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Summary 

For a system of hyperbolic conservation laws, such as the Euler equations of 
compressible flow, in this paper we give an outline of the theory necessary to 
derive first and second-order accurate discretisations on a structured, adaptive 
finite-volume mesh. The mesh is constructed so that the equations can be 
defined on a rather arbitrary domain. and the usual nonlinear multigrid tech
niques can be used for the solution of the discrete system. During the solution 
process the mesh can be adapted to the solution and to the accuracy of the 
discrete equations. This requires a sufficiently accurate estimate of the local 
truncation error. 
After formally introducing the geometric structure and notations, we discuss 
the discretisation and we study the various contributions to the local discreti
sation error. Emphasis is put on the discretisation involving the interfaces 
between the coarse and the fine parts of the grid. Our analysis leads to a small 
set of requirements, to be satisfied in order to attain a discretisation which is 
first or second-order accurate (in a sense that will be specified) with respect 
to the mesh size of the partitioning. Then interpolations are presented which 
satisfy these conditions. 

1 Introduction 

In this paper we describe the discretisation of a system of steady conservation laws in two 
space dimensions, using a finite volume discretisation with a structured, locally refined 
partitioning of the domain of definition. 

We consider a system of d conservation laws, defined on an open domain n c R2, with 
q: ri-+ Rd, s: Q-+ Rd, f,g: JRd ..... Rd given by 

EJJ(q(x.y)) og(q(x.y)) - ( . ) 
ax + EJy - s x. y ' (x.y) E 0. (l.la) 

supplemented with appropriate boundary conditions. 
For the discretisation we introduce a partitioning of n. The partitioning forms, pos

sibly after a smooth coordinate transformation, a set of regular quadrilaterals, called 
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the grid. In transformed coordinates. the locally refined grid is composed of a sequence 
of nested grids. where each grid is a regular partitioning of a subdomain of n. In non
t.ransformed coordinates. the union of all quadrilaterals is an approximation of the domain 
of definition. 

Each quadrilateral of the grid is used as a control volume on which the system of 
conservation laws. integrated over the control volume. is approximately satisfied. This 
leads to a discretisation of a weak formulation of problem (1.1). 

The error in the approximation of the weak formulation consists of contributions from 
the various steps in the discretisation. The first step is the approximation of the domain 
by the partitioning. This approximation has consequences for the accuracy of the discrete 
equations defined for quadrilaterals along the boundary of the domain and for the ·coarse
grid' approximation. The approximation of the weak formulation for each quadrilateral 
involves the approximation of the mean flux per unit time and 'area' across each side of 
each quadrilateral. The next step is the approximation of the mean flux across the sides 
of the quadrilaterals by the flux at the mean state at each side of a face Finally the state 
at the cell face is approximated from the discrete data (the available numerical solution, 
a cell-wise constant function). The flux may be evaluated in an upwind fashion, where 
each approximated flux depends in an upwind biased sense on the discrete data. 

The numerical solution itself approximates the mean of the exact solution of (1.1) over 
each cell. Hence. with each cell is associated an approximation of the mean value on the 
cell of the solution of the continuous problem. This is the so-called cell-centered approach. 

The decision where to refine a given composite grid (or to remove a refinement), may be 
based on the local discretisation error. Therefore we study the a-posteriori estimation of 
the local discretisation error. However. refinement should not be based solely on the local 
discretisation error. Apart from a sufficiently accurate discretisation scheme. an accurate 
solution requires that the grid provides sufficient resolution. Resolution of the grid is 
measured by the derivatives of the exact solution, as approximated by the numerical 
solution. The grid should therefore also be refined on the basis of solution gradients. 
For the equations associated with cells near discontinuities in the solution, an estimate 
of the local discretisation error is superfluous, since the grid will be refined due to the 
approximations of the large gradient in the solution. For the smooth part of the solution 
an estimate of the local discretisation error may be obtained with sufficient accuracy and 
can be used in a refinement strategy. 

In the neighbourhood of fine-coarse grid interfaces, by nature, the discretisation scheme 
used is different from the one used elsewhere. Estimating the local truncation error in such 
a situation by means of extrapolation techniques, (as in r-extrapolation, [3, 5]), requires 
a careful treatment of the various contributions to the local truncation error. Here we 
carefully consider these contributions, with emphasis on their accurate estimation. 

2 The geometric structure 

We study a system of conservation laws. defined on n, with boundary conditions on 
an c IT, where IT denotes the closure of n. We assume tl_:~t a rectangular domain n c lR2 

exists and a sufficiently smooth ~urjective mapping M : 0 ...... ri, which is also injec~ve in 
the interior 0. The mapping is a transformation of the Cartesian coordinates in 0, the 
computational space, into Cartesian coordinates in ri, the physical space. 

As the system of conservation laws is discretised by a finite volume method, a regular 
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rectangular partitioning of !1 is introduced. consisting of disjoint rectangles. This defines 
a partitioning of n, through the mapping M. A rectangle in the computational space 0, 
as well as its image in Sl. is called a cell. The partitioning is called the grid. 

We consider grids on different levels of refinement. A level of refinement l, with 
l = 0. 1, 2 ..... is a regular partitioning, denoted by 01• of a sub domain in n, and a 
surjective mapping Af1 : IT -> f1t. injective in the interior [ll. We use the notation 
0 1 = M1 ( Q1) for an image under the mapping M1• For the image f'!' of D under Ml, and 
the hull n of all images of fi under the sequence of mappings {Ml }tEZl we use the notation 

n1 = .M1(0.), and n = LJS'21. (2.1) 
l 

A mapping l'vfl is associated with level of refinement l and is an approximation of M. 
Generally we take lv11 so that it maps a cell vertex from the partitioning Dl to the same 
point in ~2 as the original mapping M does. Then in the sequence of mappings {M1}10;, 

M 1 approaches M as l _, oo. Hence, if 01 = D, then 0 1 is an approximation of TI. 
Since the partitioning of n on a level l is regular quadrilateral, each cell on level l can 

be denoted by OL C D. The set I of indices present in the approximation is 

1 = { ( i, j, 1) E z3 1 30L c n} . 
The grid on level l is 

nl = {n~.1 I(i,J,l)E1}. 

By the regularity of the partitioning each cell on Sl1 has either none or only one neigh
bouring cell at each side, residing at the same level. A cell nL is the northern neighbour 
of fll,J-l and the eastern neighbour of S1j_ 1.J. provided (i,j -1,1),(i- l,j,1) EI. The 
boundary aoL c nL consists of the four cell faces of the cell, identified through their 
relative locations by oSlL_k, k ED, and oOL = UkEvarlL,k, where D = {N,E,S, W}. 

Refinements of a cell r!L are the cells obtained by subdivision of the corresponding 
cell DL in the computational domain into 2 x 2 smaller cells of equal size. By applying 
the mapping M1+1 to these refinements in the computational domain, we construct the 
refinements in the partitioning of the physical domain. Except for cells on the coarsest 
grid, each cell is one of the four descendants of a cell on the coarser grid. The coarse
grid cells on 0 1 and the fine-grid cells on 0 1+1 are coexistent (i.e. when cells appear on 
0 1+1, the corresponding coarse-grid cells remain part of 0 1). A cell on the coarser grids is 
called parent and its descendants are called its kids. In this way all cells in the geometric 
structure belong to a quad-tree structure. 

For the smallest integer coordinates on the coarsest grid, n°, without loss of generality 
we take i = 0 and j = 0. The integer coordinates of a cell on f2l+ 1 are so that the kids of 0 1 . 

t,] 

are denoted by n~t11, n~t~1.2j1 n~t.L+1 and o~t~l.2j+! • A cell vertex in the physical domain 
is Pf.1 = M1W.1, ryLJ, where. without loss of generality . .P/1 = (~L. ryL) = (2-1i, 2-1j). 

In this paper. functions. function spaces and subdomains defined for the computational 
domain are identified by a tilde on the same symbol used for the physical domain. 

2.1 The sequence of grids 

The geometric structure described so far, is used for multigrid computations on a locally 
refined grid. The grid 0 1' on some basic level lb 2: 0 covers all M1•(D). The grids !11, 



l > lb, are adaptively constructed during the computation, when it is decided that cells 
should be refined or refinements should be deleted, depending on the computed solution. 
At some stage in the computation. a sequence of grids {r21}i=o ..... L has been generated. 
where L is the highest level present. Thus. the cells on grid n1, l > lb typically do not 
cover all of the domain n. Therefore. the grid Q1 = Q~ u Q~ consists of a part Q~ of which 
the cells have been refined (for which kids exist on level l + 1) and a part Q~, with cells 
that have not been refined (without kids). The set of all non-refined cells is called the 
composite grid nc. defined by 

L 

QC= u Q~. 
l=lb 

Further, we define sets of indices associated with the different ~rids and parts of grids 
by I1 = {(i,j) e '11.2 1 (i.j, 1) e I}. Ij = { (i.j) e 11 I nL c n~ i· I1 = {(i,j, Z) e 1 I 

{i,j) EI}}. For practical purposes we also introduce K, defined by 

K('i, j) = { (2i. 2j), (2i + l, 2j ), (2i. 2j + 1), (2i + 1. 2j + 1) }. (2.2) 

The boundary 8r21 on level l is 8r21 = boundary of U(i,jJEI1 nL. Following [14], the part of 
the boundary of the subdomain n1• which does neither coincide with a physical boundary 
nor with its discrete counterpart. is called a green boundary. 

A grid is uniform if. in the computational domain, it covers all of n and if it is not 
refined anywhere; it is called locally ·uniform with respect to a discrete operator in a cell. 
if no green boundary is involved in the definition of the operator for that cell. A grid that 
contains locally non-uniform cells, is called a locally refined grid. Also a composite grid 
that consists of cells from more than one level is called locally refined. 

3 Finite volume discretisation on a locally 
refined grid 

3.1 Grids and grid functions 

We see that the grid Q1 on level l consists of cells DL, ( i, j) E 11• A cell nL in the physical 
domain is the result of M 1(0I), where M 1 is an approximation of Mas described above. 

We assume that M 1 is continuous and piecewise affine on each cell face ofiL,k· Then the 
grid n1 in the physical space is a collection of disjoint quadrilaterals. In that situation, 
M1 can be described as a vector of two continuous functions, both piecewise bilinear in 
each f2L. Furthermore we assume 

(P1)r = M1(P}) = M(P.1.) 2,J 1.,) i,) , (3.1) 

i.e. M 1 is exact at the vertices Pf,j· 
The boundary anL consists of the four faces anl,j.1c' k = N, E. S, W. A cell face 

anL.1c has a length denoted by s~.j,k• The area of a cell nL is denoted by Atj• 
If a function u : n1 -> ]Rd is defined then also a function Ti : n1 -> ]Rd is defined through 
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where x1 and .ii are given by 

(3.2) 

We denote the unknown vector function in our problem by q. The approximating function 
qi defined for the grid on level !. is a cell-wise constant function. The value of q1 in a cell 
o~.1 is denoted by qL. hence 

I I (. 1 . ') qi.1=q.r.y. (x'. y') E DL n D*. 

The function value qL is called the state in cell DL. The space of all admissible state 
vectors is denoted by X0 C JR.d 

3.2 Restrictions 
In order to define the relations between the approximations on the different grids, it is 
appropriate to define a number of restrictions. The first is [{ the L2(D)-projection to 
the piecewise constant functions on D1• A projection closely related to this operator is 
R.1·1+1• which restricts the piecewise constant functions on level l to the refined part D~ 
of the grid. Next. we define the restriction R:+l • giving the piecewise constant function, 
which in each r!L C l!j delivers the integral mean of the operand over its kids. I.e., if 
the collection of kids of n~.J is 

1:1 = U n1+1 
LJ m ' 

mEK(i.j) 

then the restriction R:+l is defined by 

_ 1 fr.' udD 
{R u}1 --"''·)'---

1+1 i.J = J , dD · 
E,,j 

(3.3) 

Note that R1"1+1 = R:+l' if the grid is obtained by .a piecewise bilinear mapping M 1 and 
M1+1=M1. 

Another set of three restrictions (denoted without the overbar) gives the relations 
between vector functions in the r.h.s. space. The first restriction is the projection R1, 

defined as the operator giving the cell-wise constant function consisting of the values if 
the integral of the operand on each cell on level l. The second restriction is the projection 
R11+1 d fi d . ·1 l -Rl.l+l . R1 • d · , e ne s1m1 ar y as , i.e. restncte to the area covered by the fine grid 
l!j. Finally we define a restriction Rl+i • which is related to R:+i in (3.3) through the 
operators A1 and A1•1+1. which are defined as 

A1u(x'. y') = ALu(x', y'), V(x', y') E D~,i' 

and 
A.1.1+ 111(.r'.y') = A.1u(x',y'). 't/(J;'.y') E 0,~J and ('i,j,l) E 11. 

With these definitions, we define the last restriction by 

Rz = A1.1+1-R1 (A1+1)-1 
l+l l+l • (3.4) 
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3.3 The system of discrete equations 

In this section we describe the system of equations obtained by the discretisation. We 
distinguish between equations obtained for cells on the composite grid and equations 
obtained for refined cells. 

Equations for a cell on a composite grid 

A discretisation of the set of conservation laws (1.la) on a composite grid is obtained by 
considering the weak formulation of the problem: find q from the solution space, satisfying 
the boundary conditions and so that for all n· c n 

f Bf(q(x,y)) + Bg(q(x.y)) dO = f sdf?.. (3.5) 
ln· ax oy ln· 

We assume that q and s are defined on ft. In case ft :J D, we assume that q and s, defined 
on 0, can be extended ton in a sufficiently regular way. Then (3.5) is approximated by 

N(q) = r, (3.6) 

where N and rare functions defined on any n· c n. For OL c n we define the restriction 
R1Nby 

{R1N(q)}1 . = j f(q)n., + g(q)nyds, 
'·J lon1 . •·1 

where n., and ny are the components of the outward unit normal n on the boundary 
oOl.i, in x and y direction respectively. The discretisation of the equations is obtained by 
requiring an approximation of (3.6) to hold for each cell on the composite grid. We first 
assume that for the discretisation the soui:ce term s is exactly integrated. In our notation 
this implies 

r1 =R1s. (3.7) 

The mean value of the flux across the kth cell face anL,k c 80L of cell OL is 

ff.i.k(q) = /. fan, . f(q)n., + g(q)ny ds. 
?,J,k i..3,k 

Hence, a solution of (3.6) exactly satisfies 

{ R1N(q)}1
. = L J' k(q)s1 ·k = r~ · V'(i,j,l) EI. 

1,J kED I,], '·J· l,J' 
(3.8) 

Equations (3.8) are approximated by approximating the mean fluxes !L,k across each cell 
face 80.lJ,k by a numerical flux. denoted by F/.j.k· In general this numerical flux depends 
on the functions qm, m = lb, ... , l. On a level l the approximation of (3.8) reads for all 
nL En~ 

or in operator form 

where N 1 is defined by 

~ pi { I. 1-1 lb) ! _ ! 
~ iJ.k q • q '· · · · q si,j,k - ri.i• 
keD 

{N I( I. 1-1 lb)}l - ~pi ( l, 1-1 lo) I q,q , ... ,q iJ-~ ;,j,kq,q , ... ,q s;,J,k· 
keD 

(3.9) 

Here, q1- 1, ... , r/'• act as parameters to N 1. These formulas define the discretisation on 
level l. 
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The numerical flux function 

The numt'firnl flux F/.,.k depends nn the sequence {q"'}m=l,, .. ,l· Usually we assume that 

t iw 11umerkal flux can be written as 

I /. 1-1 1,,) _ f'(( L)I ( R)l l ) F,_1_d11. IJ ....• '/ - </ ;.1.k· IJ ,,1,k, n,,J,k · 

The• argumt•nt~ ( ,1L l'. i.k and _( ,,R J'..1 ,~ dPIIOte Pstimatcs ?f the mean, o~ q alo~g ~~L,k, 
dependent on {q'" }m=l,, ..... I· with a bias to the left and nght side of 80.z.J.k' respectively. 
The t•ntry 11'..1., E E denott's the unit normal on iJ0'._1.k' pointing outwa~d fr~m D.l,j, where 
E c a~ is tht> unit rirck• in !R2. The function F(qL. rl. n) is an approximation of the flux 

fiq!11, + y(1j!n,1. with qL and 1/ in the neighbourhood of q. 
TlH'rP art' rnrious wavs to define the states qL and qR and the numerical flux F. 

!u fact. the choice of F ~nd the states qL and qR determine the discretisation method 
and its atTllntC\". The left and right states are usually obtained by piecewise polynomial 
rrcor18tructwn .. using discrete data. i.e. using {qm}m=lb,. . .,l (cf. Section 3.4). 

For a h:>pcrholic set of com;errntion laws [10], we are interested in an upwind discreti
sation. which ma~· be obtained b:v taking for F an (approximate) Riemann solver. The 
best-known approximate Riemann solvers are introduced in [13, 22, 12]. 

Equations for a refined cell 

Discrete equations ( 3.9) are approximations of the conservation equation ( 3.5) for each 
cell that has not been refined. The left and right state for the computation of a numerical 
flux depend on the states in neighbouring cells. possibly on different levels. By definition, 
for a locally non-uniform grid cell. the left or right state for at least one cell face depends 
on coarse-grid states. 

The set of equations obtained by applying the discretisation as described at the be
ginning of this section are under-determined for a locally refined grid. If a neighbouring 
cell has been refined (has kids). that neighbour is not part of the composite grid, and no 
equation like (3.9) has been defined. Additional equations, however, are obtained by 

V(i,j,l) E 11. (3.10) 

We use the equations (3.9) together with (3.10) to define discretisations on a locally refined 
(i.e. composite) grid. 

3.4 Left and right states 

Here we describe the computation of ( qL )~.J,k and ( qRJL,k, the left and right state used in 
the numerical flux function. We consider first and second-order accurate discretisations. 
both for a locally uniform and a locally non-uniform situation. We use the concept of 
reconstruction of piecewise C00-functions from the cell-wise constant data. qL, associated 
with each cell. This idea was introduced in [21) and [24] for one-dimensional convection 
and extended and applied in [l] and [2) for unstructured grids in two spatial dimensions. 
Contrary to this work, we do not reconstruct a single. unique (vector) function in each 
cell, but we take care that -in a locally non-uniform grid situation- the computation of the 
left and right state is so that the resulting scheme is consistent of the required order (at 
least in some weak sense, see Section 4). This is done by making a different reconstruction 
for each side of each cell face. 



Locally uniform composite grids 

The computation of the first-order as well as of the second-order consistent discretisation 
depends on the mean states. On a locally uniform grid, first-order consistency is obtained 
by applying an O(hi) accurate reconstruction. Consider for example the eastern cell face 
anL,E of a cell OL on a locally uniform composite grid, where (i + 1,j) E J1• For this 
situation we take for the states, as usual in first-order Godunov-type schemes, [4, 8, 18], 

(qL)L_E qL, (3.lla) 

(qR)L,E = ql+1.j· (3.llb) 

For second-order consistency on a locally uniform grid, the states are based on O(h'f) 
accurate reconstructions of the state functions. This reconstruction can be done with 
a limiter to suppress spurious wiggling of the solution (as proposed e.g. in [15, 19] and 
applied in [9]), or without a limiter, like the 11;-schemes [23] (as e.g. in [7, 16] and [9]). 
Again, for the eastern cell face of a cell nL on a locally uniform grid, where (i - 1, j), (i + 
1,j), (i + 2,j) E 11, the limiter and 11;-schemes are given by 

(qL)~.j.E 

(qR)L.E 

C(qLl.j• qL, ql+1)• 

C(ql+2.j• ql+1,j• qi), 
(3.12a) 

(3.12b) 

where, C : Xa x Xa. x Xa -+ Xa describes the /\':-scheme or the limiter scheme. Notice 
that the /\':-schemes are recovered by applying certain linear 'limiter' functions. However 
a ,,;-scheme does not necessarily satisfy monotonicity conditions, see [17]. 

Locally non-uniform grids 

On a locally refined grid, one or more of the mean states in (3.11) or (3.12) are not 
available, because the cells with which the states should be associated. do not exist. For 
this, we introduce the concept of virtual cell and associated virtual state. 

With each integer coordinate pair (2ni + r, 2n j + s) rt Jl+n, 0 s; r, s < 2n, n ~ 1 and 
(i,j) E J1, h s; ls; L - n, we associate the virtual cell w~"tI'.t-r,2nj+s c n, given by 

2-(l+n) (2ni + r. 2ni + r + 1) 
x2-(l+n) (2nj + s, 2nj + s + 1). 

In the physical space the virtual cell w~"tf+r,2ni+s c Q is defined as 

l+n Ml+n(-l+n ) 
W2n;+r,2nj+s = W2ni+r,2nj+s · 

Note that w~~n is exactly Q~~n, if the grid would be sufficiently refined. 

(3.13) 

With the virtual cell wl,i we associate a virtual state vl,; E Xa, which can be interpreted 
as an approximation of the mean of the state vector function on wL. In general a virtual 
state viJ depends on {qm}m=l.,. ... l· 

Virtual cells and virtual states are used for the discretisation in the neighbourhood 
of green boundaries. To a large extent the virtual states determine the accuracy of the 
algebraic equations associated with the locally non-uniform grid. 

The concept of virtual states allows us to compute left and right states in a locally 
non-uniform grid situation, in a way similar to (3.11) and (3.12). The requirements 
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to be satisfied for the proper computation of virtual states, are discussed in Section 4. 
Regardless of the way how the virtual states are computed. for first-order consistency we 
take for the eastern cell face of nL. similarly to (3.11), and (i + 1.j) 9! J1 

( L)l _ l 
q i.j,E - qi.j• 

(qR)l . = 1,t 1.1.E 1+1.;· 

(3.14a) 

(3.14b) 

Similar to (3.12), we take for.second-order consis.tency, if (i + l,j), (i + 2,j) 9! J1 

(qr)L,E C (qL_J• qL, vi+1.j), 
(qR)!.J,E C (v!+2.J' v!+i,1, qL). 

(3.15a) 

(3.15b) 

and if (i + 1.j) E J1• but (i + 2,j) if. J1 

(qr)~,j,E C (qL,j, qL, q!+iJ, 

(qR)L,E C (v!+2.j• qi+1.1• qL), 

(3.16a) 

(3.16b) 

Formulae similar to (3.14)-(3.16) are used for the cell faces, an~.J,k• k = N, S. W. 

4 Error analysis of the discretisation 

In this section we study the local discretisation error and the consistency of the discreti
sation described in Section 3. In the discretisation we distinguish three approximations, 
each of which have a contribution to the local discretisation error. These contribution 
are: 

• approximation of the mapping from the computational space into the physical space; 
in equations this error is denoted by r;,,(q); 

• approximation of the mean flux on a cell face by the flux evaluated at the mean state 
along the cell face (quadrature rule); in equations this error is denoted by r~(q); 

• approximation of the mean state on a cell face by biased reconstructions; in equa-
tions this error is denoted by r;(q). 

Often the approximation of M by M1 is not essential, since the change from M to M1, 

merely changes the partitioning in the physical domain slightly, without affecting the 
accuracy of the resulting set of algebraic equations. However, it does affect the approxi
mation of the domain of definition of the problem. Hence, for the interior cells of D we can 
assume M = M 1 = M 10 , for some constant 10 and 10 :S l :S L, without affecting the accu
racy. At the domain-boundary, 8D, the error of this approximation M 1 can be important. 
Here, in general we do not have M = Af1 = M 10 • because it results in an approximation of 
the boundary, independent of the level l. Hence, with increasing levels of refinement, the 
geometry of the discrete problem would not converge to the geometry of the continuous 
problem. A more important reason to study this approximation is related to a-posteriori 
estimation of the local discretisation error and the application of r-extrapolation. This 
uses the so-called relative local discretisation errors of two consecutive levels of refinement 
( cf. (3, 20]). 
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The two errors r~(q) and r;(q) together make up the local truncation error. For the 
fluxes approximated with the projection of the true solution. i.e. with q = q, the exact 
solution of the problem. they form the error in the system of algebraic equations. for a 
given partitioning. 

The analysis presented in this section leads to requirements to be imposed on the 
reconstruction of cell-wise smooth functions from the cell-wise constant numerical data. 
These requirements. depend on the goal set out to be reached in a particular discretisation. 
We distinguish between the goals ( i) obtain a given order of consistency and (ii) obtain a 
given order of discrete convergence. This distinction is made. since a certain order of the 
local discretisation error for all equations may not be essential to obtain a given order of 
discrete convergence. Assume a total number of equations of O(h-2 ). An O(h- 1 ) number 
of equations with ]ow-order accuracy may not affect the rate of discrete convergence. 
not even in supremum norm. To study this in detail. we have to redefine the notion 
of consistency for a non-uniform mesh. In fact, we define a slightly weaker form of 
consistency. This weaker form is the discrete L1-norm of the local truncation error for a 
collection of discrete equations. The requirements for consistency both in the weak and 
in the usual sense are studied. 

4.1 Approximation of the mapping 

To make an a-posteriori estimation of the local discretisation error, with sufficient accu
racy, we first study the consequences of approximating M by M 1• Actually, we are only 
interested in the relation between the mappings for two consecutive levels of refinement, 
since we want to study the use of two consecutive levels of refinement in the estimation 
of the local discretisation error. The relation between the mappings of two consecutive 
levels can be established through their relation to M. This relation also allows us study 
the accuracy of the restriction to the coars~ grid ( cf. Section 4.2). 

We consider a surjective mapping M : Q -+ TI, also injective on Q. We also consider 
its continuous. piecewise bilinear approximation associated with level of refinement l, 

M1 : n-+ 01, which is exact in the vertices P/;,k· To simplify notations, in the present 
local analysis, we drop the indices which are constant throughout this part of the analysis. 
We consider a cell on level of refinement l. In the computational space. the corresponding 
cell is denoted by n. Its images in n are 

n = M(O), 

n' = M'(n), 
where we drop the subscripts. We use a local Cartesian coordinate system (f,,'f/) in the 
computational space, with its origin in the center of ii. Similar to (3.2), we use the 
Cartesian coordinates in the physical space as obtained by M 

( x(E,, '17) ) = M(E, IJ). 
y(E,, 'f/) ' 

where the origin in the physical space is 

(O, Of = M(O, 0). (4.1) 

We assume fi being a square with edges h1 = 2h, 0 = (-h, h)2 . The area in the compu
tational space is 4h2• In the physical space the area is denoted by A for D and A1 for f21 .• 
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The Jacobians of M and J'vf1 are denoted by J and J 1 respectively: 

J(~, 17) 

i(~,17) 

where the subscripts denote differentiation with respect t~ ~ and 17 respectively. Further, 
we assume that M is sufficiently smooth and for (~, 17) E i1 it can be written 

M = mo + m1~ + m27J + m3e + m4~17 + m5172 

+ m6e + m7E27/ + ms(r;2 + mgT/3 + .... 

Note that by (4.1) m0 = (O,O)T. The mapping M1 is piecewise bilinear: 

M1 = m~ +mi~+ m~T/ + m~~TJ. 

We define (xi,y;f, (xl,y;)Y by 

i = 0, 1, 2, ... , 
·i = 0. 1, 2, 4. 

(4.2) 

(4.3) 

From the exactness of AI1 at the cell vertices. given by ( 3.1), we can express ml, i = 
0, 1, 2, 4 in terms of m1, i = 0. 1. .... This gives 

mo + m3h2 + m 5h2 + O(h4 ), 

m1 + m6h2 + m8h2 + O(h4 ), 

m2 + m7h2 + m 9h2 + O(h4 ), 

m4+0WJ. 

As a result, we have 1vl1 expressed in terms of M, for l~I, IT/I :::; h, and 

( 4.4a) 
(4.4b) . 

(4.4c) 

(4.4d) 

We are now interested in the difference between the weak form (3.5), for n = M(i1) 
and S11 = Af1(i1), divided by the respective areas A and A1• This error is denoted by 
Tm(q). 

Let a sufficiently smooth, integrable function w : nu !11 -'> IR_d be defined, and let its 
Taylor series expansion around the origin (x. y) = (0, 0) be given by 

(4.5) 

For the error of the weak form on S11 with respect to the weak form on S1, it suffices to 
consider the difference 

t(w)=_!_ f wdSl-_!_ f wdO., 
A1 Jn, A Jn (4.6) 

for a sufficiently smooth and integrable function w. For M and M 1, assuming from this 
point that J. JI > 0, this is equal to 

1[11- lf -
t(w) = Al In w J dO. - A Jo. wJ dSl, 

24 



bw = nl - w, 

151 = JI - .!. 

the integrand w 1 J1 can be written as 

An expression for bu. in terms of m, and w, can be obtained by using ( 4.5) for (x1, y1) and 
(.r. y). and by subtraction and substitution of ( 4.4). From this exercise it appears that 
Ii,,,= O(h2 ). Multiplication with J and integration over Q yields 

r - 8 In bwl dll = 3loh~{wi(x3 + :r5) + w2(y3 + y5 )} + O(h5), (4.7) 

where J0 is J(O, 0). 
Similarly, based on (-1.4), we can also find an expression for 81 . It appears that 

generally liJ = O(h). with the O(h) terms linear in~ or TJ. A straightforward calculation 
yields for the integral of wbJ 

j~ w!i1 dD = 
~h4 {wo(X1Y1 - X1Y1 + XsY2 - X2Ys - X3y4 + X4y3 - X4y5 + X5y4) (4.8) 

+ W1 (-X1X3Y2 + X1X2Y3 - X1X2.1J5 + X2.l/sY1) 
+ W2(-X3Y1Y2 + X2Y1Y3 - X1Y2Y5 + X5Y1Y2)} + O(h5). 

The term liwbJ gives only an O(h5) contribution to the integral over D. 
By (4.7) and (4.8) we can define C(w) as the coefficient in the first term of an asymp

totic expansion. given by the sum of ( 4. 7) and ( 4.8), i.e. 

with C independent of h. Now we can write 

For the area A we have 
A= 4h210 + O(h4 ), 

combination of ( 4.9) and ( 4.10) yields after some manipulation 

1 1 C(l) 
A1 - A = -1616 + O(h). 

Using this, it can be easily shown that the difference t( w) satisfies 

With 

t(w) = h2 (C(w) - woC(l)) + O(h3). 
410 

t ( ) = t (Df(q) + ag(q)) 
Tm q Dx Dy ' 

( 4.9) 

( 4.10) 

(4.11) 
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we establish the asymptotic relation between the approximation of the weak form on 
two consecutive levels of refinement, caused by the approximation of the grid geometry. 
Although the difference between the partitioning obtained with M and the partitioning 
obtained with M1 itself is not essential for the convergence of the local discretisation error, 
we use the result (4.11) when we show that an a-posteriori error estimation is sufficiently 
accurate. Further, we use (4.11) to show that on a composite grid, the equations for a 
refined cell (3.10), in general give at best second-order accuracy on the coarse grid. Assume 
for (4.11) that w is the differential operator, applied to the solution of the continuous 
problem. According to the result in ( 4.11), in general the discrete equations derived for 
boundary cells are at most second-order accurate, because (in general) we cannot use 
M = M1 = M 10 , 10 a constant, 10 :::; l :::; L, in cells along the boundary of the domain. A 
piecewise bilinear mapping M = M1 would yield -r~(q) = 0. 

4.2 Accuracy of the coarse-grid restriction 

We consider the restriction R:+l, as defined by (3.3). We study the difference between the 

restrictions R:+l R1+1 q ( cf. (3.3)) and R1'1+1 q. In the computation of the virtual states we 

use as the coarse-grid discrete function on n~, the restricted function qiJ = {R:+lq'+l}L, 
(i,j) EI}, where q1+1 = R1+lq, while we assume that qL is the mean of q on ni.i, given 
b -Ri,i+i Th ak . h h' . . d' d h y q. e error we m e wit t is assumption is stu le ere. 

In our analysis we again drop the unnecessary indices. We consider a cell Q1 on level 
l, which has refinements on level l + 1. A kid of f21 is identified by the subscript m E K, 
where K is the set of indices (cf. (2.2)), associated with the cell n1. For level l we have 
the approximation M 1 of M and for level l + 1 we have M1+1. Similar to the notations in 
the previous subsection, we use the superscripts in our notations to distinguish between 
variables for n = M(fi) (e.g. A, no superscript) and 01 = M 1(fi) (e.g. A1). Hence, e.g. 
A!;!'1, m EK, denotes the area of the mth kid M1+1(Q~1 ). 

Consider ~+1 q1+1, where q1+1 = F[+l q. By definition of R:+l we have 

""' ,il+l l+l Rl Rl+I _ ~meK ~ qm 
i+1 q - ""' Ai+i . 

L..meK m 
(4.12) 

With the results from the previous subsection we find 

1 1 hf+1C'(l) 
LmeK A~1 = A - 4A2 + O(hi+il· ( 4.13) 

For the numerator in (4.12) we find 

L A~1q~1 = ( qJ dO + -41 ht+lC'(q) + O(hf+1l· 
mEK Jn 

(4.14) 

Multiplication of (4.13) and (4.14) gives for (4.12): 

-1.1+i-1+1 1 r - h~+l a 
R R q =A In qJ dQ + 1610 (C'(q) - q0C(l)) + O(h1+1). 

With (4.6) and (4.11) we obtain 

-I 1 { - hf 1 
R q = A 10 qJ dn + 4; 0 (C'(q) - qoC(1)) + O(hr). 
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Hence, the difference between the two restrictions is 

Rl,l+lq- R:+1Rl+lq = 136 h~:l (C(q) - QoC(l)) + O(hr). 

4.3 Consistency and weak consistency 

Now we consider the approximation of the weak form on a given partitioning by the 
set of discrete equations. We assume that M = M 1 = M 10 , where l0 < l. With (2.1) 
this implies n = M1(0). This in turn implies that we do not consider the differences 
between the discretisation on different levels. due to the differences in mappings from the 
computational into the physical space. on each level. 

Local discretisation error and consistency 

We use the notation as defined in Section 2 and 3. Let N(q) = r denote the continuous 
equations (3.5). We denote the solution of this continuous problem by q: 

N(q) = r. 
Let the non-linear operator N be approximated by the discrete finite-volume operator 
N 1, on a level of refinement l E {O, ... , L}, of a sufficiently smooth grid, consisting of 
quadrilaterals. Further. let projections R1 and R1 be defined properly, for example by 
the definitions in Section 3.2, and related to each other through A1, as in (3.4). Assume 
that the right-hand side of (l.la) is exactly integrated, as denoted by (3.7). The local 
discretisation error for N1(q1; q1- 1) = r1 is r1(q), where r is given by 

r 1(q) = (A1t 1 (N1(R1q; R1-1q) - R1N(q)). 

We define rf.i ( q) :::: { r1 ( q) }L. The discretisation N 1 is called an approximation to N 
of order of consistency p, if for all (i,j, l) E I 

rf,j (q) = O(hf), 

for h1 -+ 0. Notice that h1 -+ 0, if l -+ oo. 

Weak consistency 

We also introduce a weak form of consistency, related to the above mentioned consistency 
in the usual sense. The new definition of consistency is weaker than the usual definition, 
because it considers the collective behaviour of the local discretisation error for a set of 
equations, rather than the behaviour of each equation separately. Consider a partitioning 
of the domain n, obtained by refining n times a previously obtained locally refined com
posite grid. Let a discretisation as described in Section 3 be defined for this new system. 
Then the collective local truncation error, Tj.(q), for an n times completely refined system 
is defined by 

T~(q) =A-! Rl+l ... Rit~-1 (Nl+n(Rl+nq) - Rl+n N(q)). 

In absolute value, this is the discrete £ 1-norm of the local truncation error for the set of 
equations for all descendants of each cell Di.J. Note that 

TJ(q) = r 1(q). 
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A disrretisation .V; is called weakly consistent of order p if 

'V(i,J, l) E /. 

for n - x;, 

4.4 Analysis of local truncation error 

In this section we study the !oral truncation error of the discretisation introduced in 
Section :i. We use the s.ame assumptions as formulated at the beginning of Section 4.3. 

From the ana!~·sis we obtain requirements for the computation of the virtual states, both 

for a consistent and weak!~· consistent discretisation. 
As described at the beginning of Section 4. the local discretisation error consists of two 

contributions. The first contribution. denoted by T~(q), is a result of the quadrature rule 

that is used to approximate the mean value along a cell face, of the flux across that cell 

face. This mean value is approximated by the fiux evaluated at the mean value of the state 
function along that face. Further. the mean value of the state function q along a cell face is 

approximated by reconstruction of piecewise polynomial functions from cell-wise constant 
functions which represents the average of q in each cell. The reconstruction is done twice 

for eac:h cell face. i.e. for each of the two sides. with a bias in both opposite directions. 
These reconstructed approximations of the mean value along a cell face is then used in 

an approximate Riemann solver. If q is a solution of the continuous equation ( l. la), this 
procedure gives a contribution to the local discretisation error, denoted by T; ( q) 

Quadrature rule 

Similar as before. we drop the in~ices which are superfluous here. As noted, the mapping 
M is assumed to be bilinear on 11. It is given by 

( 4.15) 

where mo. m I· m2 and m4 are defined by ( 4.3 ). Note that the cell-wise constant parameters 
rn, are fully determined by the coordinates of the vertices of that cell. The area of cell !1 
is 

A = f dr! = ( J df! = 4h2 Jo Jn In ' 
where Jo = .L'1Y2 - X2Y1 > 0. the Jacobian of Af at the origin. 

We den9te the mean value of the flux across the kth cell face by fk and since M is 
linear at ank, we have 

fk(q) = ~ ( f(q)nx + g(q)ny ds St l&o.k 
= ')h r _ f(q)nx + g(q)ny ds. 

- l&o.k 
The mean of q(x. y) along Dr!k is denoted by 

<]1.: = ..!:_ f qds. 
sk lmk 

The unit normal along a cell face is constant, and we use the notation 
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By q• and q"k we denote 

q* (q, nx, nyf, 

qic (qki (nxlk. (ny)kl· 

and by J* we denote the flux in the direction of n = (n,,, nyf, given by 

J*(q*) = f(q)n,, + g(q)ny. 

The contribution Tq(q) of the quadrature rule to the local truncation error is given by 

Tq(q) =:XL (f*(qi.) - fk(q)) Bk. 
kED 

An expansion of J* ( q*) around q"k yields 

J*(q*) = f*(q;J +~I. (q* - qjJ"' 
qr 

1 a2 J~ ( • *)"'( • *)f3 + 2 ~q·"'oq• • q - qk q - qk + · · · , 
qk 

(4.17) 

where the superscripts denote the components of q* and qj,, and the summation convention 
is used for o:,/3 = l, ... ,d+2. We assume that the function q(x(~,17),y(~,17)) can be 
written as a Taylor series expansion around the origin of the local Cartesian coordinate 
system in the computational space. Now some computation, the details of which are found 
in [20] shows that the contribution of the quadrature rule to the local discretisation error 
is O(h2). 

Reconstruction 

Here we study the role of the reconstruction step, in which the left and right states 
are computed. This yields requirements which should be satisfied by the reconstruction, 
in order to obtain a consistent or a weakly consistent discretisation. In the previous 
subsections we found that the local truncation error is limited to second-order by the 
choice of the mapping and by the choice of quadrature rule. Hence, we are interested in 
first and second-order consistency only. 

In our notations we again drop indices if convenient. As we are interested in a local 
discretisation error, which is O(hP), p = 1. 2. we consider the equation for a cell 0 on 
some level in the geometric structure. We assume that the solution of the problem is 
sufficiently smooth and that the numerical flux function is sufficiently differentiable. 

The outward pointing unit normals on 80.k are given by 

( Y& ) 1 I ns - ., 
- -x~ Jx2+y2 ' 

{ ~ ans 

( -y~ ) 1 I 
l!N = ., " 

x~ Jx~ + Y~ anN 

We introduce the uuit normal on the J.:th cell face Tik iu the physical space, and sk, in 
absolute value equal to the length of 80k. The nk and sk are defined by 

_ { nk. k.· = E. N, _ { sk. k = E. N, 
nk = Sk = 

-nk, k = W.S. -sk, k = W,S. 
( 4.18) 



\ote that thi" giw;; nk~k = 11, .. ~k· 'r/k E D. \Ve also introduce the vector w E X~ x E, of 

length '2d + 2. given b~· 
w(q.q'.n) = (q.q'.n), 

where q. 1/ E.\,, and Ti E £. For the kth cell face we define 

IL'k = (qko qk. fik), 

wfR = (qf.qf.nk)· 

Assume that the following. usual conditions hold 

fi11.(/.-11) = -F(r1,q1.n). 
f(q.q.nl = f*(q'). 

'r/q,q' E Xa, n EE, 
'r/q E Xa, n EE. 

The local discretisation error due to the reconstruction can now be written as 

(4.19) 

( 4.20) 

( 4.21) 

Tr = ,!_ L (F(q{;.qf,nk)-J*(q'k)) Sk· (4.22) 
A kED 

With (·U9) and (.t.21) we now have 

F( { 
j*(qi,). 

Wk) = _ j*(q';J. 

and with (.t.18). (.t.22) can be written as 

k= E.N. 
k = w.s. 

Tr = !_ L (F(wf;R)sk - f*(q'k)sk). 
A kED 

We denote the reconst1'1.iction error rk .. for the kth cell face by 

l'k = wf;R - Wk· 

\Ve denote the difference between (wo)k and the mean Wk on 30.k by 

b.k = Wk - (wolk, 

where ( w0 ) k is defined by 

and (no)k defined by 

k=E,W, 

k=N,S. 

( 4.23) 

(4.24a) 

( 4.24b) 

Now, first making a Taylor series expansion of F(w) around the mean Wk along cell 
face 30.k and substitution of it in (4.23) and next, substitution of an expansion of F(w) 
around (w0 )k, gives 

_!_ " { aF [ . "' 02 F [ . "' f3 i f3 
Tr = A. L. iJw<> rk + Dw"'3wi3 rdb.k + 2rk) 

kED (wo)k (woh· ( 4.25) 
+l if'F I "'(6;J61+.J61+1i31 )+ }-2 i'Jwa&wJaw, (wo)• rk k k rk k 3'1krk + · · · · · · Sk· 

Here. again the summation convention is used for a, {3 and/. We use ( 4.25) to study the 
requirements for consistency. 



4.5 Consistency requirements 

Now we can formulate the requirements to be satisfied in the reconstruction phase in 
order to obtain a pth-order consistent or weakly consistent discretisation. 

Consistency 

We consider the contributions due to the cell faces ank, k = E, W. Assume that the 
following asymptotic relations hold for p, q, s = L 2, and for rk and bk as defined by ( 4.24): 

rE 

rw 
fiE 

.6.w 

For the mapping M we also have 

OW), 
TE +O(hr), r "?. q, 

O(h'), 

= fiE +OW), t "?. s. 

SE O(h), 

sw = SE+ O(h2 ). 

(4.26a) 

(4.26b) 

(4.26c) 

( 4.26d) 

(4.27a) 

(4.27b) 

With (4.26) and (4.27), and by changing the order of summation, we find for the first 
term of (4.25), 

rE BE+ rw sw = rE SE+ (rE + O(hr))(-sE + O{h2 )) 

= 0w+2) + O(hr+l). 

Hence, a pth-order consistent discretisation requires 

q > p, 

r - 1 :2: p, 

( 4.28a) 

(4.28b) 

It can easily be shown that all other terms in ( 4.25) give an 0( hP) or smaller contributions 
to Tri provided p, q, s "?. 1 and ( 4.28) are satisfied. 

Weak consistency 

For weak consistency and its requirements with respect to reconstruction, we consider a 
cell nL and all its descendants when the composite grid is n times refined. The definitions 
of the previous subsections hold, but a superscript specifying the level and a subscript for 
the cell number are added. The superscript n denotes level l + n, subscript r denotes cell 
index 2ni + r and subscript s denotes index 2nj + s. The collective local discretisation 
error is now given by 

{T~(q)}L =A~. 2i:l A~.rr~.(q). 
i.1 r.s=O 

(4.29) 

With r 1(q) = r~(q) + r;(q), we have 

( 4.30) 
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Assume the numerical flux F((wLR)~.s,k) across cell face an~s,k to be an O(hi+n) accurate 
approximation of the mean flux l:.~.k(q). We have 

F((wLR)~ •. k)s~s.k = 1;,~,k(q)s~s,k + O(h[t~). (4.31) 

Substitution of ( 4.31) and ( 4.30) into ( 4.29) yields a summation over all cell faces on the 
·outer' boundary 80~,s.k C 80l.j,k' l:/k E D. We consider k = W and n ---> oo. For the 
contribution of the approximations on these cell faces to {T~}L we find with (4.31) 

"n-1 

A~. -L (F((wLR)o .•. w)so .•. w - 1;.~.w(q)so .•. w) 
!.J s=O 

= A~ . 2i:1 
( C1hit; + O(h[t~)) 

•.J s=O 
= C2hf+n + O(hit;), 

where C1 and C2 are constants independent of the level n. Similar results hold for 
k = N, E, S. Hence, if we have an O(hi+nl accurate approximation of the mean value 
along a cell face of the flux across the cell face, then the collective local discretisation er
ror is O(hi+nl and hence. the approximation is qth-order weakly consistent. So, a weakly 
consistent approximation of order p = 1, 2, is obtained by pth-order accurate approxima
tion of the mean flux. Let the reconstruction error be defined by ( 4.24). By the fact that 
the quadrature rule yields a second-order contribution, and by expansion of F( w) around 
the mean w~~~, it follows that a reconstruction error of order p = 1, 2, yields a pth-order 
weakly consistent discretisation. 

Note that consistency of order p = 1, 2, implies weak consistency, since a necessary 
but not sufficient condition for consistency is a reconstruction error of order p, as given 
by (4.28a). 

5 Interpolations for virtual states 

In this section we study a procedure for the computation of the virtual states. We consider 
a grid in the physical domain obtained by an affine mapping M1 = M. An analysis 
for more general mappings would probably require an invariant description in general 
coordinates, similar as e.g. in [11]. We derive expressions for the error of the discretisation 
due to the computation of the virtual states. For an affine mapping M and a function q 
we have 

I -I I 1 h -Q;J={Rq};J=h2 _ 1 qdO, 
I !li.; 

This simplifies the analysis, since we can express all in computational (f., TJ) coordinates. 
We first establish the accuracy of the virtual states for first and second-order accurate 
discretisations. 

We assume a sufficiently smooth function q, and a Taylor series expansion, given by 

q = qo + q1~ + Q2rJ + q3f,2 + q4f.rJ + q5ry2 

+ Q6f,3 + q1f.2ri + Qsf.ri2 + QgrJ3 + ... , 

around the centre of the cell OL. We consider the equations for a cell O~t!i,2j+l• where 
an~t~l,2j+l,E is part of the green boundary on level l + 1. The virtual state v~t~2,2j+l 
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required for these equations. is an approximation of the mean of q on w~tJ2,2j+i · This 
mean can be expressed as 

(5.1) 

This equals q&tJ2•2J+ 1 in the situation (2i + 2. 2j + 1) E / 1, since w&TJ2,2j+I is the part of fi 
that would be !1~tJ2. 2J+l if the grid would be sufficiently refined (cf. (3.13)). In [17] it is 
shown that q~tJ2,Zi+1 (and hence (5.1)) satisfies the requirements for consistency (4.28), 
for the reconstructions discussed in Section 3.4. For any virtual state v~tJ2 •2j+1 that differs 
C'.J(hf+i), p = 1, 2 from (5.1), the reconstructions discussed in Section 3.4 do not satisfy the 
consistency requirements and introduce an C'.J(hf;11) error in the equations for !1~tJ 1 ,2J+ 1 . 
However, the numerical flux will be a pth-order accurate approximation of the mean value 
of the exact flux, and hence pth-order consistency in the weak sense is obtained (cf. 4.5). 

5.1 Virtual states for weak consistency 

For pth-order weak consistency we only require a pth-order accurate approximation of the 
mean flux across a cell face. We consider virtual states for both first and second-order 
weak consistency. 

First-order 

The formula for a first-order accurate virtual state u&tJ2,2j+l is 

For this virtual state we find with the Taylor series expansion 

v~TJ2,2j+1 = qo + 2h1+1q1 + O(hf+1l· 

(5.2) 

(5.3) 

This differs O(hi+il from (5.1). Hence, it yields a zeroth-order error for the equations. 
However, since the virtual state is O(ht) accurate, the reconstruction gives a first-order 
accurate virtual state, which yields a flux computation which is first-order accurate. This 
implies first-order weak consistency. 

0 0 x 

x 
"a / 

Figure 5.1: Virtual state for first-order weak consistency on a locally refined grid; o: avail
able state; •: left or right state; x: virtual state. 
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Second-order 

A similar situation for second-order weak consistency is found, if the virtual states are 
computed with the second-order accurate formulas 

l+l 
V2i+2,2j+l 

l+l 
V2i+3,2j+l 

(5.4a) 

(5.4b) 

A · h . 1 1+1 . . . t. f th f 1+1 · gam, t e virtua state v2i+2,2i+1 1s an approx1ma 10n o e mean o q on w2i+2,2j+l> given 
in (5.1). For the virtual state computed in this way, we have 

l+l 
'V2i+2,2j+l (5.5) 

A similar result is obtained for v~t.1:3.Zj+i · Apparently, this is a second-order accurate 
approximation of (5.1). Similar to the first-order weakly consistent situation, the consis
tency requirements (4.28) are not satisfied for p = 2. However, the flux is second-order 
accurate, hence (5.4) yield second-order weak consistency. These formulas are two of a 
number of possible choices for second-order accurate virtual states. We have chosen these 
for their relative compactness and their symmetry. They are symmetric with respect to 
the diagonal through the centres of DL+l and Dl+i,j· A virtual state required for e.g. 

D~t~2 ,2j+2 with 8!.12;+2,2j+2,s, which is a part of the green boundary on level l + 1, exactly 
results in (5.4a). 

n1 : i+2,j;t-1 

······-9:······ ······-<>-······ ······:<?······ 

nl+l 
'°2i,2j+l 

0 

0 1+1 
2i,2j 
0 

-..... -<>- ..... . 

Figure 5.2: Virtual states for second-order weak consistency and first-order consistency 
on a locally refined grid; o: available state; •: left or right state; x: virtual state. 

5.2 Virtual states for consistency 

The requirements to be satisfied for a consistent discretisation, are given by ( -1.28). We 
consider both first and second-order consistency. A pth-order consistent discretisation for 
equations for cells near green boundaries requires a (p + l)st accurate computation of 
virtual states. 

34 



First-order 

First-order consistency can be obtained by second-order accurate computation of virtual 
states. For this the formulas (5.4) are applied. From (5.1) and (5.5) it is clear that the 
requirements (-!.28) are satisfied for p = 1, if they are satisfied by q~t~2 •2j+l when n~t~2•2j+l 
would exist. This is shown to be the case in [17]. 

Second-order 

Similarly a third-order accurate computation of the virtual state is required for second
order consistency. This causes no extra second-order error with respect to the situation 
where O~t;2 .21 + 1 would exist. As shown in [17], in that situation (i.e. n~t;2 ,2j+t exists) a 
second-order accurate discretisation is obtained. 

A third-order accurate computation of virtual states is given by 

l+l - 17 l 1 ( l l l ) 
V2i+2.2j+l - Wqi+lJ + I6 Qi,j + Qi,j+l + qi+l,j+l 

2 ( l l ) - I6 qi+2.j + qi+l.j-1 , 

l+l _ 17 I l ( l l l ) 
V2;+3,2j+l - liiqi+l.j + I6 qi+2J + qi+2,j+l + qi+l,j+l 

2 ( l l ) - I6 qi,j + qi+l,j-1 . 

This is schematically represented in Fig. 5.3. 

- - - - - -4.. - - - . -

f"ll+l 
H2i,2j+l 

0 

012+12. 
'· J 0 

(5.6a) 

(5.6b) 

Figure 5.3: Virtual states for second-order consistency on a locally refined grid; o: available 
state; •: left or right state; x: virtual state. 

These are also chosen from a number of possible alternatives. Apart from compactness 
and symmetry, this choice is based on the size of the in absolute value largest negative 
coefficients. For the present choice, the negative coefficients are smaller in absolute value 
than for possible altematives with similar compactness and symmetry. From the Taylor 
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series expansion of q it can be shown that the virtual state v~tJ2 ,21+ 1 , obtained by (5.6a) 

can be expressed as 

3 lh 7h2 + 3 h2 1{'"\.,1.._1 = I/O+ ;;h1+1q1 +;; ·l+lq2 + 3 l+lq3 4 l+lq4 _,+... . - 3 ' s 3 h3 O(h4 ) +~hf+1qs+72hf+1q6+3h1+1q1+3 l+lqg+ l+I · 

Clearlv this is a third-order accurate approximation of the mean value of q on w&tJ2,2H 1 . 

Ht'lice: since this virtual state does not introduce additional second-order errors in the 
reconstruction, the requirements for consistency ( 4.28) are satisfied for p = 2 and the 
discretisation is second-order consistent. 
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