A better way to describe this functionality is by way of a Gedankenexperiment
where the players have access to some incorruptible, fully trusted mediator. In this
setting, all players can simply send their inputs to the mediator using a secure channel.
The mediator then computes the function value and sends it back to all of the players.
Clearly, the only way for a player to disturb such a computation is to not provide
any input at all. Furthermore, no collusion of players learns anything besides their
own inputs, the output and anything that can be deduced from these values. Secure
computation attempts to emulate the mediator when it is not available.

The problem of secure computation was first introduced and solved in 1982 by
Yao [78] for the two-party case, where at most one player can be corrupted by a
passive adversary, assuming the hardness of factoring large integers. The technique
used is known as Yao’s garbled circuit and involves a computation circuit for the
function F where all inputs and outputs in the circuit are encrypted. The idea is
that one party, called sender, constructs the circuit and that the other party, called
receiver, only receives decryption keys corresponding to the inputs of the sender and
the receiver. This allows the receiver to decrypt keys corresponding to gate outputs
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1.2. Secure Computation

in the circuit in a step-wise fashion until he in the end learns the output of the circuit
computed on the inputs. If needed, the sender and receiver can then reverse roles so
that both learn the correct output.

In 1987, Goldreich, Micali and Wigderson [38] demonstrate that if players are in
a communication network where the adversary can corrupt only a minority of the
players, then the players can compute any function securely even if the adversary is
active. We note that the adversary is assumed to be static, which means that he has to
select all the players to control at the start of the computation. When the adversary
can select additional players dynamically during the computation, the adversary is
called adaptive. To achieve their result, Goldreich et al. need to use an intractability
assumption, but the crucial conceptual aspect that allows Goldreich et al. to move
from security against a passive adversary to security against an active adversary is
the use of zero-knowledge.

A zero-knowledge protocol is a protocol that allows one party, the prover, to
convince another party, the verifier that he holds a witness to an NP-statement
without leaking anything related to the witness to the verifier. For instance, the
witness might correspond with the factorization of a large composite number that is
the product of two primes, a secret key, or a proof of some complex mathematical
theorem.

Instead of making the witness public, the prover and verifier execute an interactive
protocol based on a circuit verifying the witness, where the verifier sends the prover a
series of randomized challenges that the prover should be able to answer if he indeed
holds the witness. On the other hand, if the prover does not hold the witness, he
can only answer a challenge correctly with some constant probability. Due to the
randomization used for the challenges, the outcomes are statistically independent of
the witness.

The concept of zero-knowledge protocols was first introduced in 1985 by Gold-
wasser, Micali and Rackoff [40]. In their article, they give a first example of a zero-
knowledge protocol for a particular mathematical language related to the quadratic
residuosity problem. Goldreich, Micali and Wigderson [39] extend the technique to
all languages in the NP-complexity class by demonstrating a zero-knowledge proof
technique for the NP-complete problem of Boolean circuit satisfiability. Goldreich et
al. [38] then use these techniques to let players prove in zero-knowledge that they
execute the steps of their multi-party computation protocol correctly. Canetti, Feige,
Goldreich and Naor [12] later extended the multi-party computation result of Goldre-
ich et al. to deal with adaptive adversaries.

The security level of the secure computation protocols above is computational, as
the security of the protocols relies on some computational intractability assumption
(for instance the computational difficulty of factoring large integers). It is also possible
to design protocols that are secure without reliance on a computational intractability
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assumption, which are called unconditionally secure. Unconditionally secure proto-
cols can handle adversaries with arbitrary computing power and in particular remain
secure against an adversary having access to the strongest possible quantum com-
puter. Often unconditionally secure protocols involve a small error probability; when
the error probability is nonzero these protocols are said to be statistically secure,
otherwise they are called perfectly or information-theoretically secure.

In the communication model for the unconditionally secure protocols every pair
of players is connected by an authenticated information-theoretically secure commu-
nication channel, where the communication-network is synchronized and the players
have a broadcast channel available that allows to transmit a message to all players
at once. This model is known as the secure channels model for secure computation.
A broadcast channel is not always required as a separate assumption in the model,
as Lamport, Shostak and Pease [52] have shown that one can be simulated when less
than one-third of the players can be corrupted.

We now discuss the results on perfectly secure multi-party computation protocols,
i.e., protocols that are unconditionally secure and have a zero-error probability. The
remarkable fact that protocols exist that are secure without computational intractabil-
ity assumptions was independently proven by Ben-Or, Goldwasser and Wigderson [4]
and Chaum, Crépeau and Damg̊ard [14]. Their results demonstrate that n players
can compute any function perfectly securely against an adversary corrupting up to t
players if and only if t < n/2 when the adversary is passive and if and only if t < n/3
when the adversary is active. In the more general setting where the set of corrupt
players can be any arbitrary set in some predefined list, called the adversary struc-
ture, Hirt and Maurer [42] demonstrate that perfectly secure protocols exist when the
adversary is passive (active) if and only if no two (respectively no three) sets in the
adversary structure cover the whole player set. These properties on the adversary
structure are known as the Q(2) and Q(3) property respectively.

Cramer, Damg̊ard and Maurer [23] initiate a mathematical theory for secure com-
putation by demonstrating that one can use any linear secret sharing scheme with a
Q(2) (Q(3)) adversary structure to enable perfectly secure multi-party computation
against a passive (active) adversary. This is done by transforming any linear secret
sharing scheme into a scheme that has an important structural property called mul-
tiplicativity, combined with a general technique that allows to build perfectly secure
multi-party computation protocols against a passive adversary from multiplicative
linear secret sharing schemes.

Similarly, Cramer et al. describe how to transform linear secret sharing schemes
into schemes with a stronger structural property called strong multiplicativity. Such
schemes are then in turn used to construct verifiable secret sharing schemes. Veri-
fiable secret sharing schemes guarantee share consistency and unique reconstruction
in the presence of an active adversary and are a key primitive used to construct
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perfectly secure multi-party computation protocols against an active adversary. Al-
though constructing perfectly secure multi-party computation protocols against an
active adversary from strongly multiplicative linear secret sharing schemes can be
done efficiently, it remains an open question whether such an efficient construction
exists from linear secret sharing schemes with a Q(3) adversary structure in general.
However, if one allows for an error probability and the adversary structure of the
linear secret sharing scheme is Q(2), there indeed exists an efficient construction for
such protocols.

Although Cramer, Damg̊ard and Dziembowski [22] have shown that it is not pos-
sible in general to use arbitrary secret sharing schemes to construct secure multi-party
computation protocols, linear secret sharing is now considered to be a fundamental
primitive of any unconditionally secure multi-party computation protocol. Essen-
tially, in these protocols secret sharing can be seen as a distributed encryption func-
tion on the inputs. Since any function can be represented by an arithmetic circuit
over the inputs consisting of addition and multiplication gates, the specification of
a secure multi-party computation protocol merely needs to include a description of
the dynamic operations on the encryptions that correspond with addition and mul-
tiplication of the encrypted values. A secure multi-party computation then proceeds
by recursively applying these operations to the encryptions while traversing over the
arithmetic circuit.

More specifically, secret sharing schemes allow to distribute shares in a secret value
among a number of players in such a way that certain subsets of players can determine
the secret value by pooling their shares and certain subsets of players cannot obtain
any information on the secret value based on their collective shares. Any subset of
players that can determine the secret is said to be accepted and any subset of players
that cannot obtain any information about the secret is said to be rejected.

Secret sharing schemes exist for any player set in which the accepted and rejected
subsets do not overlap and are monotonous, i.e., any subset of players that contains
an accepted set is also accepted and any subset of players that is contained in a
rejected set is also rejected. This corresponds with the intuition that adding more
shares cannot reduce the amount of information on the secret and removing shares
cannot increase the amount of information on the secret.

Although perfectly secure multi-party computation protocols are theoretically ef-
ficient in terms of the amount of required communication and computation, they are
fairly costly in practice. This is mainly due to the fact that general multi-party com-
putation protocols operate on a gate-by-gate basis in the arithmetic circuit of the
given function. Furthermore, it is not yet known which functions in this model can
be computed efficiently using a constant number of rounds, although it is known that
this is the case for algebraic formulae [2], functions in non-deterministic logspace and
some related counting classes [32, 46, 47, 3]. Completing this classification is in fact

11
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one of the big open problems in secure computation.
Franklin and Yung [34] make multi-party computation protocols practically more

attractive by introducing a technique that allows to simultaneously compute a given
function on many inputs at the price of a single function value computation. The
cost reduction one achieves with this method is amortized, since it only occurs when
multiple computations can be combined.

Hirt, Maurer and Przydatek [43] introduce player elimination, which allows to
remove corrupted players during the run of a protocol. Part of the protocol needs to
be rerun after every elimination, but since the protocol continues with less players
the communication required is reduced throughout the remaining execution. It is
important to note Hirt et al. do not assume a broadcast channel to be available and
include the cost of simulating a broadcast to the communication complexity. In this
model and using a proper distribution of the detection stages within the protocol,
Hirt et al. achieve an amortized cost reduction in the total communication required
for multi-party computation that is cubic in the number of players.

Chen and Cramer [15] show how the inherent structure of algebraic-geometric
codes allows to use them to construct strongly multiplicative linear secret shar-
ing schemes. By additionally selecting a suitable family of underlying curves these
schemes can be defined over smaller, or even constant-sized fields. The idea is to
select algebraic curves with a high ratio between the number of points on the curve
and the genus of the curve, such as those designed by Garcia and Stichtenoth [36].
These curves can have a number of points that is much larger than that of the un-
derlying finite field, which allows for a larger number of players in the secret sharing
scheme. This is due to the fact that every player is required to be linked to a dis-
tinct point. Furthermore, since the ratio mentioned is high, the resulting scheme can
achieve parameters that are comparable to those achieved in previous schemes where
the finite field is required to grow with the number of players. Applying the results of
Cramer, Damg̊ard and Maurer [23] this leads to multi-party computation protocols
where the communication consists of elements in a small or constant-sized field. This
allows to reduce the communication required for secure multi-party computation by
a logarithmic factor in the number of players compared to previous schemes.

Applications of Secure Multi-Party Computation

By their general nature, secure multi-party computation techniques have many po-
tential applications. To emphasize and give a general intuition of this fact, we now
list two striking examples of recent applications, where one is theoretical and one is
of a practical nature. Additionally, we briefly hint here at some promising potential
future applications.

Low-Communication Zero-Knowledge from MPC. In their remarkable 2007
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paper, Ishai, Kushilevitz, Ostrovsky and Sahai [48] describe a theoretical applica-
tion for perfectly secure multi-party computation protocols. The authors construct
a zero-knowledge protocol for the NP-complete problem of circuit satisfiability that
asymptotically only requires O(1) communication for each gate in the circuit. This
improves the previously known best communication complexity of O(k) for each gate
due to Cramer and Damg̊ard [20], where the tolerated error probability is 2−k, and
is expected to be optimal.

The result is achieved due to introduction of the novel concept of constructing
zero-knowledge protocols from perfectly secure multi-party computation protocols. In
the paper of Ishai et al., the prover executes in his mind a perfectly secure multi-
party computation where the witness is split up into inputs for the players and where
the circuit is such that it outputs 1 if the witness is correct and 0 otherwise. After
finishing the execution of the mental game, the prover then commits himself to the
view of every player consisting of its input, used randomness, incoming messages and
outgoing messages, where each commitment both binds the prover to the correspond-
ing view while hiding it unless the commitment is opened. The verifier then selects a
suitable number of players at random and is allowed to see their views. The privacy
requirements of the multi-party computation protocol ensure that all other inputs
remain private, so that the witness also remains private, while a dishonest prover is
detected with some constant probability.

Since the zero-knowledge protocol involves sending views of players to the verifier,
which includes all transmissions from and to the player, the protocol becomes more
efficient as the underlying multi-party computation protocol becomes more efficient.
The best results obtained in the paper use the latest state-of-the-art techniques in
general multi-party computation including the low-communication multi-party com-
putation techniques based on algebraic-geometric codes on algebraic curves due to
Chen and Cramer [15].

Secure Multi-Party Computation in Practice. Even though most of the inter-
est in multi-party computation has been theoretical, a large-scale real-life practical
application of the multi-party computation techniques has recently appeared in Den-
mark [31]. Due to reduced support for sugar beet production from the EU, it became
important to allocate production contracts to Danish beet farmers in the most cost-
effective way. It was decided that the best method of distributing the contracts would
be via a nation-wide double-auction, where the sugar buyers specify for a range of
prices how much sugar they would like to buy at every possible price and the beet
farmers specify how much they are willing to produce at every possible price. Based
on this the market clearing price is determined, the price at which the demand equals
the supply, and contracts are distributed based on the amounts listed for the market
clearing price.
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A problem with this approach is that the sugar beet farmers do not sufficiently
trust Danisco to handle the auction alone. On the other hand, Danisco sometimes
uses sugar beet contracts as security for farmer debts and therefore might not find
it acceptable to let the farmer’s union handle the auction. This type of problem,
where trust between parties is an important obstacle, is a natural setting in which
multi-party computation techniques can be applied.

In this case multi-party techniques could indeed be used to provide an elegant
solution, where the introduction of a neutral third party allowed to handle the auction
without giving any of the parties involved too much control. The first auction based
on these techniques was held successfully in 2007.

Promising Future Applications. Benchmarking is a method for two or more com-
panies to compare their operational statistics, thus giving an indication of how well
they are doing compared to their competitors. Although benchmarking is becoming
more prominent, the precise statistics that need to be compared are typically sensitive
enough that they need to remain private. Therefore, benchmarking is currently han-
dled by trusted commercial third parties that get to compare all the actual statistics
under some stringent privacy conditions. Multi-party computation techniques would
allow to remove the commercial third party, thus removing the attached hiring cost
and removing the risk of information leakage.

Another natural application for multi-party computation is electronic voting. Sev-
eral multi-party computation-based voting systems have already been developed in
the past, and some initial experimentation with these systems has already occurred.
For instance, in 2006 French citizens living abroad already had their first opportunity
to vote electronically. As the availability of internet access steadily increases, more
wide-spread use of electronic voting is likely to occur.

1.3 Contributions

The main contributions of this work concern the areas of secure message transmission
and secure multi-party computation and are listed below.

1.3.1 Perfectly Secure Message Transmission

We study the perfectly secure message transmission problem introduced in 1992 by
Dolev, Dwork, Waarts and Yung. Our main contributions with regard to this problem
are two-fold. First, we present all relevant known bounds and main ideas from the
literature in a historical overview, which as a result makes the literature on this topic
significantly more accessible.
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Second, we prove that the known lower bound on the minimum required commu-
nication overhead, in the setting where two communication phases are tolerated, is
in fact achievable. Soon after the publication of this result in [1], it has been proven
that one cannot break this lower bound by allowing additional communication phases.
Thus, effectively our result solves the perfectly secure message transmission problem.

As an interesting twist, we furthermore demonstrate that there nevertheless is
motivation to consider perfectly secure three-phase protocols. More precisely, we
demonstrate that when the adversary is expected to remain passive most of the time,
there exist perfectly secure three-phase protocols in settings where perfectly secure
one-phase protocols do not exist that most of the time complete their transmission
after a single communication phase.

1.3.2 Perfectly Secure Multi-Party Computation

We initiate a theory for ramp schemes, which can be seen as a generalization of the
concept of linear secret sharing scheme. After redefining (strong) multiplicativity
for the ramp scheme setting, we then design various (strongly) multiplicative ramp
schemes that circumvent a number of important limitations on previously known
(strongly) multiplicative linear secret sharing schemes. In particular, we design fam-
ilies of ramp schemes for which the field size can be kept constant, as opposed to
previous schemes where the field size needed to grow with the number of players.

To be more precise, we consider “almost-threshold” ramp schemes that, for two
given thresholds t and r, reject all subsets of the player set of size at most t and
accept all subsets of the player set of size at least r. These schemes are studied using
two distinct technical approaches.

First, we demonstrate the existence of good multiplicative ramp schemes using
general coding theory [17]. This entails a fundamentally new method of construct-
ing multiplicative schemes, as these schemes are traditionally constructed based on
polynomial evaluation. By linking our new approach with a Gilbert-Varshamov type
theorem that allows to estimate the parameters of a randomly selected code, we
demonstrate the existence of infinite families of multiplicative ramp schemes with
near-optimal parameters that can be defined over constant-sized fields. This mimics
the effect that Chen and Cramer achieve using algebraic geometry for strongly multi-
plicative schemes, but using much more accessible techniques. Furthermore, we give
a general construction for high information rate ramp schemes from error correcting
codes that can be seen to encapsulate all ramp schemes and propose two explicit
methods for constructing high information rate ramp schemes for any fixed choice of
parameters.

Second, we introduce a new class of strongly multiplicative ramp schemes based on
techniques from algebraic geometry [21, 16]. These schemes in fact embody the second
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class of almost-threshold strongly multiplicative ramp schemes known in the litera-
ture, with the first one being represented by the technically similar algebraic-geometric
class of strongly multiplicative ramp schemes introduced by Chen and Cramer and
its well-known classical special cases. Finding other classes of strongly multiplicative
ramp schemes is still a wide open problem in secure multi-party computation.

We then conclude with a brief overview of the techniques that are needed to con-
struct perfectly secure multi-party computation protocols from multiplicative ramp
schemes. Since similar techniques are well-known for the special case of multiplicative
linear secret sharing schemes, we mainly give the explicit details on how to construct
protocols secure against a passive adversary here and restrict ourselves to a brief de-
scription of the additional techniques required in the more general setting of ramp
schemes for the active case.
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Chapter 2

Preliminaries

In this chapter we provide an overview of some of the basic theory relevant to the
results in this thesis. The first part consists of some classical facts on coding theory
and algebraic geometry, as well as some more recent advanced results originating
from the interaction between algebraic geometry and coding theory. The second part
consists of an overview of relevant definitions and results on secret sharing, as well as
some more specialized results.

2.1 Basic Coding Theory

Let F be a finite field.

Definition 1. The Hamming weight wH(~x) of a vector ~x = (x1, x2, . . . , xn) ∈ Fn is
the number of non-zero positions in ~x, i.e.,

wH(~x) = #{i | xi 6= 0}.

Definition 2. The distance d(~x, ~y) between two vectors ~x, ~y ∈ Fn is the number of
positions in which ~x and ~y differ, i.e.,

d(~x, ~y) = wH(~x− ~y).

Definition 3. For a subspace {~0} ( C ⊂ Fn, the minimum distance dmin(C) is
defined by

dmin(C) = min
~x,~y∈C:~x6=~y

{d(~x, ~y)}.

When C = {~0}, we define dmin(C) = n.
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Definition 4. The ball B(~x, d) ⊂ Fn of radius d around ~x ∈ Fn is defined in the
Hamming metric as

B(~x, d) = {~y ∈ Fn | d(~x, ~y) ≤ d}.

Consider the ball B(~c, τ) ⊂ Fn of radius τ = b(dmin(C)−1)/2c around a codeword
~c ∈ C. Then the intersection B ∩ C = {~c} and therefore for any error vector ~e ∈ Fn

with wH(~e) = t, we can decode the codeword ~c uniquely from the vector ~c+~e if t ≤ τ .
It is this property that allows codes to be used as the basis for reliable communication
in the presence of noise. In general, finding an efficient decoding algorithm for an
arbitrary code is a hard problem. In fact, decoding random codes is an NP-complete
problem. One of the classical challenges in coding theory is to construct codes with
many codewords and large minimum distance, and for which an efficient decoding
algorithm exists.

Definition 5. Consider the n-dimensional vector space Fnq . A code is a non-empty
subset C ⊂ Fnq . If C is a subspace, then it is a linear code. For n, k, d ∈ Z≥0, an
[n, k, d]q-code is a linear code C ⊂ Fnq where k = dimFq (C) and dmin(C) ≥ d.

We often omit d and/or the finite field Fq and use the shorthands [n, k, d]-code
and [n, k]-code instead. Note that if C 6= {~0} is a linear code,

dmin(C) = min
~x,~y∈C:~x6=~y

{d(~x, ~y)} = min
~x,~y∈C:~x6=~y

{d(~x− ~y, 0)} = min
~c∈C\{~0}

{wH(~c)}.

Definition 6. If C ⊂ Fn is a code and ∅ 6= A ⊂ {1, . . . , n}, then the projection map
ΠA is defined by

ΠA : Fn → F|A|

~x 7→ (xi)i∈A

where ~x = (x1, x2, . . . , xn). We use shorthand ~xA for ΠA(~x).

Definition 7. If C ⊂ Fn is a code and ∅ 6= A ⊂ {1, . . . , n}, then

CA = {~cA | ~c ∈ C}.

Definition 8. The dual code C⊥ of a linear code C consists of all vectors ~c∗ ∈ Fn

such that 〈~c∗,~c〉 = 0 for all ~c ∈ C, where 〈·, ·〉 denotes the standard scalar product.
Whenever d is used to denote the minimum distance of C, d⊥ is used to denote the
minimum distance of C⊥.

By elementary linear algebra, if C is an [n, k, d]-code, the dual code C⊥ is an
[n, n− k, d⊥]-code for some d⊥ ∈ Z≥0. Since codes are defined over finite fields, it is
in fact possible that {~0} ( C ∩ C⊥.
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Definition 9. A linear code C with C = C⊥ is self-dual.

Definition 10. Suppose |F| > n. Let x0, x1, . . . , xn ∈ F be distinct elements and let
0 ≤ t < n. The Reed-Solomon code C ⊂ Fn+1 is defined as

C = {(f(x0), f(x1), . . . , f(xn)) | f ∈ F[X], deg(f) ≤ t},

where deg(f) denotes the degree of the polynomial f .

Note that since any polynomial f(X) ∈ F[X] of degree ≤ t can have at most t
zeroes, it holds that dmin(C) ≥ n+ 1− t for any [n+ 1, t+ 1] Reed-Solomon code C.
By the Singleton bound (see Section 2.2) dmin(C) ≤ n+ 1− t, so that in fact equality
holds.

Proposition 1. The Reed-Solomon code is an [n+ 1, t+ 1, n+ 1− t]-code.

When using a Reed-Solomon code, efficient decoding of up to τ = b(n−t)/2c errors
is possible using for instance the Berlekamp-Massey algorithm [55] or the Berlekamp-
Welch algorithm [8].

By Lagrange interpolation, a polynomial g(X) ∈ F[X] of degree at most t is
uniquely determined by t + 1 evaluations b1 = g(a1), b2 = g(a2), . . . , bt+1 = g(at+1)
for distinct a1, . . . , an ∈ F. In fact, it holds that

f(X) =
t+1∑
i=1

biLi(X),

where
Li(X) =

∏
j 6=i

X − xj
xi − xj

are such that Li(xi) = 1 and Li(xj) = 0 when i 6= j. These facts together with
Proposition 1 imply the corollaries below, which will be useful in the sequel.

Let C be an [n+ 1, t+ 1] Reed-Solomon code and let ∅ 6= A ⊂ {0, 1, . . . , n}.

Corollary 1. If |A| ≥ t+ 1, then the projection map ΠA : C → CA is bijective.

Corollary 2. If |A| ≥ t+ 1, then for each i ∈ {0, 1, . . . , n} there exists a linear map
LA,i : CA → F such that Π{i}(~c) = (LA,i ◦ΠA)(~c) for any ~c ∈ C.

A Variation on Reed-Solomon Codes

Let Fq be a finite field with q > n, the values x0, x1, . . . , xn ∈ Fq be distinct and
y ∈ Fqt+1 be such that [Fq(y) : Fq] = t+ 1. We can define the code C ′ ⊂ Fn+1

qt+1 by

C ′ = {(f(x0), . . . , f(xi−1), f(y), f(xi+1), . . . , f(xn)) | f ∈ Fq[X], deg(f) ≤ t}.
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Let A = {0, 1, . . . , n} \ {i}. Then the vectors ~cA with ~c ∈ C ′ form an [n, t + 1]
Reed-Solomon code C ⊂ Fnq . In particular, there is a one-to-one correspondence
between this code and the Reed-Solomon code where the evaluation f(y) ∈ Fqt+1 is
replaced with f(xi) ∈ Fq. For instance, this implies that any t+1 coefficients f(xj) in
a codeword ~c ∈ C ′ determine it. As Lemma 1 below shows, there additionally exists
a one-to-one correspondence between the evaluation f(y) in the ith position and the
polynomial f ∈ Fq[X] corresponding to the codeword.

Lemma 1. Let Fq be a finite field and let α ∈ Fqt+1 be such that Fq(α) = Fqt+1 . Then
the map

φ : {f ∈ Fq[X] : deg(f) ≤ t} → Fqt+1

f 7→ f(α)

is an isomorphism of Fq-vector spaces.

Proof. Since the dimensions on both sides are equal, it suffices to show that φ is
injective. Suppose g ∈ Fq[X] has degree at most t and that g(α) = 0. Since g ∈
Fq[X], g must be a multiple of the minimal polynomial h of α in Fq[X]. However,
deg(h) = t+ 1, so g must be the zero polynomial.

We refer to this variant of the Reed-Solomon code as the i-concentrated Reed-
Solomon code and use the notation fβ to denote the unique polynomial f ∈ Fq[X]
with deg(f) ≤ t for which f(y) = β ∈ Fqt+1 .

2.2 Classical Bounds from Coding Theory

We now state some classical results on the achievable minimum distance and dimen-
sion that will be useful later on.

Definition 11. Aq(n, d) is the maximum possible number of codewords that a code
C ⊂ Fnq with minimum distance ≥ d can contain, i.e.,

Aq(n, d) = max
C⊂Fnq : dmin(C)≥d

|C|.

Similarly, Alin
q (n, d) denotes the maximum when we let C range over all linear codes

C ⊂ Fnq with minimum distance ≥ d.

The following upper bound holds.

Theorem 1. (Singleton Bound)

Aq(n, d) ≤ qn−d+1.
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Proof. Let C ⊂ Fnq have minimum distance d and consider the code

C ′ = {(cd, cd+1, . . . , cn) | (c1, c2, . . . , cn) ∈ C}.

We argue that |C ′| = |C|. If not, there exist two codewords ~c1,~c2 ∈ C that have equal
coefficients in the last n− d+ 1 positions. This implies that d(~c1,~c2) ≤ d− 1, which
contradicts the fact that the minimum distance of C is d.

Counting the number of possible codewords in C ′ it now follows that

|C| = |C ′| ≤ qn−d+1.

Corollary 3. For any [n, k, d]-code, k + d ≤ n+ 1.

Definition 12. Vq(n, d) denotes the volume of a ball of radius d, i.e.,

Vq(n, d) =
d∑
i=0

(
n

i

)
(q − 1)i.

The following two theorems assert the existence of various codes.

Theorem 2. (General Gilbert-Varshamov Bound) For n, d ∈ Z≥0 and q > 0 a prime
power,

Aq(n, d) ≥ qn

Vq(n, d− 1)
.

Proof. Consider a maximal code C ⊂ Fnq with minimum distance d. Since C is
maximal, the balls of radius d − 1 around the codewords of C must cover the entire
space Fnq , i.e.,

|C| · Vq(n, d− 1) ≥ qn.

This implies the bound.

Surprisingly, the Gilbert-Varshamov bound still holds when we require the codes
to be linear.

Theorem 3. (Gilbert-Varshamov Bound for Linear Codes) For n, d ∈ Z≥0 and q > 0
a prime power,

Alinq (n, d) ≥ qn

Vq(n, d− 1)
.

Proof. We prove that if for k ∈ Z≥0 it holds that

qk−1 <
qn

Vq(n, d− 1)
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then there exists an [n, k, d]q-code. The theorem then follows by taking a maximal
such k.

For k = 0, the code {~0} ⊂ Fnq is an [n, 0, n]q-code and the statement holds trivially.
Suppose k > 0 and that there exists an [n, k−1, d] code C ′. Since qk−1 ·Vq(n, d−1) <
qn, the balls of radius d− 1 around the qk−1 codewords of C ′ do not cover the entire
space Fnq . We can therefore select a vector ~x ∈ Fnq \ C ′ such that d(~x,~c) ≥ d for all
~c ∈ C ′.

Define the code C = C ′ + ~x · Fq. Then the code C has dimension k and minimum
distance at least d, since any non-zero vector ~y ∈ C is of the form ~y = ~c + a~x with
a ∈ Fq and ~c ∈ C ′ and we have that

wH(~y) = wH(a−1~y) = wH(a−1~c+ ~x) = d(−a−1~c, ~x) ≥ d

if a 6= 0 and
wH(~y) = wH(~c) ≥ d

if a = 0.

It is often helpful to study the asymptotic behavior of families of codes as n

increases. The parameters of interest for these families of codes are the information
rate k/n and the relative minimum distance d/n. In the following we consider the
supremum αq(δ) of the information rates k/n that are achievable for linear codes over
Fq with relative minimum distance at least δ.

We require the following definition.

Definition 13. Let δ be such that 0 < δ < (q− 1)/q. The q-ary entropy function Hq

is defined
Hq(δ) = δ logq(q − 1)− δ logq δ − (1− δ) logq(1− δ).

We also mention the following lemma, which is a consequence of Stirling’s formula
for n!.

Lemma 2. For 0 < λ < 1
2 ,

2nH2(λ)√
8nλ(1− λ)

≤
λn∑
k=0

(
n

k

)
≤ 2nH2(λ).

Proof. See [53], Chapter 10, §11, Corollary 9.

The binary version of the following theorem is now a consequence of the Gilbert-
Varshamov bound and Lemma 2. The q-ary variant additionally requires a more
general version of Lemma 2 that is derived using similar techniques to those used in
the proof of Theorem 26 in Chapter 7.
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Theorem 4. (Asymptotic Gilbert-Varshamov Bound) For 0 < δ < (q − 1)/q,

αq(δ) ≥ 1−Hq(δ).

The Gilbert-Varshamov bound shows the existence of codes with certain param-
eters and while we do not make this statement precise here, it can in fact be shown
that asymptotically “most” codes have parameters that are “close”. However, finding
explicit constructions of codes that attain the Gilbert-Varshamov bound turns out
to be very hard. Nevertheless, it is important to find explicit constructions of codes,
because it is in general very inefficient to correct errors for arbitrary codes even when
the parameters of the code are known.

2.3 Algebraic Geometry Preliminaries

In this section we list some basic facts from algebraic geometry. The theory described
here is mainly used in Section 8.2 and can therefore be skipped in a first study of this
work.

Please note that we follow the approach of Tsfasman and Vlǎduţ [75], which em-
phasizes on aspects of algebraic geometry that play an important role in algebraic
geometric coding theory. For a more general treatment of the subject, we can recom-
mend the work of Silverman [69].

Throughout this section we let F be an algebraically closed field.

2.3.1 Projective spaces, topologies and varieties

The projective space Pn(F) over F of dimension n is the set of equivalence classes
(a1 : a2 : · · · : an+1) of non-zero vectors (a1, a2, . . . , an+1) ∈ Fn+1, where

(b1 : b2 : · · · : bn+1) = (a1 : a2 : · · · : an+1)

if (b1, b2, . . . , bn+1) = (λa1, λa2, . . . , λan+1) for some λ ∈ F∗. When the theory does
not depend on the specific choice of F, we use the shorthand notation Pn.

The Zariski topology on Pn is now defined as follows. A subset A ⊂ Pn is said to
be closed if and only if there exist homogeneous polynomials

F1, F2, . . . , Fk ∈ F[X1, X2, . . . , Xn+1]

such that

A = {(a1 : a2 : · · · : an+1) ∈ Pn | ∀i ∈ {1, 2, . . . , k} : Fi(a1, a2, . . . , an+1) = 0}.

The complement Pn \ A of a closed set A is said to be open. Similarly, a subset
A′ ⊂ Pn is said to be closed in a subset S ⊂ Pn if A′ = A ∩ S for a closed subset
A ⊂ Pn and a subset B ⊂ S is open in S if and only if S \B is closed in S.
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A quasi-projective set A is an open subset of a closed subset S ⊂ Pn. It is said to
be irreducible if there do not exist two non-empty closed subsets A1, A2 ( A such that
A = A1 ∪ A2. An irreducible quasi-projective set is called a quasi-projective variety.
A quasi-projective variety A ∈ Pn that is closed in Pn is said to be projective. Finally,
the dimension of a quasi-projective variety A is the largest integer n such that there
exists a strictly descending chain of quasi-projective varieties

A = A0 ) A1 · · · ) An 6= ∅,

where Ai is closed in Ai−1 for i = 1, 2, . . . , n. A one-dimensional quasi-projective
variety is called a curve.

2.3.2 Rational functions, valuations and divisors

A rational function on a quasi-projective variety A ⊂ Pn is a fraction

F/G ∈ F(X1, X2, . . . , Xn+1),

where F,G ∈ F[X1, X2, . . . , Xn+1] are two homogeneous polynomials of the same
degree such that G(P ) 6= 0 for some P ∈ A. We can define an equivalence relation
on these functions where two rational functions F/G and F ′/G′ are in the same
equivalence class if and only if

FG′ − F ′G = 0

on A. The set of classes of rational functions on A under this equivalence relation
is denoted by F(A). It can be shown that F(A) is in fact a field with respect to the
usual addition and multiplication operations.

A rational function f ∈ F(A) is called regular at P ∈ A if it can be represented
by some

F/G ∈ F(X1, X2, . . . , Xn+1)

with G(P ) 6= 0. If f is regular for any P ∈ A then f is said to be regular on A. The
set of regular functions on A is denoted F[A].

The set of rational functions that are regular at P ∈ A is denoted by OP . It is in
fact a commutative ring with 1 ∈ OP and contains a unique maximal ideal

mP = {f ∈ OP | f(P ) = 0}.

Note that this implies that OP /mP is a field.
Let now A be a curve. A point P ∈ A is called non-singular if mP is a principal

ideal, i.e.,
mP = tP · OP
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for some tP ∈ F(A). Such tP is called a local parameter at P and in fact every
non-zero element f ∈ OP can uniquely be written in the form f = u · tnP with a unit
u ∈ OP and n ∈ Z. In other words, the local ring OP is a discrete valuation ring via
the map

νP : OP → Z≥0

defined by νP (f) = n, where the value of n is independent of the choice of local
parameter tP . This evaluation map νP can be extended to all of F(A) by setting for
any f = g/h with g, h ∈ OP that νP (f) := νP (g) − νP (h). The curve A is called
smooth (or non-singular) if every point P ∈ A is non-singular.

A (Weil) divisor on a smooth projective curve C is a formal sum

D =
∑
P∈C

aP · P

with aP ∈ Z for which the support supp(D), i.e., the set of points P for which aP is
nonzero, is finite. Given two divisors D =

∑
P∈C aP · P and D′ =

∑
P∈C a

′
P · P , we

say that D ≥ D′ if aP ≥ a′P for all the points P on the curve. The degree deg(D) of
a divisor D =

∑
P∈C aP · P is the sum of its coefficients, i.e.,

deg(D) =
∑
P∈C

aP .

The divisor (f) of a rational function f ∈ F(C) on a smooth projective curve C is
defined by

(f) =
∑
P∈C

νP (f) · P.

Divisors of the form (f) for f ∈ F(C) are called principal and it is a well-known fact
that deg((f)) = 0. Two divisors D and D′ are said to be linearly equivalent if there
exists a rational function f ∈ F(C) such that D = D′ + (f).

Let {Ui} be a finite open covering of a smooth projective curve C and let {fi} be
rational functions such that

fj · f−1
k ∈ (F[Uj ∩ Uk])∗

for any fj , fk ∈ {fi}. Then ({Ui}, {fi}) is called a Cartier divisor. The following
theorem demonstrates the connection between Cartier divisors and Weil divisors.

Theorem 5. Let ({Ui}, {fi}) be a Cartier divisor. There exists a unique Weil divisor
D =

∑
P∈C ap · P such that for all indices i

D|Ui = (fi)|Ui ,
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where D|U =
∑
P∈U ap ·P . Conversely, for any Weil divisor D on a smooth projective

curve C there exists an open covering {Ui} of C and rational functions {fi} such that
for all indices i

D|Ui = (fi)|Ui
and

fj · f−1
k ∈ (F[Uj ∩ Uk])∗

for any fj , fk ∈ {fi}.

2.3.3 Rational differential forms

Let U be an open subset of a smooth projective curve C. For a point P on C and a
rational function f ∈ F[U ], the differential dP f of f at P is defined as

dP f := f − f(P ) ∈ mP /m
2
P .

Let Φ[U ] be the F[U ]-module consisting of the maps φ that send each P ∈ U to some
φ(P ) ∈ mP /m

2
P . Then the set Φ[U ] includes all maps df defined by

(df)(P ) = dP f

for f ∈ F[U ].
A map φ ∈ Φ[U ] is called a differential form regular on U if and only if for any

P ∈ U there exists an open V ⊂ U with P ∈ V such that φ|V is in the F[V ]-submodule
of Φ[V ] generated by the df with f ∈ F[V ]. The F[U ]-module of differential forms
regular on U is denoted by Ω[U ].

If there exists an open subset U ⊂ C such that ω ∈ Ω[U ], then ω is called a
rational differential form on C. If for open U,U ′ ⊂ C and ω ∈ Ω[U ], ω′ ∈ Ω[U ′] it
holds that

ω|U∩U ′ = ω′|U∩U ′

we say that ω and ω′ define the same rational differential form on C. The set of
rational differential forms on C under this equivalence relation is denoted by Ω(C).

Theorem 6. The set Ω(C) forms a one-dimensional F(C)-vector space.

For any P ∈ C there exists an open subset U 3 P of C such that

Ω[U ] = F[U ] · dt,

where t is a local parameter at P . It follows that for every rational differential form
0 6= ω ∈ Ω there exists an open covering {Ui} of C such that

ω|Ui = fi · dti
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for certain fi ∈ F(C) and such that ti − ti(P ) is a local parameter for any P ∈ Ui. It
follows that

fi/fj ∈ (F[Ui ∩ Uj ])∗,

so that ({Ui}, {fi}) gives a Cartier divisor which is denoted by (ω). In the sequel, we
identify the Cartier divisor (ω) with the corresponding Weil divisor.

Every pair of differential forms 0 6= ω, ω′ ∈ Ω(C) gives rise to linearly equivalent
divisors, i.e.,

(ω′) = (ω) + (f)

for some f ∈ F(C). Any such divisor (ω) defined by a differential form ω is called a
canonical divisor. For any canonical divisor K, we have that

deg(K) = 2g − 2.

Let ω ∈ Ω(C) be such that ω = f · dt in an open neighborhood of P ∈ C, where
f ∈ F(C) and t is a local parameter at P . The map ResP maps the differential form
ω to the coefficient a−1 in the Laurent power series representation of f around t, say
f =

∑∞
−M ai · ti. It can be shown that this value does not depend on the choice of t.

Furthermore, if
(ω) =

∑
P∈C

aP · P,

it can be shown that ResP (ω) = 0 if aP ≥ 0 and ResP (ω) 6= 0 if aP = −1.
The following well-known theorem gives a relation for a differential form ω between

the evaluations ResP (ω) in all the points P on a smooth projective curve C. Note
here that the maps ResP only give non-zero evaluations in a finite number of points
P for any differential form ω ∈ Ω(C).

Theorem 7. (Residue Theorem) For any ω ∈ Ω(C) we have∑
P∈C

ResP (ω) = 0.

For any divisor D, the corresponding Riemann-Roch space L(D) is defined by

L(D) = {f ∈ F(C) | (f) +D ≥ 0} ∪ {0}.

This is a vector space over F and its dimension is denoted `(D). For any canonical
divisor K we have `(K) = g, and for any divisor D with deg(D) < 0 we have that
`(D) = 0.

The following important theorem is frequently used to determine the dimension
of Riemann-Roch spaces.
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Theorem 8. (Riemann-Roch Theorem) Let K be a canonical divisor. For any divisor
D,

`(D) = `(K −D) + deg(D)− g + 1.

In particular,
`(D) = deg(D)− g + 1

when deg(D) > 2g − 2.

We furthermore for any divisor D define the space Ω(D) by

Ω(D) = {ω ∈ Ω(C) \ {0} | (ω) +D ≥ 0} ∪ {0}.

There exists an isomorphism L(K+D) ' Ω(D) via the map f 7→ fη, where (η) = K.
Thus, the dimension of Ω(D) can be determined using the Riemann-Roch Theorem.

2.3.4 Fq-rationality

Let Fq be a finite field, Fq be algebraically closed over Fq and let P be a point
on a smooth projective curve C ⊂ Pn(Fq) defined over Fq, i.e., defined by equa-
tions F1 = F2 = · · · = Fm = 0 with homogeneous polynomials F1, F2, . . . , Fm ∈
Fq[X1, X2, . . . , Xn+1]. We say that the point P is Fq-rational if it has a representation
(x1 : x2 : · · · : xn+1) ∈ Pn(Fq) with x1, x2, . . . , xn+1 ∈ Fq. A divisor D =

∑
P∈C aP ·P

is said to be Fq-rational if D =
∑
P∈C aP · f(P ) for any f ∈ Gal(Fq/Fq), where

Gal(Fq/Fq) denotes the Galois group of Fq over Fq. Note that such a divisor can have
support outside of the Fq-rational points on C.

We define Fq-rational functions to be functions L ∈ Fq(X1, X2, . . . , Xn+1) where
L has a representation G/H for which G,H ∈ Fq[X1, X2, . . . , Xn] are homogeneous
polynomials of the same degree and for which H(P ) 6= 0 for some P ∈ C. Note that
evaluating an Fq-rational function in an Fq-rational point results in a value in Fq.

The Riemann-Roch space of an Fq-rational divisor D on C admits a basis de-
fined over Fq, i.e., it is equal to the Fq-linear span of certain Fq-rational functions
L1, L2, . . . , Ll(D) ∈ Fq(X1, X2, . . . , Xn+1). This is a consequence of the fact that
the Riemann-Roch space of an Fq-rational divisor is invariant under operations of
Gal(Fq/Fq) (see [69], page 40, Lemma 5.8.1). We often restrict ourselves to the Fq-
rational functions in such Riemann-Roch spaces.

2.3.5 Algebraic-Geometric Codes

We now define algebraic-geometric codes, which are also known as geometric Goppa
codes. These codes strictly generalize the construction of Reed-Solomon codes de-
scribed earlier.
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Let Fq be a finite field and C ⊂ Pn(Fq) a smooth projective curve with at least n
distinct Fq-rational points. Fix a set D = {P1, . . . , Pn} of Fq-rational points on the
curve C and an Fq-rational divisor G with support disjoint from D. The corresponding
algebraic-geometric code C(D,G) based on C, D and G is now

C(D,G) = {(f(P1), f(P2), . . . , f(Pn)) | f ∈ L(G), f is Fq-rational}.

Since the points in D and the rational functions f are Fq-rational, it follows that
C(D,G) ⊂ Fnq . Furthermore, since L(G) is a vector space it is easy to see that the
code C(D,G) is linear. If we take the curve C to be the projective line P1(Fq), the
code C(D,G) is a generalized Reed-Solomon code.

The following bound, which can for instance be found in [75], is known on the
parameters of algebraic-geometric codes.

Theorem 9. Let C ∈ Pn(Fq) be a smooth, projective curve of genus g and let 0 <

deg(G) = a ≤ n = |D|, where D and G are as above. Then the code C(D,G) is an
[n, k, d]-code with

k ≥ a− g + 1

and
d ≥ n− a.

It can be shown that the code C(D,G)⊥ ⊂ Fnq , the dual of C(D,G), is in fact an
algebraic-geometric [n, k′, d′]-code, where

k′ ≥ n− a+ g − 1

and
d′ ≥ a− 2g + 2.

2.4 Algebraic-Geometric Bounds from Coding The-

ory

Although the Gilbert-Varshamov bound was published in 1952 by Gilbert [37], it
was not until 1970 that Goppa [41] published the first explicit construction of codes
that can asymptotically attain this bound. These codes, known as (classical) Goppa
codes, also allow for efficient decoding algorithms for error-correcting (see for instance
[30, 63]).

It remained an open question whether codes exist with parameters that are strictly
better than those minimally predicted by the Gilbert-Varshamov bound. In 1982,
Tsfasman, Vlǎduţ and Zink [76] proved that such codes do indeed exist. We now give
this result in some more detail.
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Let C be a smooth, projective curve defined over Fq, let #C(Fq) denote the number
of Fq-rational points on C and g(C) be the genus of C. Define the quantity

A(q) = lim sup
g(C)→∞

#C(Fq)/g(C),

where C ranges over all smooth projective curves defined over Fq. Furthermore, recall
from Section 2.2 that the quantity αq(δ) denotes the supremum of the information
rates k/n that are achievable for linear codes over Fq with relative minimum distance
δ.

We can now state the following bound due to Tsfasman, Vlǎduţ and Zink [76],
which relies on the existence of function fields attaining the Drinfeld-Vlǎduţ bound in
combination with the construction of algebraic-geometric codes from function fields.

Theorem 10. (Tsfasman-Vlǎduţ-Zink Bound) Let q be a prime power.Then

αq(δ) ≥ 1−A(q)−1 − δ.

In order to interpret this bound one needs to have good lower bounds on the value
of A(q). The Drinfeld-Vlǎduţ bound states that A(q) ≤ √q − 1. The exact value of
A(q) is known when q is a square and was discovered independently by Ihara [45] and
Tsfasman, Vlǎduţ and Zink [76]. In this case A(q) =

√
q− 1 and the Drinfeld-Vlǎduţ

bound is tight.
It follows that for q ≥ 49 a square, the Tsfasman-Vlǎduţ-Zink bound strictly

improves upon the Gilbert-Varshamov bound. When q = `3 is a cube, we have
A(q) ≥ 2(`2 − 1)/(` + 2). For arbitrary q the known bound is much weaker; it is
known that in this case A(q) > c · log q for some real constant c > 0.

It is worth noting that while the Tsfasman-Vlǎduţ-Zink bound proves the existence
of codes with parameters that improve on the Gilbert-Varshamov bound, it does not
show how to construct such codes. In 1996, Garcia and Stichtenoth [36] demonstrated
the first explicit method to construct families of codes attaining the Tsfasman-Vlǎduţ-
Zink bound. It has since been proven by Xing [77] in 2003 that if one allows non-linear
code constructions one can actually go through the Tsfasman-Vlǎduţ-Zink bound.

2.5 Secret Sharing

In this section we list some known facts on secret sharing and emphasize on certain
limitations in current-day secret sharing techniques that we aim to overcome in this
work.
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2.5.1 Definition

Our preferred method of defining secret sharing schemes uses information theory,
which opens up a pletoria of results that both allow one to argue very precisely about
partial information leakage and to use a rather compact notation. Unfortunately,
properly introducing basic information theory notions is beyond the scope of this
work. To also accommodate the reader without a background in information theory
we therefore provide two nearly equivalent definitions of secret sharing using two
different theoretical perspectives.

We first define secret sharing schemes using elementary probability theory, for
which we also briefly introduce some basic notions. We then, without theoretical
background, provide a slightly more general definition based on information theory
that generalizes the first approach in the sense that the secret and the shares can
now all be drawn from different finite sets and that we do not require a uniform
distribution for the secret.

Using Probability Theory

We introduce some notation for probability theory based on the book by Shoup [68].
Let U be a finite set. A probability distribution (U , P ) specifies a probability function

P : U → R≥0

that has the property that ∑
u∈U

P (u) = 1.

The elements of U represent the possible outcomes of a random experiment, where the
probability of outcome u ∈ U is P (u). An event E is a subset of U . The probability
of E is denoted P (E) and defined by

P (E) =
∑
e∈E

P (e).

A random variable X is a function X : U → T , where T is some set, and we say that
X takes values in T . For t ∈ T , “X = t” denotes the event

{u ∈ U : X(u) = t}.

This implies that
P (X = t) =

∑
u∈X−1(t)

P (u).

Given any function f : T → V, where V is some set, it now follows that f ◦X defines
a new random variable that takes values in V.
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For an event F ⊂ U with P (F) 6= 0 and u ∈ U we define

P (u | F) =
{
P (u)/P (F) if u ∈ F
0 otherwise.

For an event E ⊂ U we furthermore define

P (E | F) =
∑
e∈E

P (e | F).

When we have multiple events F1,F2, . . . ,Fn we often use the notation

P (E | {F}ni=1)

to denote

P

(
E |

n⋃
i=1

Fi

)
,

where P (E | ∅) is defined to be P (E). Furthermore, to simplify our definitions we use
the convention that P (∅) = 1.

We are now ready to give a definition of secret sharing based on probability theory.

Definition 14. (Secret Sharing) Let U be a finite set and let (U , P ) define a probabil-
ity distribution. A secret sharing scheme consists of random variables S0, S1, . . . , Sn
that take value in some finite set S with |S| ≥ 2 where

P (S0 = s0) = 1/|S|

for all s0 ∈ S.

Let N be the set {1, 2, . . . , n} and let 2N denote the power set consisting of all
possible subsets of the set N . For any secret sharing scheme one can define two sets
Γ,A ⊂ 2N , where for a set B ⊂ N

• B ∈ Γ if and only if for all s1, s2, . . . , sn ∈ S with

P ({Si = si}i∈B) 6= 0

the following holds:

∃s0 ∈ S : P (S0 = s0 | {Si = si}i∈B) = 1.

• B ∈ A if and only if for all s0, s1, . . . , sn ∈ S with

P ({Si = si}i∈B) 6= 0

the following holds:

P (S0 = s0 | {Si = si}i∈B) = 1/|S|
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The sets in Γ are said to be accepted by the secret sharing scheme, while the sets in
A are said to be rejected.

The values taken on by S0 are called secrets and the values taken on by Si for
i ∈ {1, 2, . . . , n} are called shares. We note that the definition can be made more
general by allowing the variables S0, S1, . . . , Sn to take value in different finite sets
S0,S1, . . . ,Sn.

The sets Γ and A are monotonous, in the sense that if B ∈ Γ and B ⊂ C ⊂ N
then also C ∈ Γ and that if D ∈ A and E ⊂ D ⊂ N then also E ∈ A. It is easy to
verify that Γ ∩A = ∅. In general it is possible that for a secret sharing scheme there
exist sets B ⊂ N that are neither an element of Γ nor of A.

Definition 15. If Γ = 2N \ A, then the secret sharing scheme is perfect.

Definition 16. A set B ∈ Γ is said to be a minimal accepted set if for any i ∈ B
the set B \ {i} is not a member of Γ. A maximal rejected set is a set B ∈ A such
that for any j ∈ N \B the set B ∪ {j} is not in A.

Definition 17. If an index i ∈ N is not a member of any minimal accepted set
B ∈ Γ, then i is said to be a dummy.

Definition 18. A perfect secret sharing scheme that has no dummy indices and for
which the variables S0, S1, . . . , Sn all take value in the same set S is ideal.

We will mainly be interested in secret sharing schemes without dummy indices, as
shares corresponding with dummy indices are never required to determine the secret.

Theorem 11. For a perfect secret sharing scheme without dummy indices where the
random variables S0, S1, . . . , Sn take value in the respective sets S0,S1, . . . ,Sn with
|S0| ≥ 2, it holds that

|Si| ≥ |S0|
for every i ∈ N .

Proof. Let i ∈ N and let B ⊂ N \ {i} be a maximal rejected set. We assume
that B 6= ∅, but the case B = ∅ has a similar proof. Let {s`}`∈B be such that

P ({S` = s`}`∈B) 6= 0.

Then in particular for any s0 ∈ S0

P (S0 = s0 | {S` = s`}`∈B) = 1/|S0| > 0.

Since the set B∪{i} is accepted, this implies that the value si determines s0 when
{s`}`∈B are given. Every s0 ∈ S0 has non-zero probability given the shares {s`}`∈B ,
and therefore for every s0 ∈ S0 there exists at least one si ∈ Si such that

P (S0 = s0 | {S` = s`}`∈B∪{i}) = 1.

This implies that |Si| ≥ |S0|. 4
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Using Information Theory

We now assume the reader has some background knowledge of information theory and
present a general definition of secret sharing in terms of information theory. A good
reference for the information theory required is the book of Cover and Thomas [18].

In this section we let H denote the standard entropy function from information
theory and use the notation H(.|.) to denote the standard conditional entropy func-
tion.

Definition 19. (Secret Sharing) Let U be a finite set and let (U , P ) define a probabil-
ity distribution. A secret sharing scheme consists of random variables S0, S1, . . . , Sn
that take value in some respective finite sets S0,S1, . . . ,Sn where

H(S0) > 0.

For any subset B ⊂ N we use the notation SB as shorthand for (Si)i∈B . One
can again define the two sets Γ,A ⊂ 2N for a secret sharing scheme, where for a set
B ⊂ N

• B ∈ Γ if and only
H(S0|SB) = 0.

• B ∈ A if and only if
H(S0|SB) = H(S0),

where we define H(S0|SB) = H(S0) when B = ∅.

The sets in Γ are again said to be accepted by the secret sharing scheme, while the
sets in A are again said to be rejected.

Definitions 15 to 18 carry over to the secret sharing schemes defined in this section.
It is now clear which sets B ⊂ N are neither in Γ nor in A; namely exactly those sets
for which

0 < H(S0|SB) < H(S0).

These sets are said to have partial information.
The following theorem can be seen as an improved variant of Theorem 11 and was

proven in 1991 by Capocelli, De Santis, Gargano and Vaccaro [13], following a special
case by Karnin, Greene and Hellman [50] proved in 1983.

Theorem 12. For a perfect secret sharing scheme without dummy indices where the
random variables S0, S1, . . . , Sn take value in the respective sets S0,S1, . . . ,Sn, it holds
that

H(Si) ≥ H(S0).

for i = 1, 2, . . . , n.
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Proof. Let i ∈ N and let B ⊂ N \{i} be a maximal rejected set. We assume for
simplicity that B 6= ∅. Then H(S0|SB) = H(S0) and H(S0|SBSi) = H(S0|SB∪{i}) =
0.

Recall that for any random variables X,Y it holds that H(X|Y ) ≥ 0 and recall
the formula for (conditional) mutual information I(X;Y |Z) for any random variables
X,Y, Z:

I(X;Y |Z) = H(X|Z)−H(X|Y Z) = H(Y |Z)−H(Y |XZ) ≥ 0.

We can now deduce the statement of the theorem:

H(Si) = H(Si)−H(Si|SB) +H(Si|S0SB) +H(Si|SB)−H(Si|S0SB)

= I(Si;SB) +H(Si|S0SB) + I(S0;Si|SB)

= I(Si;SB) +H(Si|S0SB) +H(S0|SB)−H(S0|SB∪{i})
= I(Si;SB) +H(Si|S0SB) +H(S0)

≥ H(S0)

4

This theorem is important due to the relation between the entropy H(S) of a
variable S that takes values in some finite set S and the average number of bits that
is required to encode an element in the image of S when using an optimal prefix-free
encoding. Basically, using Huffman codes one can find an optimal prefix-free encoding
for elements in the image of S (see [18]), where the average length of an encoding `
is such that

H(S) ≤ ` < H(S) + 1.

Theorem 12 now has the following important consequence.

Corollary 4. For any perfect secret sharing scheme without dummy indices, the av-
erage description length of any share is greater than or equal to the average description
length of the secret.

2.5.2 Linear Secret Sharing

The concept of linear secret sharing schemes has been developed through a number of
publications, including work of Brickell [9], Stinson [73] and Karchmer and Wigder-
son [49]. In this section we give an overview of results on linear secret sharing based
on a paper of Cramer, Damg̊ard and Maurer [23].

Consider a monotone Boolean function f : {0, 1}n → {0, 1}. If we identify the
input vector with a subset B ⊂ N , by setting the ith input bit to 1 if and only if
i ∈ B, we can define the rejected sets to be those sets B ⊂ N for which f(B) = 0
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and the accepted sets to be those for which f(B) = 1. We call the set Af of rejected
sets the adversary structure and the set Γf of accepted sets the access structure. For
an access structure Γ, the dual Γ∗ is the set {C | N \ B 6∈ Γ}, where it holds that
(Γ∗)∗ = Γ.

Definition 20. A linear secret sharing scheme is a triple M = (Fq,M, ψ), where Fq
is a finite field, M ∈ F(d+1)×e

q is a matrix with as its first row the unit vector ~ε1 ∈ Feq
and φ : {1, 2, . . . , d} → N is a surjective function. The size of (Fq,M, ψ) is d.

Label the rows of the matrix by 0, 1, 2, . . . , d and let let Mi denote the ith row of
M . For any subset B ⊂ N , we let MB denote the submatrix consisting of the rows
{Mi}i∈ψ−1(B). Furthermore, let Im(MT

B ) denote the Fq-linear span of the rows of
MB and Ker(MB) consist of the vectors ~κ ∈ Feq such that MB · ~κ = ~0.

Definition 21. For a linear secret sharing scheme M = (Fq,M, ψ)

• a set B ⊂ N is accepted if ~ε1 ∈ Im(MT
B ).

• a set B ⊂ N is rejected if ~ε1 /∈ Im(MT
B ).

If for a Boolean function f : {0, 1}n → {0, 1} the set of rejected sets of M is Af and
the set of accepted sets of M is Γf , then M computes f .

A linear secret sharing scheme (Fq,M, ψ) can be used to define a secret sharing
scheme. Let (U , P ) define a probability distribution and let S be a random variable
taking values in Feq with equal probability. Define the random variable S0 = M0 · S
taking values in Fq and the random variables Si = M{i} · S taking values in Fdiq with
di = |ψ−1(i)| for i = 1, 2, . . . , n.

Theorem 13. The variables S0, S1, . . . , Sn define a secret sharing scheme, where the
accepted and rejected sets coincide with those of the linear secret sharing scheme.

Proof. First note that Im(MT
B ) = Ker(MB)⊥, which follows from a basic linear

algebra argument. Therefore, we have that ~ε1 /∈ Im(MT
B ) if and only if there exists

an element ~κ ∈ Feq such that MB · ~κ = ~0 and the first coordinate of κ is nonzero.
Assume a set B ⊂ N is accepted, i.e., ~ε1 ∈ Im(MT

B ). Then there exists a vector
~λ ∈ F|B|q such that MT

B
~λ = ~ε1. Since S0 = 〈~ε1, S〉 it now follows that

S0 = 〈~ε1, S〉
= 〈MT

B · ~λ, S〉
= 〈~λ,MB · S〉.

Here ~λ only depends on the matrix MB , so the random variable S0 can in fact be
defined via a linear function on the variables {Si}i∈B . This implies that H(S0 | SB) =
0 and the set B is accepted according to Definition 19.
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Now assume a set B ⊂ N is rejected. Then there exists an element ~κ ∈ Feq such
that MB · ~κ = ~0 and the first coordinate of κ is nonzero. We assume without loss of
generality that the first coordinate of κ is 1. This implies that for any δ ∈ Fq,

MB · (S + δ~κ) = MB · S + δ · (MB · ~κ)

= MB · S + δ ·~0
= MB · S,

while

M0 · (S + δ~κ) = M0 · S + δ · (M0 · ~κ)

= M0 · S + δ · (ε1 · ~κ)

= M0 · S + δ

This implies that the random variable S0 is statistically independent of the random
variables {Si}i∈B , i.e., H(S0 | SB) = H(S0) and the set B is rejected according to
Definition 19.

2.5.3 Multiplicative Linear Secret Sharing Schemes

We now describe two structural properties for linear secret sharing schemes that are
important for the application of linear secret sharing schemes in secure multi-party
computation. These properties are called multiplicativity and strong multiplicativity
and were first introduced by Cramer, Damg̊ard and Maurer [23].

For any two vectors ~x = (x1, x2, . . . , xe), ~y = (y1, y2, . . . , ye) ∈ Feq, let ~x⊗ ~y denote
the vector

(x1 · ~y, x2 · ~y, . . . , xn · ~y) = (x1y1, x1y2, . . . , xeye−1, xeye) ∈ Fe
2

q .

Let Vi ⊂ Feq denote the subspace spanned by the row vectors of the matrix M{i} and
V̂i denote the subspace Vi ⊗ Vi ⊂ Fe2q spanned by all vectors ~x ⊗ ~y with ~x, ~y ∈ Vi.
Furthermore, let V̂B denote the subspace of Fe2q spanned by all vectors in the spaces
{V̂i}i∈B .

Definition 22. A linear secret sharing scheme M = (Fq,M, ψ) is multiplicative if

~ε1 ⊗ ~ε1 ∈ V̂N .

Definition 23. A linear secret sharing scheme M = (Fq,M, ψ) is A-strongly mul-
tiplicative if the following two conditions hold.

1. M rejects all sets in A.
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2. For any set B ∈ A, M is multiplicative with respect to the set C = N \B, i.e.,

~ε1 ⊗ ~ε1 ∈ V̂C .

If the linear secret sharing scheme is ideal, i.e., d = n and the map ψ is a bijec-
tion, we can replace Definitions 22 and 23 with the following convenient equivalent
definitions. In fact, these definitions exactly describe how one uses multiplication
properties in practice.

Definition 24. An ideal linear secret sharing scheme M is multiplicative if there
exist λ1, . . . , λn ∈ Fq such that for any for any two secrets s, s′ with respective shares
s1, s2, . . . , sn and s′1, s

′
2, . . . , s

′
n we have that

s · s′ =
n∑
i=1

λisis
′
i.

Definition 25. An ideal linear secret sharing schemeM is A-strongly multiplicative
if

1. M rejects all sets in A.

2. For any set B ∈ A, M is multiplicative with respect to the set C = N \B, i.e.,
given any set B ∈ A there exist {λi}i∈C in Fq such that for any two secrets s,
s′ with respective shares s1, s2, . . . , sn and s′1, s

′
2, . . . , s

′
n it holds that

s · s′ =
∑
i∈C

λisis
′
i.

Definition 26. An adversary structure A is Q(2) if there are no two sets B1, B2 ∈ A
such that B1 ∪ B2 = N . Similarly, an adversary structure A is Q(3) if there are no
three sets B1, B2, B3 ∈ A such that B1∪B2∪B3 = N . A monotone Boolean function
f : {0, 1}n → {0, 1} is Q(2) (respectively Q(3)) if and only if Af is Q(2) (respectively
Q(3)).

Cramer et al. prove that if a linear secret sharing scheme with adversary structure
A is multiplicative (respectively A-strongly multiplicative) then A is Q(2) (respec-
tively Q(3)).

Definition 27. Let f : {0, 1}n → {0, 1} be a monotone Boolean function. We define
lsssq(f) to be the size of the smallest linear secret sharing scheme (Fq,M, ψ) comput-
ing f . Similarly, µq(f) denotes the minimum size when only considering multiplica-
tive schemes and µ∗q(f) denotes the minimum size when only considering Af -strongly
multiplicative schemes.

We define lsssq(f) =∞ if no linear secret sharing scheme computing f exists and
similarly define µq(f) =∞ (respectively µ∗q(f) =∞) if no (Af -strongly) multiplicative
scheme computing f exists.
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Proposition 2. Let f : {0, 1}n → {0, 1} be a monotone Boolean function and Fq
any finite field. The following properties hold.

• lsssq(f) <∞.

• lsssq(f) ≤ µq(f) ≤ µ∗q(f).

• If f is Q(2), then µq(f) <∞.

• If f is Q(3), then µ∗q(f) <∞.

Furthermore, we have the following relation between lsssq(f) and µq(f).

Theorem 14. Let f be a monotone Boolean function that is Q(2). Then for any finite
field Fq,

µq(f) ≤ 2 · lsssq(f).

Open Problem 1. Do there exists constants q, c ≥ 0 such that

µ∗q(f) ≤ (µq(f))c

for all Q(3) monotone Boolean functions f?

2.5.4 Threshold Secret Sharing and Shamir’s Secret Sharing

Scheme

There is a special subclass of the perfect linear secret sharing schemes that is often
considered, which is that of the t-threshold secret sharing schemes. These schemes
have a particularly simple classification of subsets B ⊂ N . In a t-threshold secret
sharing scheme, all sets B ⊂ N with |B| ≤ t are rejected and all sets B ⊂ N with
|B| > t are accepted. Since all rejected sets have cardinality at most t, we say that the
scheme is secure against a t-adversary. The most commonly used linear secret sharing
scheme, which is due to Shamir [66], is such a t-threshold secret sharing scheme.

Shamir’s secret sharing scheme [66] is based on the use of the Reed-Solomon codes
described in Section 2.1 and can be described as follows. Let C ⊂ Fn+1 be an
[n, t] Reed-Solomon code as described in Section 2.1. Then C is generated by the
Vandermonde matrix

M =


1 x0 x2

0 · · · xt0
1 x1 x2

0 · · · xt1
...

...
...

...
1 xn x2

n · · · xtn

 .
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Taking x0 = 0, the matrix M now defines a linear secret sharing scheme via Defini-
tion 20, which has been known as Shamir’s secret sharing scheme since its introduction
in 1979.

It is easy to show that this secret sharing scheme is t-threshold. Since we already
provide a proof for the more general class of secret sharing schemes based on MDS
error correcting codes in Section 2.5.5, and Reed-Solomon codes are MDS, we omit
the proof of this fact here.

As already mentioned in Section 2.3.5, the generalized Reed-Solomon codes can
be seen as a subset of the algebraic-geometric codes, namely those algebraic-geometry
codes that are defined over the projective line P1(Fq). This suggests that it is possible
to describe Shamir’s secret sharing scheme in terms of algebraic-geometric coding
techniques. We will show later on that this is indeed possible, and that this in fact
leads to a strict generalization of the construction of Shamir’s secret sharing scheme.

Theorem 15. Shamir’s secret sharing scheme is multiplicative if n ≥ 2t + 1 and
strongly multiplicative against a t-adversary if n ≥ 3t+ 1.

Proof. We first note that any secret s0 with corresponding shares s1, s2, . . . , sn in
Shamir’s secret sharing scheme correspond with a codeword (s0, s1, s2, . . . , sn) ∈ C
and in fact all codewords in the Reed-Solomon code C can be retrieved in this man-
ner. Furthermore, due to the construction of Reed-Solomon codes every codeword
(s0, s1, s2, . . . , sn) ∈ C in turn corresponds exactly with a polynomial f ∈ Fq[X] with
deg(f) ≤ t such that f(xi) = si for i = 0, 1, . . . , n.

We now look at two such codewords (s0, s1, s2, . . . , sn) and (t0, t1, t2, . . . , tn) in C
with respective polynomials f and g and consider the product polynomial fg. Due
to Lagrange’s Interpolation Theorem it holds for a set B ⊂ {1, 2, . . . , n} that

s0 · t0 = (fg)(x0) =
∑
i∈B

λi(fg)(xi) =
∑
i∈B

λisiti

for certain constants {λi}i∈B in Fq, provided that |B| ≥ 2t + 1. If n ≥ 2t + 1 it
now follows that the scheme is multiplicative. Furthermore, when all rejected sets
have cardinality at most t, the complements of all rejected sets have cardinality at
least 2t + 1 if n ≥ 3t + 1. Therefore, Shamir’s secret sharing scheme is strongly
multiplicative with respect to a t-adversary if n ≥ 3t+ 1.

2.5.5 Limitations of Treshold Schemes

Threshold secret sharing schemes are convenient to work with, but have some lim-
itations that motivate us to consider more general constructions in Part III. The
limitations are the following.

1. Each share is at least as large as the secret.
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2. For any ideal t-threshold scheme, the finite field Fq over which it is defined needs
to be of size at least (n− 2)/2 if 1 ≤ t ≤ n− 3.

The first limitation holds simply due to the fact that the secret corresponds with
exactly one row in the secret sharing matrix M , and shares correspond to at least
one row in M . In fact, a similar statement holds more generally for any perfect secret
sharing scheme without dummy indices as a consequence of Theorem 12 and can be
found in Section 2.5.1.

The second restriction is more complex and is explained in detail in this section.
Since it does not involve the special class of non-ideal threshold schemes, one could ask
whether this class helps when trying to get around these restrictions. Unfortunately,
while it is possible for non-ideal schemes to use fields of size smaller than n, the
minimum average share size for these schemes is larger than logq(n/2), which is even
beyond that required for ideal threshold schemes.

Ideal Threshold Schemes and Error Correcting Codes

It is well-known that there is a one-to-one correspondence between ideal t-threshold se-
cret sharing schemes and maximum-distance-separable (MDS) error correcting codes.
MDS codes are linear error correcting codes that meet the Singleton bound, i.e., the
[n, k, d] codes for which k+d = n+1. Below we first demonstrate the correspondence.

Lemma 3. If M is the (n+ 1)× e matrix corresponding to an ideal t-threshold secret
sharing scheme, then

1. The rank of M is t+ 1.

2. The rank of any (t+ 1)× e-submatrix of M is t+ 1.

Proof. First consider the (t+ 1)× e-submatrices N of M that do not include the first
row of M . Since any such (t+1)×e-submatrix N of M corresponds with an accepted
set, we must have that ~ε1 is in the image of NT . If the rank of any such submatrix
N is less than t + 1, this implies that there exists a t′ × e submatrix with t′ < t + 1
for which ~ε1 is in the image of NT . This means that there exists a subset A with
|A| = t′ < t+1 that is accepted, which contradicts the fact that M gives a t-threshold
scheme. Therefore, the rank of any such (t+ 1)× e-submatrix, and in particular the
rank of M , is at least t+ 1. This implies that the rank of any (t+ 1)× e-submatrix
of M is t+ 1, since any t× e submatrix that doesn’t include the first row has rank t
and contains rows that are jointly linearly independent of ~ε1.

We now demonstrate that the rank of M is at most t + 1. First assume that
n > t + 1, since otherwise this trivially follows. We show that any set consisting of
t + 2 row vectors in M , say {M1,M2, . . . ,Mt+2}, is linearly dependent, from which
the claim follows. Since ~ε1 ∈ Im(MT

B ) for any set B with |B| ≥ t + 1, there exist
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constants λi and µi such that ~ε1 =
∑t+1
i=1 λiMi =

∑t+2
i=2 µiMi. It follows that Mt+2 =

(λ1M1 +
∑t+1
i=2(λi − µi)Mi)/µt+2 and the t+ 2 rows are linearly dependent.

Theorem 16. For any t, n ∈ Z≥0 such that t < n, there is a one-to-one correspon-
dence between the set of ideal t-threshold linear secret sharing schemes and the set of
[n+ 1, t+ 1] MDS codes.

Proof. (⇒) Note that any t-threshold linear secret sharing scheme is generated by a
(n+1)×e matrix M . Furthermore, the threshold property of the scheme implies that
the rank of M and the rank of any (t+ 1)× (t+ 1) submatrix of M is t+ 1, so we can
without loss of generality assume that e = t+ 1. We now demonstrate that the code
generated by this matrix is an [n + 1, t + 1] MDS code. It is then trivial to see that
distinct secret sharing schemes give rise to distinct MDS codes via this construction.

Let ~b ∈ Ft+1 be a vector generating a codeword ~c′ = M ′~b. The first coefficient c0
of ~c′ corresponds with a secret in the threshold secret sharing scheme generated by
the matrix M . Consider a codeword ~c = M~b. Since any t+ 1 positions in ~c determine
~c, any codeword containing at least t+ 1 zeroes is equal to the all-zero codeword. It
follows that any non-zero codeword can contain at most t zeroes, which implies that
the minimum distance d of the code is at least n+ 1− t. The dimension k is t+ 1, so
we obtain d ≥ n+ 1− t = n+ 1− (k− 1) = n+ 2− k. Furthermore, by the singleton
bound d + k ≤ (n + 1) + 1, which implies that d + k = n + 2 and the corresponding
code is MDS.

(⇐) Let C be an [n + 1, t + 1, d] MDS code. The corresponding secret sharing
scheme is the secret sharing scheme based on the generator matrix M of the code C.
In Section 7.2 we prove that such a secret sharing scheme accepts all subsets A ⊂ P
with |A| ≥ (n+ 1)− d+ 1 and rejects all subsets A ⊂ P with |A| ≤ d⊥ − 2, where d⊥

is the minimum distance of the dual code C⊥. Since the code is MDS we have that
(n+ 1) + 1− d = k, so we all subset A of cardinality t+ 1 are accepted. Furthermore,
we have that the [n+ 1, n− t, d⊥] dual code C⊥ of C is also MDS [60]. This implies
that d⊥ − 2 = t, so the secret sharing scheme based on C is t-threshold.

Due to Theorem 16 we know that any ideal threshold secret sharing scheme is
equivalent to an MDS error correcting code. For any [n, k, d] MDS code C over a field
Fq it is known (see for instance [60], pages 94− 95) that d = n− k + 1 ≤ q if 2 ≤ k.
Furthermore, since the dual [n, n − k, k + 1] code C⊥ is also MDS this implies that
k + 1 ≤ q if n− k ≥ 2.

If we use these values with any MDS error correcting code and its dual code and
apply Theorem 16, we obtain the following result.

Theorem 17. For any ideal t-threshold secret sharing

q ≥ max{n− t, t+ 2} ≥ (n− 2)/2
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when 1 ≤ t ≤ n− 3.

It is worth noting that the Main Conjecture on MDS Codes even states that for
any MDS code we necessarily have that q ≥ n− 1.

Bound on the Share Size of Threshold Schemes

We demonstrate now a result that shows that for threshold secret sharing schemes
the average share size necessarily increases with the value of n when the threshold is
non-trivial (i.e., not 0 or n−1). This claim is made more precise by a result of Cramer
and Fehr [25], which is in turn based on a theorem by Karchmer and Wigderson [49].1

Although the claim by Cramer and Fehr [25] is actually stated for binary fields, it
is in fact fairly straightforward to see that it holds more generally for any arbitrary
finite field. The part of the statement that is relevant here is the following.

Theorem 18. ([25]) For any t-threshold secret sharing scheme (Fq,M, ψ) of size d
with 0 < t < n− 1,

d ≥ n · logq
n+ 3

2
.

Informally, the theorem states that for any t-threshold secret sharing scheme, the
average share size at least grows logarithmically in n. The bound is in fact similar to
that arising from the correspondence to MDS codes, except that this statement also
holds for non-ideal threshold schemes and does not directly imply bounds on the field
size.

1Unlike the previous bounds obtained from the correspondence with MDS codes which have

been shown by Chen, Cramer, Goldwasser, de Haan and Vaikuntanathan [17], the mention of these

stronger bounds is novel in this work.
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Background

3.1 Introduction

It often occurs that two parties, a sender and a receiver, want to transmit a message to
one another while guaranteeing the authenticity of the message and safeguarding the
contents of the message against any eavesdropping third party. Communication that
meets these two requirements is called secure message transmission. For simplicity
assume that the communication channel is perfect in the sense that transmission over
the channel is error-free, but that there is some adversarial party that is able to
eavesdrop on the communication over the channel. Perfect authenticity is trivially
achieved here. Perfect privacy can be achieved in this setting by means of one-
time-pad encryption, where the sender and receiver somehow at some point before
the transmission agree on a secret key that consists of at least as many bits as the
message and use this key to mask the message during the transmission. However,
in order to achieve perfect privacy such a key can only be used once and therefore
requires the storage of a lot of key-data in order to allow the transmission of a large
number of messages.

If the power of the adversarial party is strengthened up to the point where it is able
to modify data transmitted on the communication channel, things become much more
problematic. In particular, all communication can be blocked and no communication
can be guaranteed to arrive at its intended destination at all.

To get around these problems, Dolev, Dwork, Waarts and Yung [28] considered a
multi-channel model. In this model, two parties are connected by n > 1 communica-
tion channels and an adversarial party is able to eavesdrop and modify data, except
that it is during any transmission restricted to operate on at most t channels, where
t < n. In fact, this model can be seen as the natural abstraction of a typical com-
munication network, where the channels depict all the vertex-disjoint communication
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paths from the sending party to the intended receiving party.

This model has two important advantages. First of all, it is possible to prevent an
adversary from totally blocking all communication, as at least one channel will always
be out of reach. More importantly, when t is small enough compared to n, it is possible
to achieve secure communication without using any initial secret key. This strongly
separates this model from the traditional model with one communication channel
where one always requires either a computational restriction on the adversary or a
predistributed secret key.

Suppose all communication over the channels only occurs in one direction, i.e.,
all communication is from the sender to the receiver. When it is possible to achieve
secure message transmission in this setting, which depends on the restrictions on the
adversary, secure message transmission is usually achieved in a rather straightforward
way using a combination of secret sharing and error correction.

Dolev et al. demonstrated that, if one allows interaction between the sender and
the receiver, it is possible to achieve secure message transmission while tolerating a
more powerful adversary than in the uni-directional case. In fact, when it is possible
to achieve secure transmission in this interactive setting at all, one can also guarantee
perfect privacy and a zero-error probability. Authentication is trivially achieved, as
any message that is accepted by the receiving party automatically has to have been
transmitted by the sending party. Due to these properties, these type of protocols
are referred to as perfectly secure message transmission protocols.

Following the results by Dolev et al., there have been a series of articles attempting
to improve the efficiency and communication complexity of perfectly secure message
transmission protocols. This has culminated in efficient protocols with optimal com-
munication complexity for any choices of n and t and any level of interaction between
the sending party and the receiving party.

In this part we describe all these results on perfectly secure message transmission
following the article by Dolev et al. in a modular way, emphasizing the improvements
made between the different articles. It is our hope that anyone interested in the field
will find all he needs to know about it here.

Overview

In Section 3.2 we define the model for perfectly secure message transmission. In
Section 3.3 we define perfectly secure message transmission protocols. In Section 3.4
we give a historical overview of the results that are presented here. In Chapter 4
we describe the results on single-phase perfectly secure message transmission. In
Chapter 5 we describe the results on two-phase perfectly secure message transmission.
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3.2 Model

Informally, secure message transmission entails the following. A sender tries to inter-
actively transmit a message to an intended receiver using n disjoint communication
channels, while an adversary can adaptively take control of up to t of the channels and
can read and modify data transmitted on the channels under his control. The goal is
to execute the transmission in such a way that, despite the efforts of the adversary,
the message remains private with respect to the adversary and arrives correctly at
the receiver.

More formally, we can model the setup as follows. There are three parties, a sender
S, a receiver R and an adversary A that can be seen as communicating deterministic
processes. Both S and R are connected to A by n ideal communication channels,
labeled as {si}ni=1 and {ri}ni=1 respectively, while no direct communication channels
exist between S and R. We assume that all data transmitted arrives correctly and
without delay, and that it can be determined when the transmission on any particular
channel has completed. The setting is depicted in Figure 3.1.

Figure 3.1: A schematic representation of the connectivity of S, A and R.

The execution of any message transmission protocol consists of sequential phases.
At the start of the first phase S, R and A each have a private finite random string,
while S additionally has a private (random) message M from some public finite mes-
sage set M. Furthermore, A initializes a private index set IA ⊂ {1, 2, . . . , n} := N
based on his random string. Once the message M and the random strings are fixed,
the remainder of the protocol proceeds in a deterministic fashion, where additionally
the round functions of S and R are public.

At the start of each phase S and R transmit some finite amount of data over
the channels connecting the respective party to A. This data is deterministically
computed based on publicly and locally available information; the data received in
previous phases, the phase number, the local private random string and additionally,
for S, the message M .

In every phase, after S and R are done transmitting data, A proceeds as follows.
For any channel si with i /∈ IA, A forwards the data that is received on it unread
and unmodified from S to R on channel ri and vice versa. Additionally, A reads all
data on the channels {si}i∈IA and {ri}i∈IA and then transmits some finite amount of
data on the channels {si}i∈IA and {ri}i∈IA that is computed based on all data read
so far, the phase number and his local private random string. Finally, based on this
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information, A selects a number of indices in N and adds these to the set IA.
At the end of the last phase, R outputs a value M ′ ∈M based on all data received

and the local random string.

3.3 Definitions

Definition 28. An adversary A is a t-adversary if he can never control more than
t communication channels, i.e., |IA| ≤ t at the end of any message transmission
protocol A participates in.

Definition 29. The view VA of A at the end of a protocol execution consists of its
local random string and any data read by A up to and during the last phase.

Definition 30. A pair of algorithms for S and R is called a perfectly secure mes-
sage transmission protocol if the following properties hold at the end of any protocol
execution with a t-adversary A:

• (Correctness) The message M ′ that R outputs at the end of the protocol is equal
to the message M held by S, i.e.,

P (M ′ = M) = 1.1

• (Privacy) For any possible view vA for A at the end of a protocol execution and
any M1,M2 ∈M,

P (M = M1|VA = vA) = P (M = M2|VA = vA).

In other words, the view of A is independent of the message M .

Here the probabilities are taken over the private random strings of S, R and A.

Recall that any element of the finite message set M can be uniquely described
using dlog2Me bits. Since we will assume in the sequel that elements of M are
selected uniformly at random, this is in fact optimal. The following definitions allow
us to measure the efficiency of secure message transmission protocols.

Definition 31. The phase complexity p of a protocol is the number of subsequent
communication phases between S and R required by the protocol. The communication
complexity C of a protocol is defined to be the number of bits that is transmitted by S
and R during a worst-case protocol execution with an optimal adversary, overall, for
the secure transmission of a message of length ` bits. The communication overhead
Λ of a protocol is defined to be Λ = C/`, i.e., the number of bits to be communicated
by S and R overall per bit of the original message.

1If the condition is replaced by P (M ′ = M) > 1 − ε, the protocol is said to be probabilistically

secure with error probability ε. We restrict the discussion to perfectly secure protocols here.
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Although we will not define this explicitly, one can also put a measure on the
computation complexity of secure message transmission protocols. We are mainly
interested in the distinction between computationally efficient and computationally
inefficient protocols, where a protocol is considered efficient if it requires computation
at most polynomial in n.

Broadcast

Suppose that n > 2t and that we require correctness, but not privacy during message
transmission. Then there exists an extremely simple single-phase protocol against a
t-adversary that achieves this level of security. The protocol works as follows.

1. S sends a copy of the message M over every communication channel {si}i∈N .

2. R reads the values received on the different channels and performs majority
voting to determine M .

It is trivial to see that this protocol works, as A can only send modified data to R
on a minority of the channels {ri}i∈N . We call this method of reliably transmitting
information broadcast in the sequel.

Obviously, if A sends modified data to R during this protocol then R can imme-
diately identify the corresponding indices in IA, while sending the modified data does
not help A eavesdrop on or disturb the protocol in any way. Since we are mainly
interested in the worst-case adversaries when analyzing our protocols, we therefore
assume without loss of generality in the sequel that A forwards all data unmodified
during a broadcast.

3.4 Historical Overview

In 1993, Dolev, Dwork, Waarts and Yung [29] started the line of research in perfectly
secure message transmission, listing a number of important initial results. One ob-
servation was that single-phase PSMT protocols exist if and only if n ≥ 3t+ 1. This
is consistent with comparable research in perfectly secure protocols against an active
adversary, where it is commonly also required to have n ≥ 3t + 1. Another example
of such protocols are perfectly secure multi-party computation protocols, which are
discussed in Part IV.

Dolev et al. furthermore discovered that as soon as you allow interaction in the
message transmission protocol, i.e., multiple transmission phases where the parties
can communicate feedback with regard to the data they received, it is possible to
construct perfectly secure protocols under the weaker restriction n ≥ 2t + 1. As
to the required number of communication phases, they showed that for n ≥ 2t + 1
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it is necessary and sufficient to use two phases. Finally, Dolev et al. showed that
no (perfectly or probabilistically) secure message transmission protocols exist when
n ≤ 2t.

Following these results in [29], it remained an open question to determine the
optimal achievable communication overhead for such protocols. We first consider
one-phase protocols where n ≥ 3t + 1. In 2004, Srinathan, Narayanan and Pandu
Rangan [70] demonstrate that communication overhead n/(n− 3t) is achievable. It
turns out n/(n− 3t) overhead is also necessary, as proven in 2007 by Fitzi, Franklin,
Garay and Harsha Vardhan [33].

We now consider the setting where n ≥ 2t + 1 and two communication phases
are allowed. An initial communication-inefficient protocol for this setting was given
in [29]. The first communication-efficient protocol was later presented in 1996 by Say-
eed and Abu-Amara [64], who achieve an Ω(n3/(n − 2t)) communication overhead.
In the 2004 paper [70], a lower bound of n/(n− 2t) is established for the communi-
cation overhead. We uncovered a fundamental flaw in another result of [70] (see [1]),
but also discovered that some of the techniques from this paper allow to reduce the
communication overhead of the Sayeed and Abu-Amara protocol to Ω(n2/(n− 2t)).

In 2006, Agarwal, Cramer and de Haan [1] achieve the optimal Ω(n/(n − 2t))
communication overhead. It is interesting to note that one cannot achieve a lower
communication overhead through the use of more than two communication phases, as
was later proved in 2007 by Srinathan, Prasad and Pandu Rangan [71]. This means
that the research line concerning the communication overhead of perfectly secure
message transmission protocols is now essentially closed.

As a final twist, Kurosawa and Suzuki [51] prove in 2008 that it is possible to
achieve the optimal two-phase communication overhead for n ≥ 2t+ 1 with a compu-
tationally efficient protocol, which was left as an open problem in [1]. Although not
originally presented in this manner, it turns out that when one extracts the key idea
from their article and swaps it into the framework of [1], one can achieve the same
result. We present this approach in this work.

The results described up to now are tied to the worst-case two-phase setting where
n = 2t+1. If one moves an ε-fraction away from these parameters, i.e., sets n = (2+ε)t
with ε > 0, one achieves a natural lower bound of Ω(1) on the communication over-
head. In fact, this overhead can be achieved using a straightforward modification of
the protocol in [1], but this results in a computationally inefficient protocol. Fitzi et
al. [33] present techniques that allow to achieve this lower bound with a computa-
tionally efficient protocol. Although the same effect can now also be achieved by a
modification of the protocol in [51], the techniques in [33] are fundamentally different
from those used in other message transmission protocols and interesting to discuss in
their own right.
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Single-Phase Perfectly Secure

Message Transmission

For completeness, we fully treat the known results on perfect, single-phase message
transmission, where some of the results are also used in the multi-phase setting. In a
sense, the single-phase setting can be seen as the simple case of the general problem, as
the optimal communication overhead can already be achieved using a straightforward
combination of secret sharing and error correction.

The following remarks are used to simplify the discussion in this chapter. When the
communication consist of a single phase, it is easy to see that only the data transmitted
by S (and A) is relevant. Furthermore, we can consider the data transmitted by S
to be a codeword in a code C of length n and the data received by R to be the same
codeword in C after the introduction of up to t errors.

We start by demonstrating that n ≥ 3t+1 is a necessary condition for single-phase
perfectly secure message transmission and proceed by showing that this condition is
also sufficient. Finally, we argue the required and achievable communication overhead
for such protocols.

We first fix some notation. Let M be the message space from which the message
M is drawn. Furthermore, let C be a code of length n over some finite field F
and φ : C → M be a surjective map that maps a codeword ~c ∈ C to a message
M ∈M. We assume without loss of generality that the protocol consists of S selecting
a codeword ~c ∈ φ−1(M) uniformly at random and transmitting it. At the end of the
protocol, R then receives a vector ~c′ ∈ Fn for which d(~c,~c′) ≤ t.

For A ⊂ {1, 2, . . . , n}, we define CA to be the restriction of C to the positions in
A. When A is of the form {i, i+ 1, . . . , j}, we may also use notation Ci,j or Ci when
i = j. We denote the subset of codewords corresponding to a message m ∈ M by
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Cm, i.e., Cm = φ−1(m).

4.1 Necessity of n ≥ 3t+ 1

We can argue the necessity of n ≥ 3t + 1 as follows. First note that due to the
privacy property, any data transmitted on any selection of up to t channels needs to
be independent of the message M . The necessity of n ≥ 3t+ 1 now follows from the
following result from coding theory.

Lemma 4. For any one-phase reliable transmission, the data transmitted on any n−2t
channels necessarily determines the message M . [29]

Proof. Note that when S transmits a message M using some codeword ~c ∈ CM , the
correctness property implies that M can be uniquely determined from any vector
~c′ ∈ Fn for which d(~c,~c′) ≤ t.

Now assume that the lemma is false, i.e., there exists a codeword ~c ∈ C such that
some n−2t of the positions do not fix any message inM. Without loss of generality we
can assume this involves the first n−2t positions. Then for some distinct m,m′ ∈M
there exist codewords ~cm ∈ Cm and ~cm′ ∈ Cm

′
such that (~cm)1,n−a−b = (~cm′)1,n−a−b

for some 1 ≤ a ≤ t and 0 ≤ b ≤ t.
Consider now the case where R receives the vector ~e ∈ Fn that consists of the

concatenation of (~cm)1,n−a−b, (~cm)n−a−b+1,n−b and (~cm′)n−b+1,n. Since a, b ≤ t,
neither the subvector (~cm)n−a−b+1,n−b nor the subvector (~cm′)n−b+1,n determines the
message. Now by application of the correctness property, the vector ~e should be
decoded as the message m, since d(~cm, ~e) ≤ t. However, since d(~cm′ , ~e) ≤ t, the
vector ~e should also be decoded as the message m′. This contradicts the fact that the
protocol satisfies the correctness property.

Corollary 5. For any one-phase perfectly secure message transmission protocol it
holds that n ≥ 3t+ 1.

Proof. Lemma 4 shows that in order to satisfy the correctness property, the data that
S transmits on any n − 2t channels should determine M . Furthermore, since any
data transmitted on any selection of up to t channels needs to be independent of the
message M to maintain privacy, we need to have that n − 2t > t. This implies that
n ≥ 3t+ 1.

4.2 Sufficiency of n = 3t+ 1

Let Ĉ ⊂ Fn+1 with |F| > n be the [n+1, t+1] Reed-Solomon code with n+1 = 3t+2,
where we number the positions in the codewords of Ĉ using the numbers 0, 1, . . . , n.
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Let C ⊂ Fn be the [n, t+ 1] Reed-Solomon code ĈN obtained after projecting on the
last n positions of the codewords in Ĉ. Now consider the following algorithm for S:

1. Select a codeword ~̂c ∈ Ĉ uniformly at random under the restriction that the
first coefficient is the message M ∈ F.

2. Let ~c ∈ C be the codeword that results after removing the first position in the
codeword ~̂c.

3. Transmit the value in the ith position of ~c over the channel si for i = 1, 2, . . . , n.

Since dmin(C) = n− t = 2t+1, R is able to correct errors introduced in any up to
t positions in the codeword ~c. Using any t+ 1 of the recovered positions, R can now
determine the codeword ~̂c and thereby output M . On the other hand, for any up to
t positions that A reads and any value M ′ ∈ F there exists a unique codeword in Ĉ

that contains the value M ′ in the first position and that matches the read positions.
Therefore, given the values read by A, any possible value in F is equally likely to be
the message that was transmitted by S. Therefore, the protocol is both private and
correct and is thus a perfectly secure message transmission protocol.

4.3 Communication Lower Bound for n ≥ 3t+ 1

It is easy to verify that the protocol listed above introduces a communication overhead
of n, i.e., for every value in F that S transfers toR n values in F need to be transmitted
over the channels by S. Fitzi, Franklin, Garay and Harsha Vardhan [33] show that
this overhead is in fact optimal for n = 3t+ 1.

Theorem 19. Any one-phase PSMT protocol for n > 3t channels requires communi-
cation overhead ≥ n/(n− 3t).

Proof. Consider any one-phase PSMT protocol for n > 3t based on a code C ⊂ Fn.
Recall that it is required due to the privacy property that any t positions in the
codeword are independent of the message M . In particular, this implies that for
any two messages m1,m2 ∈ M we have that Cm1

2t+1,3t = Cm2
2t+1,3t. Furthermore,

perfect correctness implies that any n− 2t positions in the codeword should uniquely
determine the message M and therefore Cm1

2t+1,n ∩ C
m2
2t+1,n = ∅ whenever m1 6= m2.

Note that in order for the latter condition to hold, there should exist at least one
distinct configuration of values for the last n − 3t positions in the code for every
message m ∈ M. In other words, |C3t+1,n| ≥ |M|. Since

∏n
i=3t+1 |Ci| ≥ |C3t+1,n|

this implies that
∏n
i=3t+1 |Ci| ≥ |M|.

Due to symmetry, this inequality holds for any selection of d = n−3t positions in C.
If we now enumerate over all subsets of d consecutive integers in {1, 2, . . . , n}, allowing
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’wrap-around’ (including for instance the subset {n− 1, n, 1, 2, . . . , d− 2}), and look
at the corresponding positions in the code, we obtain n configurations that together
count every position exactly d times. It follows that (

∏n
i=1 |Ci|)

d ≥ |M|n. Since at
least log|Ci| bits are required to communicate the value in every ith position, this
implies that the overhead is at least (

∑n
i=1 log|Ci|)/log|M| ≥ n/d = n/(n− 3t).
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Two-Phase Perfectly Secure

Message Transmission

The first two-phase perfectly secure message transmission protocol was presented by
Dolev, Dwork, Waarts and Yung [29] in 1993. However, the protocol introduced
an exponential communication overhead. This made the protocol inefficient both in
terms of communication overhead and computational complexity. In 1996, Sayeed and
Abu-Amara [64] were the first to present an idea for a protocol that is efficient both in
terms of communication overhead and computational complexity.1 Their techniques
allow to achieve a protocol with O(n3) communication overhead.

Srinathan, Narayanan and Pandu Rangan [70] later, in 2004, present proof that
every protocol with n = 2t + 1 necessarily requires Ω(n) communication overhead,
and claim to present a protocol that achieves this optimal overhead. Although their
protocol is incorrect (see [1]), it does involve a very useful technique that allows to
reduce the communication overhead of perfectly secure message transmission protocols
by replacing most broadcast occurrences with the application of an error correcting
code. Applying this technique to the Sayeed-Abu-Amara protocol leads to a protocol
with Ω(n2) communication overhead.

A few years later, in 2006, Agarwal, Cramer and de Haan [1] introduce a new idea
that allows to achieve the optimal O(n) communication overhead. The basic idea is
to ensure that all channels with data modifications can be detected and to organize
the remainder of the protocol in such a way that R can reconstruct all relevant parts
of the initial data that S received. This in turn allows to extract linear-size keys, as
opposed to the constant-size keys that result from the Sayeed-Abu-Amara technique.
However, the detection-technique presented in [1] requires the transmission of an

1It should be noted that their actual protocol contains an important error.

57



Chapter 5. Two-Phase PSMT

amount of data that is exponential in n, and therefore results in a computationally
inefficient protocol.

As an intermediate result towards achieving both computational efficiency and
optimal communication overhead, Fitzi, Franklin, Garay and Harsha Vardhan [33]
in 2007 present a solution for the ’almost worst-case’ parameters n = (2 + ε)t. The
protocol they present achieves constant communication overhead, which is trivially
seen to be optimal.

Finally, in 2008 Kurosawa and Suzuki [51] present an improved detection-technique
for modified data that only requires the transmission of a polynomial (in n) amount
of data. This leads to a computationally efficient protocol with the optimal Ω(n)
communication overhead.

Below we explain the ideas behind all of these protocols in a modular way using
the framework first introduced in [1], which simplifies the task of identifying the
conceptual improvements made between the various articles.

5.1 Sayeed and Abu-Amara’s Protocol

The protocol by Sayeed and Abu-Amara [64] can be seen to consist of three parts. The
first part establishes correlated data between S and R that is partially independent
of any data read by A. At the end of the second part S and R share identical data
that is still partially independent of any data read by A. The third part consists of a
privacy amplification step that is then used to extract a mutual one-time-pad between
S and R that is completely independent of any data read by A. Such a one-time-pad
can be used to encrypt the message and the resulting ciphertext can be transmitted
to R using broadcast (which involves a linear communication overhead).

In Section 5.1.1 we describe the first step of the protocol by means of the protocol
Πi, which is executed in parallel for every index i ∈ N . Section 5.1.2 describes
the information reconciliation step that enables S and R to agree on a partially
private data vector and Section 5.1.3 describes the privacy amplification protocol
that converts this vector into fully private data. Finally, Section 5.1.4 then shows
how these steps combine into the full perfectly secure message transmission protocol.

5.1.1 Protocol Πi

We now describe the two-phase subprotocol Πi that has implicitly been used in the
protocol of Sayeed and Abu-Amara [64]. Conceptually, during this protocol R trans-
mits a value s ∈ F to A over channel ri and obtains feedback in the following phase
about the value that is subsequently transmitted by A on channel si. It has the
following properties:
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• If A does not forward all data R transmitted on channel ri unaltered, R can
identify at the end of the second phase that i ∈ IA.

• If channel i is not contained in the set IA at the start of the first phase

– R can identify that A correctly forwarded s.

– The total data that A reads during the protocol is uncorrelated with s.

The details of the protocol are as follows. Assume that F = Fq with |Fq| > n and
let C ⊂ Fn+1

qt+1 be an i-concentrated [n + 1, t + 1] Reed-Solomon code over Fq. First,
R selects a codeword of the form (s, c1, . . . , ci−1, α, ci+1, . . . , cn) ∈ C uniformly at
random. R then transmits α over channel ri and cj on every remaining channel rj .
We denote the value transmitted by A on channel si by α′ and the values transmitted
on the remaining channels sj by c′j . This completes the first phase.

The second phase proceeds as follows. If S receives incorrectly formed data on
any of the channels, S broadcasts a notification for these channels. Otherwise, for
every pair of values such that fα′(xj) 6= c′j , S broadcasts j, fα′(xj) and c′j .

2 Finally,
R verifies for all received values whether fα′(xj) = cj and identifies that i ∈ IA if this
is not the case or if S sent a notification for channel si. Otherwise, R concludes that
A forwarded the value α correctly, which implies that S can compute s = fα(x0).

First note that at least t+1 channels transmit correct values and any t+1 correct
values determine the codeword. Therefore it follows that whenever α 6= α′ there is at
least one correctly forwarded value cj such that fα′(xj) 6= cj , which R can identify. In
particular, when none of the values that R receives leads to such a contradiction this
implies that α = α′. The remaining privacy property follows from a straightforward
application of the properties of the code C.

5.1.2 Information Reconciliation

In this section we describe an information reconciliation technique that is based on
an idea by Sayeed and Abu-Amara [64]. We assume that S has a vector consisting of
n = 2t+ 1 uniformly random values and that at least t+ 1 of these values are known
by R. Furthermore, suppose that A read at most t of these values and that the
additional data read by A is not correlated with the remaining n− t values. The goal
is to have S transmit enough information to allow R to recover the random vector
while guaranteeing that the data read by A remains completely uncorrelated with at
least one of coefficients in the vector.

Concretely, let Fq be a finite field with |Fq| ≥ n + t and assume that S has a
uniformly random vector ~v = (v1, v2, . . . , vn) ∈ Fnq . We now consider the (unique)

2It is easy to see that it is not really necessary here to transmit the values c′j , but it is added here

to simplify the presentation later on.
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codeword ~c in the [n + t, n] Reed-Solomon code C ⊂ Fn+t
q for which the first n

coefficients equal those in ~v. Let S broadcast the last t coefficients of ~c to R.
R now knows at least n coefficients of ~c, which fixes the codeword ~c and in particu-

lar the first n coefficients corresponding with ~v. Since A obtains the value for at most
n − 1 different positions of ~c, it follows from the properties listed for Reed-Solomon
codes in Section 2.1 that any coefficient that A does not obtain is uncorrelated with
the n− 1 coefficients that A does obtain. Therefore, the requirements are met.

5.1.3 Privacy Amplification

We now describe a well-known technique for perfect privacy amplification [6, 5], that
is very well-suited for use in perfectly secure message transmission protocols. Suppose
S and R share b uniformly random elements in Fq and that it is promised that a < b

of these elements are completely uncorrelated with the data that A has access to.
Then there is a simple technique that allows S and R to non-interactively generate a
of such random elements.

Assume that |Fq| > a + b and let C ⊂ Fa+bq be a [a + b, b] Reed-Solomon code.
Then we can view the b shared random elements as the first b coefficients of a (hereby
uniquely determined) codeword ~c ∈ C. By the properties of the Reed-Solomon code,
the data accessible by A is completely uncorrelated with the last a coefficients in ~c.
These coefficients can therefore be taken as the outcome of the privacy amplification.

5.1.4 The Protocol

The two-phase protocol due to Sayeed and Abu-Amara [64] is easily explained in terms
of the techniques described in the previous sections. Initially, Πi is executed in parallel
for every channel i ∈ N . This results in n random values {v1, v2, . . . , vn} that are
received by S, of which at least t+1 are equal to values that were originally transmitted
by R. Furthermore, R finds out in the second phase which values were correctly
received. Also, A knows at most t of the values received by S, which correspond to
the indices in IA. S and R can now apply the information reconciliation technique
from Section 5.1.2 and the privacy amplification technique from Section 5.1.3 to obtain
a completely secret element v ∈ Fq, which can then be used as a one-time pad.

5.2 A Lower Bound for Two-Phase PSMT

In this section we show the lower bound result on the communication overhead of
perfectly secure message transmission protocols due to Srinathan, Narayanan and
Pandu Rangan [70]. They prove the following theorem.
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Theorem 20. Any two-phase perfectly secure message transmission protocol for n >
2t channels requires communication overhead ≥ n/(n− 2t).

Proof. We mainly consider a weaker type of message transmission protocol, where we
require correctness but not privacy, i.e., the only condition is that R always correctly
outputs the message M . The result then in particular holds for any full-fledged
perfectly secure message transmission protocol. Furthermore, since correctness should
hold for any random inputs for S, R and A, we can without loss of generality assume
that the random input strings for S and R (that are independent of the message M)
are fixed and public. This makes the protocol deterministic.

We can now make some additional simplifying assumptions. Note that any data
transmitted by S in either the first or the second phase is independent of the data
transmitted by R in the second phase, so we can assume that R only transmits data
in the first phase. However, since all inputs for R are fixed and public, S can simulate
the transmissions by R locally. This implies that R is not required to transmit any
data at all. In particular S only requires one phase to transmit his data. The bound
now follows directly using the techniques in the proof of Theorem 19.

5.3 Improved Reliable Transmission

The (potentially) most communication-intensive transmission in the protocol from
Section 5.1 is the reliable transmission of the collisions during the second phase, i.e.,
the broadcasts involving the values fα′(xj) and c′j for which fα′(xj) 6= c′j . In this
section we demonstrate a technique introduced by Srinathan, Narayanan and Pandu
Rangan [70] that reduces the communication cost by replacing the broadcasts with a
combination of broadcast and error correcting.

Let the set X := {(i, j, aj , bj)} consist of the collision values j, aj := fα′(xj)
and bj := c′j that need to be broadcast during the execution of the protocol Πi

for i = 1, 2, . . . , n as described in Section 5.1.1. Now define the undirected graph
G = (N , E) by

(i, j) ∈ E ⇔ (i, j, aj , bj) ∈ X ∨ (j, i, ai, bi) ∈ X

and let M be the size of a maximum matching on G. Since at least one of the two
values aj , bj in every tuple is incorrect, every edge in this graph involves at least
one channel on which data has been modified by A. Therefore there are at least M
channels that have transmitted modified values.

Furthermore, it can be seen that if the tuples corresponding to these M edges are
broadcast by S,R can determine at least M such channels. This implies thatR will be
able to discard the values received on at least M channels during the remainder of the
reliable transmission. Therefore, we can use an error correcting code with codewords
of length n that can handle M erasures and t −M errors for the transmission. In
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other words, n−M − 2(t−M) = M + 1 values can now be transmitted using a single
codeword of length n.

Since every edge in the graph involves at least one channel that is in the maximum
matching, there can be at most 2Mn edges in the graph. In particular, this implies
that every set X can contain at most 4Mn vectors. Using an error correcting code,
every set X can thus be transmitted by sending O(n2) values over the channels.
This gives a linear improvement over the previous approach, where all of these values
needed to be broadcast.

5.4 Communication-Optimal PSMT for n = 2t+ 1

In this section we describe the details of the protocol due to Agarwal, Cramer and
de Haan [1], which is the first known perfectly secure message transmission protocol
that achieves the optimal linear communication overhead. Conceptually, the authors
replace the subprotocol Πi that establishes correlation between S and R from Sec-
tion 5.1.1 and the protocol for information reconciliation as described in Section 5.1.2
by a new subprotocol Π̂i. This new subprotocol Π̂i has the following properties:

• At the end of the protocol, S and R both obtain a uniformly random vector
Zi = (z1, z2, . . . , zd) ∈ Fd. However, they do not necessarily control which
vector this is.

• If i /∈ IA, the data read by A is uncorrelated with the vector Zi.

Here d ∈ Z>0 is some constant value that can be selected before the start of the
protocol.

We compare the protocol Π̂i with the protocol Πi. As shown in the protocol due
to Sayeed and Abu-Amara (Section 5.1), after Πi has been invoked once for every
channel, up to t of the values that were actually received by S may be unknown to
R. Therefore, almost all privacy had to be sacrificed during information reconcilia-
tion. However, when the protocol Π̂i finishes, information reconciliation has already
occurred.

Furthermore, we show that by choosing a message m of sufficiently large size, the
relative amount of privacy that has to be given up during the information reconcilia-
tion in the new protocol can be made arbitrarily small, whereas in the protocol due
to Sayeed and Abu-Amara this amount is always proportional to the message size.

5.4.1 Sketch of the Techniques Used

During the protocol Πi it is possible that data is replaced by A on certain channels in
the first phase, while these channels cannot be detected due to the fact that R does
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not receive sufficient feedback concerning these channels. The first part of protocol Π̂i

introduces a technique that allows all channels with data modifications to be detected,
even if only a single value has been altered on the channel. This then replaces the
part of the original protocol that establishes the correlation between S and R.

The second part of the protocol Π̂i then consists of a new information reconciliation
subprotocol. During this part of the protocol S again sends some additional data,
which turns out to be similar to the conflict information that is broadcast during the
protocol Πi. Due to this part of the protocol, R can in the end reconstruct all values
that S received after the first phase, instead of just a restricted part of the data as
was the case during the protocol Πi.

The key to detecting all corrupted channels is the fact that there are always t+ 1
channels on which the data is forwarded unseen and unmodified by A. Due to the
use of (extended) Reed-Solomon codes, the values corresponding to these channels
completely determine the original codeword and therefore any combination of the
t + 1 correct values together with one altered value will not correspond with any
correct codeword in the code. Such inconsistencies allow R to detect modifications
on channels, since S can send such altered values to R and R can verify that a value
has actually been altered. However, since the set IA is not known and therefore also
not the indices for the t+ 1 unmodified channels, this procedure needs to be repeated
for all subsets consisting of t+ 1 channels to make sure that the proper subset of t+ 1
unmodified channels has been attempted.

5.4.2 Details of Protocol Π̂i

We now describe the protocol Π̂i, starting with the part that establishes the corre-
lation. Let Fq be such that |Fq| > n + t and recall that N = {1, 2, . . . , n}. The
first phase of the protocol Π̂i is just as in the protocol Πi, except that instead of one
codeword, m codewords are initially selected and transmitted. Let C ⊂ Fqt+1 be an
i-concentrated [n, t + 1] Reed-Solomon code. As before, we denote the subspace of
a code C that results from restricting to the positions in a set A ⊂ {1, 2, . . . , n} by
CA and similarly denote the restriction of a vector ~c ∈ Fnq to A by (~c)A or (~c)j when
A = {j}. Furthermore, let D ⊂ Fnq be the related Reed-Solomon code where in every
codeword ~c ∈ C the ith coefficient α is replaced by the value fα(xi).

1) Phase 1: In the first phase, R initially selects m random codewords

~c1,~c2, . . . ,~cm ∈ C.

R then proceeds by transmitting ~c1,~c2, . . . ,~cm as usual; by transmitting the respective
values {(~ck)j}mk=1 over channel rj for j = 1, 2, . . . , n.

2) Round 2: Assume that S receives the vectors ~c′1,~c
′
2, . . . ,~c

′
m ∈ Fnqt+1 . To

simplify the discussion we first replace these vectors by the corresponding vectors
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~d′1,
~d′2, . . . ,

~d′m ∈ Fnq where the heavy ith coefficients (~c′j)i are replaced by the values
f(~c′j)i(xi) in the appropriate vectors.

We now perform the verification as described in Section 5.4.1, where for every
position j and every combination of t + 1 positions j1, j2, . . . , jt+1 not including
position j we try to find an index ` for which the partial codeword (~d′`)A with
A = {j1, j2, . . . , jt+1, j} does not occur in the corresponding subcode DA. For ev-
ery such selection of channels, if such an index ` exists S broadcasts the value (~d′`)j
and its index ` to R, who can then verify whether this value matches the transmitted
data. In Lemma 5, we show that this approach allows R to identify all channels j on
which data has been replaced by A.

It is clear that in the above procedure many values are broadcast that were not
correlated with any data that was initially read by A. In order to remove the newly
introduced correlation, all codewords corresponding to the broadcast values are dis-
carded. Of the remaining codewords, the values at the ith positions are stored. Due
to the similarities with the protocol Πi, it now follows that these values are known to
A only if channel i has been read, whereas the data read by A remains uncorrelated
with these values otherwise.

Concretely, for the values j = 1, 2, . . . , n, let the set Qj = {Vj1, Vj2, . . . , Vjw}
consist of all combinations of t + 1 positions that do not include position j, i.e.,
Qj = {V ⊂ N\{j} : |V | = t + 1}. Then for all members of the set Qj (1 ≤ j ≤ n)
the corresponding positions in a codeword determine the full codeword and every set
Qj has the same number of elements (namely w =

(
n−1
t+1

)
elements).

The following protocol now specifies the verification step that is performed after
the first phase.

Protocol A: Classify Channels

1. Let j ∈ N , k ∈ {1, . . . , w} and define Wjk := Vjk ∪ {j}. Then either (~d′`)Wjk
∈

DWjk
for every ` ∈ {1, . . . ,m}, or there is a smallest integer `jk such that

(~d′`jk)Wjk
/∈ DWjk

.

Taking `jk = 0 when (~d′`)Wjk
∈ DWjk

for every `, we let Lj = (`j1, . . . , `jw) be
the vector containing all such smallest indices, Ij = {`j1, . . . , `jw}\{0} be the
corresponding set of indices and define

Ej := ((~d′`jm)j)m∈{1,...,w}:`jm 6=0

2. For j = 1, . . . , n, S broadcasts Lj and Ej . Furthermore, S defines

Zi := ((~d′`)i)`∈{1,...,m}\(⋃nj=1 Ij)
.

We now specify the second part of the protocol Π̂i, consisting of Protocol B and
Protocol C below, that performs the information reconciliation between the data of
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S and R. Note that during Protocol B almost the same ‘conflict information’ is
transmitted as in the second phase of Πi, where here it is crucial that whenever
f(~c′`)i(xj) 6= (~c′`)j both conflicting values are returned instead of just one of these
values.

However, this information is used in a completely different way. Whereas in pre-
vious protocols this information was required to discover channels on which data was
modified, that functionality is now completely superfluous due to the previous part
of the protocol. Instead, the information transmitted during Protocol B is exactly
sufficient to allow for complete information reconciliation by R, in the sense that it
helps R to completely determine what S received in the first phase.

Protocol B: Gather Reconciliation Information

1. Define

Ci := {(`, j, (f(~c′`)i(xj), (~c
′
`)j) : f(~c′`)i(xj) 6= (~c′`)j), j ∈ N\{i}, ` ∈ {1, . . . ,m}}.

2. S broadcasts Ci.

After S has finished transmitting, R can now execute the following protocol to
reconstruct Zi. Note that nothing needs to be transmitted anymore at this point.

According to Lemma 5, a channel sj transmitted modified values if and only if
there exists an entry in Ej that is inconsistent with the data transmitted by R.
This allows R to completely split up the set of channels {s1, s2, . . . , sn} in a set Uc
of channels that transmitted modified values and a set Uu of unmodified channels.
Together with the transmitted reconciliation data this allows to recover the data
received by S. Below we only demonstrate how R can recover the vector Zi, but
it is straightforward to see that the same technique can be extended to recover the
remaining data received by S. Since this extra data is not required for the protocol,
this extension is omitted here.

Protocol C: Reconcile

1. First assume that i ∈ Uu. Then

Zi = ((~d′`)i)`∈{1,...,m}\(⋃nj=1 Ij)

= (f(~c`)i(xi))`∈{1,...,m}\(
⋃n
j=1 Ij)

,

which is a vector known to R.

2. Now assume that i ∈ Uc. Fix ` ∈ {1, . . . ,m}, let H ⊂ Uu be a set of
t + 1 unmodified channels and take j ∈ H. Then either (~c′`)j = f(~c′`)i(xj)
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or (`, j, f(~c′`)i(xj), (~c
′
`)j) ∈ Ci. In the first case, (~c′`)j (which is then equal to

f(~c`)i(xj), which is known to R) gives the value at the jth position of the code-
word (~c′`)H ∈ CH and in the second case f(~c′`)j (xj) gives the value at the jth

position of the codeword (~c′`)H ∈ CH .

Since the values at any t + 1 positions of a codeword in (~c′)H∪{i} ∈ CH∪{i}
determine (~c′)H∪{i}, they in particular fix the value f(~c′)i(xi). Therefore, it
follows that R can obtain Zi in this case as well.

It follows that R and S both obtain the same vector Zi at the end of the protocol.
If Zi is not empty, the values in the vector are either completely known to A or he has
no information about these values, depending only on whether i ∈ IA or not. This
completes the description of protocol Π̂i.

5.4.3 The Protocol

Assume that we execute the protocol Π̂i in parallel for all n channels. Without loss
of generality we may assume that all vectors Zi have the same length, since otherwise
S and R can just remove entries according to some predetermined method. Also, it
should be clear that for any i that the protocol is executed for, the set

⋃n
j=1 Ij can

contain at most nw = n
(
n−1
t+1

)
indices. Therefore, by choosing m large enough, the

length of the vectors Zi can in fact be fixed to any nonzero value, so we can assume
that the vectors Zi have nonzero length.

At most t of the vectors Zi have been read by A at the end of the n parallel execu-
tions of Π̂i, whereas the remaining vectors are uncorrelated with the information read
by A. Therefore, applying a parallel version of the privacy amplification technique
from 5.1.3 on these n vectors gives t+1 completely secret vectors. The values in these
vectors can then be used in the second phase by S to one-time-pad encrypt message
elements from Fq.

5.4.4 Proofs

We now provide the results that support the claims. The following lemma shows that
R can determine for a channel sj whether any incorrect data has been transmitted
on it in the first phase of Π̂i by comparing the received values in the set Ej with the
original values that were transmitted on channel rj in the first phase.

As described in the beginning of Section 5.4.2, let D ⊂ Fnq be the Reed-Solomon
code obtained from C by replacing the ith coefficient α with fα(xi). Similarly, we
define vectors ~dj related in this way to the transmitted vectors ~cj and vectors ~d′j
related to the received vectors ~c′j .
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Lemma 5. Fix any j ∈ N . Then (~d′`)j 6= (~d`)j for some ` ∈ {1, . . . ,m} if and only if
there is a value `′ ∈ {1, . . . ,m} such that (~d′`′)j 6= (~d`′)j and (~d`′)j is an entry of Ej.

Proof. (⇐) Trivial.
(⇒) If (~d′j)` 6= (~dj)` for some ` ∈ {1, . . . ,m}, then there is a set Vjk of t+1 indices

that are not in IA ∪ {j}. In particular, (~d′j)Wjk`
/∈ DWjk`

, since the corresponding
t+ 1 correctly received coefficients in the received vector only occur in a codeword in
D where the jth coefficient is (~dj)`, which is different from (~d′j)`.

Now let `′ be the smallest value for which (~d′j)Wjk`′ /∈ DWjk`′ . Since the indices
in Vjk are not in IA, the values at the positions in the set Vjk correspond with a
codeword in DWjk`′ with in the jth position the value (~dj)`′ , where (~d′j)`′ 6= (~dj)`′

since otherwise (~d′j)Wjk`′ ∈ DWjk`′ . Since (~d′j)`′ is an entry of Ej by definition, the
lemma follows.

At first sight, it may seem that A can deduce information from the minimum
collision indices `jk that are broadcast during Protocol B. However, the lemma below
shows that this is not the case.

Lemma 6. The values `jk in Protocol A completely depend on the actions of A in the
first phase. In particular, these values are known to A even before they are broadcast
in the second phase.

Proof. By Lagrange’s theorem, a unique linear relation
∑t+1
i=1 λidi = dt+2 necessarily

holds for any codeword (d1, . . . , dt+2) ∈ DA with |A| = t + 2, where the λi’s are
publicly known constants that only depend on the a priori fixed evaluation points
x1, . . . , xn for the (t + 1)-dimensional Reed-Solomon code D. Lets assume that the
first e ≤ t coefficients are replaced by values d′i. It is straightforward to verify that
(d′1, . . . , d

′
t+2) ∈ DA if and only if

∑e
i=1 λid

′
i +

∑t+1
i=e+1 λidi = dt+2. This is the case

if and only if
∑e
i=1 λi(di − d′i) = 0. However, the values di − d′i are selected by and

known to A. Therefore, A already knows beforehand whether any particular received
partial codeword of length t + 2 is in the corresponding restriction of D and can in
particular predict all the minimum indices `jk.

Proposition 3. If (`, j, (~aj)`, (~bj)`) ∈ Ci, then i ∈ IA and/or j ∈ IA. Furthermore,
both (~aj)` and (~bj)` were already known to A at the end of the first phase.

Assume that i /∈ A. Since the first phase of Π̂i is a parallel version of the first
phase of Πi, it is clear that A obtains no information about the values (~d`)i in the
first phase.

The following lemma states that the adversary does not learn anything new about
the values of the entries of Zi (provided that Zi has any entries at all) in the second
phase of Π̂i. This shows that the proposed protocol is perfectly private.
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Lemma 7. If i /∈ IA and Zi contains a nonzero number of entries, then A obtains no
new information about the values of the entries of Zi in the second phase.

Proof. According to Lemma 6, the indices that are transmitted during Protocol A
are selected by (and therefore known to) A before the execution of the second phase.
Furthermore, the values that are transmitted during Protocol A are completely un-
correlated with the vector Zi since the corresponding vectors are discarded before the
vector Zi is constructed. Finally, Proposition 3 shows that only information that is
already known to A is transmitted during Protocol B. Therefore, A does not learn
anything new about the values of the entries of Zi in the second phase.

5.4.5 Complexity Analysis

Choose a field Fq such that its elements can be represented using bit strings of length
Ω(log(n)) and assume that m is such that m > nw logn(m). The length max{0,m−
nw} of the vectors Zi can be chosen to be of size ≥ cm for any constant c in the
interval (0, 1), by enlarging m as necessary. As Section 5.1.3 shows, this implies that
we can obtain a secret key of size (t + 1)cm = Ω(nm), i.e., of Ω(mn log(n)) bits.
In order to have a PSMT-protocol with linear communication complexity, the total
number of shares transmitted in each round should be O(mn2) or, stated equivalently,
the total number of bits transmitted in each round should be O(mn2 log(n)). Let us
now analyze the communication complexity of the parts of the new protocol.

first round. For every i, R sends mn elements over channel i and m elements
over every other channel j. This sums up to a total of O(mn) shares that are sent
over each channel and therefore to O(mn2) shares in total that are transmitted in the
first round.

Protocol: Classify Channels. For every value i ∈ {1, 2 . . . , n}, at most
O(w) indices and field elements are broadcast at the end of Protocol A for every
j, so that in total O(n2w(log(m) + log(n))) bits have to be broadcast. This gives
O(n3w(log(m)+log(n))) bits that are transmitted during Protocol A. Our assumption
implies that m > n, so that this can be rewritten to O(n3w log(m)). Furthermore,
by assumption m > nw logn(m), so that m log(n) > nw log(m), i.e., n3w log(m) =
O(mn2 log(n)).

Protocol: Gather Reconciliation Information. Assume that we regroup
the sets Ci during Protocol B as described in 5.3 and obtained the sets X` with
` = 1, 2, . . . ,m. Then, using some appropriate padding between the vectors encoding
sets Xl, all information can be transmitted by communicating only O(mn2) shares.

This completes the analysis.
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5.5 Computationally Efficient PSMT with Optimal

Overhead

In 2008, Kurosawa and Suzuki [51] have published a protocol that matches the optimal
communication overhead achieved by Agarwal, Cramer and de Haan [1], but that is
additionally computationally efficient. After studying their techniques, it turns out
that this is due to one key idea that allows to detect all modifications in the first phase
while keeping the total communication low. In fact, one can use this idea to construct
a protocol Π′i that fits in with the general framework introduced in [1]. When one uses
this new protocol to replace the protocol Π̂i from Section 5.4.2, one indeed obtains
an efficient perfectly secure message protocol with optimal communication overhead.
The idea behind it is as follows.

Let Fq be a finite field and C ⊂ Fnq be a code of length n. When m codewords
~c1,~c2, . . . ,~cm ∈ C are transmitted by R, S receives vectors ~c′1,~c

′
2, . . . ,~c

′
m ∈ Fnq where

every ~c′j can uniquely be written as ~c′j = ~cj + ~ej with ~ej ∈ Fnq and d(~ej) ≤ t. Since
A can at most select t indices on which to alter data, the vectors ~ej span a subspace
E ⊂ Fnq of at most dimension t.

In particular, if the minimum distance of C is larger than t, E ∩ C = ∅ and the
dimension of E/C is also t. Since ~c′j ≡ ~ej mod C, any subset of the vectors ~c′j that
is maximally independent modulo C forms a base of E/C. Lemma 8 demonstrates
that any such subset of vectors ~c′j then corresponds with a subset of vectors ~ej that
forms a basis for E, which can be determined by R upon receiving these vectors ~c′j .
This suffices to ensure that R can detect all channels with modifications.

The details of the protocol Π′i are as follows. Let Fq be such that |Fq| > n+ t and
let N = {1, 2, . . . , n}. The first round is just as in the protocol Π̂i, where we choose
m = o(n2). Again, let Ci ⊂ Fqt+1 be the i-concentrated [n, t+ 1] Reed-Solomon code
and Di be the Reed-Solomon code obtained by replacing every ith coefficient α by
fα(xi).

5.5.1 Round One

In the first round, R first selects n codewords ~c1,~c2, . . . ,~cm ∈ Ci uniformly at random.
R then proceeds by transmitting ~c1,~c2, . . . ,~cm as usual; by transmitting the respective
values {(~ck)j}mk=1 over channel rj for j = 1, 2, . . . , n.

5.5.2 Round Two

Assume that S receives the vectors ~c′1,~c
′
2, . . . ,~c

′
m ∈ Fnqt+1 and without loss of gener-

ality, we can assume that (~ck)j ∈ Fq for j ∈ N\{i} and any k ∈ {1, 2, . . . ,m}. Let
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~d′1,
~d′2, . . . ,

~d′m be the corresponding vectors where the ith coefficients α′ are replaced
by fα′(xi).
S selects a subset A of ~d′1, ~d

′
2, . . . ,

~d′n that is maximally independent modulo the
code Di. As described above, this subset allows R to identify all channels that have
had modifications and clearly |A| ≤ t. The following protocol now describes the
details of this procedure.

Protocol A: Improved classify channels

1. For i = 1, 2, . . . ,m S iteratively adds vectors ~d′i to (an initially empty set) A
whenever adding the vector ~d′i does not make the vectors in A dependent modulo
Di. Whether a set of vectors is dependent modulo Di can be verified at every
step using the technique described in Section 5.5.3. This results in a set A that
is maximally independent modulo the code Di.

2. S broadcasts A. Furthermore, S defines

Zi := {f(~c′l)i(xi)|~c
′
l /∈ E}.

In parallel, S executes Protocol B from Section 5.4.2.
Upon receiving the set E, R can determine the error vectors, and disqualify all

channels in their support. Then, using Protocol C from Section 5.4.2 R can recover
the sets Zi as in the previous protocol.

5.5.3 Checking for Dependence Modulo C

Given vectors ~b1,~b2, . . . ,~bk, one can efficiently check whether they are dependent
modulo C as follows. Assume that they are, so that there exist values α1, α2, . . . , αk ∈
Fq for which

∑k
i=1 αi

~bi ≡ ~0 mod C. Then this implies that ~c = (c1, c2, . . . , n) =∑k
i=1 αi

~bi ∈ C. Since C is a Reed-Solomon code of dimension t + 1, we know that
~c ∈ C if and only if the last n− (t+ 1) coefficients are such that cj =

∑t+1
i=1 λ

(j)
i ci for

j = t+2, t+3, . . . , n, where the constant coefficients λ(j)
i are derived from Lagrange’s

interpolation formula.
Since cj =

∑k
i=1 αibij for j = 1, 2, . . . , n, where ~bi = (bi1, bi2, . . . , bin) for i =

1, 2, . . . , k, we obtain n − (t + 1) equations in at most t variables. Now the vectors
are dependent modulo C if and only if this system of equations has a solution, which
can be determined in time polynomial in n.

It remains to show that any set of vectors ~d′1, . . . , ~d
′
k that is selected in the protocol

leads to a basis ~e1, . . . , ~ek of the space E.

Lemma 8. Let k ≤ t. Then k vectors {~c′i1 ,~c
′
i2
, . . . ,~c′ik} that are received by S are

independent modulo C if and only if the corresponding error vectors in the set E =
{~ei1 , ~ei2 , . . . , ~eik} are independent.
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Proof. We will demonstrate that the vectors {~c′i1 ,~c
′
i2
, . . . ,~c′ik} are dependent modulo

C if and only if the corresponding error vectors in E are dependent. Note that one
direction here is trivial, i.e., if the error vectors in E are dependent then the vectors
{~c′i1 ,~c

′
i2
, . . . ,~c′ik} are dependent modulo C.

Assume that ~c′i1 ≡
∑k
v=2 λv~c

′
iv

mod C for some λ2, . . . , λk ∈ Fq. Then ~ei1 ≡∑k
v=2 λv~eiv mod C and we show that this implies that ~ei1 =

∑k
v=2 λv~eiv . To simplify

notation, denote ~a1 = ~ei1 and ~a2 =
∑k
v=2 λv~eiv and note that d(~a1,~a2) ≤ t. Then

since ~a1 ≡ ~a2 mod C, there exist two codewords~b1,~b2 ∈ C such that~b1+~a1 = ~b2+~a2.
This implies that ~a2 − ~a1 = ~b1 − ~b2. However, since ~b1 − ~b2 ∈ C, d(C) > t and
d(~a2 − ~a1) ≤ t, it follows that ~a1 = ~a2.

5.6 Extra Phases Do Not Improve Efficiency

Since communication-optimal protocols exist when one allows exactly two communi-
cation phases, the next natural question to ask is whether one can get an even lower
communication overhead by allowing additional phases. It turns out that this is not
the case, as proven in 2007 by Srinathan, Prasad and Pandu Rangan [71]. In their
paper they achieve a general lower bound via a reduction of perfectly secure mes-
sage transmission protocols to secret sharing schemes with error detection. We give
a simplified overview of this result that is sufficient for our communication model.

Theorem 21. ([71]) Any perfectly secure message transmission protocol for n > 2t
channels requires communication overhead ≥ n/(n− 2t).

Proof. Consider the data transmitted during an execution of some perfectly secure
message transmission for some message M ∈M, where the adversary reads the data
transmitted over up to t channels, but forwards data unmodified. We claim that this
data has the following two properties:

1. The data transmitted on any t channels is independent of the message M .

2. The data transmitted on any n− t channels determines the message M .

The first property is an obvious consequence of the privacy property of the protocol.
Assume now that the second property does not hold. Then there exists some message
M ′ ∈ M and some collection of data for the t channels that adversary controls
such that the data transmitted on all n channels is both consistent with the message
M and the message M ′. This implies that there exists a protocol execution after
which R cannot distinguish between these two cases at the end of the protocol, which
contradicts the correctness property of the protocol. Therefore, the second property
must also hold.

The bound now follows from a similar argument to that made in Theorem 19.
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5.7 Three-Phase PSMT

Surprisingly, despite the fact that using more than two communication phases does
not allow to improve the communication overhead (or computational efficiency), there
is indeed motivation to consider three-phase perfectly secure message transmission
protocols in the setting where n ≥ 2t + 1. This is due to the fact that no perfectly
secure one-phase protocols exist for this setting, while it could be preferable to use
one communication phase instead of two communication phases in certain situations.

In this section we demonstrate that some three-phase protocols essentially become
one-phase protocols when A does not modify any data at all in the first phase, which
gives these types of protocols an advantage when this is likely to occur often. Moti-
vation for such adversarial behavior could be for instance the situation where gaining
control of a sequence of channels rj , sj is very costly, making it important that the
intrusion is not detected until it is needed to disturb an important communication.
Note that the best known protocols can in fact guarantee detection of all adversar-
ial behavior, so that this is likely to present a very practical problem. As an added
bonus, these three-phase protocols still guarantee perfect correctness, perfect privacy
and detection of all modifications when the adversary does modify data, at the cost
of two extra communication phases.

Concretely, we demonstrate that three-phase protocols can be organized in such
a way that R can immediately determine the message M after the first phase when
no data is modified.3 Additionally, we propose a modification with respect to the
protocol Πi, which is used here, that lowers the amount of communication required
when the remainder of the three-phase protocol is continued after the first phase.

5.7.1 Basic Protocol

The first efficient three-phase protocol, which has been described in [64, 19], is in
essence a simple extension of the two-phase protocol due to Sayeed and Abu-Amara
[64] from Section 5.1. Conceptually, the third phase is used to “repair” all the values
that were incorrectly received at the end of the first phase. The most basic version of
the protocol works as follows.

Initially, protocol Πi is executed in parallel for every index i ∈ {1, 2, . . . , n}
with the modification that S and R swap roles. This results in n random values
{v1, v2, . . . , vn} that are transmitted by S, of which at least t + 1 are correctly re-
ceived byR. Furthermore, S finds out in the second phase which values were correctly
received and broadcasts the values that were not correctly received to R in the third
round.

3Alternatively, the first phase of such a three-phase protocol can be executed in parallel with the

first phase of a two-phase protocol to achieve the same effect.
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R now knows all the correct initially transmitted values. Also, A knows at most
t of the values received by R, which correspond to the channels that are under his
control. S andR can now apply the privacy amplification technique from Section 5.1.3
to obtain t+ 1 completely secret elements vn+1, vn+2, . . . , vn+t+1, which can then be
used as a one-time pad in the third phase to mask and transmit a message of size
t+ 1 elements.

As noted earlier, the parallel application of the protocol Πi above can be performed
efficiently when combined with the low communication reliable transmission technique
for the collisions that are transmitted in the second round. This gives the protocol
described above linear communication overhead.

5.7.2 Expected One-Phase PSMT for n ≥ 2t+ 1

The idea is to encode the message within the n values vi that were previously used
to generate a random shared secret key. Before, since at most t of these values were
leaked during the protocol, privacy amplification allowed for the extraction of t + 1
secret random values. Now we specify how to use this “t + 1 secrecy” to encode a
message consisting of t+ 1 elements.

It should be the case that n values suffice to reconstruct the message, while t

values should give no information about the (t + 1)-element message. We use an
[n+ t+ 1, n− 1] Reed-Solomon code for this, where we select a codeword at random
under the restriction that the last t + 1 coefficients match the respective parts of
the message. The rest of the protocol works the same as before using the first n
coefficients for transmission. It is straightforward to verify that the requirements for
PSMT are satisfied.

If there are now no modifications in the first phase, all coefficients are received
correctly by R at the end of the first phase and this is visible to R due to the lack
of collisions to transmit in the the second phase. R can then immediately decode the
message and the transmission is basically done. In certain settings, R might have to
notify S that this is the case, which would add another (low-communication) phase
to the protocol.

5.7.3 Protocol Π′i

We can slightly improve the total amount of communication of the three-round pro-
tocol in the previous section. The improvement technique is generic and can also be
applied to most of the other interactive PSMT protocols that are described in this
paper, so we list it for completeness. The idea is to replace some of the shares that
are transmitted in the second round, i.e., the ones that are used only for the detection
of corruptions, by a relevant bit in their representation.
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The easiest way to demonstrate the idea is by replacing the protocol Πi from
Section 5.1.1 by the following protocol Π′i, where we again swap the roles of S of R
so it can be used for three-phase protocols.

Protocol Π′i

1. The first round is identical to that of Πi. We denote the value that R receives
on channel ri by α′ and the values received on the other channels rj by c′j . This
completes the first round.

2. The changes we make are in the second round. If R receives any incorrectly
formed data on any of the channels, R broadcasts a notification for these chan-
nels. Otherwise, for every pair of values such that fα′(xj) 6= c′j , R now broad-
casts j, the index k of a bit where fα′(xj) and c′j differ together with the value
of the kth bit in fα′(xj) (whereas in protocol Πi, R used to broadcast j and the
entire value fα′(xj)). Finally, S verifies for all received values whether the kth

bit of fα′(xj) equals the kth bit of cj and identifies that i ∈ IA if this is not the
case or if R broadcast a notification for channel ri.

The privacy and correctness properties follow from an argument similar to that
made in Section 5.1.1. So, basically, the verification of the received values can already
be performed using a single bit that differs between conflicting values, which saves
communication during the second round. Similar adjustments are possible with most
of the other interactive protocols to improve the total amount of required communi-
cation.

5.8 Two-Phase PSMT for Non-Tight Parameters

We now discuss what is possible for two-phase protocols when we move slightly away
from the worst-case parameters n = 2t + 1 and consider n ≥ (2 + ε)t with ε > 0.
We first mention in our work [1] that one can slightly modify our communication-
optimal protocol (as described in Section 5.4) for these new parameters so that it
turns into a protocol with constant communication overhead, which is trivially seen
to be optimal. This is due to the fact that the modified protocol allows to extract a
secret key that is a linear factor (in n) longer than in the original protocol. When one
applies a similar transformation to the communication-efficient protocol of Kurosawa
and Suzuki [51], the resulting protocol also introduces a constant overhead and is
additionally communication-efficient.

We note that the first known communication-efficient two-phase protocol with
constant communication overhead for n ≥ (2 + ε)t is due to Fitzi, Franklin, Garay
and Harsha Vardhan [33]. This result was published in 2007, in between our 2006
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publication and the publication of the paper by Kurosawa and Suzuki in 2008. Since
the protocol of Fitzi et al. uses techniques that are fundamentally different from those
described earlier, we consider it worthwhile to present them here for completeness.

5.8.1 Sketch of the Protocol

Assume that n ≥ (2 + ε)t and let N and T be such that N ≥ (3 + δ)T . We describe
the relation of N and T to n and t later on. Similar to before, let C be a [N, (1 + δ)T ]
Reed-Solomon code over a sufficiently large finite field F. We assume again that every
codeword ~c ∈ C corresponds with a message M ∈M.

The idea is now to execute N (not necessarily perfectly secure) two-phase mes-
sage transmission protocols in parallel, where during every execution S attempts to
transmit one coefficient of a codeword ~c corresponding to the message M . If we can
guarantee perfect security for all but at most T executions, R ends up with a vector
~c′ ∈ FNq that introduces at most T errors, where at least N − T correctly received
coefficients are jointly statistically independent from any data observed by A. This
basically shows that the resulting parallel protocol Γ behaves like a one-round per-
fectly secure message transmission protocol for parameters N ≥ (3 + δ)T where we
can allow a message of size δT .

We will demonstrate that the message transmission protocols all introduce con-
stant overhead, which shows that the entire protocol introduces constant overhead.

5.8.2 The Two-Phase Message Transmission Setup

The N message transmission protocols are set up as follows. Let Π be any known
two-phase perfectly secure message transmission protocol for ν ≥ (2 + ε)t. The idea
is to execute this protocol for N distinct ν-sized subsets of the channels, where it is
allowed to select channels multiple times in a subset. The selection of subsets should
be such that at most T executions can fail. Note that the execution of Π can only
fail for subsets involving a majority of ’corrupted’ channels, where we count with
multiplicities when channels occur more than once in the subset.

The selection of subsets that we apply is one that ranges over of all elements of
N ν . The main issue that needs to be worked out is which value of ν should be used in
order to ensure that there are at most T ’failing’ subsets. Since every element of N ν

is used exactly once, we can compute the fraction of failing subsets using probability
theory. The idea is to compute the probability of selecting a bad subset when picking
one of the subsets uniformly at random from N ν . From this it follows which value of
ν makes this probability sufficiently low that the fraction of bad subsets is less than
or equal to T .
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5.8.3 Parameter Estimation for ν

We now give a (deterministic) estimation on the ratio of corrupted virtual channels,
based on the choice of ν. This determines for which value of ν the protocol Γ succeeds.

Let ν be fixed and p be the probability that when we select an ν-tuple of indices
uniformly at random fromN ν , more than half of the indices correspond to a corrupted
channel. In other words, p is the probability that the two-phase secure message
transmission protocol Π fails when executed using the channels corresponding to
a randomly selected ν-tuple. If this probability p is at most T

N = 1
3+δ then the

conceptual one-phase protocol Γ succeeds.
Consider the random variable X ∈ {0, . . . , ν} that denotes the number of indices

in the selection that correspond to corrupted channels. The goal is to show that
there is a constant ν such that p = P (X ≥ ν/2) ≤ 1

3+δ , so that the number of failed
executions of the protocol Π is at most T = N

3+δ .
We can consider the variable X to be the sum of ν independent variables

X1, X2, . . . , Xν ,

where the variable Xi ∈ {0, 1} denotes whether the ith uniformly randomly selected
channel from the set of channels N can be read and modified by A. This allows to
bound the probability p using the Chernoff bound.

Theorem 22. (Chernoff bound [44], taken from [33]) Let Xi (1 ≤ i ≤ n) be a
sequence of independent 0-1 distributed random variables with expected value µ. By
C(µ, n, λ) (λ > 1) we denote the probability that, out of n trials, the outcome exceeds
the expected value nµ by a given factor depending on λ. The following inequality,
which holds for 1 < λ < 2e, bounds this probability.

C(µ, n, λ) = P

(
n∑
i=1

Xi ≥ λµn

)
≤ e−

µn(λ−1)2

2 . (5.1)

Using the Chernoff bound, it follows that

P

(
X ≥ ν

2
= λµν = λ

ν

2 + ε

)
≤ e−

ν
2(2+ε) (λ−1)2 ,

where λ = 2+ε
2 . Note that for the claim to hold it is required that

e−
ν

2(2+ε) (λ−1)2
!
≤ 1

3 + δ
.

It follows that it suffices that

ν ≥
⌈

8 ln(3 + δ)(2 + ε)
ε2

⌉
,
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obtaining a lower-bound estimation on ν depending on constants ε and δ, where ε is
an input parameter and δ is any positive constant of free choice.

Since ν is a constant here, the protocol Π executed on any subset of ν channels
is easily seen to involve constant communication and therefore introduces at most
constant communication overhead. From this it follows that the protocol Γ gives
constant overhead as well.
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Chapter 6

Ramp Schemes

Linear secret sharing is considered a fundamental primitive of any unconditionally
secure multi-party computation protocol. In particular, there exist efficient general
techniques to construct multi-party computation protocols secure against a passive
adversary from multiplicative secret sharing schemes. Against an active adversary,
one can efficiently obtain perfectly secure protocols from strongly multiplicative se-
cret sharing schemes or, when one allows for an error probability, statistically secure
protocols from multiplicative secret sharing schemes.

As a consequence of these results, the design of secure multi-party computation
protocols comes down to the design of (strongly) multiplicative secret sharing schemes.
Since the resulting multi-party computation protocols make heavy use of the secret
sharing functionality of the underlying scheme, the amount of communication in-
volved in the protocol is strongly linked to the cost of secret sharing, which in terms
of communication consists of the transmission of the shares in the scheme to the
participants.

However, there exist important limits on the sizes of these shares. Most impor-
tantly, since the secret corresponds with a single row in the secret sharing matrix and
the shares correspond with one or multiple rows, every share is at least as large as the
secret. This implies an immediate lower bound on the amount of required communi-
cation in terms of the size of the secret. Furthermore, this restriction is independent
of the adversary structure of the underlying linear secret sharing scheme.

Although linear secret sharing schemes exist for any monotonous adversary struc-
ture, perhaps the most natural and most commonly used adversary structure is the
t-threshold adversary structure that rejects all subsets of size up to a given value
t ∈ Z≥0. For linear secret sharing schemes with these adversary structures, the t-
threshold secret sharing schemes, strong limitations on the share sizes are known.

We recall the following two important limitations on t-threshold schemes from
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Section 2.5.5.

1. Each share is at least as large as the secret.

2. For any ideal t-threshold scheme with n participants, the finite field Fq over
which it is defined needs to be of size at least (n− 2)/2 if 1 ≤ t ≤ n− 3, while
it is conjectured that this lower bound is in fact n− 1.

Note that the first limitation mentioned here also holds more generally for perfect
secret sharing schemes without dummy indices. In particular, ideal threshold secret
sharing schemes have the additional restriction that the size of the secret, and there-
fore also the size of any share, is at least linear in the number of participants. While
it is possible for non-ideal schemes to use fields of size much smaller than n, the
minimum average share size for these schemes is larger than logq(n/2), which is even
beyond that required for ideal threshold schemes.

In the sequel, we construct more efficient (strongly) multiplicative secret sharing
schemes that circumvent these restrictions. To be more precise, we design secret
sharing schemes that are “almost” threshold, in the sense that for two values t and r
all sets of cardinality at most t are rejected and all sets of cardinality at least r are
accepted, while we leave open what happens when one considers sets with cardinality
between these two thresholds. It is precisely the fact that these schemes are non-
perfect that allows us to obtain better results, although we manage to keep the “gap”
between t and r restricted to at most a (small) constant fraction of the number of
participants.

For both of the limitations listed we present appropriate solutions. We design high
information rate schemes, which can have shares that are (much) smaller than the
secret, and schemes that work over fields that are much smaller than the number of
participants or even constant-sized. High information rate schemes have been known
in the literature for some time, in particular based on packing larger secrets in the
secret sharing polynomial used for Shamir’s secret sharing scheme, although multi-
plicativity for such schemes has previously only been considered in work of Franklin
and Yung [34]. Schemes over small fields were on the other hand only recently intro-
duced in a 2006 paper by Chen and Cramer [15].

In this chapter we define a general framework for such schemes, which we in
their most general form call ramp schemes. We then proceed by defining the notions
of multiplication and strong multiplication for ramp schemes, which requires some
special care since multiplications for these schemes involve vectors instead of elements.
Furthermore, we list some conditions on the rejected sets that need to hold in order
for multiplication or strong multiplication to be possible at all.

In the next chapters we then design ramp schemes that tackle the two limitations
using two distinct technical approaches. In Chapter 7 we introduce a new connection
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between ramp schemes and codes with their dual code. This leads to a method for
constructing almost-threshold ramp schemes that is fundamentally different from the
only previously known methods based on polynomial evaluation. In particular, we
show that we can use this method to construct families of multiplicative ramp schemes
over constant-sized fields. We note that the latter result is similar to that of Chen and
Cramer. However, unlike their schemes, which can be hard to construct due to their
heavy use of algebraic-geometric building blocks, our schemes are easy to construct
and can be based on arbitrary or even randomly selected codes. However, it is worth
noting that one can only obtain multiplicative ramp schemes in this manner.

On the other hand, the theoretical significance of the schemes of Chen and Cramer
lies in the fact that they generalize the construction of all previously known almost-
threshold ramp schemes with strong multiplication. In Chapter 8 we describe their
algebraic-geometric schemes and then use the techniques involved to introduce a new
general class of strongly multiplicative almost-threshold ramp schemes.

The material in this chapter and the following chapters is based on [17], [21] and
[16].

6.1 Definition

In a nutshell, ramp schemes generalize the notion of linear secret sharing scheme, as
introduced in Section 2.5.2, by allowing the secret to be a vector over Fq rather than
just a single element from the finite field Fq. We define a ramp scheme over the field
Fq as follows.

Definition 32. A ramp scheme is a tripleM = (Fq,M, ψ), where Fq is a finite field,
M ∈ F(d+k)×e

q is a matrix with as its first k rows the unit vectors ~ε1,~ε2, . . . ,~εk ∈ Feq
and φ : {1, 2, . . . , d} → N is a surjective function. The size of M is d and the
information rate of M is k/d.

Label the last d rows of the matrix by 1, 2, . . . , d and let Mi denote the row of M
labeled by i. For any subset B ⊂ N , we let MB denote the submatrix consisting of
the rows {Mi}i∈ψ−1(B). Furthermore, let Im(MT

B ) denote the Fq-linear span of the
rows of MB and Ker(MB) consist of the vectors ~κ ∈ Feq such that MB · ~κ = ~0.

Definition 33. For a ramp scheme M = (Fq,M, ψ)

• a set B ⊂ N is accepted if the ith unit vector ~εi ∈ Feq is in the image of MT
B

for all i ∈ {1, . . . , k}.

• a set B ⊂ N is rejected if for any k elements w1, . . . , wk ∈ Fq there exists a
vector ~v ∈ KerMB such that its first k coordinates are w1, . . . , wk.

83



Chapter 6. Ramp Schemes

It can be shown that a ramp scheme is indeed a secret sharing scheme using tech-
niques very similar to those in Theorem 13. The proof of the statement is rather
straightforward and omitted here. Additionally note that, unlike linear secret secret
sharing schemes, ramp schemes can be (and in fact usually are) non-perfect.

Note that the definition of a ramp scheme with k = 1 is equivalent to the standard
definition of a linear secret sharing scheme. For linear secret sharing schemes, the
information rate is maximal when the scheme is ideal, in which case the information
rate is 1/n. We say that ramp schemes that can achieve an information rate larger
than 1/n have high information rate.

6.2 (Strongly) Multiplicative Ramp Schemes

We now generalize the multiplication and strong multiplication properties for linear
secret sharing schemes. Since the secrets in ramp schemes are vectors rather than
single values, and we would like to keep the definition as general as possible, we do
not assume a standard definition for the multiplication of two vectors. Therefore,
multiplication properties for ramp schemes also necessarily include a definition for
the relevant multiplication map.

In the following, let � : Fkq × Fkq → Fkq be a symmetric non-degenerate bilinear
map. We define multiplication of secret vectors ~s,~t ∈ Fkq to be via this map, which
we denote by ~s�~t. Furthermore, for i ∈ {1, 2, . . . , k} let νi denote the ith unit vector
in Fkq .

We first repeat some notation from Section 2.5.3. For any two vectors ~x =
(x1, x2, . . . , xe), ~y = (y1, y2, . . . , ye) ∈ Feq, let ~x⊗ ~y denote the vector

(x1 · ~y, x2 · ~y, . . . , xn · ~y) = (x1y1, x1y2, . . . , xeye−1, xeye) ∈ Fe
2

q .

Let Vi ⊂ Feq denote the subspace spanned by the row vectors of the matrix M{i} and
V̂i denote the subspace Vi ⊗ Vi ⊂ Fe2q spanned by all vectors ~x ⊗ ~y with ~x, ~y ∈ Vi.
Furthermore, let V̂B denote the subspace of Fe2q spanned by all vectors in the spaces
{V̂i}i∈B .

Definition 34. A ramp scheme M = (Fq,M, ψ) is multiplicative under the multi-
plication map � if for any i, j ∈ {1, 2, . . . , k} such that ~νi � ~νj 6= ~0 it holds that

~εi ⊗ ~εj ∈ V̂N .

Definition 35. A ramp scheme M = (Fq,M, ψ) is A-strongly multiplicative under
the multiplication map � if the following two conditions hold.

1. M rejects all sets in A.
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2. For any set B ∈ A, M is multiplicative under the multiplication map � with
respect to the set C = N \B, i.e., for any i, j ∈ {1, 2, . . . , k} such that ~νi�~νj 6= ~0
it holds that

~εi ⊗ ~εj ∈ V̂C .

If d = n and the map ψ is a bijection we can, similar to what we did for linear secret
sharing schemes, replace Definitions 34 and 35 with convenient equivalent definitions.

LetM = (Fq,M, IdN ) be a ramp scheme and consider the experiment where a vec-
tor~b = (b1, b2, . . . , be) ∈ Feq is selected uniformly at random. The vector (b1, b2, . . . , bk)
is called the secret and the elements M{i} ·~b for i ∈ N are called the shares.

Definition 36. Let d = n. A ramp scheme M = (Fq,M, IdN ) is multiplicative
under the multiplication map � if there exist vectors ~λj = (λ(1)

j , . . . , λ
(k)
j ) ∈ Fkq for

j = 1, . . . , n such that for any two secrets ~s and ~s′ with respective shares s1, s2, . . . , sn
and s′1, s

′
2, . . . , s

′
n we have that

~s� ~s′ =
n∑
j=1

~λjsjs
′
j .

Definition 37. Let d = n. A ramp scheme M = (Fq,M, IdN ) is A-strongly multi-
plicative under the multiplication map � if

1. M rejects all sets in A.

2. For any set B ∈ A, M is multiplicative with respect to the set C = N \B, i.e.,
given any set B ∈ A there exist { ~λj}j∈C in Fkq such that for any two secrets ~s
and ~s′ with respective shares s1, s2, . . . , sn and s′1, s

′
2, . . . , s

′
n we have that

~s� ~s′ =
∑
j∈C

~λjsjs
′
j .

Since these definitions only depend on the secrets and the shares originating from
the ramp scheme, we in the sequel restrict to describing how the secrets and shares are
selected when defining our ramp schemes and will often omit the explicit description
of the matrix M .

Furthermore we remark that, although whether a set is accepted or rejected is
formally defined in terms of the matrix M , ramp sharing based on M is consistent with
the general definition of secret sharing found in Definition 19. Therefore, it suffices
to argue about the correlation between the secret and the shares corresponding to a
set in order to determine whether a set is accepted or rejected.
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6.3 Conditions for (Strong) Multiplicativity

For linear secret sharing schemes it is well-known that if the scheme is multiplicative
(strongly multiplicative) then the set of all rejected sets is Q(2) (Q(3)). We now
demonstrate the equivalent conditions for ramp schemes.

Let f : {0, 1}n → {0, 1} be a monotone Boolean function and A and Γ be such
that A ⊂ Af and Γ ⊂ Γf .

Definition 38. Let M be a ramp scheme. The adversary structure AM of M is the
set consisting of all sets that are rejected by M. The access structure ΓM of M is
the set consisting of all sets that are accepted by M.

Definition 39. A tuple (A,Γ) is R(2) if there do not exist B1 ∈ A and B2 ⊂ N with
B2 /∈ Γ such that B1∪B2 = N . A tuple (A,Γ) is R(3) if there do not exist B1, B2 ∈ A
and B3 ⊂ N with B3 /∈ Γ such that B1 ∪B2 ∪B3 = N .

Proposition 4. Suppose there exists a multiplicative ramp scheme M = (Fq,M, ψ),
with respect to some multiplication map �, that has access structure Γ and adversary
structure A. Then the tuple (A,Γ) is R(2).

Proof. Suppose that the tuple (A,Γ) is not R(2), i.e., there exists a set B ⊂ N
that is not accepted and a set C in the adversary structure such that B ∪ C = N .
For simplicity we prove the statement for the case where d = n, but the general proof
follows from a very similar argument.

According to the properties of the ramp scheme there is an index i ∈ {1, . . . , k}
such that ~εi is not in the image of MT

B . Then ~εi /∈ (Ker(MB))⊥, which means there
must exist some element ~v ∈ Ker(MB) such that its ith coordinate is nonzero.

Let ~v′ ∈ Fkq be the vector composed of the first k coordinates of ~v and select a
vector ~z′ ∈ Fkq such that ~v′ � ~z′ 6= 0, which exists since � is non-degenerate. Since C
is a set in the adversary structure, there exists an element ~z in the kernel of MC such
that its k first coordinates are those of ~z′. Then we have MB~v = ~0 and MC~z = ~0.
Since the union of these sets covers N we have that M~v∗M~z = ~0, where ∗ denotes the
component-wise product of the two vectors. Now, if the scheme were multiplicative,
we would have that every coordinate of ~v′�~z′ is a linear combination of the coordinates
of M~v ∗M~z. But we know that these coordinates are zero, and that ~v′ � ~z′ 6= ~0 so
this gives a contradiction. 4

Proposition 5. Suppose that there exists a A-strongly multiplicative ramp scheme
M = (Fq,M, ψ), with respect to some multiplication map �, that has access structure
Γ and adversary structure A. Then the tuple (A,Γ) is R(3).

Proof. This follows from the definition of strong multiplication and Proposi-
tion 4. 4
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Ramp Sharing Based on

Random Error Correcting

Codes

In this chapter we construct multiplicative ramp schemes over small fields and general
ramp schemes with high information rate based on coding theory. In particular, the
techniques in this chapter allow to construct families of multiplicative ramp schemes
tolerating t-adversaries with t < (1/2− ε)n for any 0 < ε < 1/2, where the finite field
can be kept constant while the number of participants increases. When used for the
construction of multi-party computation protocols, this leads to passive-adversary
multi-party computation protocols where the communication complexity no longer
depends on the field size, resulting in a log n efficiency increase compared to Shamir-
based protocols.

Although the algebraic-geometric techniques used by Chen and Cramer [15] al-
ready achieve multiplicative schemes with similar properties, and in addition allow
to construct families of strongly multiplicative ramp schemes tolerating t-adversaries
with t < (1/3 − ε)n for any 0 < ε < 1/3, our schemes are much easier to design and
should be seen as complementary to their result. The novelty of this work lies in the
introduction of an interesting new connection between ramp schemes on the one hand
and error correcting codes with their dual code on the other hand. This connection
allows us to introduce a new method of constructing multiplicative almost threshold
ramp schemes from error correcting codes that is fundamentally different from the
only previously known method of constructing such schemes, which is based on poly-
nomial evaluation. In fact, our schemes can even be constructed from arbitrary (or
even randomly chosen) error correcting codes.
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Most of the material in this chapter can be found in [17].

7.1 Massey’s Secret Sharing From Codes

Massey [56, 57] gave the following construction of a secret sharing scheme from an
error correcting code. Let C be an [n + 1, k, d]-code over a finite field F. The dual
code C⊥ is then an [n + 1, n + 1 − k, d⊥]-code. We assume in this section that C is
non-degenerate, i.e., that the minimum distances of both C and C⊥ are greater than
1.

Let s ∈ F be a secret value. Select a codeword ~c = (c0, c1, . . . , cn) ∈ C uniformly
at random such that c0 = s, and define the share-vector to be (c1, . . . , cn). We denote
this ramp scheme based on the code C by RSS(C). The access structure Γ(C) is then
determined as follows. For a vector ~x, define

sup(~x) = {i : xi 6= 0}

and let
C0 = {~c ∈ C : 0 ∈ sup(~c)}

be the subcode of C that is used for the ramp scheme RSS(C). Then

Γ(C) = {sup(~c∗) : ~c∗ ∈ (C0){1,2,...,n}},

where again CA is used to denote the restriction of the code C to the positions in A.
It seems that Massey’s primary interest was in demonstrating the correspondence

between error correcting codes and secret sharing schemes. In particular, he does not
consider the structure of the resulting access structures in his work. We now extend his
idea in several ways in order to obtain suitable ramp schemes with almost-threshold
access structures and prove bounds on their existence.

7.2 Extensions of Massey’s Idea

We first state some known bounds on the parameters of the ramp scheme RSS(C)
from Section 7.1 and provide a proof.

Theorem 23. Let C be an [n+1, k]-code over a finite field F and d = dmin(C). Then
RSS(C) is a (d⊥ − 2, n− d+ 2)-ramp scheme.

Proof. First, we argue that Γ(C) = (Γ(C⊥))∗, i.e., the access structure of
RSS(C) is the dual of the access structure of RSS(C⊥), and vice versa. Indeed,
A ∈ Γ(C) if and only if there is ~c∗ ∈ C⊥ with (~c∗)0 = 1 and (~c∗)i = 0 for all
i ∈ {1, . . . , n} \ A (:= A). The latter is a share vector with secret equal to 1 in
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RSS(C⊥), with shares equal to 0 for A. The existence of such a share vector is
equivalent to A 6∈ Γ(C⊥). Now, from the characterization of Γ(C) it is immediate
that RSS(C) rejects all sets of size d⊥−2. Since RSS(C⊥) rejects all sets of size d−2
and since Γ(C) = (Γ(C⊥))∗, it must be that RSS(C) accepts all sets of size n− d+ 2.

4

The exact rejection threshold tmax is equal to

−2 + min{wH(~c∗) : ~c∗ ∈ C⊥ : (~c∗)0 = 1},

i.e., this is the largest cardinality such that the joint shares of any set of this cardinality
give no information on the secret. The exact acceptance threshold rmin is equal to

n+ 2−min{wH(~c) : ~c ∈ C : ~c0 = 1}.

For A ⊂ {1, . . . , n}, let φA(C) denote the code restricted to the coordinates from
the set i ∈ A ∪ {0}, i.e., consisting of all codewords of C stripped of the coordinates
not in A ∪ {0}.

Definition 40. A code C is weakly self-dual if there is a diagonal matrix W ∈
Fn+1,n+1 such that w00 = 1 and W~c ∈ C⊥ for all ~c ∈ C. A code C is t-locally weakly
self-dual if for all sets B ⊂ {1, . . . , n} with |B| = n − t the code φB(C) is weakly
self-dual.

Recall that a code C is self-dual if C = C⊥. We note that our definition for weakly
self-dual codes is a slight relaxation of the notion of quasi self-orthogonal1 codes,
while the t-local variation appears to be novel. Simple examples are the following:
the [n+1, t+1, n− t+1]-Reed Solomon code is weakly self-dual if t < n

2 and t-locally
weakly self-dual if t < n

3 . The following theorem demonstrates the relevance of these
notions in secure computation.

Theorem 24. If C is a self-dual code of length n + 1 with minimum distance d,
then RSS(C) is a (t, n− t)-multiplicative ramp scheme. If C is weakly self-dual, then
RSS(C) is multiplicative and t = d⊥ − 2 if the matrix W is regular and otherwise
t = min{d − 2, d⊥ − 2}. If C is t-locally weakly self-dual then RSS(C) is A-strongly
multiplicative with respect to the t-adversary structure A.

Proof. Since d = d⊥ for self-dual codes, the rejection and acceptance claims
follow from Theorem 23. From 〈~c, ~c′〉 = 0 for all ~c, ~c′ ∈ C we get

c0c
′
0 = −c1c′1 − · · · − cnc′n.

This implies the resulting scheme is multiplicative. For weakly self-dual codes, if W is
regular then the minimum distance of WC is the same as that of C. Since WC ⊂ C⊥,

1For quasi self-orthogonal codes, the matrix W is required to be regular.
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we must have d⊥ ≤ d, and we apply Theorem 23. As to multiplication, we now have
〈W~c, ~c′〉 = 0, so

c0c
′
0 = −w1c1c

′
1 − · · · − wncnc′n.

The claim about the strong multiplication property is now obvious from the definition.
4

We can generalize this as follows, using a twist on an idea from Cramer, Damg̊ard
and Maurer [23]. Let C be a code of length n+ 1 and minimum distance d. Consider
the linear secret sharing scheme RSS†(C) defined as follows. Take the secret s, and
generate random shares (c1, . . . , cn) according to RSS(C), and generate independently
random shares (c∗1, . . . , c

∗
n) according to RSS(C⊥). The share vector is then defined

as ((c1, c∗1), . . . , (cn, c∗n)).

Theorem 25. Let C be a code of length n + 1 and minimum distance d. Define
t(C) = min{d − 2, d⊥ − 2}. Then RSS†(C) is a (t(C), n − t(C))-multiplicative ramp
scheme. In particular, t(C) < n/2.

The claim that t(C) < n/2 can for instance be verified by applying the Singleton-
bound to C as well as to C⊥. Note however that for this scheme the shares are twice
as large as the secret.

Strong multiplication is much more elusive and is not achieved by the construction
above. In fact, the only way known to ensure strong multiplication is using construc-
tions based on algebraic-geometric codes or their classical special cases with genus
g = 0, which can all be found in Chapter 8.

7.3 Existence and Bounds

Our main objective in this section is to prove several lower bounds on the maximal
value T taken over all values t = min{d−2, d⊥−2} as C ranges over all F-linear codes
of length n+ 1 and minimum distance d. The bounds we achieve are of independent
interest due to the fact that they allow to attach an error probability to estimates on
the parameters of randomly selected codes.

We then use these bounds to prove the existence of families of multiplicative ramp
schemes tolerating t-adversaries with t < (1/2 − ε)n for any 0 < ε < 1/2, where the
finite field can be kept constant while the number of participants increases. Using
the error probabilities attached to our bounds, we simultaneously demonstrate that
the schemes in these families can be obtained with arbitrarily high probability by
selecting random codes with appropriate dimension and code length.
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7.3.1 General lower bounds on T

In Theorem 27 we give a general lower bound on the maximal t. In Corollary 7 we treat
the general case when F = F2. In Theorem 28 we show that one can asymptotically
get arbitrarily close to n/2, over some constant size field. More generally, we treat in
the same theorem the parametrized case where C is randomly selected and a security
parameter regulates the error probability that t is below a certain bound.

In the following, we let q be some fixed prime power.

Definition 41. Let n ∈ Z>0 be fixed. Then T (n+1, q) := maxC t(C), where C ranges
over all subcodes of Fn+1

q . Similarly, T ′(n+ 1, q) := maxC t(C), where C ranges over
all weakly self-dual subcodes of Fn+1

q .

Definition 42. Let Ck have the uniform distribution over the set of [n+1, k]-subcodes
of Fn+1

q . Then we define

T (n+ 1, q,m, k) := max{d− 2 : P (min{dmin(Ck), dmin(C⊥k )} < d) < 2−m}

and T (n+ 1, q,m) := maxk T (n+ 1, q,m, k).

It is easy to see that T (n+ 1, q) ≥ T (n+ 1, q, 0). The following lemma is trivial.

Lemma 9. Suppose k ≤ n. For each pair (~x, ~y) with ~x ∈ Fkq \ {0} and ~y ∈ Fnq \ {0}
there exists an n× k matrix M of rank k such that M~x = ~y.

The following theorem bounds the probability that a randomly chosen code has
a minimum distance less than some fixed value d. It is used for most of the bounds
that follow later.

Theorem 26. Let C have the uniform distribution over the set of [n, k]-subcodes of
Fnq . Furthermore assume that d = αn ∈ Z, where 0 < α < 1

2 . Then

P (∃~y ∈ C \ {0} : wH(~y) < d) < qk+n(Hq(α)−1).

Proof. Let H have the uniform distribution over the set of n×k matrices of rank
k over Fq. Every such matrix corresponds to an ordered basis for a subcode V of Fnq .
Since there is a one-to-one correspondence between the ordered bases for V and the
linear isomorphisms between V and Fkq , each such subcode has the same number of
ordered bases. Therefore, the variable H induces a uniformly random selection of an
[n, k]-subcode of Fnq .

Fix some non-zero ~x ∈ Fkq . The variable H~x then corresponds to a uniformly
random selection from Fnq , which can be seen as follows: First, by Lemma 9 for any
non-zero ~y ∈ Fnq there exists an n × k matrix M of rank k such that M~x = ~y. Now
fix some ~y ∈ Fnq and assume that M~x = ~y for some n× k-matrix M of rank k. Then
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#{M ′ : M ′~x = ~y} = #{M ′ : (M −M ′)~x = 0} = #{M ′ : M ′~x = 0}, so for every
~y ∈ Fnq there are the same number of matrices of rank k such that M~x = ~y.

Now let ~x range over the elements of Fkq . It follows that

P (∃~y ∈ C \ {0} : wH(~y) < d) = P (∃~x ∈ (F kq )∗ : wH(H~x) < d)

≤
∑

~x∈(Fkq )∗
P (wH(H~x) < d)

=
qk − 1
qn − 1

·
d−1∑
i=1

(
n

i

)
(q − 1)i

<
qk

qn
· (q − 1)d

d−1∑
i=1

(
n

i

)
<

qk

qn
· qαn logq(q−1) · 2nH2(α)

= qk+n(Hq(α)−1),

where the last inequality is a consequence of Lemma 2. 4

Since there is a one-to-one correspondence between linear subcodes C ⊂ Fnq and
their dual codes C⊥, the random variable C⊥ corresponds to a uniformly random
selection from the set of [n, n− k]-subcodes of Fnq . Therefore, we immediately obtain
the following corollary.

Corollary 6. Let C have the uniform distribution on the set of [n, k]-subcodes of
Fnq . Furthermore assume that d∗ = αn ∈ Z, where 0 < α < 1

2 . Then

P (∃~y ∈ C⊥ \ {0} : wH(~y) < d∗) < qnHq(α)−k.

Using the fact that −λ lnλ − (1 − λ) ln(1 − λ) < 3.3λ for 1/10 ≤ λ ≤ 1/2, we
obtain that

Hq(λ) < λ logq(q − 1)− 3.3
ln q

λ (7.1)

for 1/10 ≤ λ ≤ 1/2. This gives rise to the following theorem that gives a general
lower bound on t for codes in the space Fn+1

q that is correct with probability at least
1− 2m when such a code is selected at random.

Theorem 27. T (n+ 1, q,m) ≥ bβ(n+ 1, q,m)c − 2 with

β(n+ 1, q,m) =
(n+ 1) ln q − 2(m+ 1) ln 2

2 ln(q − 1) + 6.6
,

provided that bβ(n+ 1, q,m)c ≥ n/10.
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Proof. Set k = (n + 1)/2 and let C be as in Theorem 26. By Theorem 26 and
Corollary 6,

P (min{dmin(C), dmin(C⊥)} < d) ≤ P (dmin(C) < d) + P (dmin(C⊥) < d)

< 2 · q(n+1)Hq(α)−(n+1)/2.

We want P (min{dmin(C), dmin(C⊥)} < d) < 2−m. Filling in (7.1) and rewriting, we
see that this is the case if

d ≤ (n+ 1) ln q − 2(m+ 1) ln 2
2 ln(q − 1) + 6.6

·

4

The following corollary gives a rough estimate for the case F = F2. A tighter
estimate can be found in Corollary 8.

Corollary 7. If n ≥ 21, then T (n+ 1, 2) ≥ b0.1nc − 2.

The theorem below can be considered complementary to the result of Chen and
Cramer [15] and together with our construction of ramp schemes from codes demon-
strates that one can achieve infinite families of multiplicative ramp schemes with
near-optimal parameters over constant-size fields. Furthermore, the theorem demon-
strates that one can select suitable codes for such constructions with arbitrarily small
error probability given a large enough code length n+ 1.

Theorem 28. Fix any arbitrarily small ε > 0 and any m ∈ Z>0. Then there exists
a fixed finite field Fq over which for infinitely many n there exist [n + 1, k]-codes
C ⊂ Fn+1

q with (1/2 − ε)n ≤ t(C) ≤ n/2 where such a code can be selected with
probability at least 1 − 2−m using a random selection among the [n, k]-subcodes of
Fn+1
q .

Proof. Let d be the minimum distance of C and d⊥ the minimum distance of C⊥.
By Theorem 25, t(C) < n/2. Therefore, it suffices to show that (d− 2) and (d⊥ − 2)
can simultaneously get arbitrarily close to n/2 (relative to n) with probability at least
1− 2−m.

By Theorem 27,

T (n+ 1, q,m) ≥ β(n+ 1, q,m)− 2 =
(n+ 1) ln q − 2(m+ 1) ln 2

2 ln(q − 1) + 6.6
− 2

and we have that

lim
q→∞

(n+ 1) ln q − 2(m+ 1) ln 2
2 ln(q − 1) + 6.6

− 2 = lim
q→∞

(n+ 1) ln q
2 ln(q − 1) + 6.6

− 2

≥ lim
q→∞

(n+ 1) ln q
2 ln q + 6.6

− 2.
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Since limx→∞
x

x+3.3 = limy→∞
y−3.3
y = limy→∞(1− 3.3

y ) = 1, the final term converges
to (n + 1)/2 − 2 as q → ∞. We can therefore for any δ > 0 select a q large enough
such that T (n, q,m) ≥ n/2 − 3/2 − δ. For large enough n, (3/2 + δ)/n < ε and the
claim follows. 4

So far we have assumed a random selection from the set of [n, k]-subcodes of Fnq .
The lemma below demonstrates, together with the proof of Theorem 26, that we can
in fact perform this random selection by selecting n × k matrices at random, where
we obtain a matrix of rank k with probability at least 1/4.

Lemma 10. The probability that a randomly selected n × k-matrix over Fq has full
rank is larger than 1− 1/q − 1/q2.

Proof. An i-dimensional space over Fq contains 1 + (q − 1)i ≤ qi points. Therefore,
the probability that a randomly selected codeword falls outside of an i-dimensional
subspace is at least 1− qi−n. It follows that a randomly selected (n× k)-matrix has
full rank with probability at least

∏k−1
i=0 (1−qi−n), with the worst case occurring when

k = n.
We now prove by induction that

n−1∏
i=0

(1− qi−n) =
n∏
i=1

(1− q−i) ≥
(

1− 1
q
− 1
q2

)
+

1
qn+1

,

from which the claim follows. First note that
∏1
i=1(1 − q−1) = 1 − 1/q = 1 −

1/q − 1/q2 + 1/q2, so the base case is correct. Now assume that
∏j
i=1(1 − q−i) ≥

1− 1/q − 1/q2 + 1/qj+1 for j = 1, 2, . . . ,m− 1. Then

m∏
i=1

(1− q−i) ≥
(

1− 1
q
− 1
q2

+
1
qm

)(
1− 1

qm

)
=

(
1− 1

q
− 1
q2

)
+ q · 1

qm+1
−
(
q − 1− 1

q

)
· 1
qm+1

−

1
qm−1

· 1
qm+1

>

(
1− 1

q
− 1
q2

)
+

1
qm+1

7.3.2 Bounds from (Weakly) Self-Dual Codes

In Corollary 8 we prove a general lower bound on T for binary self-dual codes, and
Theorem 30 shows that for n < 100 the situation is much better than the bound indi-
cates. We are especially interested in self-dual codes, because secret sharing schemes
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based on self-dual codes do not suffer from the 1/2 information rate loss that occurs
in the general case. Finally, in Theorem 31 we prove a much better lower bound for
weakly self-dual codes based on algebraic geometry, and not random codes. Note that
the results based on algebraic geometry are only known to hold if the size of the field
is a square.

Theorem 29. Let n be any positive integer and let dGV be the largest integer such
that ∑

0<i<d
2|i

(
n

i

)
< 2n/2−1 + 1.

Then there exists a self-dual binary code of length n and minimum distance at least
dGV .

Proof. See [54, 74, 61]. 4

Corollary 8. Fix ε > 0. For large enough n, T ′(n, 2) ≥ b(δ − ε)nc − 2, where
δ ≈ 0.11002786 is any truncated approximation of the unique solution less than 1/2
of H2(δ) = 1/2.

Proof. ([54, 74, 61]) Let d = α(n + 1). Since for α < 1/2,
∑

0<i<d

(
n+1
i

)
≤

2(n+1)H(α), the conditions of Theorem 29 are met if

(n+ 1)H(α) ≤ n+ 1
2
− 1⇔ H(α) ≤ 1

2
− 1
n+ 1

.

The solution for α then comes arbitrarily close to δ as n increases.
4

Theorem 30. There exist self-dual binary codes C of length n + 1 < 100 for which
dmin(C) > n/5. In particular, there exist self-dual binary codes C with the following
parameters:

n+ 1 dmin(C)
12 4
22 6
24 8
46 10
48 12

Proof. See [35]. 4

Theorem 31. When we take the maximum over algebraic-geometric codes, then

T (n+ 1, q2) >
(

1
2
− 1
q − 1

)
n.
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Proof. This follows from a suitable choice of parameters for algebraic-geometric
codes and their duals and the existence of Garcia-Stichtenoth curves, using techniques
similar to those in [15]. 4

7.4 High Information Rate Ramp Schemes

We generalize Massey’s scheme from Section 7.1 to create high information rate ramp
schemes in Section 7.4.1. In Section 7.4.2, we give a completely general construction
that does not consume code length (which corresponds to the number of players in
the scheme) for an increased information rate. As an application we use this theory
to analyze an alternative high information rate ramp scheme based on Shamir. Also,
our general method gives rise to a new high information rate ramp scheme based on
algebraic-geometric code which we introduce in Section 7.4.3.

7.4.1 A High Information Rate Ramp Scheme

Let C be an [n + `, k]-code over a finite field F with minimum distance d. We now
extend Massey’s scheme from Section 7.1 in the direction of high information rate as
follows. Let ` be a non-negative integer such that ` < d⊥.

Let ~s ∈ F`. Select a codeword ~c = (c′0, . . . , c
′
`−1, c1, . . . , cn) ∈ C at random such

that ~s = (c′0, . . . , c
′
`−1). Such ~c always exists. Define the coefficients of (c1, . . . , cn) to

be the shares. We claim that this is a (d⊥ − ` − 1, n + l − d + 1)-ramp scheme with
secrets of length `. This can be verified from the following facts.

Acceptance follows from the fact that if there would exist two codewords in C

that agreed on n + l − d + 1 share locations, their difference would give a codeword
in C with Hamming weight less than d. As for rejection, note that in a generator
matrix for C, any collection of m < d⊥ rows (the code is generated by the columns)
are linearly independent. So the corresponding columns span Fm. Therefore, for each
j ∈ {0, . . . , ` − 1} and for each A ⊂ {1, . . . , n} with |A| ≤ d⊥ − ` − 1 there exists a
codeword ~c such that c′j = 1 and c′i = 0 for all i ∈ {0, . . . , `− 1} \ {j} and cu = 0 for
all u ∈ A. This implies rejection as claimed.

7.4.2 A More Fruitful Approach

A disadvantage of the scheme above is that it consumes code-length in exchange for
secret-length. Below we describe an entirely general approach that doesn’t have this
disadvantage, and by means of which one can prove the existence of improved ramp
schemes (see Section 7.4.3).

Let Ĉ and C be linear codes of length n over F, i.e., they are subspaces of the
vector space Fn. Assume that C has dimension greater than 0 and that it is a proper
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subspace of Ĉ. Choose an arbitrary linear code S such that

Ĉ = S + C and S ∩ C = {0},

i.e., a direct sum. This is always possible of course, for instance by completing a basis
of C to one of Ĉ. Write

` = dimF(Ĉ)− dimF(C) (= dimF(S))

and fix an arbitrary isomorphism ψ : F` −→ S.
We now define the following linear ramp scheme. Let ~s ∈ F` be the secret vector.

Sample uniformly at random ~c ∈ C and define the share vector ~̂c as ~̂c = ψ(~s) + ~c. 2

Note that this is a generalization of a scheme used by Ozarow and Wyner [59], who
considered the case Ĉ = Fn. In fact, all possible linear ramp schemes are captured
by this general scheme we consider here.

For A ⊂ {1, . . . , n}, let φA denote the function

φA : Fn −→ F|A|

where
(x1, . . . , xn) 7→ (xi)i∈A,

i.e., restriction to the coordinates labeled with A. Given A, consider the restriction
of φA to Ĉ. The set A is said to be rejected if the collection of shares {ĉi}i∈A give no
information on the secret vector, and accepted if those shares always determine the
secret vector uniquely.

Theorem 32. Let ` = dim(Ĉ) − dim(C). The set A is rejected if and only if
dim(φA(Ĉ)) − dim(φA(C)) = 0. The set A is accepted if and only if dim(φA(Ĉ)) −
dim(φA(C)) = `. More generally, the uncertainty about the secret vector ~s, given the
shares of A, is equal to r elements of F, where r is such that `− r = dim(φA(Ĉ)) −
dim(φA(C)).

Proof. Rejection (for the set A) is equivalent to saying that for each possible
secret vector ~s ∈ F`, there is a share vector ~̂c that “encodes” ~s and that satisfies
φA(~̂c) = 0. This is the same as saying that for each ~z ∈ S, there exists ~c ∈ C such
that 0 = φA(~z+~c) = φA(~z)+φA(~c). Thus, φA(Ĉ) ⊂ φA(C). Since the other inclusion
holds regardless of A, the rejection claim follows.

As for acceptance (for the set A), this is equivalent to saying that there are no two
distinct ~z, ~z′ ∈ S so that φA(~z+~c) = φA(~z′+ ~c′) for some ~c, ~c′ ∈ C. This is equivalent

2Equivalently, one can say that we fixed an arbitrary isomorphism from F` to Ĉ/C, and that the

share vector is selected by mapping ~s to the residue-class of ψ(~s) modulo C, and that ~̂c is chosen

uniformly at random from that residue-class.
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to saying that dim(φA(S)) = ` and φA(S) ∩ φA(C) = {0}. Since dim(φA(Ĉ)) −
dim(φA(C)) = dim(φA(S)) − dim(φA(S) ∩ φA(C)), the acceptance claim follows.
The cases in between these two extremes should now be obvious.

4

We give the following estimate with respect to rejection and acceptance (which,
as one can prove by giving counter-examples, is not always sharp).

Corollary 9. The set A is rejected if |A| < dmin(C⊥). The set A is accepted if
|A| > n− dmin(Ĉ).

Proof. As for rejection, if |A| < dmin(C⊥), then φA(C) clearly has rank |A|,
since otherwise we could construct a codeword in C⊥ whose weight is smaller than
dmin(C⊥). Since φA(C) ⊂ φA(Ĉ) ⊂ F|A|, we must have φA(C) = φA(Ĉ), and rejec-
tion follows from the theorem.

As for acceptance, if |A| > n − dmin(C), then φA(~̂c) = ~0 if and only if ~̂c = ~0,
since otherwise C would contain a codeword whose weight is smaller than dmin(C).
Thus, φA is injective when restricted to Ĉ, and ~̂c follows uniquely from φA(~̂c). Since
S ∩ C = {0}, ψ(~s) and ~c follow uniquely from ~̂c. The secret vector ~s now follows
uniquely from ψ(~s) since ψ is bijective.

4

Note that from the Singleton-bound, we have dimF(Ĉ) ≤ n − dmin(Ĉ) + 1 and
dmin(C⊥) − 1 ≤ n − dimF(C⊥) = dimF(C). Thus, r − t ≥ dimF(Ĉ) − dimF(C)
in any linear ramp scheme.

Before presenting constructive results, we as an example analyze a Shamir-type
ramp scheme with this theory. Suppose n > |F|, and let x1, . . . , xn be distinct non-
zero elements of F. Consider the Vandermonde matrix M with n rows and t columns
whose i-th row is (1, xi, . . . , xt). Let Ĉ be the code generated by all the columns. This
is an (n, t+1, n−t)-MDS code. So its dual is an (n, n−t−1, t+2)-code. Let C be the
code generated by the last t+1−` columns. Clearly C ⊂ Ĉ. By appropriately scaling
the rows of C it is immediate that C is equivalent to an (n, t+ 1− `, n− t+ `)-code.
This is an MDS code, so its dual is an (n, n − t − 1 + `, t + 2 − `)-code. So by our
theorem the resulting ramp scheme rejects all sets of size t+1−`, and accepts all sets
of size t+ 1. Note that the gap between the two bounds here is `, so that is optimal.

7.4.3 High Information Rate Ramp Schemes: Existence and

Bounds

In this section we demonstrate two methods for constructing high information rate
ramp schemes. First, we present a new high information rate ramp scheme that
improves the one presented in [15], where Ĉ will be an algebraic-geometric code and C
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will be a carefully selected algebraic-geometric subcode of Ĉ. Then, we demonstrate
that high information rate ramp schemes can be obtained from random codes and
bound the error probabilities on their predicted parameters.

Algebraic-Geometric Codes

Select an absolutely irreducible smooth projective curve over a finite field F, write g
for its genus and let {Q,P1, P2, . . . , Pn} denote distinct points on the curve. Consider
the rational divisor D̂ = (2g+t) ·Q, and let L(D̂) denote the corresponding Riemann-
Roch space of Fq-rational functions. Write Ĉ for the Goppa-code consisting of the
codewords (f(P1), . . . , f(Pn)), where f ranges over L(D̂). Also define the Fq-rational
divisor D = (2g + t − `) · Q, and let L(D) denote the corresponding Riemann-Roch
space of rational functions. Write C for the Goppa-code consisting of the codewords
(f(P1), . . . , f(Pn)), where f ranges over L(D).

By the Riemann-Roch Theorem the dimension of Ĉ is g + t + 1, whereas the
dimension of C is g + t + 1 − `. Since D̂ ≥ D, we have L(D) ⊂ L(D̂), and hence
C ⊂ Ĉ. It is fact that the minimum distance of C⊥ is at least deg(D)−2g+2 = t−`+2.
Furthermore, we show in Chapter 8 that we have acceptance for deg(D̂)+1 = 2g+t+1
shares. Thus, by our theorem, we have a (t − ` + 1, 2g + t + 1)-ramp scheme with
secrets of length `. Note that the improvement consists in the fact that the scheme
above does not use up any points on the curve in order to encode the secret vector.
Also note that by taking the projective line (i.e., g = 0) we recover the earlier Shamir
ramp scheme example. Using Garcia-Stichtenoth towers [36] our ramp scheme can be
defined over constant size fields. See Chapter 8 for more details.

Random Codes

Finally, the results in Section 7.3 demonstrate that we can also obtain high information
rate ramp schemes from randomly selected codes Ĉ and C, provided that C ⊂ Ĉ.
Theorem 32 demonstrates that for such codes C and Ĉ, the corresponding ramp
scheme reject any subset consisting of at most dmin(C⊥) − 1 players and accept any
subset consisting of at least n− dmin(Ĉ) + 1 players.

One method of obtaining the appropriate distribution for C and Ĉ, as demon-
strated in the proof of Theorem 26, is to randomly select a matrix M from the set of
n × k̂-matrices of rank k̂ and let Ĉ be the code spanned by the columns. It is easy
to see that if we now look at the last k columns of M , these columns in turn span
a random [n, k]-subcode C of Fn that is furthermore contained in Ĉ. Clearly, the
corresponding scheme allows for a secret vector of length ` = k̂ − k.

Suppose that we want the scheme to reject all set of size at most t players and
accept all sets of size at least n− t̂. Using a similar argument as in Theorem 26 and
using the fact that −λ lnλ− (1− λ) ln(1− λ) < 1.2

√
λ for 0 ≤ λ ≤ 1/2, the following
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theorem is now straightforward to obtain. It provides, for many different parameters
and with arbitrarily high probability, a lower bound on t and t̂ when we select the
codes C and Ĉ at random.

Theorem 33. Select an [n, k]-code C and an [n, k̂]-code Ĉ over Fq at random under
the restriction that C ⊂ Ĉ. Then

P (dmin(C⊥) < t) < q−(k−t logq(q−1)− 1.2
√
tn

ln q )

and
P (dmin(Ĉ) < t̂) < q−(n−k̂−t̂ logq(q−1)− 1.2

√
t̂n

ln q ).
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Chapter 8

Ramp Sharing Based on

Algebraic Geometry

In this chapter we describe all general constructions for almost-threshold strongly
multiplicative ramp schemes known in the literature. These schemes have tight pa-
rameters, in the sense that they can tolerate t-adversaries for any t < (1/3 − ε)n,
where 0 < ε < 1/3 can be made arbitrarily small.

First we describe the strongly multiplicative ramp scheme discovered by Franklin
and Yung [34]. We then describe our new strongly multiplicative ramp scheme
(Cramer, Damg̊ard and de Haan [21]) followed by our later discovered improved ver-
sion of this scheme (Chen, Cramer, de Haan and Cascudo [16]). These schemes all
have high information rate.

We then proceed with a description of the algebraic-geometric strongly multi-
plicative ramp schemes of Chen and Cramer [15] and Chen, Cramer, de Haan and
Cascudo [16] that can be seen as generalizations of the initial schemes in this chapter.
In particular, the algebraic-geometric schemes offer both a high information rate and
small, or even constant, field sizes, thus resolving both limitations from Chapter 6 at
the same time.

8.1 Classical Ramp Schemes

We are now ready to introduce some classical high information rate ramp schemes.
The ramp schemes in this section can all be seen as extensions of Shamir’s secret
sharing scheme that are defined for one of the following two multiplication maps
� : Fkq × Fkq → Fkq :
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• “Parallel multiplication”:

(a1, a2, . . . , ak)� (b1, b2, . . . , bk) = (a1b1, a2b2, . . . , akbk).

• “Extension field multiplication”:

(a0, a1, . . . , ak−1)� (b0, b1, . . . , bk−1) = (c0, c1, . . . , ck−1),

where these vectors are subject to the following relation. Let x, y, z ∈ Fq[α]
with [Fq[α] : Fq] = k be such that

x =
k−1∑
i=0

aiα
i,

y =
k−1∑
i=0

biα
i

and

z =
k−1∑
i=0

ciα
i.

Then xy = z ∈ Fq[α].

8.1.1 Parallel Multiplication

The first strongly multiplicative ramp scheme we discuss is due to Franklin and
Yung [34]. When used for secure multi-party computation it has the advantage that,
at the price of an additive factor k in the corruption tolerance, we can perform mul-
tiplication for k elements in parallel at the cost of a single multiplication. This leads
to a multiplicative amortized cost reduction when a function need to be computed on
many different inputs.

The ramp scheme is defined as follows. Let t and k be such that t+k− 1 < n and
assume that the finite field Fq is such that |Fq| ≥ n + k. Let the sets {x1, . . . , xn}
and {e1, . . . , ek} be two disjoint sets of distinct elements from Fq. Now to perform
secret sharing with this scheme for a vector a = (u1, . . . , uk) of secret elements from
Fq, we select a random polynomial f(X) ∈ Fq[X] of degree at most t+k−1 such that
f(ej) = uj for j = 1, 2, . . . , k and define the shares to be aj = f(xj) for j = 1, 2, . . . , n.

Clearly, t+ k shares or more jointly determine f and hence the secret vector a, so
the access structure includes all player sets of size at least t+ k. As to privacy, it is a
straightforward consequence of Lagrange-interpolation that t or fewer shares jointly
give no information on the secret vector, so the adversary structure includes all player
sets of size at most t. We can sum these properties up by calling the resulting scheme
a (t, t+ k)-ramp scheme, with secrets of length k.
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Assume that we additionally have a secret vector b = (v1, . . . , vk) with shares
b1, b2, . . . , bn, corresponding with a unique polynomial g(X) ∈ Fq[X] of degree at
most t+k− 1. Since for j = 1, 2, . . . , k it holds that (fg)(ej) = ujvj and furthermore
(fg)(xi) = f(xi)g(xi) for i = 1, 2, . . . , n, it follows from Lagrange’s interpolation theo-
rem that the scheme is multiplicative for n > 2t+2k−1 and A-strongly multiplicative
for n > 3t+ 2k − 1, where A consists of all subsets of N of cardinality at most t.

8.1.2 Extension Field Multiplication

We now describe two ramp schemes that, when used for secure multi-party compu-
tation, allow to perform multiplication in an extension field of Fq at the cost of a
multiplication in Fq when compared to Shamir’s secret sharing scheme. Although
the first scheme we describe here already achieves this effect, the second scheme has
better parameters that are trivially seen to be optimal.

A First Attempt

The ramp scheme we describe first is due to Cramer, Damg̊ard and de Haan [21].
With this ramp scheme it is possible to perform multiplications in a finite field using
only communication and operations over a subfield, reducing the communication cost
of every single multiplication by a multiplicative factor. For the technique to be used
it is required that the finite field has a sufficiently large extension degree k over a
subfield. Furthermore, the corruption tolerance needs to be decreased by an additive
factor 2k.

The scheme is defined as follows. Let t and k be such that t+ 2k− 2 < n. A finite
field Fqk = Fq(α) is selected such that |Fq| > n. Let x1, . . . , xn be distinct non-zero
elements from Fq, let a = u0 + u1α + . . . + uk−1α

k−1 ∈ Fqk be a secret element and
define u(X) = u0 + u1X + . . . + uk−1X

k−1 ∈ Fq[X]. Choose a random polynomial
r(X) ∈ Fq[X] of degree at most t−1 and define f(X) = u(X)+r(X) ·X2k−1 ∈ Fq[X].

Clearly, since f has degree t + 2k − 2, it is clear that t + 2k − 1 shares or more
jointly determine f and hence the secret a. Therefore, the access structure contains
all sets of cardinality t + 2k − 1. As for the adversary structure, let u′(X) ∈ Fq[X]
of degree at most k − 1 be arbitrary and let r′(X) be the polynomial that evaluates
to r(xi) + (u(xi) − u′(xi))/x2k−1

i for t points xi. Then the polynomial f ′(X) =
u′(X) + r′(X) · X2k−1 is consistent with the evaluation of f in these t points, but
the secret corresponds with u′(X) here. So it is a (t, t + 2k − 1)-ramp scheme, with
secrets of length k.

Now, when we multiply two such polynomials f(X) = u(X) + r(X) ·X2k−1 and
g(X) = v(X) + r′(X) · X2k−1, the product polynomial fg has as its first 2k − 1
coefficients homogeneous sums H`(a, b) =

∑
i+j=` uivj of coefficients in u(X) and

v(X) for ` = 0, 1, . . . , 2k−2. Furthermore, when n > 2t+4k−4, it is therefore an easy
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consequence of Lagrange’s interpolation theorem that for every such value H`(a, b)
there exist constants µ(`)

1 , µ
(`)
2 , . . . , µ

(`)
n such that H`(a, b) =

∑2k
i=0 µ

(`)
i (fg)(xi).

Since reducing an element
∑2k−2
i=0 ci · αi ∈ Fkq to its standard notation over the

basis {1, α, . . . , αk−1} can be done via linear operations on the coefficients ci, we can
now deduce the following lemma.

Lemma 11. There exist linear maps χj : F2k+1
q −→ Fq (j = 0 . . . k) such that for all

a, b ∈ Fqk

ab =
k∑
j=0

χj(H0(a, b), . . . ,H2k(a, b)) · αj ,

where a and b are represented by their respective coordinate vectors (u0, . . . , uk) and
(v0, . . . , vk).

To summarize these results, if n > 2t + 4k − 4 we can first determine the homo-
geneous sums H0(a, b), H1(a, b), . . . ,Hk(a, b) via linear functions on the local share
products (fg)(x1), (fg)(x2), . . . , (fg)(xn). By Lemma 11, we can then compute the
coefficients of ab via linear functions on the values {Hj(a, b)}kj=0. Since applying mul-
tiple linear operations in turn preserves the linearity of the operations, it now follows
that every coefficient of ab can be computed via a linear function on the local share
products (fg)(x1), (fg)(x2), . . . , (fg)(xn). Therefore, the scheme is multiplicative for
n > 2t+ 4k− 4 and in particular A-strongly multiplicative for n > 3t+ 4k− 4, where
A consists of all subsets of N of cardinality at most t.

Note that in order to share a secret of length k, the scheme introduces a gap
between the privacy and reconstruction thresholds of size 2k− 1, whereas the scheme
due to Franklin and Yung only requires a gap of size k. Below we introduce an
improved version of this scheme that matches the latter thresholds.

An Improved Version

A closer examination of the scheme above shows that it uses a secret sharing poly-
nomial that has a fixed k-size gap between the lower degree coefficients that relate
to the secret and the higher degree coefficients that introduce randomness. In fact,
this explains the disparity between the parameters of the schemes described in Sec-
tions 8.1.1 and above.

The observation described in this section allows to remove this disparity and leads
to a scheme with tight parameters that is additionally much easier to describe than the
scheme from Section 8.1.2, while it achieves the same effect. Due to its more natural
structure, it additionally generalizes over algebraic-geometric curves as demonstrated
in Section 8.2.

The proposed scheme is based on the following theorem, which generalizes La-
grange’s interpolation theorem to a setting where the evaluation points are taken from
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different extension fields of a perfect base field K while the secret sharing polynomial
is taken from K[X]. The idea is that the evaluation points get assigned different
weights, depending on the extension degree of the smallest extension field of K in
which they occur.

Theorem 34. Let K be a perfect field, and let K denote an algebraic closure of K. Fix
distinct a1, . . . , a` ∈ K such that there is no pair ai, aj (i 6= j) where aj is a Galois-
conjugate (over K) of ai. For i = 1, . . . , `, let ni denote [K(ai) : K], the degree
of K(ai) over K as a field extension, and let N denote

∑`
i=1[K(ai) : K]. Then,

for each b1, . . . , b` with bi ∈ K(ai) (i = 1, . . . , `), there exists a unique polynomial
f(X) ∈ K[X] such that deg (f) < N and f(ai) = bi, i = 1, . . . , `.

Proof. Let K[X]<N denote the polynomials in K[X] of degree smaller than N .
Consider the map

φ : K[X]<N −→
⊕̀
i=1

K(ai), f 7→ (f(a1), . . . , f(a`)).

We want to show that φ is an isomorphism of K-vector spaces. Since the dimensions
on both sides are equal, it is sufficient to argue that φ is injective. Indeed, suppose g
maps to 0. Then, for i = 1, . . . , `, g(ai) = 0. Since g ∈ K[X], g must be a multiple of
the minimal polynomial h of ai in K[X]. The Galois-conjugates of ai are the roots
of h and hence they are roots of g. Because the field is perfect, h is separable, i.e.
all the roots of h are different, and the number of these roots is equal to ni, so the
number of conjugates of ai is ni. Note that ai and aj are not Galois conjugates for
any i, j so g has at least

∑`
i=1 ni = N zeroes in K. Thus, viewing g as an element of

K[X], we conclude that g ≡ 0. 4

The new scheme is defined as follows. Let t and k be such that n > t+ k − 1. A
finite field Fqk = Fq[α] is selected such that |Fq| ≥ n. Let x1, . . . , xn be distinct (not
necessarily non-zero) elements from Fq and select e ∈ Fqk such that [Fq(e) : Fq] = k.
The secret sharing is now performed as follows. For a secret element a ∈ Fqk , we
choose a random polynomial f(X) ∈ Fq[X] of degree at most t + k − 1 such that
f(e) = a. The shares are again f(x1), f(x2), . . . , f(xn).

Theorem 35. This defines a (t, t+ k)-ramp scheme with secrets of length k.

Proof. Accepted sets: Given the value of f in t+ k points xi1 , . . . , xit+k , we can
apply the previous theorem with ` = t + k, aj = xij (so nj = 1 and N = t + k), to
see that these shares determine the polynomial and hence the secret.

Rejected sets: Given the value of f in t points xi1 , . . . , xit take in the previous
theorem ` = t + 1, aj = xij for j = 1, . . . , ` − 1 and a` = e. Then nj = 1 for
j = 1, . . . , `− 1 and n` = k, so N = t+ k. The theorem shows that for every possible
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choice of the secret a ∈ Fqk , there exists a unique polynomial of degree less than t+k

such that f(e) = a and f evaluates to the known values in xi1 , . . . , xit . 4

One can additionally show that this scheme is multiplicative for n > 2t + 2k − 2
and A-strongly multiplicative for n > 3t+2k−2, where A consists of all subsets of N
of cardinality at most t. Since this is proven for a generalized version of this scheme
in Section 8.2.4, we omit the details here.

8.2 Algebraic-Geometric Ramp Schemes

We now demonstrate generalizations of the schemes discussed in the previous section
based on algebraic-geometric coding techniques. This approach to constructing ramp
schemes was initially invented by Chen and Cramer [15], who constructed the first
family of strongly multiplicative ramp schemes that can be defined over fields of a
size that is much smaller than the number of participants n, or even of constant-size.
This family of ramp schemes can be seen as a direct generalization of Shamir’s secret
sharing scheme and allows for a straightforward extension that generalizes the ramp
scheme of Franklin and Yung [34].

We first describe this generalization of the Franklin-Yung scheme, that corresponds
with the parallel multiplication map, and then introduce its new counterpart for
extension field multiplication that has recently appeared in work by Chen, Cramer,
de Haan and Cascudo [16]. All algebraic-geometric ramp schemes that are presented
here not only resolve the dependence of the field size on the number of participants
n, but additionally resolve the dependence of the share sizes on the size of the secret,
i.e., have a high information rate.

8.2.1 Interpolation in Riemann-Roch spaces

We require the following result, which can be seen as an extension of Lagrange’s inter-
polation theorem for Riemann-Roch spaces. It is the algebraic-geometric counterpart
of Theorem 34 defined for arbitrary smooth projective curves C defined over Fq.

Theorem 36. Let P1, . . . , P` be points on a smooth projective curve C defined over Fq
such that Pi and Pj are not Galois-conjugate for any i 6= j and let G be an Fq-rational
divisor such that supp(G) ∩ {P1, . . . , P`} = ∅. Furthermore, for i ∈ {1, . . . , `} let ni
be the smallest number such that Pi is Fqni -rational and define N =

∑`
i=1 ni. Then:

1. If N ≥ deg(G) + 1, then for any vector (y1, . . . , y`) with yi ∈ Fqni there exists
at most one f ∈ L(G) such that f(Pi) = yi for all i ∈ {1, 2, . . . , `}.

2. If N ≤ deg(G)−2g+1, then for any vector (y1, . . . , y`) with yi ∈ Fqni there exists
at least one f ∈ L(G) such that f(Pi) = yi for all i ∈ {1, 2, . . . , `}. Furthermore,
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the number of such Fq-rational functions is the same for any vector (y1, . . . , y`)
with yi ∈ Fqni .

Proof. Let the map

φ : L(G)→
⊕̀
i=1

Fqni

be defined by
f 7→ (f(P1), . . . , f(Pl)).

Furthermore, for i ∈ {1, 2, . . . , `} let P
(0)
i = Pi, . . . , P

(ni−1)
i be the ni Galois-

conjugates of Pi under the Frobenius automorphism over Fq. Observe that the point∑ni−1
j=0 P

(j)
i is Fq-rational, as any element of the group Gal(Fq/Fq) permutes the con-

jugates of Pi.
Now define the divisor

A = G−
n∑
i=1

ni−1∑
j=0

P
(j)
i

 .

Then Ker(φ) = L(A). Observe that deg(A) = deg(G)−N . Then

1. If N ≥ deg(G)+1, deg(A) < 0 and `(A) = 0. Hence φ is injective, which proves
the property.

2. If N ≤ deg(G)− 2g+ 1, then deg(A) ≥ 2g− 1 and we can invoke the Riemann-
Roch Theorem to conclude that

l(A) = deg(A)− g + 1 = deg(G)−N − g + 1 = l(G)−N.

Furthermore,

dim(Im(φ)) = dim(L(G))− dim(Kerφ) = l(G)− l(A) = N.

Therefore φ is surjective.

4

8.2.2 Parallel Multiplication

Let D = {Q1, . . . , Qk, P1, . . . , Pn} be a set of Fq-rational points on a smooth projective
curve C defined over Fq and let G be an Fq-rational divisor of degree 2g+t+k−1 with
support disjoint from D. Note that since G can have support outside the Fq-rational
points, it is possible to include all Fq-rational points on C in D.

107



Chapter 8. Ramp Sharing Based on Algebraic Geometry

Every point Pi corresponds with an ith share and every point Qj corresponds to
the jth position of a secret vector, as follows. For any secret vector (s1, . . . , sk) ∈ Fkq
a rational function f ∈ L(G) is selected uniformly at random under the restriction
that f(Qj) = sj for all j ∈ {1, . . . , k}. For any i ∈ N , the ith share corresponding to
the secret is defined to be the value f(Pi) ∈ Fq.

We note that the scheme described above fits into the formal matricial definition
of ramp scheme given in Definition 32. Let {f1, . . . , fu} be a basis of L(G) such that
fi(Qj) = 1 if i = j and fi(Qj) = 0 if i 6= j, for i ∈ {1, . . . , u} and j ∈ {1, . . . , k}. It
is easy to see that we can always choose such a basis due to Theorem 36. Indeed, we
have that k < deg(G)− 2g+ 1 = t+ k+ 1 so the Theorem 36 ensures the existence of
such fi for i = 1, . . . , k. Now simply take {fk+1, . . . , fu} as a basis of L(G−

∑k
i=1Qi),

which has dimension u− k according to the Riemann-Roch Theorem.
Now, define M to be the matrix

M =



f1(Q1) f2(Q1) . . . fu(Q1)
...

...
...

...
f1(Qk) f2(Qk) . . . fu(Qk)
f1(P1) f2(P1) . . . fu(P1)

...
...

...
...

f1(Pn) f2(Pn) . . . fu(Pn)


.

Then it is now easy to verify that the first k rows correspond with the first k unit
vectors in Fuq . Furthermore, if we take a random Fq-rational function g ∈ L(G) where

g =
k∑
j=1

sjfj +
n∑

j=k+1

rjfj ,

evaluating g in the points Q1, . . . , Qk, P1, . . . , Pn corresponds with multiplication of
M with the vector ~v = (s1, . . . , sk, rk+1, . . . , rn). In particular, multiplying any row
of Mi by ~v corresponds with calculating g(Pi). Similarly, it holds that g(Qj) = sj for
any j ∈ {1, . . . , k}.

Theorem 37. This defines a (t, 2g + t + k)-ramp scheme (Fq,M, IdN ) with secrets
of length k.

Proof. It can be easily seen as a special case of Theorem 36 that any rational
function in L(G) is uniquely determined by its evaluations in deg(G) + 1 rational
points (this is exactly Lemma 1 of [15]). In this case, deg(G) = 2g + t+ k − 1 so any
2g + t+ k shares determine the rational function and thus the secret vector.

Now let A be any subset of N of cardinality t. We only need to argue that for
any secret vector ~s = (s1, . . . , sk) ∈ Fkq there exists a rational function f such that
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f(Qi) = si and the evaluation of f in the points {Pi}i∈A is zero. This follows from
Theorem 36, since t+ k = deg(G)− 2g + 1. 4

8.2.3 Extension Field Multiplication

Let D = {P1, . . . , Pn} be a set of Fq-rational points on a smooth projective curve
C defined over Fq and let G be an Fq-rational divisor of degree 2g + t + k − 1 with
support disjoint from D. Furthermore, assume that Q is a point on the curve outside
the support of G that is Fqk -rational and not Fqd -rational for any integer d < k.

Let {e1, e2, . . . , ek} be a basis of Fqk over Fq. To share a secret vector (s1, . . . , sk),
a rational function f ∈ L(G) is selected uniformly at random under the restriction
that f(Q) = s1e1+. . .+skek ∈ Fqk . The shares are defined to be the values f(Pi) ∈ Fq
for i ∈ N .

We can also represent this ramp scheme in the standard matricial form. In this
case we take a basis {f1, . . . , fu} of L(G) such that fi(Q) = ei for i = 1, . . . , k and
fi(Q) = 0 for i = k + 1, . . . , n. It can again be shown that such a basis exists using
Theorem 36. We have only one point of degree k and k ≤ deg(G) − 2g + 1, so
we know such fi exist for i = 1, . . . , k, and we can take {fk+1, . . . , fu} a basis of
L(G − Q −

∑k−1
i=1 Qi), where Q1, Q2, . . . , Qk−1 are the conjugate points of Q under

the Frobenius automorphism over Fq.
Let M be the matrix

M =



1 0 0 . . . 0 . . . 0
0 1 0 . . . 0 . . . 0
...

...
...

...
...

...
...

0 0 0 . . . 1 . . . 0
f1(P1) f2(P1) f3(P1) . . . fi(P1) . . . fu(P1)
f1(P2) f2(P2) f3(P2) . . . fi(P2) . . . fu(P2)

...
...

...
...

...
...

...
f1(Pn) f2(Pn) f3(Pn) . . . fi(Pn) . . . fu(Pn)


.

As before, if we take a random Fq-rational function g ∈ L(G) where

g =
k∑
j=1

sjfj +
n∑

j=k+1

rjfj ,

evaluating g in the points Q,P1, . . . , Pn corresponds with multiplication of M with
the vector ~v = (s1, . . . , sk, rk+1, . . . , rn). In particular, multiplying any row of Mi by
~v corresponds again with calculating g(Pi). Similarly, it holds under this construction
that g(Q) =

∑k
i=1 siei by the choice of the basis.
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Theorem 38. This defines a (t, 2g + t + k)-ramp scheme (Fq,M, IdN ) with secrets
of length k.

Proof. As before, both properties are a direct consequence of Theorem 36. 4

8.2.4 Multiplication Properties

The schemes thus described correspond with the two listed multiplication maps. For
the parallel multiplication scheme, given two vectors ~s = (s1, s2, . . . , sk) and ~t =
(t1, t2, . . . , tk), the product is ~s� ~t = (s1t1, s2t2, . . . , sktk).

For the extension field multiplication scheme, for any vectors ~s = (s1, s2, . . . , sk)
and ~t = (t1, t2, . . . , tk), representing the elements s = s1e1 + s2e2 + . . . + skek ∈ Fqk
and t = t1e1 + t2e2 + . . .+ tkek ∈ Fqk , the product of these two elements in the field
Fqk is some element u = u1e1 + u2e2 + . . . + ukek ∈ Fqk for some ui ∈ Fq. We can
therefore define the product of ~s and ~t as ~s� ~t = (u1, u2, . . . , uk).

We next prove that, if n is large enough with respect to t, the two schemes are
(strongly) multiplicative with regard to their respective multiplications.

Theorem 39. The parallel multiplication scheme is multiplicative when n ≥ 2t +
4g + 2k − 1 and A-strongly multiplicative with respect to a t-adversary A when n ≥
3t+ 4g + 2k − 1.

Proof. We need to show that for any i = 1, . . . , k there exist coefficients
λ

(i)
1 , . . . , λ

(i)
n such that for any f, g ∈ L(G),

f(Qi)g(Qi) =
n∑
j=1

λ
(i)
j f(Pj)g(Pj).

Note that if f and g are in L(G) their product is in the space L(2G).
According to Theorem 36 we have that if deg(2G) + 1 ≤ n the map

φ : L(2G)→
n⊕
j=1

Fq

defined by
h 7→ (h(P1), . . . , h(Pn))

is linear and injective, so it has an inverse and it is also linear. Furthermore, the maps

ψi : L(2G)→ Fq

defined by
h 7→ h(Qi)
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are also linear for any i ∈ {1, . . . , k}. So the composition of φ−1 and any ψi is linear.
Therefore (fg)(Qi) is a linear combination of f(Pj)g(Pj) for any f and g in L(G).
Finally observe that the condition deg(2G)+1 ≤ n holds whenever 4g+2t+2k−1 ≤ n.

4

Similar to the simpler finite field setting the coefficients λ(i)
j can be explicitly

determined. We now describe how to obtain these using the Residue Theorem [75].

Determining the coefficients λ(i)
j .

A consequence of the Residue Theorem is that for any function ϕ in L(2G) and any
differential ω in Ω(Qi +

∑n
j=1 Pj − 2G) the relation

0 =
n∑
j=1

resPj (ϕω) + resQi(ϕω)

=
n∑
j=1

ϕ(Pj)resPj (ω) + ϕ(Qi)resQi(ω)

holds. Therefore, if there exists a nonzero element ω in Ω(Qi +
∑n
j=1 Pj − 2G),

applying the theorem for the rational function fg gives a linear relation between the
values fg(Qi) and fg(Pj) for j = 1, . . . , n for some coefficients which do not depend
on f and g. If we can additionally ensure that the coefficient resQi(ω) is non-zero,
then we have a relation of the form

fg(Qi) =
n∑
j=1

−
resPj (ω)
resQi(ω)

fg(Pj).

Thus,

λ
(i)
j = −

resPj (ω)
resQi(ω)

and we are done.
It is a known fact that we can define an isomorphism of Fq-vector spaces

φ : L(K +Qi +
n∑
j=1

Pj − 2G)→ Ω(Qi +
n∑
j=1

Pj − 2G)

defined by
φ(h) = hη

where K is a canonical divisor and η is a differential such that div(η) = K. It suffices
to find an element h in L(K + Qi +

∑n
j=1 Pj − 2G) with a first order pole in Qi.

Hence, we have to show that there exists an element in the difference of the spaces
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L(K +Qi +
∑n
j=1 Pj − 2G) and L(K +

∑n
j=1 Pj − 2G). Applying the Riemann-Roch

theorem for n ≥ 2t+ 4g + 2k − 1 shows us that the dimensions of these spaces differ
and the result follows.

Theorem 40. The extension field multiplication scheme is multiplicative when n ≥
2t + 4g + 2k − 1 and A-strongly multiplicative with respect to a t-adversary A when
n ≥ 3t+ 4g + 2k − 1.

Proof. Now we need to show that for any i = 1, . . . , k there exist coefficients
λ

(i)
1 , . . . , λ

(i)
n in Fq such that for any f, g ∈ L(G),

πi(f(Q)g(Q)) =
n∑
j=1

λ
(i)
j f(Pj)g(Pj).

An argument similar to that in Theorem 39 shows that, for n ≥ 2t + 4g + 2k − 1,
there exist elements rj ∈ Fqk such that f(Q)g(Q) =

∑n
j=1 rjf(Pj)g(Pj). Now, note

that rj =
∑k
i=1 λ

(i)
j ei, which gives us the desired result. 4

8.2.5 Achieving Constant Field Size

For both of the algebraic-geometric ramp schemes defined above, the actual parame-
ters of the scheme depend on the parameters of the curve that is used. In particular,
for the case where g = 0 the schemes collapse into the classical schemes described in
Section 8.1.

Recall that strongly multiplicative secret sharing schemes only exist for adversary
structures that are Q(3), which for strongly multiplicative t-threshold schemes implies
that t < n/3. We now demonstrate that when one bases the algebraic-geometric
ramp schemes on appropriate curves, it is possible to construct families of strongly
multiplicative ramp schemes over constant size fields rejecting all player sets of size t
that additionally have close to optimal parameters, i.e., such that for any ε > 0 one
can achieve (1/3− ε)n < t < n/3.

As already noted in [15], one currently obtains the best parameters for the scheme
with parallel multiplication when using the curves of Garcia and Stichtenoth [36]. For
a square q, they define a family of curves {Ci}i∈Z≥0 defined over Fq with

lim
i→∞

#Ci(Fq)
g(Ci)

=
√
q − 1,

i.e., that attains the Drinfeld-Vlǎduţ bound.
Suppose we take a curve Cm in the family that is very close to optimal, i.e., such

that #Cm(Fq)/g(Cm) = (1− γ)(
√
q − 1) for some constant γ > 0 that can be chosen

arbitrarily small. The parameter n can be as large as the number of Fq-rational points
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on the curve minus the number k of evaluation points used for the coefficients of the
secret vector, which implies that we can take t maximal such that

t <

(
1
3
− c
)
· n,

where
c =

4
3(1− γ)(

√
q − 1)

− 4k
3n(1− γ)(

√
q − 1)

+
2k − 2

3n
<

1
3
.

So for any 0 < ε < 1/6 there exists a finite field Fq with q ≥ 49 such that
for infinitely many n there exists a strongly multiplicative scheme defined over Fq
tolerating a t-adversary with (1/3− ε)n ≤ t ≤ n/3.1

For the schemes with extension field multiplication the same result is achieved
by these curves, except that we additionally need to ensure that we can select at
least one Fqk -rational point on every curve in the family. The main situation we are
interested in, since this allows to achieve the best communication when considering
multi-party protocols based on these algebraic-geometric schemes, is that where the
extension degree k = δn for some constant value 0 < δ < 1. In particular, for the
asymptotic result we are describing we can assume that δ is arbitrarily small.

By a corollary of the Hasse-Weil bound (see for instance Theorem V.2.10 in [72]),
a smooth, projective curve of genus g defined over Fq must have an Fqk -rational point
for any k that satisfies k ≥ 4g+ 3. If we pick a large enough (square) q, select a curve
Cm as before and set n = #Cm(Fq), we can ensure that

k = δn ≥ δ(1− γ)(
√
q − 1)g(Cm) > 4g(Cm) + 3.

If we let n be equal to the total number of Fq-rational points on the curve, this
implies that we can take t maximal such that

t <

(
1
3
− c
)
· n,

where
c =

4
3(1− γ)(

√
q − 1)

+
2δ
3
− 2

3n
<

1
3
.

So for any 0 < ε < 1/6 there exist a sufficiently small δ > 0 with k = δn and
a finite field Fq with q ≥ 49 such that for infinitely many n there exists a strongly
multiplicative scheme defined over Fq tolerating a t-adversary with (1/3− ε)n ≤ t ≤
n/3. This family is particularly interesting in that it introduces a “constant overhead”,
i.e., the total sum of the share sizes is Ω(n) while the secret is also of size Ω(n).

1Note that in order to theoretically achieve this result it actually already suffices to have a limit

limi→∞#Ci(Fq)/g(Ci) that increases unbounded with q, although this will in general require a

much larger value of q. In fact, the 1985 result by Serre [65] that states that for all q it holds that

A(q) > c · log q for a certain positive absolute constant c already suffices here.
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Chapter 9

Basics of Secure Multi-Party

Computation

It is well-known in the literature how to use (strongly) multiplicative secret shar-
ing schemes to construct multi-party computation protocols secure against a passive
(active) adversary. However, in order to achieve the same effect using (strongly)
multiplicative ramp schemes the known techniques require various adaptations. We
describe these adaptations in this and the next chapter.

We recall that, in a nutshell, secure multi-party computation concerns n players
p1, p2, . . . , pn that each hold their own respective private input vector ~yi consisting of
a finite number of elements from a finite field Fq for i = 1, 2, . . . , n. The goal of the
computation is for the players to together determine the output of a given function
applied to the inputs under the presence of a passive or active adversary that can
corrupt some of the players, while keeping the inputs ~y1, ~y2, . . . , ~yn as private as
possible and guaranteeing correctness of the output.

In this chapter we for completeness provide a brief glimpse of some fundamental
techniques that are at the base of general perfectly secure multi-party computation.
In essence, we have taken the most basic known techniques that are used to construct
multi-party computation protocols secure against a passive adversary from multiplica-
tive linear secret sharing schemes and modified these for use with multiplicative ramp
schemes.

Although we do not discuss the security for these protocols in detail, we do point
out how one would go about formally defining it. The protocols described in this
and the following chapter can be shown to remain secure against the same type of
adversary as is handled by the underlying ramp scheme.
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9.1 Protocol Structure

We first sketch the general structure of multi-party computation protocols that are
constructed from (strongly) multiplicative secret sharing schemes. These protocols
consist of the following components.

Initialization Every player secret shares his input among the players using the un-
derlying secret sharing scheme.

Computation Based on the arithmetic circuit of the given function, the function
value is computed step-by-step via consecutive operations on the shares. That
is, whenever a gate in the circuit requires an addition or multiplication involving
one or two intermediate values the players execute a corresponding operation
on the shares. This results in new shares in the secret sharing scheme for the
players with as corresponding secret the output value of the gate.

Output All players broadcast their share in the output of the last gate in the circuit,
which enables the players to determine the function value corresponding with
their inputs.

From this description it is obvious that, given a multiplicative secret sharing scheme,
the execution of the protocol mainly depends on the specifications of the addition and
multiplication operations.

9.2 Addition and Multiplication in the Passive Case

We now describe how one can perform the addition and multiplication operations on
secrets using the corresponding shares in a multiplicative ramp scheme. Let M =
(Fq,M, ψ) be a ramp scheme that is multiplicative with respect to the multiplication
operation �. For simplicity we assume that every share in the scheme consists of a
single value in Fq, i.e., M is an (n + k) × e-matrix and ψ is the identity map, and
remark that the general case proceeds similarly.

Suppose that ~s = (si)ki=1 ∈ Fkq is a secret vector with corresponding shares
a1, a2, . . . , an and put ~x = (s1, . . . , sk, a1, . . . , an). Then there exists a vector

~v = (s1, . . . , sk, rk+1, . . . , re) ∈ Fkq

such that ~x = M · (~v)T . Vice versa, to demonstrate that certain values a′1, . . . , a
′
n are

shares in a secret vector ~s′ = (s′1, . . . , s
′
k) it suffices to show that there exist values

r′k+1, . . . , r
′
e ∈ Fq such that

(s′1, . . . , s
′
k, a
′
1, . . . , a

′
n) = M · (s′1, . . . , s′k, r′k+1, . . . , r

′
e)
T .
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We will use this notation throughout this section. The next part describes the
general operations on shares in a multiplicative ramp scheme that allow to perform
the required computation steps. Since these operations are very similar to their well-
known counterparts for linear secret sharing schemes, we omit the details concerning
the privacy and correctness conditions surrounding these operations and refer the
interested reader to [23].

Addition of a constant vector

Let a constant vector ~c = (c1, c2, . . . , ck) ∈ Fkq be given and suppose the current gate
in the circuit requires the players to compute shares in ~s+ ~c, where the players hold
the shares a1, . . . , an in ~s.

Suppose

~̀= (c1, . . . , ck, `1, . . . , `n) = M · (c1, . . . , ck, 0, . . . , 0)T ,

i.e., `1, . . . , `n are given shares for the “secret” ~c. Then the values (ai + `i)ni=1 are
shares in ~s+ ~c, since for the vector

~x+ ~̀= (s1 + c1, . . . , sk + ck, a1 + `1, . . . , an + `n)

it holds that

~x+ ~̀ = M · (~v)T +M · (c1, c2, . . . , ck, 0, . . . , 0)T

= M · (~v + (c1, c2, . . . , ck, 0, . . . , 0))T

= M · (s1 + c1, . . . , sk + ck, rk+1, . . . , re)T .

In other words, every player pi can compute the value ai + `i using his local share
ai in ~s and the public value `i. This results in distributed shares in the secret ~s+ ~c.
Note that these shares can be computed without interaction between the players.

Addition of two secret vectors

Suppose that in addition to the shares a1, . . . , an in a secret vector ~s the players hold
shares b1, . . . , bn in a secret vector ~t, where the current gate in the circuit requires
the players to compute shares in ~s + ~t. A similar argument as above shows that the
values {ai + bi}ni=1 are shares in ~s+~t, which can again be computed locally by every
player without interaction.

Multiplication with a constant value

Let a constant value c ∈ Fq be given and suppose the current gate in the circuit
requires the players to compute shares in c · ~s, where the players hold the shares
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a1, . . . , an in ~s. Then the values {cai}ni=1 are shares in c · ~s, since

(cs1, . . . , csk, ca1, . . . , can) = c(M · (~v)T )

= M · (c · ~v)T

= M · (cs1, . . . , csk, crk+1, . . . , cre)T .

These shares can again be computed without interaction by the players.

Multiplication of two secret vectors

Suppose that the players hold the shares a1, . . . , an in a secret vector ~s and shares
b1, . . . , bn in a secret vector ~t, where the current gate in the circuit requires the players
to compute shares in ~s�~t. Secure multiplication of these two secret vectors is handled
via a reduction of secure multiplication to the previously resolved problem of secure
addition.

Since the ramp scheme M is multiplicative, there exist vectors

~λj =
(
λ

(1)
j , . . . , λ

(k)
j

)
∈ Fkq

for j = 1, . . . , n such that

~s� ~t =
n∑
j=1

~λjajbj .

Now suppose for i = 1, 2, . . . , n every player pi secret shares the vector ~λiaibi,
where the value aibi can be computed locally by player pi and the vector ~λi is given.
Let this result in shares di1, di2, . . . , din in the vector ~λiaibi for i = 1, 2, . . . , n. Then
by the previously treated case of secure addition, it holds that the locally computable
values

∑n
i=1 di1,

∑n
i=1 di2, . . . ,

∑n
i=1 din are shares in the vector

∑n
j=1

~λjajbj = ~s�~t.
Due to the n applications of secret sharing required for secure multiplication,

one for each player, the multiplication gates are the only computation steps where
communication is required.

9.3 Low Communication MPC with Ramp Schemes

The amount of communication involved for the computation steps typically dominates
the communication required for the initialization and output steps, which makes it
crucial to keep the communication required for secure multiplications low. We here
give an indication of the differences in communication required for one secure multi-
plication when one considers protocols secure against a passive t-adversary based on
different ramp schemes, where t < (1/2− ε)n with ε > 0 small.
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Previously, one of the standard ramp schemes used for most practical applications
in multi-party computation is Shamir’s secret sharing scheme. When one uses this
scheme, the communication involved for a multiplication amounts to n2 field elements,
where the field size additionally needs to be at least equal to the number of players
involved. This means that when we measure the amount of communication required
in bits, every secure multiplication requires Ω(n2 log n) bits.

If one instead uses the coding theoretical constructions from Chapter 7 or the
algebraic-geometric ramp scheme by Chen and Cramer, one can drop the dependence
between the field size and the number of players, which reduces the amount of required
communication for a secure multiplication to Ω(n2) bits for a constant-size secret.
Using the algebraic-geometric ramp scheme with extension field multiplication from
Chapter 8, this can theoretically be reduced to Ω(n2) bits communication for a secret
consisting of Ω(n) bits in an extension field Fqk , where q is constant and k is linear
in n.

To the best of our knowledge, there are no other techniques known that make
communication improvements at the level of a single (perfectly) secure multiplication.
However, when one considers secure computations as a whole and looks at subclasses
of functions that are more structured, one can do better.

For instance, when many instances of the same function need to be computed
securely at the same time, one can group multiplications. Using the ramp scheme
of Franklin and Yung, one can achieve communication of Ω(n2 log n) bits for Ω(n)
multiplication. This is improved by the algebraic-geometric ramp scheme with parallel
multiplication, which allows to perform Ω(n) multiplications in parallel at the cost of
Ω(n2) bits communication if the secret is of constant-size.

Finally, we note that there are many other techniques known that amortize on the
cost of an entire secure computation. Here it is usually required that the computation
is sufficiently structured, for instance that sufficiently many multiplications can be
computed at the same point in time. For specific functions, one can additionally
apply specialized optimizations that allow to reduce the amount of communication
even further.

9.4 Formal Security Definitions for MPC

Although we do not discuss the security of the resulting protocols in detail here, we
would like to point out that the security of multi-party computation can be formalized
in the model of Universal Composability (UC) [11]. The idea behind the UC model is
that any protocol is potentially used as part of a larger protocol and should remain
secure regardless of the manner in which the protocol is invoked. An important
advantage of this approach is that it allows to improve on previous security definitions
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that are specified by a list of requirements on the protocol. This previous approach
had as a strong disadvantage that the list of requirements often turned out to be
incomplete once the protocols started to be used in new and unforeseen ways.

In the UC model, the functionality of a protocol is described in terms of an ideal
world functionality. This ideal world functionality describes what we would want
to achieve if we could build an ideal box that receives the inputs from the players,
returns the appropriate computed outputs to the players and does nothing else that
can be observed on the outside of the box.

Furthermore, to emulate the behavior of an adversary for the real-world protocol,
the adversary in the ideal world communicates through a simulator that only has
access to the data held by the players that are corrupted by the adversary. The idea
is to construct the simulator in such a way that the adversary cannot distinguish
whether he is attacking a real protocol in the real world or communicating with the
simulator in the ideal world, where in the latter situation the adversary by assumption
is unable to disturb the functionality of the ideal box in any way. By the properties
of the UC model it then follows that the adversary is unable to do better in the real
world setting than in the ideal world setting, which implies that the protocol is secure.

What should at least intuitively be clear from this description is that it suffices to
prove that the view of the adversary at any point during the protocol is independent
of the views of the honest players, since this allows a simulator to make up views for
the honest players and feed data computed from these views to the adversary without
creating inconsistencies with the correct protocol output.1

1If the adversary can adaptively corrupt players during the protocol the simulator additionally

needs to make sure the views of of the newly corrupted players are consistent with the view of the

adversary. It can be shown that this can also be achieved if the view of any static adversary is

independent of the view of the honest players.
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Chapter 10

Active-Adversary Multi-Party

Computation

In Chapter 9 we have only considered passive adversaries. In the presence of an active
adversary, the protocols become more involved. Typically, these protocols rely on the
same basic structure used for passive adversary protocols, but additionally introduce
safe-guards that allow to detect and eliminate players that deviate from the protocol
specification and to simulate their intended behavior among the remaining players.

One crucial building block in such protocols is an enhanced form of secret sharing
called verifiable secret sharing (VSS). A verifiable secret sharing protocol has the
properties that the secret is fixed after the initial secret sharing phases and that, in
case of an honest dealer distributing the secret, the correct secret is guaranteed to
be reconstructed when all players pool their shares in the secret. It is known how
to construct such verifiable secret sharing protocols based on strongly multiplicative
linear secret sharing schemes, which can be seen as the first step in building protocols
secure against an active adversary. Although it is also possible to obtain VSS protocols
without the use of strong multiplication, strongly multiplicative schemes provide error
correction for free (see [24]) which trivializes the reconstruction of the secret from the
shares.

In this chapter we sketch how to lift the known techniques of Cramer, Damg̊ard
and Maurer [23] for constructing protocols secure against an active adversary from
strongly multiplicative linear secret sharing schemes to the more general context of
strongly multiplicative ramp schemes.

The material in this chapter originates from unpublished joint work with Ignacio
Cascudo Pueyo.
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10.1 Verifiable Secret Sharing

In this section we describe a general procedure to verifiably secret share a vector with
a ramp scheme. In the usual definition of a verifiable secret sharing (VSS), the VSS
ensures that the following properties hold at the end of the sharing:

Privacy If the dealer is honest, the joint view of all corrupted players is statistically
independent of the secret.

Correctness Either all honest players hold consistent shares in a value s or the dealer
is disqualified. Additionally, when the dealer is not disqualified, it is guaranteed
that the players can uniquely reconstruct the secret s by pooling their shares in
s, even when some or all of the corrupted players provide an incorrect share.

We use this standard notion of VSS, except that we allow the secret to be a vector.
Assume that we have a strongly multiplicative ramp scheme M = (Fq,M, ψ).

We can then introduce a slightly modified version of the VSS protocol from [23], as
follows.

In the VSS of [23] one player D, that is called the dealer, first randomly chooses
a symmetric e × e matrix R such that the first element in the first row is equal to
the secret value. For the ramp scheme version of the VSS however, a symmetric e× e
matrix R is first selected at random such that the first k elements in the first row
(and consequently the first k elements in the first column) are equal to the respective
coordinates of the secret.

Next, the dealer sends every player pj the vector ~vj = MjR, which we refer to
as the share vector. The first coordinate of this share vector is considered the share
of player pj in the ramp scheme, while the remaining coordinates allow to verify
consistency of this share with the shares of the other players. After this the players
execute a number of steps to actually perform the consistency verification.

These steps are exactly the same as in [23]:

1. Every pair of players pi and pj checks whether Mi~v
T
j = Mj~v

T
i .

2. If player pj finds that for some player pi the equality above does not hold he
broadcasts a complaint.

3. In response to this complaint, D broadcasts the real value Mj~v
T
i .

4. If player pj still does not agree he broadcasts an accusation against D and halts.

5. D must broadcast all the information in relation to player pj . The rest of the
players can check if this information is consistent with theirs and there can be
new accusations against the dealer.
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6. If the set of players that accuse D is in the adversary structure then the VSS
is accepted. In this case every player that accused the dealer must use the
information received in step 5. If, on the contrary, the set of players that
accuse the dealer is not contained in the adversary structure then the dealer is
disqualified.

It remains to argue that this VSS protocol is still secure when applied to ramp
schemes. We sketch the proofs for correctness and privacy, considering the cases where
the dealer is honest and where the dealer is dishonest.
Honest dealer: In this case, no honest player can ever accuse the dealer, so the set
of players that accuse the dealer always consists of a subset of the adversary structure
and hence the VSS is accepted, and correctness is ensured.

With regard to the privacy, note that steps 2−6 do not reveal any new information
to the adversary, so we just need to argue that what the adversary receives in step 1
does not give him any further information about the secret vector. Let B be an
element of the adversary structure. It is sufficient to show that there are symmetric
matrices S1, . . . , Sk such that the ith element in the first row of Si is one and the
remaining k − 1 first elements of this row are zeros, and such that MBSi = 0. If this
holds, then for any secret vectors (s1, . . . , sk) and (s′1, . . . , s

′
k) and a symmetric matrix

R1 such that its first k coordinates of its first row are (s1, . . . , sk), we can compute a
matrix R2 = R1 +

∑k
i=1(s′i− si)Si such that the first k coordinates of the first row of

R2 are (s′1, . . . , s
′
k) and MBR1 = MBR2. Hence every secret vector in Fkq is equally

probable from the point of view of the players in the set B.
Due to the standard properties of the underlying ramp scheme there exists a ~vi

such that MB~vi = 0 and the first and ith (1 < i ≤ k) coordinates of ~vi are one,
while the rest of the first k coordinates are zero. Now we can take S1 = ~v1 ⊗ ~v1 and
Si = ~vi ⊗ ~vi − ~v1 ⊗ ~v1 for every i in {2, . . . , k}.
Corrupt dealer: In the case of a corrupt dealer we do not need to worry about
privacy as the adversary already knows the secret vector. We only need to prove
that, if the protocol is accepted, the honest players hold consistent shares at the end
of the protocol. Let A be the set of honest players that accused the dealer, B be
the set of corrupt players and C be the set of honest players that did not accuse the
dealer during the protocol. We know that A is in the adversary structure (because the
protocol was accepted), and so is B, so according to the R(3) property we know that
C is an accepted set. Hence, the shares of C determine uniquely the secret vector.
The shares of the players in C are consistent with the new shares for the players in
A that were broadcast by the dealer in step 5, which means that Mj~v

T
i = Mi~v

T
j for

every player pi in A and player pj in C. Thus, every player pj in C holds a share in
player pi’s share ~vi, so the first coordinate of ~vi is uniquely determined by the shares
of the players in C according to the reconstruction property of the scheme.
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If the VSS is accepted, at the end of the protocol all the honest players have con-
sistent shares, and therefore the set of corrupted shares is contained in the adversary
structure. In the next section we demonstrate that in this case, strong multiplicativity
guarantees that honest players can efficiently and uniquely reconstruct the secret.

10.2 Efficient Error Correction

We now proceed by showing that strong multiplication allows to efficiently recover the
secret vector even in the setting where a set of players in the adversary structure can
corrupt some of their shares. We use the same kind of argument as in [24], which is in
turn a generalization of the Berlekamp-Welch decoding algorithm for Reed-Solomon
error correcting codes. In the following we assume that every player corresponds to a
single row in the matrix corresponding to the ramp scheme, but our arguments carry
over to the general case.

Throughout this section, let tensor product ~a ⊗ ~b of any given two vectors ~a =
(a1, a2, . . . , au) and ~b = (b1, b2, . . . , bu) be the vector

(a1b1, a1b2, . . . , a1bu, . . . , aubu).

Let M̂ be the matrix with n rows, where the ith row equals Mi⊗Mi. Given vectors ~s
and ~t, let ~s∗~t denote the component-wise product of ~s and ~t. Suppose we have shares
~a = (a1, . . . , an) for a secret vector ~s = (s1, . . . , sk), so ~a = M~x, where ~x is a vector
of the form (~s, ~ρ).

Now, assume that the players in a subset A ∈ A provide incorrect shares in the
reconstruction phase. So the players actually obtain ~c = ~a + ~e, where ~e is some
error vector for which the set of non-zero positions is contained in A. The players
can proceed in the following way. They first find a solution (~γ, ~y) to the system
of equations {M̂~γ = ~c ∗ (M~y), y1 = 1}. The first equation can be rewritten as
M̂(~γ − ~y ⊗ ~x) = ~e ∗ (M~y).

The properties of the ramp scheme ensure that we can find some solution to the
system of equations above. In fact, we know that there exists a vector ~z with z1 = 1
and MA~z = 0. Then (~z ⊗ ~x, ~z) is a solution for any such vector ~z, as one can easily
see that ~e ∗ (M~z) = 0.

Now, given any solution (~γ, ~y) to the system of equations above, consider M̂(~γ−~y⊗
~x) = (t1, . . . , tn). Then ti = 0 for every i ∈ A, because the corresponding coordinates
in ~e are zero. The strong multiplication property implies that the first k coordinates
of ~γ − ~y ⊗ ~x can be written as linear combinations of all of the ti such that i ∈ A
and hence these coordinates are zero. Thus, the first coordinates of ~γ are the same
as those of ~y ⊗ ~x, which are (s1, . . . , sk).

126



10.3. Active-Adversary Secure MPC

10.3 Active-Adversary Secure MPC

In this section we use the techniques from Chapter 9, Section 10.1 and Section 10.2
to build the protocols for multi-party computation secure against an active adversary
based on strongly multiplicative ramp schemes. This generalizes the protocols given
in [23] for strongly multiplicative linear secret sharing schemes.

Active case

First, beside the VSS protocol from Section 10.1 that operates on vectors, we require
a method for players to VSS single values in Fq based on the underlying ramp scheme.
In the VSS protocol of [23] there exist two levels of secret sharing, one for the secret
and one where shares are generated for every share in the secret, and the extra VSS
variant we describe here is required to mimic the latter level. Additionally we will
use the new variant to perform secure multiplication.

Consider a non-zero homomorphism ψ : Fq → Fkq . The protocols below can be
made to work with any such ψ, but to simplify the presentation we assume here that
ψ is such that for any r ∈ Fq we have that the first coefficient of ψ(r) equals r. To
VSS an element r ∈ Fq, a player pi actually performs the VSS for the vector ψ(r) as
described in Section 10.1. We abstractly refer to the share vectors generated while
player pi applies the VSS for the element r by [r]i.

We follow the approach in [23], where two protocols called Commitment Transfer
Protocol (CTP) and Commitment Sharing Protocol (CSP) are used. The CTP pro-
tocol allows two players pi and pj to transform a VSS created by player pi into a VSS
created by player pj (i.e., the randomness and secret get “transferred” to player pj).
The CSP protocol on the other hand allows to convert a VSS of a value r into a set of
VSSes for shares r1, r2, . . . , rn for r. We need to adapt these two protocols for them
to work for ramp schemes, but the adaptation for the CTP protocol is trivial and
therefore omitted here. We therefore proceed to describe the adapted CSP protocol:

Player pi wants to transform a VSS he created for an element r ∈ Fq, again denoted
by [r]i, into a set of VSS distributions [r1]1, . . . , [rn]n, where r1, . . . , rn are shares of
ψ(r) in our ramp scheme. First note that, using the linearity of the VSS, players
can already locally compute share vectors for every coordinate of ψ(r) from the share
vectors corresponding to [r]i, as every coordinate of ψ(r) is λr for some constant λ.
Additionally, player pi performs a VSS for each entry of the random vector ~ρ, where
M(ψ(r), ~ρ) = (r1, . . . , rn). Using the distributed share vectors all players can now
locally mimic the computation of (r1, . . . , rn), resulting in share vectors in the values
r1, . . . , rn. Since the values r1, . . . , rn are at this point still only known by player pi,
these share vectors correspond to VSS distributions [r1]i, [r2]i, . . . , [rn]i. Finally, for
every player pj , players pi and pj use the CTP protocol to convert [rj ]i into [rj ]j .
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We are now ready to describe the multi-party computation protocol secure against
an active adversary.

Initialization phase

At the beginning of the protocol, every player holds a secret vector of size k. The
goal of this phase is to create share vectors for these vectors according to the VSS.

Player pi, who has the secret vector ~s, proceeds in the following way:

1. Player pi chooses a vector ~ρ uniformly at random, which he uses to share ~s with
the strongly multiplicative ramp scheme. Next he performs VSS separately for
each entry of ~s and ~ρ.

2. Players can compute [aj ]i, share vectors for the shares aj , as they are linear
combinations of the entries of ~s and ~ρ.

3. Players pi and pj execute the CTP protocol to transform [aj ]i into [aj ]j . After
this step player pj knows the value aj .

After this initialization phase every player obtained a share in the secret vector of
every player and share vectors for the shares that every player obtained. To analyze
the communication complexity of this protocol assume that k = O(n) and that the
size of the random vector ~ρ is O(n). Every player performs VSS for each entry of
a vector of length O(n) and every VSS amounts to sending every player a vector of
size O(n), so the complexity of every VSS is O(n2). As there are n players the total
complexity of this phase is O(n4).

Secure multiplication

Using the linearity of ramp schemes and the VSS scheme, secure addition and multi-
plication with a constant are achieved similar to the passive case and can be performed
locally by the players without interaction. We therefore focus on the more involved
and interesting operation, which is secure multiplication.

Let ~s and ~t be two secret vectors. Every player has a VSS’ed share for each vector
and wants to compute a VSS’ed share to ~s � ~t. Let us consider a player pi and a
VSS distribution [a]i for his share a to ~s and VSS distribution [b]i for his share b to
~t. Player pi performs the following actions:

1. Player pi applies the CSP protocol to [a]i and [b]i, thus creating VSS distribu-
tions for shares {aj}nj=1 and {bj}nj=1 for a and b respectively for every player,
that is, every player pj obtains distributions [aj ]j and [bj ]j and learns aj and
bj . In this process player pi uses some random vectors ~ρa and ~ρb of length e−k.
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2. Player pi additionally performs VSS for ab, resulting in [ab]i.

3. Player pi computes a vector ~ρ for which it holds that

M̂(ab, ~ρ) = M(ψ(a), ~ρa) ∗M(ψ(b), ~ρb)

and then performs VSS for each entry of ~ρ.

4. Let M̂(ab, ~ρ) = ((ab)1, (ab)2, . . . , (ab)n). The players locally compute share
vectors corresponding with [(ab)j ]i using [ab]i, the share vectors corresponding
with the entries of ~ρ and the fact that the VSS scheme and the mapping ψ have
homomorphic properties.

5. All players send their share in [(ab)j ]i to player pj , who verifies that (ab)j is
equal to ajbj . In case it is not, player pj complains and broadcasts the values
aj and bj , together with the randomness used to create the distributions [aj ]j
and [bj ]j . Player pi must then do the same for the distribution [(ab)j ]i. If
ajbj 6= (ab)j player pi is disqualified. All of the values that were shared via
VSS by him are publicly determined and the players restart the protocol again
simulating this values.

6. Now player pi performs VSS for (each entry of) a different random vector ~σ of
length e− k.

7. Based on their share vectors corresponding with [ab]i, the players compute with-
out interaction [λ(1)

i ab]i, [λ(2)
i ab]i,. . . , [λ(k)

i ab]i, where λ(1)
i , λ

(2)
i , . . . , λ

(k)
i are the

constant values from Definition 36.

8. Every player pj can locally compute share vectors corresponding to shares for
the vector ~λiab using [~σ]i and [λ(1)

i ab]i, [λ
(2)
i ab]i, . . . , [λ

(k)
i ab]i. We refer to these

VSS distributions by [xji]i.

9. Players pi and pj perform the CTP protocol, so that they construct [xji]j , and
player pj learns ψ(xji) and hence xji.

10. Each player pj sums his shares xji. The result
∑
i xji is a share for the vector

s� t. Similarly, VSS distributions [
∑
i xji]j are computed.

Since all the values are distributed via VSS the only way player pi can cheat in
the above protocol is by performing VSS on a value c 6= ab in step 2. We next argue
that in this case he would be disqualified in step 5. Indeed, we know that if he is
not disqualified cj must equal ajbj for every honest player, that is for a set of players
which is in the complement of the adversary structure. Therefore, by the strong
multiplication property, these shares determine the secret and thus c = ab.
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Thus, steps 1 − 5 allow players to check that player pi has really performed VSS
on the value ab and can be seen as a translation for the ramp schemes context of the
CMP protocol in [23]. In steps 6− 9, each player pj constructs a VSS for a share in
the vector ~λiab, where a and b are the shares of player pi for s and t. Due to the
multiplication property, the sum of these vectors gives s � t. So after step 10, every
player pj has a VSS distribution for a share in s� t.

The most expensive step in this protocol with respect to the communication com-
plexity is step 3. In this step player pi must perform VSS for each entry of a random
vector ~ρ which is of length O(n2). As we know that the communication complexity of
a single VSS is O(n2) and each of the n players must perform VSS on O(n2) elements
of Fq this yields a total communication complexity of O(n5).

10.4 Active-Adversary MPC from AG Schemes

It is worth noting that for specific ramp schemes one can often construct secure pro-
tocols with lower communication complexity. As an example, we next sketch how we
can construct specific protocols secure against an active adversary for the strongly
multiplicative algebraic-geometric ramp schemes detailed in Chapter 8. These pro-
tocol require the communication of O(n3) field elements while operating on vectors
consisting of k elements in Fq.

More specifically, we sketch how to obtain more efficient multi-party computation
protocols secure against an active adversary based on the algebraic-geometric ramp
schemes from Section 8.2, provided that n ≥ 4t+ 4g+ 2k− 1, where the adversary is
an active t-adversary and the secret vectors are of length k over Fq. The relaxation of
the parameters with regard to the general approach from the previous section has to
do with the idea that when every player multiplies two shares in two different vectors,
but based on the same algebraic-geometric ramp scheme using rational functions in
L(G), the resulting value can be seen as a share in the product of the secret vectors
in a new ramp scheme using rational function in L(2G). We require this new ramp
scheme to allow for efficient error correction, which is the case for the parameters
we assume. In particular, these parameters allow to perform VSS based on the new
ramp scheme using rational function in L(2G), which will be used heavily to perform
verification checks on multiplied secret vectors.

Since during the secure computation the only operation requiring communication
is multiplication, and all other operations are essentially implemented around this op-
eration, we mainly focus on secure multiplication and the ideas involved in improving
its efficiency.
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Multiplication

We first note that the general structure of any multiplication subprotocol in the active
case is essentially the same as in the passive case. First, every player pi:

1. Reshares the product aibi of his shares ai and bi in the VSS of the secret vectors
that are to be multiplied.

2. Reshares his contribution ~λiaibi = (λ(1)
i aibi, λ

(2)
i aibi, . . . , λ

(k)
i aibi) in the output

of the multiplication.

After this the players can add up their shares in the contributions ~λiaibi of the players
to obtain shares in the product ~s� ~t =

∑n
i=1

~λiaibi.
The real issue concerns the fact that players need to be able to verify that ev-

ery player pi reshares the correct value aibi and subsequently correctly reshares the
vector ~λiaibi. For our solution, we introduce methods that allow to verify that two
secret shared vectors contain respectively the same first coefficient and all the same
coefficients.

The basic idea is as follows. As mentioned earlier, when the players hold shares
in two secret vectors distributed using rational functions in an appropriate Riemann-
Roch space L(G) (see Section 8.2 for more details), the local products of these shares
can again be seen as shares in the product of the secret vectors in a new ramp scheme
based on rational functions in L(2G), which is a space that strictly contains the space
L(G) used for the original ramp scheme. By an extension of this idea, and using the
linearity of the VSS, one can actually obtain share vectors corresponding to a VSS
based on the new ramp scheme from the share vectors in the original VSS. However,
to simplify the discussion we mostly omit the extra level introduced by the VSS from
here on.

The idea that allows to verify the first resharing step is now to let player pi reshare
his local product share aibi using the original VSS based on L(G), which can be seen
as embedded in the space L(2G), so that when this is done correctly the players have
a set of shares in aibi in two seemingly different schemes. If this is done in such a way
that the secret vectors encoding aibi have some similarities, for instance both contain
aibi in their first position, players can identify whether both secret vectors correspond
to the same value by looking at their difference. By setting up the basis for L(G) and
L(2G) correctly this can be performed by letting the players take the local difference
of their shares, which leads to shares in the new scheme over L(2G), and publicly
determine the corresponding secret vector. Although we do not add the details here,
we note that to preserve privacy some random padding needs to be added to this
procedure.

In order to verify the second resharing, the players first themselves compute shares
in the vector ~λiaibi in the new ramp scheme over L(2G) using the new shares in the
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value aibi in the original ramp scheme and then verify whether player pi secret shared
the correct vector using the comparison technique on secret vectors just described for
the first verification.

In order to make this computation for the players possible, they require the value
aibi to be reshared using very specific homomorphisms ψ : Fq → Fkq (see Section 10.3),
depending on the algebraic-geometric ramp scheme that is considered:

• Parallel Multiplication: The map ψ is defined by c 7→ (c, c, . . . , c).

• Extension Field Multiplication: The map ψ is defined by c 7→ (c, 0, . . . , 0).

These maps are chosen in such a way that

ψ(aibi)� (λ(i)
1 , λ

(i)
2 , . . . , λ

(i)
k ) = (λ(i)

1 aibi, λ
(i)
2 aibi, . . . , λ

(i)
k aibi),

for the relevant multiplication operation �, which is straightforward to verify.
To ensure that aibi is reshared using the correct map ψ we additionally modify

the VSS protocol from Section 10.1 in various ways to allow to impose structural
restrictions on the secret vector, i.e., guarantee the presence of zeroes in prespecified
locations or repetition of some value in all the positions. For additional details, the
interested reader is referred to [16].
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Nederlandse Samenvatting

Dit proefschrift behandelt nieuwe resultaten in twee gebieden binnen de cryptografie;
het veilig verzenden van een boodschap tussen twee partijen en het veilig uitvoeren
van een berekening op invoer van meerdere partijen. We omschrijven eerst de con-
text voor het veilig verzenden van een boodschap tussen twee partijen. Dit is een
relatief oud probleem, waar de focus zowel ligt op het voorkomen dat iemand die de
boodschap onderschept hem kan ontcijferen als het voorkomen dat iemand een bood-
schap onderweg kan vervangen door een andere boodschap zonder dat de ontvanger
dit opmerkt.

De standaard opstelling voor dit probleem omvat twee partijen, een verzender en
een ontvanger, die verbonden zijn via een onveilig kanaal waarop een derde partij
alleen afluistert of in het ergste geval zelfs data kan vervangen of blokkeren. Na
een rijke geschiedenis aan resultaten zijn er momenteel technieken om afluisteren
en/of het ongemerkt vervangen van data tegen te gaan, hoewel de meeste technieken
gebruik maken van een complexiteitsaanname op een of ander momenteel moeilijk op
te lossen wiskundig probleem en er vaak een miniscuul kleine foutkans aanwezig is.
Aangezien er in de standaardopstelling sprake is van een enkel communicatiekanaal
is het onmogelijk het blokkeren van boodschappen tegen te gaan wanneer het kanaal
deze functionaliteit niet al aanbiedt.

In dit proefschrift beschouwen we een recenter gëıntroduceerd model, waar de
verzender en ontvanger verbonden zijn via meerdere communicatiekanalen. Als een
derde partij in dit model niet teveel kanalen tegelijk kan manipuleren is het mogelijk
volledig veilige communicatie te garanderen, dat wil zeggen zonder foutkans of infor-
matielekkage en zonder het gebruik van een wiskundige complexiteitsaanname. In dit
proefschrift geven we een overzicht van alle volledig veilige bekende resultaten voor
dit model en bepalen we tevens de precieze best mogelijke communicatiecomplex-
iteit die hier behaald kan worden onder de zwakst mogelijke aanname dat slechts een
minderheid van de kanalen tegelijk gecorrumpeerd kan worden door een derde partij.

Het tweede onderwerp dat we aansnijden betreft het veilig uitvoeren van een
berekening op invoer van meerdere partijen in een situatie waar een onbekend deel
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van deze partijen onder de controle staat van een kwaadaardige entiteit. Afhankelijk
van de situatie is deze entiteit alleen in staat de communicatie en lokale data van de
partijen onder controle in te lezen danwel in staat de acties van deze partijen geheel
te bepalen. In beide situaties is het vereist dat de correcte uitvoer van de berekening
door alle partijen bepaald wordt zonder dat extra informatie betreffende de invoer
van de “eerlijke” partijen naar de kwaadaardige entiteit lekt die niet toch al bepaald
kon worden aan de hand van de uitvoer en de invoerwaarden van de partijen onder
zijn controle.

In het model dat wij beschouwen zijn alle partijen onderling verbonden via volledig
veilige communicatiekanalen en hebben zij tevens toegang tot een functionaliteit
die een partij in staat stelt een identieke boodschap tegelijk naar alle andere par-
tijen te versturen. Aangenomen dat niet teveel partijen onder de controle van de
kwaadaardige entiteit kunnen geraken zijn er oplossingen bekend in dit model die de
vereisten met perfectie behalen.

In dit proefschrift introduceren we nieuwe technieken die de vereiste communi-
catie voor dit soort berekeningen sterk verminderen, waar we onder andere nieuwe
verbanden leggen met de coderingstheorie en de algebraische meetkunde.
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