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Two variants of an M/G/1 queue with negative customers lead to the study of a 

random walk Xn+1 = [Xn + enJ+ where the integer-valued en are not bounded from 
below or from above, and are distributed differently in the interior of the state-space 
and on the boundary. Their generating functions are assumed to be rational. We give a 

simple closed-form formula for E(sXn ), corresponding to a representation of the data 

which is suitable for the queueing model. Alternative representations and derivations 
are discussed. With this formula, we calculate the queue length generating function of 
an M/G/l queue with negative customers, in which the negative customers can remove 

ordinary customers only at the end of a service. If the service is exponential, the arbitrary
time queue length distribution is a mixture of two geometrical distributions. 

Keywords: M/G/l queue, negative customers, queue length, Wiener-Hopf technique. 

1. Introduction 

301 

Consider the following model 1• Independent jobs arrive at a server in a Poisso
nian stream. At the same time, the server also admits a Poissonian stream of messages 
from other service sites, inviting jobs to immigrate there. The server handles these 
messages during a housekeeping routine, which is re-entered after every job comple
tion. Single jobs are matched with single messages, and sent to the sites where the 
messages had originated. Surplus messages are discarded. The performance question 
is: How many jobs are found at the server at an arbitrary time? In this model, the 
messages can be seen as negative customers, who each remove an ordinary customer 
at the end of a service. 

We show that such a problem is fully tractable, assuming that the Laplace
Stieltjes transform of the service distribution is rational. Apart from analyzing a 

* Supported by the European grant BRA-QMIPS of CEC DG XIII. 
1 It may be interpreted as a rudimentary depiction of a load balancing mechanism, but is given here 

merely for the sake of illustration. 
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specific generalization of the classical M/G/l queue, this paper also makes a contri
bution to the theory of one-dimensional random walks. Indeed, in fact we study a 
rather general class of random walks, a special case of which describes the evolution 
of the number of jobs after service completions in the above queueing model. These 
integer-valued random walks have unbounded jumps upward and downward; they are 
truncated at zero, and have a different step size distribution at the boundary. We 
do not assume any special structure of the step size, e.g., a difference between two 
nonnegative variates with known distributions. We mostly assume that the step size 
generating functions are rational, which allows us to obtain very explicit results for 
the steady-state distribution of the random walk. The random-walk analysis is based 
on Wiener-Hopf theory. In principle the Wiener-Hopf theory allows a solution of 
the problem without taking recourse to rationality assumptions, but such assumptions 
have the very attractive feature of yielding much more explicit solutions while not 
posing serious restrictions from a modeling point of view. 

After having solved the random walk problem, we specify the results for the 
above-mentioned queueing model. Having found its embedded-time queue-length 
generating function, we exploit the piecewise Poissonian nature of the process to 
derive the steady-state queue-length generating function. Interestingly, this conversion 
alone produces an immediate alternative proof of the classical Pollaczek-Khintchine 
formula for a conventional M/G/l queue. 

I. I. Related literature 

See Cohen [6] for an introductory exposition of the application of the Wiener
Hopf technique (with bivariate transforms) to various types of problems. Further 
expositions on the subject, in relation to random walks and queues, are contained 
in the books of Asmussen [1], Borovkov [3], Cohen [7], and Kleinrock [11]. More 
bibliography, concerning further aspects of the Wiener-Hopf technique, is included 
in Bayer [2]. An extensive discussion of the analysis of two-dimensional random 
walks in the first quadrant, and their solution via the theory of boundary value prob
lems (Wiener-Hopf and similar problems: Dirichlet, Riemann, Riemann-Hilbert) is 
contained in Cohen and Boxrna [8]. 

The invitation messages in the example at the beginning of this section act 
as "negative customers". Queueing systems with negative customers were recently 
introduced by Gelenbe [9], and presently attract much attention. In contrast with 
the ordinary customers, negative customers are not served but a negative customer 
removes one ordinary customer from the queue. Negative customers have been given 
interpretations, for example, as work removal signals in production networks, or as 
inhibitor signals in neural networks. In the literature on negative customers it has so 
far been assumed that a negative customer upon its arrival immediately removes an 
ordinary customer; our assumption of customer removal at service completion epochs 
(see the above-described model) seems rather natural in some of the above-mentioned 
application areas, as well as in cases where the server can inspect customers only at 
service completion epochs to see whether they still need to be served. 
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For the M/G/l queue with negative customers who upon their arrival imme
diately remove an ordinary customer, the queue-length distribution is analysed by 
Harrison and Pitel [10]. Their analysis of the generating function for the equilib
rium queue-length distribution eventually leads to a Fredholm integral equation of the 
first kind, that must be solved numerically - which is a notoriously difficult problem. 
Boucherie and Boxma [4] analyse a closely related model that is amenable to a de
tailed exact analysis: an M/G/1 queue with negative customers, in which a negative 
customer removes a random amount of work that does not necessarily correspond to 
an integer number of customers. Their analysis leads to a Wiener-Hopf equation for 
the Laplace-Stieltjes transform of the equilibrium distribution of the workload in the 
queue; it can be solved. 

1.2. Organization of the paper 

We begin in section 2 with a formal introduction of the class of random walks 
under investigation, and with stating a result regarding their stationary generating 
function. The particular representation of this result suits our M/G/l queue with 
negative customers. Two variants of this queue are formally introduced in section 3; 
simple procedures for computing the embedded-time queue-length generating functions 
are given, using the result of section 2. The conversion to arbitrary time is given in 
section 4. Section 5 is dedicated to the Wiener-Hopf proof of the random walk result, 
and to a discussion of alternative assumptions, representations, and derivations. 

2. Description and result for the random walk 

2.1. Description of the random walk 

We study a random walk {Xn} on the nonnegative integers, with the evolution 
equation 2 

(1) 

The driving sequence {en} assumes integer values, which are not necessarily bounded 
from below or from above. en depends on the history { x j }J:,;;n only through the event 
{Xn > O}. It is convenient to suppose that en is selected from one of two independent 
i.i.d. streams, {e~terior} and {e~oundary}, through the rule 

if Xn > 0, 

if Xn = 0. 

2 [x]+ and [xi- stand for max(O, x) and min(O, x ), respectively. 
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The random walk is thus specified by the two generating functions 

A(s) ~ E(sen I Xn > o) = lE(se~terior), lsl = 1, 

Ao(s) ~ E(sen I Xn = o) = E(se~iundary), lsl = 1, 

which are both assumed to be rational. e~terior is assumed to be aperiodic, and must 
satisfy the stability condition 

(2) 

Our quantity of interest is the generating function 

The representation of A(s) and of Ao(s) is of relevance to the derivation and the 
representation of the solution. A(s) - 1 has a reduced rational representation (i.e., 
without zeros common to both numerator and denominator) of the form 

(3) 

where none of the 0:1, ... , ak or the /31, ... , f3n are on the unit circle, and 

(4) 

we refer to the companion paper [2] for a derivation of equation (4), and of the 
following factorization of A(s) - 1, which forms the basis for the determination of 
F(s): 

A( S) - l = C · ( S - 1) Hin ( 8 ) , Is I = 1, 
Hout(S) 

(5) 

where 

(6) 

and 

H ( ) ~ D{j/1/3il<l}(s - {Ji) 
out s - n ( ) , Is I ~ I . 

{i/lail<l} 8 - O'.i 
(7) 

The factorization is chosen such that Hin ( s) is analytic in Is I ~ 1 and Hout ( s) is 
analytic in lsl ;;;:: I. We incorporate the description of Ao(s) in a representation of 
Ao(s)/A(s) - 1. Such a representation is natural when a relation of the type 

cboundary g cinterior + 8 
'"n '>n n, 
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where !?: denotes equality in distribution, is known to hold, and t5n is independent of 
e~terior and has a known generating function (examples occur in various M/G/1-type 
queueing models). Alternative representations are discussed in subsection 5.2. Let 
then 

Ao ( s) - 1 = ( s - 1 ) U ( s) Is I = 1, 
A(s) V(s)' 

(8) 

be a reduced rational representation. We may assume that the polynomials U ( s) and 
V(s) are of the form 

g 

U(s) = L UjSj, 

j=O 

m m 

V(s) = L VjSj =IT (s - wj); 
j=O j=I 

we tacitly assumed that Vm = 1 . Clearly, none of the w 1, ... , Wm can be equal to 1. We 
assume, without loss of generality, that wi, ... ,wq are in lsl :s:; 1 while Wq+I, ... ,wm 

are in Is I > 1, for some 0 :s:; q :s:; m. 

2.2. Statement of the result 

Theorem 1. If the poles of Ao ( s) /A ( s) (namely w i, ... , wm) are distinct from each 
other and from zero then 

V(l) Hin(l) [rM- 1J ] 
F(s) = V( ) · _ _ H ( ) - (s - l)U(s) , 

s lM-119 in s 
lsl :s:; 1, (9) 

where the matrix M and vector J are defined hereafter, f is a vector of all ones, and 
sis a vector of powers of s, starting from the zero'th power. 

The proof is deferred to section 5. The treatment of the case where the hypoth
esis concerning the w1, ... , Wm fails to hold is discussed in subsection 5.2. 

Remark 2.1 (two important special cases). 

Case J. €~ioundary f?: €~tenor. The continuous analog of this case has been studied 
extensively in the literature, in connection to Lindley's equation. Here U(s) = 0, 
V(s) = 1, and 

F ( 8 ) = Hin ( l ) ' 
Hin(s) 

lsl :s:; 1. (10) 

Case 2. ~~oundary f?: €~~tenor + 1. This case is relevant in M/G/1-type queueing 
models, including the first variant of our queue with negative customers, see section 3. 
Here U(s) = V(s) = 1 and 

F ( S) = Hin ( 1 ) [ Hi: ( 8 ) + C · ( S - 1 ) ] , IS I :s:; l. (11 ) 
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We now define the matrix M and the vector J. Their dimension is 

d#:.max{m,l+l}+l. (12) 

First, 
0 0 ... 0 0 0 ... 0 

1 WI 2 m wm+I wm+2 we+I 
WI ... WI I I ··· I 

1 W2 2 m wm+I wm+2 we+I wz · · · wz 2 2 · · · 2 

0 0 0 

0 0 0 

0 0 0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

(13) 

The determinant of M is equal to that of the upper left ( m + 1) x ( m + 1) block 
This block is the transpose of a Vandermonde matrix (see, e.g., [12, p. 35]), whose 
determinant is 

IJ (wj - wi), 
O~i<j~m 

with w0 £. 0. Hence, M is nonsingular under the hypothesis of the theorem. 

For defining J we need the first coefficients (o, ... , (e-m of the Laurent repre-
sentation 

00 

Houi(s)/ s = L (is-i. 
i=O 

Such a representation exists, by equation (4). The (i are easily calculated as the Taylo1 
coefficients ( 1 /i !)J(i) (0) of the function 

J(s) £. s Hout(l/s) = flu/l/1;1<1}(1 - s(3j). 
rr{i/lad<l}(l - Sai) 

We can now define J via 

l (vo - uo) Hin(O), 
D.. ( Wi - I ) U ( Wi) Hin ( Wi) , 

{)i = c-1 ( ) ( ) - U Wi Hout Wi , 

C-1 "e-i+I r 
- 6j=0 Ui+j-l':.j1 

i = 0, 

i =I, ... , q, 

i = q + I , ... , 'm, 

i=m+I, ... ,e+I. 

os: 

Note that the indexing of J starts from zero, and that the values substituted in Hin ( s: 
and Hout ( s) are in the proper domains. 
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Remark 2.2. As written in equation (9), the expression for F(s) is generally not in a 
reduced form, because V(s) may have zeros in lsl :::;; 1 while F(s) cannot have any 
poles there. The factor n;=l (s -wi) must cancel out. To see that every Wi, 1 :::;; i :::;; q, 

is also a zero of the term in brackets, observe that sM- 1 J with s = wi is equal to the 

ith element of M M- 1J, namely to Ji· 

3. The queueing model at embedded epochs 

3 .1. The first variant 

Consider a classical M/G/1 queue with an arrival rate A, and with a service 
distribution function S(t) which has mean b, second moment b(2), and a rational 
Laplace-Stieltjes transform B ( z). Augment the system with the following feature: In 
addition to the normal "positive" customers, there is also an independent Poissonian 
stream, of rate v, of "negative" customers; those remove work from the system, rather 
than add work to it. In this paper we assume the following removal mechanism. Upon 
the nth service completion, the numbers w;t" and w;;, of positive and negative waiting 
customers are compared 3. When w;; :::;; w;t", every negative customer removes one 
positive customer. Otherwise ( w;; > w;t°), only the available w;t" positive customers 
can be removed. In either case the system is then cleared of negative customers. A new 
service commences immediately, if a positive customer is available. The number Xn 

of positive customers left in the system immediately after the nth service completion 
is thus 

Let a;t and a;; denote the numbers of positive and negative customers arriving during 
the first service which occurs after the nth service completion. Consider the evolution 
of the chain {xn}· When Xn-1 > 0, a new service begins immediately after the 
(n - 1 )th service completion. Hence 

w~ _ _ = Xr_i-1 + a~-l - 1} .f O 
I Xn-1 > . 

wn - an-1 
(16) 

When Xn-l = 0, the (n - l)th service completion is followed by an idle period. In 
the variant considered here, we assume that negative customers arriving during an idle 
period leave immediately. The first positive customer who triggers the next service 
period is not included in a;t, and must be counted separately. Hence 

w;i_ =_ Xn_-1 + a~-l} "f O 
1 Xn-1 = . 

Wn - an-1 
(17) 

3 Thc ·'+"and"-" superscripts should not be confused with the []+and [ i- operators. 
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The chain { Xn} is thus a random walk of the type described in the previous section, 

with 
cinterior =a+ - a- - 1 
"'n n n ' 

and corresponds to the second special case of Remark 2.1. Note that a~ - a;;: - 1 is 
not bounded either from below or from above. The stability condition (2) translates 
into >.. - v < 1 /b. For obtaining the steady-state generating function of { xn} we 
need an expression for A( s). Conditioning on the length of the service period and 
observing that a~ and a;;: are conditionally independent, we obtain 

A(s) = s-lE(sa~-a;;,-) = s-1 1: e->-t(l-s)e-vt(l-s-1) dS(t) 

= s-1B(>..(l - s) + v(l - s- 1)). (18) 

To summarize, we list the procedure for computing the stationary generating function 
of the number of positive customers at service completion epochs. 

1. Determine A( s) using equation (18). 

2. Find the representation (3). 

3. Obtain the requested generating function from equation (11 ). 

Example 3.1 (M/M/1 queue with negative customers). Assume that the service is ex
ponential, with rate 1 / b = µ. > ,\ - v. The service transform is then 

B(z) = µ/(µ, + z). (19) 

Hence 

A(s) - 1 = s-1 µ - I = >..s2 - (>.. + v + µ)s + v + µ 
µ + [>..(1 - s) + v(l - s- 1)] ->..s2 + (>.. + v + µ)s - v 

This function must have a zero at s = 1, and have the form 

C (s-l)(s-0:1). 
(s - /31)(s - /32) 

Solving for the constants yields 

where 

C= -1, -l 
O:j =p ' 

~ ,\ 

p=v+µ' 
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cq is outside the unit circle. This fact alone is sufficient to imply, by equation (4), 

that fh and f32 must be real and f31 < 1 < /32. Applying equation (11), we have 

F ( s) = l - o: i [( -1) ( s - 1) + s 8 - f32 ] , 
l-/32 s-0:1 

which can be written in the form 

with 

1-p 
F(s) = 'Y + (1 - 1)-

l - sp 

-I P- 1 -(/'\,-l) 
'Y = (p - 1) p-1 + ( /'\, - 1). 

(20) 

We recognize that the inverse of F( s) is a combination of a geometrical distribution 

with parameter p and a point mass 'Y at zero: 

When v = 0, 'Y is zero and IP{ Xn = ·i} reduces to the familiar M/M/l expression 

(1 - p)pi, with p = >../ µ. 

Example 3.2 (M/E1Jl queue with negative customers). Assume that the service is 

Erlang-k, with mean I j{t such thatµ> >.. - v. The service transform is then 

Hence 

B(z) = ( kµ ) k 
kµ+ z 

(kµ)k 5 k-I 
A(s) = . 

[ s k /l + >.. s ( 1 - s) + lJ ( s - 1 ) Jk 

(22) 

(23) 

An easy calculation shows that the quadratic term between square brackets in the 

denominator of equation (23) has two real roots, s _ < 1 < s +. An alternative way of 

seeing this is to observe that A(s), being the generating function of a random variable 

~~ioundary which takes both positive and negative values, cannot be analytic throughout 

the unit disc or throughout its complement. Equations (3) and (4) now imply that 

Tik-1 ( -) Ilk (. +) 
A ( s) - 1 = ( 1 - s) i= I s - (Yi . i= I s - (Yi 

(s - s+)k(s - s_)k ' 
(24) 

with \ai \ < 1, \a{ I > 1. Applying equation (11 ), we have 

F(s) = TI~=l(l - an [(-l)(s -1) + s (s - s+)k l · (25) 
(1 - s+)k TI~ 1 (s - at) 

One can easily verify that k = 1 yields the results of the previous example. 
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3.2. The second variant 

In this variant, negative customers arriving during an idle period sta~ i~ the 
system until the end of the next service completion. The distribution of the ~~tenor iE 
unaltered. But at the boundary we have now 

where i has the same distribution as the number of negative arrivals during an idle 
period, and is independent of the e~~terior. Noting that the length of the idle period is 
distributed exponentially with parameter A, we obtain 

Ao(s) - I= slE[(~)z] - I= s A 1 -1 = (s - I) ~s - v>;fv (26) 
A(s) s >.+v(l- 8) s-.Hv 

Theorem 1 is applicable, because Ao(s)/A(s) has only one pole, different from zero. 
To apply the theorem we need 

M=[ 
0 

(,~y] [ (,';:)' ;,, C~J I v 19 = .\+v 

0 -c-1-L 
>.+v 

The inverse of M is 

M-' = [-:t" '~ -~~l 
The computational procedure of the previous subsection remains valid, with only one 
modification. Instead of equation ( 11) use equation (9), with U ( s) and V ( s) taken as 
the numerator and denominator of the right hand side of equation (26), respectively, 
and with 

5}.r 119= ,\~v{s>-:v [Hin(,\:v)+c-1]-s2c-1}· 

Example 3.3 (the M/M/1 queue with negative customers revisited). Consider the mo
del of Example 3.1 with the assumption of the second variant. The new F(s) is 
obtained by following the modification in the procedure. F ( s) corresponds again to a 
combination of a geometrical distribution and a point mass at zero. The parameter of 
the geometrical distribution is the same p, but the point mass at zero is different, and 
given by 

1' 
n; + p- 1 + 1 2(p- l - 1) 
n;+p- 1 -1 (n;+ 1)~ -;7- I -2p-1 · 
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4. The arbitrary-time queue-length distribution 

In the previous section it has been shown how one can obtain the generating 
function F ( s) of the queue-length distribution immediately after service completion 
epochs in the M/G/1 queue with negative customers. In the conventional M/G/l queue, 
that distribution coincides with the arbitrary-time queue-length distribution, but that 
is not the case when negative customers are allowed to remove ordinary customers 
at service completion epochs. Below we relate the two queue-length distributions for 
that model. 

Let IT( s) denote the steady-state generating function of the continuous-time 
queue-length process x(t). We exploit the fact that, during a service, the queue-length 
process evolves like a birth process with rate A.. The number of arrivals (of ordinary 
customers) during one service has generating function K(s) = B(A.(1- s)). It is well 
known that the generating function of the queue-length growth at an arbitrary epoch 
during a service, since its beginning, equals 

1 -K(s) 
..\b(l - s) · 

Distinguish between the three cases that the system is observed during an idle period, 
during the first service after an idle period and during a service that immediately 
follows another service; then we can write 

F(O)j ,\ 
IT(s) = F(O)[l/,\ + b] + [1 - F(O)]b 

F(O)b 1 - K(s) 
+ F(O)[l/..\ + b] + [1 - F(O)]b. 8 . ..\b(l - s) 

[1 - F(O)]b F(s) - F(O) 
+ F(O)[l/ ,\ + b] + [1 - F(O)]b . 1 - F(O) 

1 - K(s) 
..\b(l - s)' Jsl ~ 1. 

Note that the first quotient in each of the three terms gives the probability of each of 
the above-mentioned three events. Rearranging we find: 

II( ) = F(O) [B(A.(1 - s)) + F(s). 1 - B(A.(l - s))] Is\~ 1. (27) 
8 F(O) + >.b F(O) 1 - s ' 

Thus F(s) is converted into Il(s). Denoting the mean steady-state queue length at an 
arbitrary time by JEx(t) = IT'(l), and the mean steady-state queue length immediately 
after service completions and the consecutive customer killings by 1Exn = F' ( 1), it 
follows from (27) that 

F(O) [ ( 1Exn) ..\2 b(2) l 
1Ex(t) = F(O) + A.b ..\b l + F(O) + 2F(O) . (28) 
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Example 4.1 (exponential service). The arbitrary-time distribution obtained from the 
B(z) and F(s) of equations (19, 20) is 

IP'{x(t) = i} = 0(1 - a)ai + (1 - 0)(1 - p)pi, i = 0, 1, ... , 

where p is the same as before, a-=>../(>-.+µ), and 

Remark 4.1. In a conventional M/G/l queue, a level crossing argument and the PASTA 
principle imply that F(s) = TI(s). Substitution in equation (27) gives 

F(s) = (1 - p)(I - s)B(>.(l - s)). 
B(>.(1 - s)) - s 

This is the well-known Pollaczek-Khintchine formula, which thus finds an alternative 
proof. 

5. Proof of the random walk result and discussion of alternative derivations 

5.1. Proof of Theorem 1 

Define 

y n ~ [ x n-1 + ~n- l r ' n = 0, ± 1, ... ' 

and 
G(s) £ lE(sYn) - 1, lsl ~ 1. 

These objects serve as proof mainstays, by enabling the elimination of the [ ] + operator 
from the evolution equation (1). This equation indeed becomes 

(29) 

We express the generating functions of the two sides in terms of A(s), A0 (s), F(s), 
and G(s). First, 

lsl = 1, 

simply because sx+y = sx + sY - 1 holds when xy = 0. Second, 

lE(sXnsen) = lE(sXns{n I Xn = O)!P(Xn = 0) 

+E(sen I Xn > O)E(sXn I Xn > O)lP(Xn > 0) 

=Ao(s)F(O)+A(s)[F(s)-F(O)], lsl=l. (30) 
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Equating the two expressions yields 

F(s)[A(s)-1] = G(s)-F(O)[Ao(s)-A(s)], lsl = 1. (31) 

This single functional equation determines the two unknowns F(s) and G(s). It 
can be solved in several ways, depending on the preferred representation of the data 
and the solution. We solve for F( s) using the data described in subsection 2.1, and 
discuss other derivations in the next subsection. Putting the representations (5,8) in 
the equation, we obtain 

Hin(s) [F(s)V(s) + (s - l)F(O)U(s)] 

= c- 1 Hout(s) [~~si V(s) - F(O)U(s)], lsl = 1; 
(32) 

note that s = 1 is a zero of G ( s). The last equation is the basis for applying the 

standard Wiener-Hopf arguments. The left and right hand sides are analytical in the 
domains lsl ~ 1 and isl ;;:: I, respectively. Hence there exists some entire function 
'lj;(s) with which they coincide in these domains. The right hand side is o(sd) as 
s --+ oo. According to Liouville's theorem, 't/J( s) must be a polynomial of a degree 
not exceeding d - 1. Write this polynomial as s ·a, where a = [ao, ... , ad-iJ is 
the d-vector of coefficients. F( s) can now be extracted from the left hand side of 
equation (32), 

1 [ s· a ] F ( s) = V ( 8 ) Hin ( 8 ) - ( s - l ) F ( 0) U ( s) , lsl ~ 1, (33) 

but the constants a and F(O) need to be resolved. We validate hereafter that 

Ma= F(O) J, (34) 

so a= F(O)M- 11f. Putting s = l in the left hand side of equation (32) gives 

Hin(l)V(l) = f ·a= F(O) fM- 1,;f. 

It was noted before that both Hin ( s) and V ( s) cannot have s = 1 as a zero. Also, 

F(O) = IP'{Xn = O} i- 0, since the random walk is positive recurrent. This proves 

that f M- 11J i- 0. The required constants are thus given by 

It remains to validate equation (34). The validation is done by blocks, corresponding 
to those appearing in equation (15). Equating the left hand side of equation (32) to 
the polynomial S · (i, and putting S = 0 and S = W1, ... , Wq gives the first two blocks. 
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A similar use of the right hand side of equation (32) with s = Wq+l, ... , Wm gives the 
third block4. The fourth block is validated by considering the behavior of the right 
hand side of equation (32) as s --too. We rewrite it using equation (14), and equate 

it again to s. a on Is I ~ 1 : 

c-I Hout(s) G(s)~V(s) -F(O)c-1 s L UjSj L ;~ - L ajSj. ( 
e ) ( oo ) max{m,l+l} 

S S 1 j=O i=O j=O 

6. = f1(s) 
6. 
= h(s) 

Observe that fi(s) = o(sm+1), so am+h···,ai+l are determined solely by h(s). 
We identify these coefficients as the convolutions appearing at the fourth entry of 
equation (15). Equation (34) is established. 

5.2. Alternative assumptions and derivations 

5.2.l. Extension to the case were the hypothesis of Theorem 1 is not fulfilled 

The derivation of the previous subsection can be extended to the case where 
w1, ... ,wm are not distinct from each other or from zero. However, M and J take 
a more involved and less regular form. Suppose that w is a zero of the polynomial 
V(s ), of multiplicity p. We exploit the fact that w is also a zero of the derivati;es 
v(1)(s), i = 1, ... ,p - 1. If lwl :s:;: 1, we put s = w in each of the correspondmg 
derivatives of the equation that equates the left hand side of equation (32) to s. a. If 
w = 0, we also use the derivative of order p. If lwi I > I , we use the right hand side 
of equation (32) instead of the left hand side. Thus p linear equations in F(O) and i1 
are produced, fully compensating against the loss due to the multiplicity. Previously, 
the lines of M were distinct substitutions in the vector of powers s. Now, some lines 
of M may constitute substitutions in its derivatives ( dj / dsj) s. The lines of M are of 
the following form: 

0 j! WO (j + l)~Wl (j + 2)! 2 
O! 1! 2! w [o (d-1)! d-l-j] -----w . 

(d-1-j)! 

Every two lines differ either in the value substituted for s, or in the order j of the 
derivative. It is readily seen that a square matrix formed according to this rule is 
nonsingular (e.g., when w1 = w2, the determininant of the modified matrix M is 
equal to the partial derivative w.r.t. w2 of the determinant of the original matrix given 
in equation (13), at the point w1 = w2. The explicit formula for the Vandermonde 
determinant shows that this derivative is non-zero). Hence, the extended system 
determines F ( s) unique! y. 

~In partitioning the zeros of V(s), the assignment of those on the unit circle to the second block rather 
th~ to the th~rd was arbitrary. If w; is on the unit circle, it must be a zero of A(s) (see equation (8)), 
so 1t must satisfy (w; - l)Hin(w;) = -G- 1H0 u1(w;), by equation (5). 
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5.2.2. Using a direct representation of the boundary generating function 

There always exists a reduced representation 

( ) ( ) Wout ( S) 
Ao s - 1 = s - 1 IJY ( _ ·), 

i=l s 'r/i 
lsl = 1, (35) 

where W0 u1(s) is a rational function, analytical in Is! ;:: 1, and 171, ... , T/y lie in lsl > 1. 
Putting the representations (5,35) instead of (5,8) in equation (31), we obtain 

y 

Hin(s) [F(s) - F(O)] IT (s - 'r/i) 
i=l 

_ 1 [G(s) y ] = C Hou1(s) 8 _I g(s -7/i) - F(O)Wou1(s) , lsl = 1. 

The extraction of F ( s) from this equation is analogous to its extraction from equa
tion (32). As before, there exists a polynomial which coincides with the two sides at 
the appropriate domains. To extract its coefficients and F(O), we put s = 0 at the left 
hand side and s = 'r/l, ... , 7/y at the right hand side. We also analyze the behavior of 
the right hand side as s -+ oo, if the degrees involved require that, using the Laurent 
expansions of H0 u1(s)/s and W0 u1(s). If 'r/J, ... , 'r/y are not all distinct, we revert to 
differentiation, as discussed in the previous paragraph. 

5.2.3. Representation through projections 

Box ma and Lotov [5] give a representation of the solution F ( s) of equation (31) 
through [O, oo )-projections; the 'D-projection of a series I:~-oo aisi is defined to be 

I:iE'D aisi. 
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