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Abstract. A family of functions is weakly pseudorandom if a random member of the family
is indistinguishable from a uniform random function when queried on random inputs. We
point out a subtle ambiguity in the definition of weak PRFs: there are natural weak PRFs
whose security breaks down if the randomness used to sample the inputs is revealed. To
capture this ambiguity we distinguish between public-coin and secret-coin weak PRFs.
We show that the existence of a secret-coin weak PRF which is not also a public-coin
weak PRF implies the existence of two pass key-agreement (i.e. public-key encryption).
So in Minicrypt, i.e. under the assumption that one-way functions exist but public-key
cryptography does not, the notion of public- and secret-coin weak PRFs coincide.
Previous to this paper all positive cryptographic statements known to hold exclusively
in Minicrypt concerned the adaptive security of constructions using non-adaptively secure
components. Weak PRFs give rise to a new set of statements having this property. As
another example we consider the problem of range extension for weak PRFs. We show that
in Minicrypt one can beat the best possible range expansion factor (using a fixed number of
distinct keys) for a very general class of constructions (in particular, this class contains all
constructions that are known today).

1 Introduction

1.1 Weak Pseudorandom Functions

Informally, a pseudorandom function (PRF) is a function which cannot be distinguished from a
uniform random function by any efficient distinguisher. PRFs have a wide range of applications in
cryptography. Sometimes, however, the full power of a PRF is not needed and it is sufficient when
the function cannot be distinguished when queried on random values. Such objects are referred
to as weak PRFs.3

PRFs are black-box reducible to one-way functions. In particular, it was shown in [9] how to
construct a PRF from any pseudorandom generator and in [11] a construction of a pseudorandom
generator from any one-way function was introduced. Unfortunately those (black-box) reductions
are not efficient enough to be practical4. In [23], Naor and Reingold gave a quite efficient construc-
tion of a PRF relying on a number-theoretic assumption. More precisely, assuming that the so
called decisional Diffie-Hellman (DDH) assumption holds in some cyclic group G = 〈g〉 of order q,
they proposed a PRF (Zq)

n+1 × {0, 1}n → G defined by

((k0, . . . , kn), a) 7→ gk0·Πai=1ki ,

⋆ This work was partially supported by the Zurich Information Security Center. It represents the views
of the authors.

3 Sometimes they are called PRFs secure under a known-plaintext attack (KPA).
4 Even though progress has recently been made [10, 14] for achieving more efficient reductions of PRGs

from one-way functions.



where (k0, . . . , kn) is the secret key and ai denotes the i’th bit of a. As observed in [22], if one just
wants to construct a weak PRF, then even a much simpler construction exists: let G be a cyclic
group of order q, then

exp : Zq ×G→ G defined as exp(k, a) = ak

is a weak PRF if the DDH assumption holds in G (the exponent k is the secret key). Note that
compared to the Naor-Reingold construction, this construction has a much shorter key (⌈log(q)⌉
compared to (n + 1)⌈log(q)⌉) and is more efficient (each evaluation requires one exponentiation,
compared to one exponentiation and up to n multiplications).

1.2 Public-Coin vs. Secret-Coin weak PRFs

A standard choice for the group G used in exp would be a large subgroup of Z
∗
p (where p is some

large prime) of prime order q (which exists if and only if q divides the order p − 1 of Z
∗
p). The

DDH assumption is believed to hold in such groups if q is sufficiently large.5 A natural way to
sample an element from G is to choose an element r ∈ Zq uniformly at random and set a = gr for
some generator g of G.6

For a1, a2, . . . sampled this way, the tuples (a1, v1), (a2, v2), . . . computed by the weak PRF as
vi = exp(k, ai) = ak

i are indistinguishable from (a1, u1), (a2, u2), . . . where each ui is a uniform
random element in G. Now, assume that the distinguisher also gets to see the randomness used
to sample the ai’s. Say r1, r2 are such that a1 = gr1 and a2 = gr2 . Then one can easily distinguish
v1 = ak

1 , v2 = ak
2 from u1, u2 as vr2

1 = vr1

2 (= gr1r2) but ur2

1 = ur1

2 only holds with probability 1/q.
Thus the security of the weak PRF exp completely breaks down if the randomness used to

sample the random inputs is revealed. We will call such a weak PRF a secret-coin weak PRF, as
opposed to a public-coin weak PRF which stays secure even if the random coins used to sample the
inputs are revealed. Whether a weak PRF is a public-coin or just secret-coin weak PRF depends
on the input-sampling algorithm, which hence must be part of the definition of the weak PRF.

1.3 Public-Coins=Secret-Coins in Minicrypt

As the function exp shows, the distinction between public- and secret-coin weak PRFs is meaningful
and one can imagine many situations where the notion of a secret-coin weak PRF is not sufficient.
In particular, this will always be the case when public randomness is used to sample the inputs.

It is not hard to see, that if a weak PRF is secret- but not public-coin, then the input-sampling
algorithm must be a distributional one-way function [17].7 We further show that any secret-coin
weak PRF which is not also a public-coin weak PRF must be very artificial, in the sense that one
can construct a public-key encryption scheme from it:

Theorem 1 If there exists a secret-coin weak PRF which is not a public-coin weak PRF, then a
(IND-CPA) secure public-key encryption scheme exists (see Section 1.4 for the disclaimer).

5 Say p− 1 = 2q where log(p) is at least our security parameter.
6 Alternatively one could sample random elements from Z

∗
p until an element a is found where aq = a,

but this is less efficient (the expected number of tries is q/(p− 1)), and only works if q2 does not divide
p− 1 as otherwise there is more than just one subgroup of order q).

7 A distributional one-way function is a function where no efficient algorithm can find a random pre-
image. Distributional one-way functions are equivalent to one-way functions.
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Thus it is not surprising that the DDH assumption required for the security of exp implies public-
key encryption [4, 7]. So in Minicrypt (a name coined by Impagliazzo to denote the hypothetical
world where one-way functions exist, but public-key cryptography does not [16]), the notion of
public- and secret-coin weak PRFs coincide.

In order to prove Theorem 1, we show how to construct a public-key encryption scheme from
any secret-coin weak PRF F and a distinguisher D which can distinguish F from a uniform random
function when additionally to the random input/output pairs it is provided with the randomness
used by the input sampling algorithm S (such a D exists as by assumption F is not a public-coin
weak PRF).

1.4 Uniform vs. Non-Uniform and Negligible vs. Noticeable

There is a gap between what is generally considered a successful distinguisher (or any other kind
of an adversary) and what one expects from a protocol like an encryption scheme: a system is
usually considered broken even if only a non-uniform adversary exists, whereas a protocol should
be uniform and achieve its task with overwhelming8 probability to be considered useful. The
encryption scheme we construct in order the prove Theorem 1 uses the distinguisher D as a black-
box, and only if D is uniform and has noticeable advantage in distinguishing F from a uniform
random function, we will get a useful (as described above) key-agreement protocol. But if D is
non-uniform, also the key-agreement protocol will be non-uniform. Furthermore, if D has only
non-negligible (but not noticeable) advantage, then our encryption scheme will only be secure for
infinitely many values of the security parameter (and not as usual for all sufficiently large ones).

1.5 Range Extension for weak PRFs

The problem of range extension for weak PRFs is the following: given a weak PRF f : K×X → X ,
construct a weak PRF F : Kt ×X → X s where F uses f as a black-box, t is the number of keys,
and s is the so-called expansion factor. A trivial solution is to set

F ((k1, . . . , kt), x) = [f(k1, x), . . . , f(kt, x)],

but this is not very satisfying as the expansion factor is only the number of keys (i.e. s = t). All
efficient constructions for range extension of weak PRFs, that we are aware of [2, 21, 20], are of
the form that the i’th output block yi is computed as

yi = fkiq
◦ fkiq−1

◦ · · · ◦ fki1
(x)

for some i1, . . . , iq ∈ {1, . . . , t}. The construction from [20] achieves an expansion factor of s =
2t−1, and in [25] it is shown that this is tight: no construction (of the form as described above) with
an expansion factor greater than 2t − 1 can be proven secure via a black-box reduction. We show
that it is possible to beat this bound in Minicrypt. For this, consider the following construction
which uses two keys and has an expansion factor of 4 (which is more than 2t − 1 = 3)

F ((k1, k2), x) = [f(k1, x), f(k2, x), f(k2, f(k1, x)), f(k1, f(k2, x))]. (1)

In [21], it has been claimed that this function is indeed a weak PRF, but in fact it is not as
observed in [20]. The function f = exp is a simple counterexample, as in this case the last two
values of the output in (1) are identical, namely

[exp(k2, exp(k1, x)), exp(k1, exp(k2, x))] = [xk1k2 , xk1k2 ]. (2)

8 See Section 2 for a definition of negligible, noticeable and overwhelming.
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In Section 4, we prove the following theorem:

Theorem 2 If there exists a weak PRF f with superpolynomial domain size for which the con-
struction given by equation (1) is not a weak PRF, then a secure public-key encryption scheme
exists (disclaimer is below).

The requirement that the domain size must be superpolynomial is necessary as otherwise the
construction given in (1) is not a weak PRF even if f is a uniform random function. The reason is
that the last two values of the output in (1), i.e. [f(k2, f(k1, x)), f(k1, f(k2, x))], collide twice as
often as for random elements. If now the domain size is not superpolynomial, collisions will occur
with high probability after polynomially many input-output samples (allowing us to distinguish
F from a uniform random function).

In order to prove Theorem 2, we show how to construct a two-pass key-agreement protocol
from any weak PRF f and a distinguisher D which can (for random keys k1, k2) distinguish tuples
computed as [f(k2, f(k1, .)), f(k1, f(k2, .))] from random tuples. For this reduction, we have the
same issue with uniform vs. non-uniform and negligible vs. noticeable, as discussed in Section 1.4.

1.6 Related Work

Adaptive Security in Minicrypt. The first positive cryptographic result proven to hold only
in Minicrypt stated that the cascade of non-adaptively secure PRFs gives a construction with some
weak form of adaptive security [24]. We have found more results since then, but all were about the
adaptive security of some construction based on non-adaptively secure components.9 The results
of this paper show that weak PRFs give rise to a completely new class of statements that hold
exclusively in Minicrypt.
Other Worlds. Wee [26] shows that some cryptography (i.e. “non-trivial” argument systems)
is even possible in Pessiland, which is another of Impagliazzo’s possible worlds [16] where not even
one-way functions exist. Dent [3] explores the limits of cryptography in universes whose existence
is conjectured in popular Science Fiction literature.
Win-Win. Our results can be viewed as “win-win” statements, where one shows that (at least) one
of two “positive” cryptographic statements is true. For example we show that either every secret-
coin weak PRF is a public-coin weak PRF or public-key crypto exists. Results of similar flavour
have been given before, in particular Dziembowski shows that either “forward-secure storage” is
possible or (a weak form of) oblivious transfer exists [6]. Dubrov and Ishai show that either every
efficiently samplable distribution can be sampled using few random bits, or one-way functions
imply collision-resistant hashing [5].
Public vs. Secret Coins. That differentiating between the public- and secret-coin variants of
primitives is meaningful and important has been shown for at least two important primitives,
namely collision resistant hash functions (CRHF) and trapdoor permutations (TDP).

In [15], Hsiao and Reyzin define public- and secret-coin families of CRHFs. The collision
resistance of the latter requires the coins used to sample the function to be kept secret. They show
that no black-box reduction from secret-coin to public-coin CRHFs exists.

9 For example, in [19] it was shown that the four round Feistel-network with non-adaptively secure round
functions is not a pseudorandom permutation in general. To be more precise, it was shown that there
exists a non-adaptively secure function f (whose security is based on the inverse DDH assumption [1])
for which the four-round Feistel-network with f as round function can be distinguished from a random
permutation with two adaptive queries. Here, one can show that any such counterexample implies a
three round key-agreement protocol (this is unpublished).
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The classical definition of a TDP states that it is hard to invert the permutation given a random
element from the range of the permutation. In [8], Goldreich observes that for many applications
this is not enough, and in fact enhanced TDPs are needed. Those have the property that it is
hard to invert a random element even when given the random coins used to sample this element.

2 Basic Definitions

Throughout, let n ∈ N denote a security parameter. An entity (e.g. adversary) is efficient and
uniform if it can be implemented by a probabilistic Turing machine whose running time is poly-
nomial in the input length (which for us will always mean polynomial in n). It is efficient and
non-uniform if it can be realized by a sequence of circuits (one for each n) of polynomial (in n)
size.

For a set X , let x
$
← X denote that x is assigned a value from X uniformly at random. Let

xq denote the sequence x1, . . . , xq. For a function f : X → Y and xq ∈ X q, let f(xq) denote
f(x1), . . . , f(xq).
Uniform Random Functions. RX ,Y denotes a uniform random function X → Y.
Negligible. A function µ : N → [0, 1] is negligible if for any c > 0 there is an n0 such that
µ(n) ≤ 1/nc for all n ≥ n0. To the contrary, µ is non-negligible if for some c > 0 we have
µ(n) ≥ 1/nc for infinitely many n. Throughout, negl(n) denotes a negligible function in n.
Overwhelming. A function τ(·) : N→ [0, 1] is overwhelming if 1− τ(·) is negligible.
Noticeable. A function φ : N → [0, 1] is noticeable if for some c > 0 there is an n0 such that
φ(n) ≥ 1/nc for all n ≥ n0.

Note that non-negligible is not the same as noticeable. For example µ(n)
def

= n mod 2 is non-
negligible but not noticeable.
Bit-Agreement. Bit-agreement is a protocol between two efficient parties, which we refer to
as Alice and Bob . They get the security parameter n in unary (denoted 1n) as a common input
and can communicate over an authentic channel. Finally, Alice and Bob output a bit bA and bB,
respectively. The protocol has correlation ǫ if for all n

P[bA = bB] ≥ (1 + ǫ(n))/2.

Furthermore, the protocol is δ-secure if for any efficient adversary E, which can observe the whole
communication C, and for all n

P[E(1n, C) = bB] ≤ 1− δ(n)/2.

Key-Agreement. If ǫ(·) and δ(·) are overwhelming then such a protocol achieves key-agreement.
Any protocol which achieves bit-agreement with noticeable correlation ǫ(·) and overwhelming
security δ(·) can be turned into a key-agreement protocol without increasing the number of rounds
using parallel repetition and privacy amplification [12, 13].

If ǫ(·) is only non-negligible (i.e. for any constant c > 0, ǫ(n) ≥ 1/nc for infinitely many n),
then also the key-agreement protocol will only achieve correctness for infinitely many (and not for
all sufficiently large) choices of the security parameter.

3 Public-Coin vs. Secret-Coin weak PRFs

Definition 1 (weak PRFs) Consider a pair of efficient algorithms F, KeyGen where for any
n ∈ N we have

KeyGen : 1n → Kn F : Kn ×Xn → Yn.
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KeyGen is the randomized key-generation algorithm which on input a security parameter n (and
some uniform random bits) outputs a key from the keyspace Kn. Let the random variables Xi, Yi,
and Zi for 1 ≤ i ≤ ℓ be defined by first sampling a key k ← KeyGen(1n) and then setting (below
we use the same random function RXn,Yn

for all i)

Xi
$
← Xn Yi ← F(k, Xi) Zi ← RXn,Yn

(Xi).

F is a weak pseudorandom function secure if for every efficient distinguisher D and any polynomial
ℓ = ℓ(n)

|P[D(Xℓ, Y ℓ) = 1]− P[D(Xℓ, Zℓ) = 1]| = negl(n).

Definition 2 (public-coin and secret-coin weak PRFs) Let F, KeyGen be efficient algorithms
as in the previous definition, and let Sample : {0, 1}s(n) → Xn be an efficient input sampling algo-
rithm.

Let the random variables Ri, Xi, Yi, and Zi be defined for 1 ≤ i ≤ ℓ by first sampling a key
k ← KeyGen(1n) and then setting

Ri
$
← {0, 1}s(n) Xi ← Sample(Ri) Yi ← F(k, Xi) Zi ← RXn,Yn

(Xi).

The three algorithms F, KeyGen, Sample are a public-coin weak PRF if for all efficient D and any
polynomial ℓ = ℓ(n)

|P[D(Rℓ, Xℓ, Y ℓ) = 1]− P[D(Rℓ, Xℓ, Zℓ) = 1]| = negl(n)

(i.e. the weak PRF, by Definition 1, stays secure even if the randomness used to sample the inputs
is revealed). Furthermore, F, KeyGen, Sample are referred to as a secret-coin weak PRF if for all
efficient D and any polynomial ℓ = ℓ(n)

|P[D(Xℓ, Y ℓ) = 1]− P[D(Xℓ, Zℓ) = 1]| = negl(n).

Clearly, every public-coin weak PRF is a secret-coin weak PRF. Also if F, KeyGen is a weak PRF
(by Definition 1) and the output of Sample is close to uniform, then F, KeyGen, Sample is a secret-
coin weak PRF. Note that in the definitions above, secure means secure against efficient uniform
adversaries. To get a (stronger) notion which implies security against non-uniform adversaries,
one must just consider a sequence of poly-size circuits instead of the poly-time bounded Turing-
machine D (cf. Section 1.4).

3.1 The Reduction

Let (F, KeyGen, Sample) be a secret-coin weak PRF which is not a public-coin weak PRF. For

i = 1, 2, . . . consider the random variables ri, xi, yi, and ui, defined by k ← KeyGen(1n), ri
$
←

{0, 1}s(n), xi ← Sample(ri), yi ← F(k, xi), and ui
$
← Yn (i.e. ui is a random element from the

range of F). Now, as F is not a public-coin weak PRF, there exist an efficient distinguisher D, a
polynomial q(.), and a non-negligible function φ(.) such that

Pr[D(rq , xq, yq) = 1]− Pr[D(rq , xq, uq) = 1] ≥ φ(n). (3)

Further, as F is a secret-coin weak PRF we have for any efficient E that

|Pr[E(xq, yq) = 1]− Pr[E(xq, uq) = 1]| = negl(n). (4)
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Protocol BitAgreement(n)

Alice Bob

bB

$
← {0, 1}

k ← KeyGen(1n)

for i = 1, . . . , q = q(n) do

ri
$
← {0, 1}n xi ← Sample(ri) od;

xq

−−→ for i = 1, . . . , q do

if bB = 0 then zi ← F(k, xi)

elseif bB = 1 then zi ← RXn,Yn(xi) od;

zq

←−−

bA ← D(rq, xq, zq)

Fig. 1. A bit-agreement protocol from a secret-coin weak PRF which is not a public-coin weak PRF.

In order to prove Theorem 1, we must construct a two-pass public-key encryption scheme from the
weak PRF. As discussed in Section 2, it is sufficient to construct a two-pass bit-agreement protocol
with non-negligible (or noticeable, see the discussion in Section 1.4) correlation and overwhelming
security. Such a protocol BitAgreement is shown in Figure 1. The idea behind the protocol
is quite simple: First, Alice samples some random strings, on which she invokes Sample to get
random inputs to the secret-coin weak PRF F. Then she sends the inputs to Bob, who either
return the outputs of F on these inputs or random values depending on his randomly chosen bit
bB. As Alice knows the randomness she used to sample the inputs, she can use the distinguisher D

to get a guess bA on bB with non-negligible correlation, as shown in Claim 1 below. Furthermore,
an adversary who does not know the randomness used to sample the inputs cannot distinguish
the cases where Bob sends random values or values computed by F, as shown in Claim 2 below.

Claim 1 BitAgreement(n) has correlation φ(n), with φ as in (3).

Proof.

Pr[bA = bB] = Pr[bB = 1] · Pr[bA = 1|bB = 1] + Pr[bB = 0] · Pr[bA = 0|bB = 0]

=
1

2
+

Pr[bA = 1|bB = 1]− Pr[bA = 1|bB = 0]

2
≥

1

2
+

φ(n)

2

⊓⊔

Claim 2 BitAgreement(n) is 1− negl(n) secure.

Proof. For any efficient adversary E

Pr[E(xq, zk) = bB] = Pr[bB = 1] · Pr[E(xq, zk) = 1|bB = 1] + Pr[bB = 0] · Pr[E(xq, zk) = 0|bB = 0]|

=
1

2
+

Pr[E(xq, zk) = 1|bB = 1]− Pr[E(xq, zk) = 1|bB = 0]

2
=

1

2
+ negl(n),

where the last step follows by (4). ⊓⊔
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Proof (of Theorem 1). The theorem follows from Claim 1 and 2 and the fact that one can construct
a key-agreement protocol from any bit-agreement protocol which has noticeable correlation and
overwhelming security without increasing the number of rounds (via parallel repetition and privacy
amplification [12, 13]).

4 Range Extension for Weak PRFs

Protocol BitAgreement2(n)

Alice Bob

bB

$
← {0, 1}

kA ← KeyGen(1n) kB ← KeyGen(1n)

for i = 1, . . . , q = q(n) do

ri
$
← Xn si ← F(kA, ri) od;

rq, sq

−−−−→ for i = 1, . . . , q do

if bB = 0 then ti ← F(kB, ri)

yi ← F(kB, si)

elseif bB = 1 then ti
$
← RXn,Xn(ri)

yi
$
← RXn,Xn(si) od;

tq, yq

←−−−−

for i = 1, . . . , q do zi ← F(kA, ti) od;

bA ← D(rq, sq, tq, yq, zq)

Fig. 2. A bit-agreement protocol from a weak PRF F : Kn × Xn → Xn where the construction given by
(1) is not a weak PRF.

Let F : Kn × Xn → Xn, KeyGen : 1n → Kn denote a weak PRF as in Definition 1, with the
additional property that the domain and range are identical, i.e. Xn = Yn, and that the domain
is of superpolynomial size, i.e. for all c there is an n0 such that |Xn| ≥ nc for all n > n0. In order
to prove Theorem 2, we must show that if G : K2

n × Xn → X
4
n defined as

G((k, k′), x) = [F(k, x), F(k′, x), F(k′, (F(k, x)), F(k, (F(k′, x))] (5)

is not a weak PRF, then a two-pass key-agreement protocol exists. If G is not a weak PRF, there
exists an efficient distinguisher D, a polynomial q(.), and a non-negligible function φ(.), such that

for xq $
← X q

n , uq ← RXn,X 4
n
(xq), k ← KeyGen(1n), and k′ ← KeyGen(1n)

Pr[D(xq, G((k, k′), xq)) = 1]− Pr[D(xq, uq) = 1] ≥ φ(n). (6)

We now define three other functions G̃, H, H̃ which will be used in the proof. The function G̃ is
defined almost as G, but with F(k′, .) replaced by a URF. The systems H and H̃ are defined like G
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and G̃ respectively, but without the last term. For the rest of this section, we let R denote RXn,Xn
.

G̃((k, k′), x) = [F(k, x),R(x),R(F(k, x)), F(k,R(x))]

H((k, k′), x) = [F(k, x), F(k′, x), F(k′, F(k, x))]

H̃((k, k′), x) = [F(k, x),R(x), F(k′,R(x))]

Below we will show that if F is a weak PRF, then also G̃, H, and H̃ are weak PRFs. The idea
behind the bit-agreement protocol given in Figure 2 is now quite simple: First, Alice and Bob each
sample a random key for F. Then Bob flips a random coin bB. If bB = 0, Alice and Bob together
simulate an attack on G, and if bB = 1, they simulate an attack on G̃. As Alice can distinguish
G from random (and thus from G̃), she can learn bB with non-negligible advantage, as shown in

Claim 5. However, an adversary Eve does not see the last term of G or G̃, as they are computed
by Alice and not sent over to Bob. Hence, Eve only sees the outputs as they are given by H if
bB = 0 and by H̃ if bB = 1. As H and H̃ are weak PRFs, Eve only has negligible advantage in
distinguishing those two cases (and thus also in guessing bB), as shown in Claim 6.

Claim 3 If F is a weak PRF, then G̃ is a weak PRF.

Proof. We have to show that for any polynomial q(.) and x1, . . . , xq
$
← Xn (q = q(n)) the q

four-tuples
[xi, F(k, xi),R(xi),R(F(k, xi)), F(k,R(xi))] (7)

are indistinguishable from random. Sample x′
1, . . . , x

′
q

$
← Xn, x′′

1 , . . . , x′′
q

$
← Xn, and consider the

distribution
[xi, F(k, xi), x

′
i, x

′′
i , F(k, x′

i)]. (8)

As F is a weak PRF, the five tuples given by (8) are indistinguishable from random. We will now
show that (8) is indistinguishable from (7). First note that R(x1), . . . ,R(xq) has the same distri-
bution as x′

1, . . . , x
′
q, unless xi = xj for some i 6= j, as q is polynomial and |X | is superpolynomial,

the probability of this event is negligible. So we can safely replace R(xi) in (7) with x′
i in (8). Sim-

ilarly, we can replace R(F(k, xi)) with x′′
i as this will make no difference unless F(k, xi) = F(k, xj)

or F(k, xi) = xj for some i 6= j, which only happens with negligible probability. ⊓⊔

Claim 4 If F is a weak PRF, then H and H̃ are weak PRFs.

Proof. That H̃ is weakly pseudorandom follows directly from the fact that G̃ is weakly pseudoran-
dom (as shown by the previous claim). To show that H is weakly pseudorandom, we show that,
for random x1, . . . , xq ∈ Xn, the tuples

[xi, F(k, xi), F(k′, xi), F(k′, F(k, xi))] (9)

are indistinguishable from random. For this, it is sufficient by the triangle inequality, to show the
following two facts. First, for random x′

1, . . . , x
′
q ∈ Xn, the tuples

[xi, x
′
i, F(k′, xi), F(k′, x′

i)] (10)

are indistinguishable from (9), since F is a weak PRF and thus F(k, xi) can be replaced by a
random x′

i. That (10) is indistinguishable from random follows directly from the fact that F is a
weak PRF. ⊓⊔
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Claim 5 BitAgreement2(n) has non-negligible correlation φ(n)− negl(n), with φ as in (6).

Proof. For xq $
← X q

n and uq ← RXn,X
q
n
(xq)

Pr[bA = bB] = Pr[bB = 1] · Pr[bA = 1|bB = 1] + Pr[bB = 0] · Pr[bA = 0|bB = 0]

=
1

2
+

Pr[bA = 1|bB = 1]− Pr[bA = 1|bB = 0]

2

=
1

2
+

Pr[D(xq, G((kA, kB), xq)) = 1]− Pr[D(xq, G̃((kA, kB), xq)) = 1]

2

=
1

2
+

Pr[D(xq, G((kA, kB), xq)) = 1]− Pr[D(xq, uq) = 1]± negl(n)

2

≥
1

2
+

φ(n)± negl(n)

2
,

where the second last step follows as G̃ is a weak PRF (as shown in Claim 3). ⊓⊔

Claim 6 BitAgreement2(n) is 1− negl(n) secure.

Proof. Consider any efficient adversary E who can observe the communication C = {rq, sq, tq, yq}
between Alice and Bob . If bB = 0, then C has the same distribution as generated by H, and
if bB = 1, then C has the same distribution as generated by H̃. The security now follows as an
efficient E cannot distinguish H from H̃, since these are both weak PRFs (as shown in Claim 4).

More formally, for xq $
← X q

n

Pr[E(C) = bB] = Pr[bB = 1] · Pr[E(C) = 1|bB = 1] + Pr[bB = 0] · Pr[E(C) = 0|bB = 0]|

=
1

2
+

Pr[E(C) = 1|bB = 1]− Pr[E(C) = 1|bB = 0]

2

=
1

2
+

Pr[E(xq, H̃(kA, xq)) = 1]− Pr[E(xq, H(kA, xq)) = 1]

2
=

1

2
± negl(n).

⊓⊔

Proof (of Theorem 2). The theorem follows from Claim 5 and 6, and the fact that one can construct
a key-agreement protocol from any bit-agreement protocol which has noticeable correlation and
overwhelming security without increasing the number of rounds (via parallel repetition and privacy
amplification [12, 13]).

5 Can we Efficiently Deconstruct “Useful” Properties?

Black Box Falsification. What does it mean that some statement “holds in Minicrypt”?
Trivially, it means that in order to falsify the statement, we must assume the existence of something
at least as strong as key-agreement. As observed in [24], the fact that no black-box reduction
one-way functions to key-agreement exists [18], implies that no “black-box falsification” for such
statements can exist (in [24] this was called a “black-box break”). E.g. by Theorem 2, there is
no black-box reduction from one-way functions to a weak PRF and a distinguisher, such that the
distinguisher breaks the security of the construction given by (1) when instantiated with this weak
PRF.10

10 Let us stress that black-box reductions for one-way functions to PRFs do exist [11, 9].
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Deconstructing the Homomorphic Property. We showed that the statements of the the-
orems from this paper are non-trivial, by showing that they do no longer hold outside Minicrypt,
or more precisely under the standard DDH assumption (which is false in Minicrypt as it implies
key-agreement). These counterexamples use the homomorphic property of the group, i.e. that
(xa)b = (xb)a. This is eminent in (2) which shows that the construction given by (1) does not
give secure range extension outside of Minicrypt. Usually, a weak PRF which is homomorphic is a
very useful thing to have, but clearly not if we want to use this PRF in the construction given in
(1). In order to safely use a weak PRF in (1), all we have to make sure is, that the protocol from
Figure 2 is NOT a secure bit-agreement protocol. Intuitively, that should not be too hard.

Open Problem 1 Is there an efficient construction φ, such that for any weak PRF F, φ(F) is a
weak PRF but the protocol from Figure 2 is NOT a secure bit-agreement protocol when instantiated
with φ(F) (and thus (1) is a secure range extension for φ(F)).

We can solve the above problem by first constructing a PRG from the weak PRF and then using
the GGM reduction [9] to get a regular PRF (note that (1) is trivially secure for PRFs), but
this is not really efficient: each evaluation of the PRF would make a linear (in the input length)
number of invocations to the weak PRF. The above problem is somewhat antipodal to questions
usually asked in cryptography, where one tries to construct something useful, like asking “can we
construct key-agreement from PRFs via black-box reductions” (the answer is no [18]). Whereas
here we are looking for a way to make some particular construction insecure. Being more ambitious,
we can ask if we can efficiently destroy any property of a weak PRF which could be used to get a
key-agreement protocol.

Open Problem 2 Is there an efficient construction φ, such that for any weak PRF F, φ(F) is a
weak PRF and any construction which is secure in Minicrypt when instantiated with a weak PRF,
is secure (in the real world) when instantiated with φ(F)?

The general problem can be summarized as follows. We know several constructions for extending
the range of weak PRFs, getting public-coin weak PRFs from secret-coin weak PRFs11, and
achieving adaptive security from non-adaptive PRFs [24, 19], that one can show to be secure
in Minicrypt, but which are (under standard assumptions) not secure in the real world. As the
constructions are secure in Minicrypt, each weak/non-adaptive PRF for which the construction
actually is insecure can be used to construct a key-agreement protocol (via some particular black-
box construction), and must hence have a lot of structure. The question is whether there is an
efficient way to modify the weak/non-adaptive PRF, such that it still keeps its original security
guarantee (of being a weak/non-adaptive PRF), but cannot be used anymore for the key-agreement
protocols. Then this modified PRF can safely be used in the efficient constructions that have been
proven to be secure in Minicrypt.
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