
Compression from Collisions,
or why CRHF Combiners have a Long Output

Krzysztof Pietrzak

CWI Amsterdam, The Netherlands

Abstract. A black-box combiner for collision resistant hash functions
(CRHF) is a construction which given black-box access to two hash func-
tions is collision resistant if at least one of the components is collision
resistant.
In this paper we prove a lower bound on the output length of black-box
combiners for CRHFs. The bound we prove is basically tight as it is
achieved by a recent construction of Canetti et al [Crypto’07]. The best
previously known lower bounds only ruled out a very restricted class of
combiners having a very strong security reduction: the reduction was re-
quired to output collisions for both underlying candidate hash-functions
given a single collision for the combiner (Canetti et al [Crypto’07] build-
ing on Boneh and Boyen [Crypto’06] and Pietrzak [Eurocrypt’07]).
Our proof uses a lemma similar to the elegant “reconstruction lemma” of
Gennaro and Trevisan [FOCS’00], which states that any function which
is not one-way is compressible (and thus uniformly random function must
be one-way). In a similar vein we show that a function which is not colli-
sion resistant is compressible. We also borrow ideas from recent work by
Haitner et al. [FOCS’07], who show that one can prove the reconstruc-
tion lemma even relative to some very powerful oracles (in our case this
will be an exponential time collision-finding oracle).

1 Introduction

Combiners. A robust black-box (1, 2)-combiner for some cryptographic prim-
itive α is a construction, which given black-box access to two components, se-
curely implements α if either of the two components securely implements α.
More generally, for k ≤ `, one can consider black-box (k, `)-combiners which
securely implement α, if at least k of the ` components the combiner has access
to securely implement α. In this introduction, we will mostly talk about (1, 2)-
combiners (and simply call them combiners), but the results in the paper are
stated for general (k, `)-combiners.

Combiners for CRHFs. Combiners can be used as a hedge against the
failure of a concrete construction: the combiner remains secure as long as at
least one of the two combined constructions is not broken. In light of the many
recent attacks on popular collision resistant hash functions [20, 21], combiners
for CRHFs are of particular practical interest. A function H : {0, 1}∗ → {0, 1}v

is collision-resistant, if no efficient algorithm can find two inputs M 6= M ′ where
H(M) = H(M ′), such a pair (M,M ′) is called a collision for H.1

One trivially gets a (1, 2)-combiner for CRHF by simply concatenating the
outputs of the components:

CH1,H2(X) = H1(X)‖H2(X). (1)

This is a robust combiner for any reasonable definition of “robust”, as a collision
for CH1,H2(.) is also a collision for H1(.) and H2(.). Unfortunately the output
length `Cout of CH1,H2 is twice the output length `Hout of its components, which
makes this combiner not very useful for practical applications, where the output
length is usually a crucial parameter, and doubling it is not an option. The
existence of black-box combiners for CRHFs with “short” output length has first
been investigated by Boneh and Boyen [2] who showed that no “highly efficient”
robust combiner with output length `Cout < 2`Hout exists. Here “highly efficient”
means that the combiner is allowed only one query to each of its components
(thus the combiner (1) who achieves `Cout = 2`Hout is the best “highly efficient”
black-box combiner one can hope for). Subsequently, for the more general case
where one allows the combiner C any number qC of oracle gates, a lower bound
of `Cout ≥ 2`Hout −O(log qC) was proven [16].

In [2, 16] a combiner is defined as a pair (C,P), where the oracle circuit C
defines the construction of the combiner, and the oracle PPTM P is the “security
proof” for C. The security definition requires that for any hash functions H1, H2,
and any collision M,M ′ (i.e. M 6= M ′ and CH1,H2(M) = CH1,H2(M ′)), we have
that PH1,H2(M,M ′) finds a collision for H1 and H2 (here we say that a collision
for Hi is found if P makes two queries X 6= X ′ to Hi where Hi(X) = Hi(X ′)).
This is a good definition, as such a (C,P) clearly achieves what one intuitively
would require from a robust combiner. But when proving impossibility results,
one should try to use a definition which is as general as possible, and ideally
should cover (and thus rule out) any black-box construction which would satisfy
what one intuitively would consider a robust combiner. In this paper we consider
what is arguably the most general definition of black-box combiners for CRHFs.

A General Definition. Informally, we define a randomized black-box com-
biner for CRHFs as a pair (C,P), where C is a randomized oracle circuit, and
the oracle PPTM P is the security reduction. For 0 ≤ ρ ≤ 1, we say that an
oracle B ρ-breaks CH1,H2 , if on input some randomness R the oracle B outputs a
collision for CH1,H2(R, .) for at least a ρ fraction of the R’s. The combiner (C,P)
is ρ-robust if for any H1, H2 and any B which ρ-breaks CH1,H2 the PPTM P
in the random experiment PB,H1,H2 (let us stress that P can query its oracles
B, H1, H2 adaptively) finds a collision for H1 and a collision for H2 with high
probability.

1 This definition is intentionally kept informal as there are some issues which make it
tricky to have a definition for collision-resistant hash-functions which is theoretically
and practically satisfying, see e.g. [18] for a discussion.

Thus if (C,P) is ρ-robust, by picking the randomness for CH1,H2 uniformly
at random, with probability at least 1 − ρ we will get a construction which is
secure if either H1 or H2 is. A combiner (C,P) is efficient, if C and P make a
polynomial number of oracle queries, and robust if it is ρ-robust with ρ ∈ o(1).2

Remark 1 (on the definition). In practice it’s not enough to require that C and
P make a polynomial number of queries, one would require that their total running
time is polynomial. One would also require ρ-security where ρ is negligible, not only
ρ ∈ o(1). But keep in mind that we want to prove an impossibility result, so using such
an “undemanding” definition makes the impossibility result actually stronger.

Combining CRHF Families. In our definition, the (randomized) combiner is
instantiated with two hash-functionsH1, H2. A seemingly more general definition
would allow an instantiation of the combiner with two families H1,H2 of hash
functions, and only require that the reduction PB,H1,H2 outputs a collision for
some h1 ∈ H1 and some h2 ∈ H2. Here the combiner CH1,H2(R,M) can query
different, adaptively chosen functions from H1 and H2. Our impossibility also
rules out the case where one considers combiners for families as just described,
the reason is that we can always view a single hash function Hb : {0, 1}∗ →
{0, 1}v as a family Hb = {0, 1}k × {0, 1}∗ → {0, 1}v (where the first k bits K ∈
{0, 1}k of the input define the hash function hKb ∈ Hb as hKb (M) = Hb(K‖M)).

Note that a collision M,M ′ for any hKb (.) = Hb(K‖.) ∈ Hb directly gives a
collision K‖M,K‖M ′ for Hb. Thus if (C,P) is not a black-box combiner in our
sense, which we prove by showing that there exist H1, H2,B where PB,H1,H2 does
not output collisions for both, H1 and H2 (except with negligible probability),
it directly follows that PB,H1,H2 will not be able to output collisions for some
hK1 ∈ H1 and some hK

′

2 ∈ H2 either.

The Main Result. Theorem 1 in this paper states that no black-box combiners
exist whose output length `Cout is significantly smaller than what can be achieved
by concatenation. For the special case of (1, 2)-combiners, where concatenation
achieves a length of 2`Hout, this means that no efficient and robust combiner
exists whose output length satisfies `Cout = 2`Hout−ω(log `Hout). This result is tight
because `Cout = 2`Hout −Θ(log `Hout) is achievable as we’ll explain in Section 2.

The Canetti et al Lower Bound. Randomized combiners for CRHFs have
recently been considered by Canetti et al.[3],3 who proved a basically tight `Cout ≥
2`Hout −O(log `Hout) lower bound on the output length for randomized combiners
using a definition which is basically equivalent to the one in this paper, but with
the restriction, that the reduction P is only allowed a single query to the breaking
oracle B. We see no good reason to motivate this restriction on the reduction,

2 By ρ ∈ o(1) we mean that ρ ∈ o(`Hout)/`Hout, i.e. ρ drops below any constant for a
sufficiently large security parameter which w.l.o.g. will be the output length `Hout of
the components Hi

3 Let us mention that the main topic of their paper is security amplification, not
combiners, for CRHFs.

except for the fact that the existing combiners are of this form. In particular, a
reduction which needs, say any two different collisions4 for the combiner in order
to break the components, would still be perfectly convincing.

Related Work We only consider black-box combiners, and not general combin-
ers, where the combiner gets a full description (e.g. as a circuit) of the underlying
primitives and thus is not limited to access the primitives in a black-box manner.
This can be justified by noticing that most known cryptographic constructions
(not only of combiners) are black-box, which means that the construction only
uses the input/output behaviour of the underlying components, and moreover
the security proof is black-box, which means that the reduction only uses a
successful adversary against the construction in a black-box fashion in order
to break the security assumption on the underlying component, such construc-
tions are called “fully black-box” in the taxonomy of [17]. The few exceptions of
non black-box constructions (notably the GMW construction of zero-knowledge
proofs for NP [7] and Barak’s work [1]), are very inefficient. Thus even if non
black-box combiners with short output should exist, it would be very surpris-
ing if they actually were of any practical relevance. The motivation to restrict
oneself to black-box constructions is that it is often feasible to rule out such
constructions, by using the fact that a black-box reduction is relativizing, i.e. it
holds relative to any oracle. Thus a way to rule out the existence of a black-box
construction of some primitive α from some primitive β, is to come up with a hy-
pothetical (usually non-efficient) oracle, such that relative to this oracle β exists,
but α does not. This technique was introduced by Impagliazzo and Rudich, who
in their seminal paper [11] prove the impossibility of a black-box construction of
key-agreement from one-way functions. Another classical result along this line
due to Simon [19] proves the impossibility of constructing CRHFs from one way
functions, the breaking oracle in this paper is inspired by this work.

Kim et al. [12] were the first to consider lower bound on the efficiency (as op-
posed to mere feasibility) of black-box constructions. They prove a lower bound
on the number of calls to a one-way permutation needed to implement a pseu-
dorandom generator (a thigh bound was subsequently proven in [6]).

The concept of a combiners has first been explicitly considered by Herzberg
[10] (who called them “tolerant constructions”) and later by Harnik et al. [9], who
coined the term “robust combiner”. For many natural cryptographic primitives
like one-way functions, PRGs or CRHFs (1, 2)-combiners are trivially seen to
exist. For other primitives like commitments and oblivious transfer the question
is open [9, 10, 13, 14].

As mentioned already in the introduction, combiners for CRHFs have been
investigated by [2, 3, 16]. Fischlin and Lehmann [4] consider CRHFs combiners
in an ideal setting, and in this setting are able to give a construction which
is more secure than any of its components. Fischlin, Lehmann and Pietrzak

4 Here “different collision” can either mean two different collisions for CH1,H2(R, .) and
any randomness R, or a collision for CH1,H2(R, .) and (a not necessarily different
one) for CH1,H2(R′, .) where R 6= R′.

recently constructed a robust (1, 2)-combiner for hash-functions with output
length 2`Hout, which simultanousely combines several properties, namely collision-
resistance, target collision-resistance, message authentication, pseudorandom-
ness, one-wayness and – at the price of a slightly longer output – indifferentia-
bility from a random oracle [5].

2 Combiners for CRHFs: Definition and Constructions

Notation and some Basic Definitions For X,Y ∈ {0, 1}∗ we denote with
X‖Y the concatenation of X and Y . For a ∈ N we denote with [a] the set
{0, 1, . . . , a − 1} and 〈a〉b denotes the binary representation of a, padded with
0’s to length b, e.g. 〈5〉6 = 000101. A pair M,M ′ is a collision for a function
F if F (M) = F (M ′) and M 6= M ′. We call M,M ′ a pseudocollision for F if
F (M) = F (M ′) (but not necessarily M 6= M ′). With X ∗← X we denote that X
is assigned a value chosen uniformly at random from the set X .

PPTM stands for Probabilistic Polynomial time Turing Machine. An ora-
cle PPTM A (oPPTM for short) is a PPTM with an extra oracle tape, where
AO1,...,Oz denotes the random experiment where A runs having access to the
oracles O1, . . . ,Oz via its oracle tape: A can write a query (i,X) on the tape,
and in the next step the value Oi(X) is written on the tape. Let

qryOi(AO1,...,Oz)

denote the queries that A makes to the oracle Oi. In this paper, the oracles
will always be hash functions H1, H2, . . . and possibly a breaking oracle B. The
collision predicate colHi is defined for the random experiment AH1,...,H` and
holds if A finds a collision for Hi, i.e. A makes two distinct queries X,X ′ to Hi

where Hi(X) = Hi(X ′), formally5

colHi(AH1,...,Hz) ⇐⇒ ∃X,X ′ ∈ qryHi(AH1,...,Hz) : X 6= X ′ ∧Hi(X) = Hi(X ′)

More generally, for H ⊆ {H1, . . . ,H`} we define the predicate

colH(AH1,...,Hz) ⇐⇒ ∀Hi ∈ H : colHi(AH1,...,Hz)

which holds if A finds a collisions for all Hi in H. Finally

colt(AH1,...,Hz) ⇐⇒ ∃H ⊆ {H1, . . . ,H`}, |H| = t : colH(AH1,...,Hz)

holds if A finds collisions for at least t of the Hi’s.

Definition 1 (Randomized Black-Box Combiner For CRHFs). Con-
struction: A randomized (k, `)-combiner for CRHFs is a pair (C,P) where C
is an oracle circuit C : R× {0, 1}m → {0, 1}n and P is an oracle PPTM.

5 Note that we e.g. write simply colH(AH) to denote “the predicate colH is satisfied in
the random experiment AH”, with ¬colH(AH) we denote the complementary event.

Reduction: An oracle B ρ-breaks CH1,...,H` if B(R) outputs a collision for
CH1,...,H`(R, .) for at least a ρ-fraction of the possible choices of the randomness
R ∈ R, and ⊥ on the remaining inputs.

(C,P) is ρ-robust (where ρ can be a function of v ∈ N) if for all H1, . . . ,H` :
{0, 1}∗ → {0, 1}v and any oracle B which ρ-breaks CH1,...,H` the PPTM P in
the random experiment PB,H1,...,H` finds collisions for at least ` − k + 1 of the
Hi’s with probability at least .9, i.e.

Pr
H1,...,H`,P ′s coins

[col`−k+1(PB,H1,...,H`)] ≥ .9 (2)

Efficiency: Let qC denote the number of oracle gates in C, and qP be an
upper bound on the number of oracle queries made by P , where we do not count
oracle queries to B where the answer is ⊥ (as we want to prove a negative result,
not accounting for such queries makes the negative result stronger). Then the
combiner (C,P) is efficient if qC and qP are polynomial in v.
Security: An efficient combiner (C,P) is robust, if it is ρ-robust where ρ =
ρ(v) is smaller than any positive constant for sufficiently large v.

Remark 2 (on the constant .9). The probability .9 in (2) is over the random coins
of P . We chose to fix this probability to the arbitrary constant .9 instead of adding an
additional parameter in the security definition, as the constant .9 can be replaced with
any value ε where ε is noticeable6 and bounded away from 1 by some exponentially
small amount, by changing the running time of P only by a polynomial factor. The
reason is that if some efficient combiner (C,P) satisfies (2) for some ε (instead .9),
then for any z = poly(v), we get an efficient combiner (C,Pz) which satisfies (2) with
probability 1− (1− ε)z, where Pz simply simulates P z times using fresh random coins
for each run.

Concatenation Combiner. We trivially get a robust and very efficient (k, `)-
combiner, by concatenating the output of any `− k + 1 of the components.

CH1,...,H`(R,M) = H1(M)‖H2(M)‖ . . . ‖H`−k+1(M). (3)

This combiner is an ρ-robust (k, `)-combiner for any ρ > 0, where

n = (`− k + 1)v qC = `− k + 1 qP = 1

The reduction P achieving the above parameters, simply queries the oracle B on
distinct R ∈ R until it gets a collision (as ρ > 0, there will be at least one).

Random Concatenation Combiner As a generalization of the previous com-
biner, we can consider the combiner C : [

(
`
c

)
] × {0, 1}m → {0, 1}n where we

concatenate the output of c randomly chosen components. For c < `− k+ 1 this
combiner has shorter output than (3), but also is only ρ-robust for a ρ which is
bounded away from 0 by a constant, and thus is not a “robust combiner”. The
only reason we mention this construction here is to make clear, that the upper
bound on ρ which we will need in our impossibility result is necessary.
6 i.e. at least 1/poly(v) for some positive polynomial poly.

Below each R in the randomness space [
(
`
c

)
] is parsed as a c element subset

1 ≤ R1 < R2 < . . . < Rc ≤ ` of [`].

CH1,...,H`(R,M) = HR1(M)‖HR2(M)‖ . . . ‖HRc(M)

In the full version of the paper we prove that this combiner is a ρ-robust (k, `)-
combiner for any ρ >

(
`−k
c

)
/
(
`
c

)
with parameters

n = cv qC = c qP = `− k + 2− c

Thus efficient ρ-robust (k, `)-combiners with output length (` − k + 1)v exists
for any ρ > 0, on the other extreme, we can get (by setting c = 1 in the above
construction) ρ-robust combiners for any ρ > 1 − k/` with an output length of
only v. This can be slightly improved as we’ll describe now.

The Canetti et al (1, 1)-Combiner. A remarkable construction of Canetti et
al [3] is a (1, 1) black-box Combiner S which, from any CRHF H with range v,
constructs a CRHF SH with range v−∆. Unfortunately, for efficient combiners,
∆ must be logarithmic, as the running time of S increases exponentially in ∆.

We will shortly sketch the idea of the Canetti et al. combiner, for the detailed
construction of that combiner we refer the reader to the original paper [3]. Let
H : {0, 1}w → {0, 1}v be a hash function. First one finds a string γ ∈ {0, 1}∆
where for a random z, the prefix of H(z) is γ with good probability.7 Let H̃(z)
denote H(z) but with the first ∆ bits deleted, and let

Z := {z ∈ {0, 1}w : the prefix of H(z) is γ}

Note that any collision z, z′ for H̃ where z, z′ ∈ Z is also a collision for H, as

H(z) = γ‖H̃(z) = γ‖H̃(z′) = H(z′)

Thus we have constructed a CRHF H̃ : Z → {0, 1}v−∆ from a CRHF H :
{0, 1}w → {0, 1}v. This is almost a (1, 1)-combiner with output length v − ∆,
except that the domain is some strange set Z. We must somehow map {0, 1}w′

where w′ > v injectively to a (subset) of Z in order to get a CRHF {0, 1}w′ →
{0, 1}v. As shown in [3] this can be achieved, albeit inefficiently in time 2∆.

One can replace the Hi’s with SHi in the combiners considered before in
order to get shorter output, e.g. for the concatenation combiner (3) we get

“Shrinked” Concatenation Combiner: The combiner (with S as above)

CH1,...,H`(R,M) = SH1(M)‖SH2(M)‖ . . . ‖SH`−k+1(M) (4)

satisfies for any ρ > 0

n = (`− k + 1)(v −∆) qC = 2O(∆)(`− k + 1) qP = O(2∆)

7 The expected probability for a random γ is 2−∆, we’re fine with anything not much
smaller than that, say 2−∆−1, such a good γ can be found by sampling.

Main Theorem. In this paper we’ll prove that the bound achieved by the
combiners (4) is basically tight.

Theorem 1 (Main). If (C,P), where

C : {0, 1}m → {0, 1}n

is an efficient and robust randomized (k, `)-combiner for CRHFs with range
{0, 1}v, then

n ≥ (`− k + 1)v −O(log(qC)).

This theorem is stated in asymptotic terms so it is easy to parse, but we prove
a quantitative statement. The quantitative statements are given by Proposition
3 for the special case of (1, 1)-combiners, and in Proposition 4 for general (k, `)-
combiner. In particular, the exact meaning of “efficient” in the theorem above
is given by equation (30), where qBP and qHP denote an upper bound on the
number of oracle queries the reduction P makes to the breaking oracle and to
the candidate hash functions respectively, so qP = qBP + qHP . Throughout the
paper we assume w.l.o.g. that qBP , q

H
P and qC are at least one.

Lower Bounds for Restricted Combiners. A result analogous to the state-
ment of Theorem 1 has been proven for restricted cases of combiners. Starting
with [2], who proved it for deterministic combiners (i.e. where R in Definition 1
is empty), and where the construction C was only allowed to query each Hi

exactly once. A simpler proof without the latter restriction (but still determinis-
tic) was subsequently given in [16]. The proof was further simplified in [3], who
also for the first time considered the randomized case, but under the restriction
that the reduction P queries the breaking oracle at most once. This special case
seems much easier to prove than the general one. As the main idea behind the
proof of the special case, which is a probabilistic argument, is also used in the
proof of the general case, we give the full statement and proof of the special case
below.

Proposition 1 (following [3]). For some n,m, v with m > n, assume that
(C,P) where

C : {0, 1}m → {0, 1}n

is a 1-robust (k, `)-combiner for CRHFs with range {0, 1}v, with the additional
constraint that P is querying the breaking oracle only once. Let ε denote the
success probability (over P ’s random coins) of P , i.e. for any breaking oracle B
which on input R outputs a collision for CH1,...,H`(R, .) 8

∀H1, . . . ,H` : Pr
P ′s coins

[colk+1(PB,H1,...,H`)] ≥ ε

8 Here Remark 2 (after Def.1) does not apply, as now we can’t run P several times to
amplify ε as we’re only allowed one query to B. So unlike in the general case where
we arbitrarily set ε = .9, here it is necessary to keep ε as a parameter.

Then the output length n of C satisfies

n ≥ (`− k + 1)(v + 1− 2 log qP)− log(
(

`

`− k + 1

)
) + log(ε) + 1 (5)

Before we prove the proposition, let us remark that for the practically relevant
case where P is efficient and ε is noticeable, (5) can be written as

n ≥ (`− k + 1)(v −O(log v))

which, up to the constant hidden in the O term, matches parameters of the
combiner (4).

Proof. We will only prove the case for k = 1 and ` = 2 and explain at the end
how to adapt the proof for the general k and `.

Let A be any oracle PPTM making at most qA oracle queries and H :
{0, 1}∗ → {0, 1}v be uniformly random. The probability that any two (distinct)
queries made by A to H give a collision for H is 1/2v, taking the union bound
over all qA(qA − 1)/2 possible pairs of queries

Pr
H,A′s coins

[colH(AH)] ≤ qA(qA − 1)/2v+1 < q2A/2
v+1. (6)

Now consider an oracle PPTM A which expects two oracles, making at most qA
queries to each of them. Let H1, H2 : {0, 1}∗ → {0, 1}v be uniformly random
and independent. As the Hi’s are independent, the probability that P will find
collisions for both is the product of what we had in eq.(6).

Pr
H1,H2,A′s coins

[colH1,H2(AH1,H2)] ≤ (q2A/2
v+1)2 (7)

Now let (C,P) be a combiner as in the statement of the proposition. Let A be
an oracle PPTM where AH1,H2 simulates PB,H1,H2 , but answers the (single) B
query R made by P with random M

∗← {0, 1}m,M ′ ∗← {0, 1}m. Note that P
will output collisions for H1, H2 with probability ε conditioned on the event that
M,M ′ is a collision for CH1,H2(R, .).

Pr
H1,H2,A′s coins

[colH1,H2(AH1,H2)]

≥ Pr[colH1,H2(PB,H1,H2)] · Pr[M 6= M ′ ∧ CH1,H2(R,M) = CH1,H2(R,M ′)]
≥ ε · (2−n − 2−m) ≥ ε · 2−n+1 (8)

Where in the last step we used m > n which holds as C is shrinking. Now by
(7) and (8) we must have ε · 2−n+1 ≤ (q2P /2

v+1)2, solving for n gives

n ≥ 2(v + 1− 2 log qP) + log(ε) + 1

which is (5) for the case where k = 1, ` = 2. For the general case of (k, `)-
combiners, we can similarly upper and lower bound the probability of a PPTM
A in finding collision for at least `− k + 1 of its ` oracles as

ε · 2−n+1 ≤ Pr
H1,...,H`,A′s coins

[col`−k+1(AH1,...,H`)] ≤
(

`

`− k + 1

)
(q2P /2

v+1)`−k+1

Solving this inequality for n then gives

n− 1 ≥ (`− k + 1)(v + 1− 2 log qP)− log(
(

`

`− k + 1

)
) + log(ε). �

3 Proof Outline

We will prove our main result gradually, introducing new techniques and ideas
in each step. First, in Lemma 1 we show that a uniformly random function is
collision resistant, using the fact that such a function cannot be compressed.
Based on this technique, we then prove Proposition 3 which implies Theorem 1
for the special case k = ` = 1. Finally, Proposition 4 proves the general case.
Due to space reasons, the proof of Proposition 4 is only given in the full version
of the paper [15].

Collisions imply Compressibility, Section 4. Gennaro and Trevisan [6] give
a very elegant proof that a uniformly random permutation π : {0, 1}v → {0, 1}v
is one-way against poly-size, non-uniform adversaries. On a high level, they show
that if P is an efficient9 adversary which inverts π on many inputs, i.e. for many
x we have Aπ(π(x)) = x, then π has a “short” description relative to P . This
is impossible as a uniformly random π is incompressible, and thus such an P
cannot exist (i.e. π is one-way).

We adapt this proof in order to show that a uniformly random function H :
{0, 1}w → {0, 1}v is collision resistant. This has been independently discovered
by the authors of [8], the proof given in this paper is due to Thomas Holenstein
(via personal communication with Iftach Haitner), and is much simpler than the
one we had originally.

Lower Bounds for Black-Box Combiners via Incompressibility. The just
sketched proof is by no means the easiest way to show that a uniformly random
function is collisions resistant.10

The advantage of such a “incompressibility based” proof is that it extends to
the case where P additionally gets access to a carefully defined “combiner break-
ing” oracle B, which itself can make much more queries to the hash function(s)
than what is needed to find collisions for uniformly random functions with out-
put length v bits (which means roughly 2v/2 queries), as we’ll explain below. This
approach is inspired by a recent work of Haitner et al [8], the Gennaro-Trevisan
reconstruction lemma [6] and Simon’s breaking oracle [19].

9 Here efficient means that the number of oracle queries made by P must be much
smaller than what would be required to invert π by brute force search (but can still
be exponential).

10 The straight forward way to prove this, is to argue that for any two distinct queries
Xa, Xb made by P we have Pr[H(Xa) = H(Xb)] = 2−v, and thus by taking the
union bound over all q(q− 1)/2 pairs of queries, the probability that there exist any
Xa, Xb where H(Xa) = H(Xb) is at most q(q − 1)/2v+1.

Lower bound for (1, 1)-combiners, Section 5. In order to rule out the
existence of an efficient ρ-robust black-box combiner (C,P) with output length
n = v − ω(log v), one must come up with oracles H,B such that

– CH : {0, 1}r × {0, 1}m → {0, 1}n is not collision resistant, in the sense
that B(R) outputs a collision for CH(R, .) on at least a ρ-fraction of the
R ∈ {0, 1}r.

– H : {0, 1}w → {0, 1}v is collision resistant (even relative to B), in the sense
that the probability that PH,B finds a collision (where the probability is over
the random coins of P) is small, which means < 0.9 (cf. Remark 2).

The oracle hash function H : {0, 1}w → {0, 1}v is chosen uniformly at random.
The breaking oracle B samples, for each possible input R ∈ {0, 1}r, a random
pseudocollision ZR, Z ′R for CH(R, .). On input R the oracle B outputs ZR, Z ′R if
this is a “safe” collision, by which we mean that the H queries needed in order
to evaluate CH(R,ZR) and CH(R,Z ′R) do not contain a collision for H. If the
collision is not safe, then B(R) outputs ⊥.

Using the fact that the output length n of CH is by ω(log v) bits shorter than
the output length of H, one can show (using a probabilistic argument like in the
proof of Proposition 1), that with high probability most collisions ZR, Z ′R will
be safe, and thus B will ρ-break CH for a ρ which is exponentially close to 1.
This is the only part of the proof where we use the fact that C has short output.

It remains to prove that P cannot find collisions for H, even with the powerful
combiner breaking oracle B. Intuitively, B should not be of much help in finding
collision for H, as it only returns random collisions for CH(R, .) which are “safe”
(as described above), and thus do not (at least trivially) give collisions for H. To
actually prove this, we show that if PH,B finds collisions with high probability,
then we can use P to compress H, which is impossible as H is uniformly random,
thus such a P cannot exist.

KKLower bound for (k, `)-combiners, Section 5. To rule out the existence
of an efficient ρ-robust (k, `)-black-box combiner (C,P) with output length n =
(`− k+ 1)v− ω(log v), we will construct ` hash functions H1, . . . ,H`

def= H` and
a breaking oracle B which ρ-breaks CH

`

, but at least k of the Hi’s are collision
resistant even relative to B. The ρ we achieve will be exponentially close to 1/

(
`
k

)
,

which is tight because (as explained in the last section) for ρ > 1/
(
`
k

)
combiners

with output length only (` − k + 1)v exist. The H` = H1, . . . ,H` : {0, 1}w →
{0, 1}v are chosen uniformly at random. The breaking oracle B samples, for each
R ∈ {0, 1}r a collision ZR, Z ′R for CH

`

(R, .) (or, a pseudocollision to be precise,
as there’s a tiny 2−m probability that ZR = Z ′R). We say that ZR, Z ′R is a safe
collision for Hi, if the evaluation of CH

`

(R, .) on inputs ZR, Z ′R does not contain
a collision of Hi. By a probabilistic argument, one can show that with high
probability a random collision will be safe for at least k of the Hi’s (here we
need the fact that the output length of C is short). This again implies that there
exists a subset Γ ⊂ {1, . . . , `} of size k, such that for (almost) a 1/

(
`
k

)
fraction

of the R’s, let’s call it RΓ , the collision ZR, Z ′R is safe for all the Hi with i ∈ Γ .

Now B on input R outputs ZR, Z ′R if R ∈ RΓ , and ⊥ otherwise. Intuitively, the
Hi where i ∈ Γ should be still be collision resistant even relative to B. To prove
this we show that if an efficient P exists where PB,H

`

finds a collision for any
Hi where i ∈ Γ with high probability, then this Hi can be compressed, which is
impossible as Hi is uniformly random, and thus such a P cannot exist.

4 Collisions imply Compressibility

For a function H : {0, 1}w → {0, 1}v, we denote with H̃ ∈ {0, 1}2wv the function
table of H, which is a binary 2w × v matrix. We number the rows from 0 to
2w − 1, thus the i’th row contains the value H(i). Such a function table can be
uniquely encoded by a bit-string of length 2wv.

A random variable H can be compressed to s bits, if there exists a pair
com, dec of functions (possibly probabilistic using joint randomness) such that
for any t ∈ N and H̃1, . . . , H̃t being independent instantiations of H, we have

EeH1,..., eHt[|com(H̃1, . . . , H̃t)|] ≤ t · s (9)

PreH1,..., eHt[dec(com(H̃1, . . . , H̃t)) = H̃1, . . . , H̃t] = 1 (10)

As already proved by Shannon, a function table which is chosen uniformly at
random, cannot be compressed, i.e.

Proposition 2. A uniformly random function H : {0, 1}w → {0, 1}v cannot be
compressed to less than 2wv bits.

By the following proposition, any function H for which there exists an efficient
collision finding algorithm P , can be compressed.

Lemma 1. Let P be an oracle PPTM which makes at most qP oracle queries.
Let H be a random variable taking as value functions {0, 1}w → {0, 1}v. For
0 ≤ δ ≤ 1, if P finds a collision with probability δ:

Pr
H,P ′s coins

[colH(PH)] = δ (11)

then H can be compressed to

1 + 2wv − δ(v − 2 log(qP)) bits. (12)

Using Proposition 2 we get the following Corollary

Corollary 1. Let H : {0, 1}w → {0, 1}v be uniformly random, then any P which
for some δ > 0 satisfies eq. (11) makes at least qP ≥ 2v/2−1/2δ oracle queries.

Proof (of Corollary). If H is uniformly random, then by Proposition 2 expression
(12) is at least 2wv which means 1 ≥ δ(v−2 log(qP)), or equivalently v/2−1/2δ ≤
log qP which implies qP ≥ 2v/2−1/2δ by exponentiating on both sides. ut

Proof (of Lemma 1). Consider a variable H taking as values functions {0, 1}w →
{0, 1}v and any PPTM P making at most qP oracle queries. If PH does not
find a collision for H, then we do not compress at all, in this case col(H̃) is
simply a 0 followed by H̃. Otherwise let X1, X2, . . . denote the oracle queries
made by PH and let Xc1 , Xc2 where c1 < c2 denote the collision found. Let
H̃− ∈ {0, 1}(2w−c2)v denote H̃ with the rows X1, . . . , Xc2 (containing the value
H(X1), . . . ,H(Xc2)) deleted. Now com(H̃) is a 1 followed by an encoding of the
indices c1, c2 followed by the first c2 − 1 oracle answers H(X1), . . . ,H(Xc2−1)
and finally H̃−, i.e.

com(H̃) =

{
0‖H̃ if ¬col(PH)
1‖〈c1〉logqP ‖〈c2〉logqP ‖H(X1)‖ . . . ‖H(Xc2−1)‖H̃− if col(PH)

On input more than one function table, com simply compresses each function
table separately, and then concatenates the outputs, i.e.

com(H̃1, . . . , H̃t) = com(H̃1)‖ . . . ‖com(H̃t)

Before we describe the decompression algorithm, let us check that this compres-
sion really achieves the length as claimed in eq.(12). The output length of com(H̃)
is 1+2wv if P does not find a collision for H, which by assumption happens with
probability 1− δ. Otherwise the length is 1 + (c2 − 1)v + (2wv− c2)v + 2 log qP ,
which gives an expected length of

E[|comH̃|] = 1 + (1− δ)2wv+ δ ((2w − 1)v + 2 log qP) = 1 + 2wv− δ(v− 2 log qP)

as claimed. The decompression algorithm dec, on input T = com(H̃1, . . . , H̃t)
first parses T into com(H1) to com(Ht) which can be done as the length (there
are only 2 possibilities) of com(H1) can be uniquely determined reading only
the first bit. We can then strip off com(H1), the first bit of the remaining string
determines the length of com(H2), and so on. We thus must only show how
to decompress a single compressed function table T = com(H̃). On input T =
com(H̃), dec parses T as b‖T ′, where b ∈ {0, 1}. If b = 0 the output is T ′ and
we are done. Otherwise parse T ′ as

〈c1〉logqP ‖〈c2〉logqP ‖H(X1)‖ . . . ‖H(Xc2−1)‖H̃−

Now simulate PH up to the point where P asks the c2’th oracle query Xc2 .11

Note that we can answer the first c2 − 1 oracle queries made by P as we know
H(X1), . . . ,H(Xc2−1). Now, by construction we also know H(Xc2), as it is equal
to H(Xc1). We can now reconstruct (and output) H̃ from the reduced table H̃−

as we know all missing values H(X1) to H(Xc2) and also the positions X1 to
Xc2 where to insert them in H̃− in order to get H̃.

11 As P can be probabilistic, we need com and dec to use the same random coins for
P . Alternatively, we can just fix the randomness of P as to maximize Pr[colH(PH)].

Before we continue proving Theorem 1, we need a few more definitions.

Definition 2 (safe collisions, the predicate safeCol). Let H` = H1, . . . ,H`

be ` hash functions and A be an oPPTM. We say that Z,Z ′ is a safe collision
for Hi (with respect to AH

`

)

1. AH
`

(Z) = AH
`

(Z ′) (but not necessarily Z 6= Z ′)
2. during the evaluation of AH

`

(.) on inputs Z and Z ′, there are no two queries
X 6= X ′ to Hi where Hi(X) = Hi(X ′).

We have safeColA
H`

Hi (Z,Z ′) if Z,Z ′ is a safe collision. For any 1 ≤ k ≤ `,

safeColA
H`

k (Z,Z ′) holds if for at least k different i’s, safeColA
H`

Hi (Z,Z ′) holds.

Intuitively, when given Z 6= Z ′ where safeColA
H`

Hi (Z,Z ′), one learns a collision
for AH

`

, but this collision does not (at least trivially) give us a collision for Hi.

Definition 3 (≺). If we consider a random experiment where some oPPTM
runs making queries to its oracle(s). Then for two queries X,Y (not necessarily
to the same oracle) we denote by X ≺ Y that the query X is made before the
query Y is made.

5 Lower bounds

Lower bound for (1, 1)-combiners. In this section we prove a Proposition
which implies Theorem 1 for the special case k = ` = 1. The word “combiner” is
a bit misleading in this case, “shrinker” would be more appropriate, as we ask
for a construction which given access to a hash function H with range {0, 1}v,
gives a hash function whose output length n is “significantly” shorter than v.

Proposition 3 (implies Thm.1 for the special case k = ` = 1). Let C :
{0, 1}r ×{0, 1}m → {0, 1}n be an oracle circuit with input range m := v+ 1 bits
and with qC oracle gates, where for some t > 0

n := v − 2 log(qC)− t (13)

then, if for some oracle PPTM P (which makes qBP oracle calls to the breaking
oracle and qHP oracle calls to the components) it is the case that (C,P) is a
ρ-robust (1, 1)-combiner with ρ := 1− 2−t+3, then for some constant α > 0

v ≤ log qBP + log qC + 2(log(qHP + αqCq
B
P)) + 6 (14)

or equivalently,
2v ≤ qBP · qC · (qHP · αqCqBP)2 · 64

in particular, (C,P) is not efficient, as by the above, either C or P must make
an exponential number of queries.

Remark 3 (on the constant α). A concrete bound on α in (14) can be determined
from the proof of Lemma 4 given in the full version of the paper. A rough estimate
suggests that setting α = 1000 is far on the safe side. This seems large, but note that
only the logarithm of α appears in the expression.

Remark 4 (on the input length). Proposition 3 only rules out combiners which hash
their input down by m − n = t + 2 log qP + 1 bits. This implies impossibility for
the general case, where the input length can be arbitrary as long as the combiner is
shrinking. The reason is that using the Merkle-Damg̊ard construction, one can get a
CRHF with any input length from a CRHF which hashes down only one bit.

The Oracle. We now define the oracles, which consist of the hash function H
and the breaking oracle B. The oracle H is sampled uniformly at random from
all functions {0, 1}w → {0, 1}v. The oracle B will be completely defined by a
function φ : {0, 1}∗ → {0, 1}m which we sample uniformly at random. This φ
defines for each randomness R ∈ {0, 1}r a pseudocollision12 ZR, Z

′
R for CH(R, .)

as follows: ZR := φ(R) and Z ′R := φ(R‖〈i〉), where i is the smallest integer such
that CH(R,ZR) = CH(R,Z ′R). The input/output behavior of oracle B is now
defined as

B(R) =

{
ZR, Z

′
R if safeCol

CH(R,.)
H (ZR, Z ′R)

⊥ otherwise

So B(R) outputs ZR, Z ′R only if this is a safe collision.
To prove that B breaks the security of any combiner, we’ll need the following

technical lemma (for the special case ` = 1), which states that a randomly sam-
pled collision for a combiner CH

`

will be safe for many of the H` = H1, . . . ,H`.
For how many exactly of course depends on the output length of C. For space
reasons we only prove this lemma in the full version.

Lemma 2. For any oracle circuit C : {0, 1}m → {0, 1}n with qC oracle gates,
and ` independent uniformly random functions H` = H1, . . . ,H` : {0, 1}∗ →
{0, 1}v. For X,X ′, sampled as X ∗← {0, 1}m and X ′

∗← CH
`

(X)−1, then for
k ≤ `

Pr[safeColC
H`

k (X,X ′)] ≥ 1−2n−m−(qC(qC−1))`−k+1 ·
(

`

`− k + 1

)
2n−(`−k+1)·v

B 1− 2−t+3 breaks CH . Let IR = 1 if B(R) 6= ⊥ and IR = 0 otherwise. From
Lemma 2 (for ` = 1) if follows that (recall that φ is the randomness used by B)

Pr
H,φ

[IR = 0] ≤ 2n−v−1 + qC(qC − 1) · 2n−v+1 < q2C · 2n−v+1 (15)

Note that B ρ-breaks CH , where ρ is the fraction of R’s for which B(R) 6= ⊥.
By (15) ρ is a random variable with expectation

EH,φ[ρ] = 2−r
∑

R∈{0,1}r
Pr
H,φ

[IR = 1] > 1− q2C · 2n−v+1 = 1− 2−t+1

12 Recall that X,X ′ is a pseudocollision for F if F (X) = F (X ′) but (unlike for colli-
sions) we must not necessarily have X 6= X ′.

where in the last step we used (13). Applying the Markov inequality,13 we get
Pr[ρ < 1− γ2−t+1] ≤ 1/γ for any γ > 0, we will use this bound with γ = 4, i.e.

Pr
H,φ

[ρ < 1− 2−t+3] ≤ 1/4 (16)

Hard to find collisions for H relative to B. We will now show that one
cannot find collisions in H even relative to the powerful oracle B.

Lemma 3. Let (C,P) be as in the statement of Proposition 3 where

v > log qBP + log qC + 2(log(qHP + αqCq
B
P)) + 6 (17)

and
Pr

H,φ,P ′s coins
[colH(PH,B)] ≥ .675 (18)

then H can be compressed below 2wv bits.

Before we prove this lemma, we first how it implies Proposition 3.

Proof (of Proposition 3). let E denote the event that B ρ-breaks CH with ρ ≥
1− 2−t+3, using (16) and the 1− 2−t+3 security of (C,P) in the last step

Pr
H,φ,P ′s coins

[colH(PB,H)] ≥ Pr
H,φ,P ′s coins

[E] · Pr
H,φ,P ′s coins

[colH(PB,H)|E] ≥ 3
4
· 0.9

Assume H is uniformly random, then by Lemma 3 the function table of H can
be compressed below 2wv bits, which contradicts Proposition 2, thus (17) must
be wrong. ut
We split the proof of Lemma 3 into two parts. First, Lemma 4 below states
that from an oPPTM which finds collisions with high probability as required by
eq.(18), we can construct another oPPTM which finds collisions of a special kind,
called “very good collisions”.14 Second, Lemma 5 below states that any oPPTM
which finds very good collisions for H, implies that H can be compressed.

Very Good Collisions. We now define the “very good collisions” predicate
vgCol just mentioned. This predicate has a quite intuitive meaning: vgCol(QH,B)
if there’s a collision, and the H query leading to the collision is fresh, in the
sense that it is not in qryR for some B query R. More formally, for an oPPTM
Q consider the random experiment QH,B, where X1, X2, . . . , Xc2 denotes the H
queries, and R1, R2, . . . , Rj denotes the B queries made by Q. If col(QH,B), let
Xc1 , Xc2 denote the collision found by Q. Let qryR denote all the H queries
one must make in order to evaluate CH(R, .) on the pseudocollision ZR, Z

′
R as

sampled by B, i.e.

qryR := qryH(CH(R,ZR)) ∪ qryH(CH(R,Z ′R)) (19)

Then the very good collisions predicate vgCol(QH,B) holds if

col(QH,B) and the collision Xc1 , Xc2 satisfies ∀R ≺ Xc2 : Xc2 6∈ qryR (20)
13 Unfortunately the IR’s are not independent, thus Chernoff is not an option here.
14 We leave the term “good collision” for an intermediate kind of collision which will

only come up in the proof.

From Good Collisions to Very Good Collisions.

Lemma 4. If for a PPTM P

Pr
H,φ,P ′s coins

[col(PH,B)] ≥ .675 (21)

then there exists a PPTM Q where

Pr
H,φ,Q′s coins

[vgCol(QH,B)] ≥ .5 (22)

and for a constant α

qBQ = qBP qHQ = qHP + αqCq
B
P (23)

We omit the proof of this lemma for space reasons. The basic idea of the proof
is to let QH,B simply simulate PH,B, but whenever P is about to make a B
query R, Q will additionally sample some random V1, . . . , Vα and make all the
H queries needed to compute CH(R, Vi). One can show that if the output P
gets on his B query R is likely to contain a collision (which will not be a very
good collision), then the H queries Q makes, will also be likely to contain a very
good collision. It is the proof of this lemma where we need the fact that B(R)
will output the collision ZR, Z

′
R only if this is a safe collision.

Very Good Collisions Imply Compressibility.

Lemma 5. Let B be an oracle (sampled as described earlier in this section) and
let H be a random variable taking as values functions {0, 1}w → {0, 1}v. If a
PPTM Q satisfies

Pr
H,φ,Q′s coins

[vgColH(QB,H)] ≥ .5 (24)

then for any 0 ≤ γ ≤ 1, H can be compressed to

1 + 2wv − (1− p)(v − γ − 2 log qHQ) (25)

bits, where p := 0.5 + qBQ · qC · 2−γv.

Before we prove this Lemma, let us show how Lemma 4 and 5 imply Lemma 3.

Proof (of Lemma 3). A P as in (18) implies by Lemma 4 a Q as in (22), which
by Lemma 5 implies that H can be compressed to (25) bits. This expression is
less than 2wv (as required by the lemma) if

(0.5− qBQ · qC · 2−γv)(v − γv − 2 log qHQ) > 1 (26)

By setting γv := log qBQ + log qC + 2 the first bracket on the left side of (26)
becomes 1/4, if now v > log qBQ + log qC + 2 log qHQ + 6 + log(`), which by (23) is
exactly the requirement (17) from the lemma, then the second bracket in (26) is
> 4, thus as 1/4 · 4 = 1 (26) holds. ut

Proof (of Lemma 5). The proof is similar to the proof of Lemma 1, except
that now we must additionally handle the breaking oracle B. For this we will
additionally need some shared randomness for com and dec, namely a pairwise
independent function τ : {0, 1}w → {0, 1}γv.

If we don’t have a very good collision, the compression com simply outputs
the whole function table

com(H̃) = 0‖H̃ if ¬vgColH(QB,H)

Otherwise let X1, X2, . . . , Xc1 , . . . , Xc2 denote the H queries, and R1, R2, . . . , Rj
denote the B queries made by QB,H , where Xc1 , Xc2 denotes the collision found
by Q. With qryR as defined in (19), let

X := qryR1
∪ . . . ∪ qryRj

We define the predicate miss as miss ⇐⇒ ∃X ∈ X : τ(X) = τ(Xc2).
The size of X is upper bounded by 2 · j · qC ≤ 2 · qBQ · qC . As we now consider

the case where vgColH(QB,H), we have Xc2 6∈ X (cf. (20)). Further, because τ
is pairwise independent, for any X 6= Xc2 we have Pr[τ(X) = τ(Xc2)] < 2−γv.
Taking the union bound over all X ∈ X

Pr[miss] ≤ Pr[∃X ∈ X : τ(Xc2) = τ(X)]

≤
∑
X∈X

Pr[τ(Xc2) = τ(X)] ≤ |X | · 2−γv ≤ 2 · qBQ · qC · 2−γv (27)

In the case where we have miss, com again simply outputs the whole table.

com(H̃) = 0‖H̃ if vgColH(QB,H) ∧miss

We will now define an oracle Bτ , which almost behaves as B, and in particular,
whenever we have ¬miss in QB,H , then the oracle answers of B in QB are identical
to the answers of Bτ inQBτ ,H . Recall that B on input R samples a pseudocollision
ZR, Z

′
R by setting ZR := φ(R) and then computes, for i = 1, 2, . . ., the value Zi =

CH(R‖〈i〉) until CH(R,ZR) = CH(R,Zi), it then assigns Z ′R := Zi. The oracle
Bτ does exactly the same, but if the evaluation of CH(R,ZR) requires to make an
H query X here τ(X) = τ(Xc2), then Bτ does not make this query, but stops and
outputs ⊥. Also, whenever the evaluation of CH(R,Zi) requires to make an H
query X here τ(X) = τ(Xc2), then Bτ does not make this query, but proceeds
with Zi+1. Note that B(R) and Bτ (R) will find the same pseudocollision, iff
τ(Xc2) 6∈ qryR.

Recall that we now only consider the case where vgColH(QB,H) and ¬miss.
Consider the random experimentQBτ ,H , and let A1, A2, . . . , Aσ, where Aσ = Xc2

denote all the H queries done by Q plus the H queries made by Bτ (in the order
as they are made in the random experiment QBτ ,H up to the “collision finding”
H query Xc2 , but without repetitions). So each H query by Q increases the
sequence A1, A2, . . . at most by one, whereas a Bτ query by Q can increase it
by arbitrary many values. Let H̃− denote the function table of H, but with the

rows A1, A2, . . . , Aσ deleted. The compression algorithm com for the remaining
cases is now defined as

com(H̃) = 1‖τ(Xc2)‖〈c1〉logqQ‖〈c2〉logqQ‖H(A1)‖ . . . ‖H(Aσ−1)‖H̃− (28)

if vgColH(QB,H) ∧ ¬miss (29)

Before we define dec, let us check that this compression really compresses as
claimed by eq. (25). If ¬vgColH(QB,H), or vgColH(QB,H)∧miss then then |com(H̃)| =
2wv + 1. By (24),(27) this happens with probability at most

p := 0.5 + 0.5(2 · qBQ · qC · 2−γv)

Otherwise by (29) |com(H̃)| has length only 1 + (2w − 1 + γ)v + 2 log qHQ . Thus

E[|com(H̃)|] ≤ 1 + 2wv − (1− p)(v − γ − 2 log qHQ)

as required by (25). We now define the decompression: dec(T) parses T as b‖T ′,
if b = 0 then output T ′ which by definition of com is H̃. Otherwise parse T ′ as

τ(Xc2)‖〈c1〉logqQ‖〈c2〉logqQ‖H(A1)‖ . . . ‖H(Aσ−1)‖H̃−

Now simulate QBτ ,H up to the point where Q makes the c2’th H query Xc2 :=
Aσ. As b = 1 means that ¬miss, the simulation of QBτ ,H up to the query Xc2 will
be equivalent to the random experiment QB,H , thus H(Xc1) = H(Xc2), and we
have now all values missing in H̃− in order to reconstruct the full table H̃. ut

Lower bound for (k, `)-combiners. In the full version of this paper [15]
we prove the following Proposition which implies Theorem 1 for general (k, `)-
combiners.

Proposition 4. Let C : {0, 1}r × {0, 1}m → {0, 1}n be an oracle circuit with
input range15 m := ` · (v + 1) bits and qC oracle gates, where for some t > 0

n := (`− k + 1) · (v − 2 log(qC))− t

then, if for some oracle PPTM P which makes qBP oracle calls to the breaking
oracle and qHP oracle calls to its components it is the case that (C,P) is a ρ-robust
(k, `)-combiner with ρ := 1/

(
`
k

)
− 2−t+`+2, then

v ≤ log qBP + log qC + 2(log(qHP + αqCq
B
P)) + 6 + log(`) (30)

in particular, (C,P) is not efficient.

Acknowledgements

I’d like to thank the anonymous reviewers from Crypto’08 for their many helpful
comments and suggestions.
15 Remark 4 applies here too.

References

1. Boaz Barak. How to go beyond the black-box simulation barrier. In FOCS, 2001.
2. Dan Boneh and Xavier Boyen. On the impossibility of efficiently combining colli-

sion resistant hash functions. In CRYPTO, 2006.
3. Ran Canetti, Ronald L. Rivest, Madhu Sudan, Luca Trevisan, Salil P. Vadhan, and

Hoeteck Wee. Amplifying collision resistance: A complexity-theoretic treatment.
In CRYPTO, pages 264–283, 2007.

4. Marc Fischlin and Anja Lehmann. Security-amplifying combiners for collision-
resistant hash functions. In CRYPTO, pages 224–243, 2007.

5. Marc Fischlin, Anja Lehmann, and Krzysztof Pietrzak. Robust multi-property
combiners for hash functions revisited. In ICALP, 2008.

6. Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of generic
cryptographic constructions. In FOCS, pages 305–313, 2000.

7. Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but
their validity for all languages in NP have zero-knowledge proof systems. J. ACM,
38(3):691–729, 1991.

8. Iftach Haitner, Jonathan Hoch, Omer Reingold, and Gil Segev. Finding collisions in
interactive protocols: a tight lower bound on the round complexity of statistically-
hiding commitments. In FOCS, 2007.

9. Danny Harnik, Joe Kilian, Moni Naor, Omer Reingold, and Alon Rosen. On robust
combiners for oblivious transfer and other primitives. In EUROCRYPT, 2005.

10. Amir Herzberg. On tolerant cryptographic constructions. In CT-RSA, 2005.
11. Russell Impagliazzo and Steven Rudich. Limits on the Provable Consequences of

One-way Permutations. In Proc, 21th ACM Symposium on the Theory of Comput-
ing (STOC), pages 44–61, 1989.

12. Jeong Han Kim, Daniel R. Simon, and Prasad Tetali. Limits on the efficiency of
one-way permutation-based hash functions. In FOCS, pages 535–542, 1999.

13. Remo Meier and Bartosz Przydatek. On robust combiners for private information
retrieval and other primitives. In CRYPTO ’06, pages 555–569, 2006.

14. Remo Meier, Bartosz Przydatek, and Jürg Wullschleger. Robuster combiners for
oblivious transfer. In TCC 2007, volume 4392 of Lecture Notes in Computer Sci-
ence, pages 404–418, 2007.

15. Krzysztof Pietrzak. Full version of this paper available at www.cwi.nl/∼pietrzak.
16. Krzysztof Pietrzak. Non-trivial black-box combiners for collision-resistant hash-

functions don’t exist. In EUROCRYPT, pages 23–33, 2007.
17. Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility be-

tween cryptographic primitives. In TCC, pages 1–20, 2004.
18. Phillip Rogaway. Formalizing human ignorance. In VIETCRYPT, 2006.
19. Daniel R. Simon. Finding collisions on a one-way street: Can secure hash functions

be based on general assumptions? In EUROCRYPT, pages 334–345, 1998.
20. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full

SHA-1. In CRYPTO, pages 17–36, 2005.
21. Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions. In

EUROCRYPT, pages 19–35, 2005.

