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Abstract

We present in this paper the Eclipse Coordination Tools (ECT), a set of visual tools for modeling, testing
and executing Reo connector in the Eclipse development environment.
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1 Introduction

Coordination models and languages are a way of dealing with the growing com-
plexity of concurrent systems by separating the active parts performing the com-
putations, i.e. components or services, from those parts that glue these pieces of
software together, i.e. component or service connectors. The task of connectors is
to coordinate the interaction of the components, by enforcing some kind of protocol
from outside, which is also referred to as exogenous coordination. The coordina-
tion language Reo [?] instantiates these very abstract notions with a compositional
channel-based calculus. As a counterpart to this formal framework we present in
this paper the Eclipse Coordination Tools [?]: a set of integrated tools for Reo,
implemented as plug-ins for the Eclipse 3 development environment.

The rest of this paper is organized as follows. We introduce Reo briefly in
Section 2. An overview of the tools is given in Section 3. Conclusions and future
work are presented in Section 4.
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2 Reo Overview

Reo is a channel-based coordination language wherein channels are primitive, user-
defined entities that have two ends which can be either sources or sinks. Source ends
accept data into and sink ends dispense data out of channels. Each channel type
imposes its own constraints on the possible data flow at its ends, e.g. synchrony
or mutual exclusion. For instance, the Sync channel ( ) synchronously reads
data items from its source end and writes it to its sink end without buffering them.
The LossySync ( ) behaves similarly, except that it looses the data when no
one is ready to read it from its sink end. While these two channels are both un-
buffered, the FIFO1 ( ) can store a single data item and release it again when
someone tries to read from it. The SyncDrain ( ) has–unlike the channels
introduced so far–two source ends and hence is not directed. If there are data items
available at each of its ends, this channel consumes both of them synchronously.

Channels can be composed by joining them into nodes. Such a composite struc-
ture is called a connector in Reo and has some similarities with electrical circuits.
As mentioned before, channels are user-defined. However, nodes have a fixed be-
haviour in Reo. A node atomically does a destructive read at one of the sink ends
and replicates the data item at all of its attached source ends. With this simple
behaviour of nodes and a small set of basic channels, complex protocols can be
implemented compositionally, i.e. by just plugging together channels and nodes.

Fig. 1. a) exclusive router, b) ordering connector.

For instance, the exclusive router, shown in Fig. 1a, routes data from A to
either B or C. If both, B and C, are able to receive data the choice is made
nondeterministically. The mutual exclusion that is implemented by this connector
is due to the fact that the internal node I allows input only from exactly one of its
sink ends. The second connector, shown in Figure 1b, imposes an ordering on the
data flow from the input nodes A′ and B′ to the output node C ′. The SyncDrain
synchronises the two inputs and the FIFO1 delays the items from B′.

The minimalistic set of core concepts that Reo introduces is surprisingly power-
ful. A number of formalisms have been invented to model the different facets of Reo
connectors (see, e.g., [?,?,?]). These formalisms are not only nice from the theoret-
ical point of view, but they further serve as a strong basis for implementing Reo.
This includes tools for the modeling and verification of connectors (i.e. interaction
protocols) as well as actual runtime engines.
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3 Tools

The tool suite for Reo consists of development tools for designing and verification
of connectors on the one hand and runtime engines for multiple platforms on the
other. The development tools are implemented as plug-ins for the Eclipse platform.
Front-ends of these plug-ins are referred to as views in following. We now introduce
the core tools separately and give references for further reading where possible.

Editor

One of the key tools in our framework is the graphical Reo editor, which is depicted
in Fig. 2. It not only allows us to design connectors by simple drawing operations,
but it serves also as a bridge to a number of other tools that can be either invoked
from the context menu or directly interact with it. Reo files are saved using an
XML format. The model classes and the parser for this format can be used also in
stand-alone applications which is possible for most of the tools presented here.

Fig. 2. Valve connector in the Reo editor. This connector models a synchronous communication channel
that can be opened and closed by a third party.

Animation

The animation view generates Flash animations of connectors on-the-fly. Fig. 3
depicts the connector that was shown in the editor before in the animation view.
The parts of the connector with synchronous data flow are highlighted. Tokens move
along these synchronous regions. On the left side there is a list of possible animations
for this connector and the attached writers and readers (white boxes), modeling the
environment of the connector. The underlying formalism for the synthesis of such
animations is an extension of the colouring semantics [?], introduced by Clarke et al.

Fig. 3. Valve connector in the animation view. In this state, the communication channel is open and data
flows through it.
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Model checker

For model checking, connectors are translated to a semantic model, called Con-
straint Automata [?], which elegantly describe the synchronisation performed by
connectors depending on their internal states. Moreover, these automata are com-
positional in the sense that it is possible to derive the automaton of a connector
by composing the automata of its constituent channels. The core automata tools
include a graphical editor and a conversion tool to generate them from connectors.

Our model checker uses a symbolic model and a CTL-like logic as specification
format. Properties like deadlock-freeness and behavioural equivalence of connectors
can be verified as well. The model checker for Reo has been implemented by the
group of Christel Baier at the Technical University of Dresden [?] and is integrated
into the rest of the ECT as a model checker view.

Performance analysis

Another semantic model for connectors is the Quantitative Intentional Automata
(QIA), which are an extension of Constraint Automata with quantitative properties,
such as arrival rates at ports and average delays of dataflows between ports. For
performance analysis, these automata are translated to Continuous-Timed Markov
Chains [?] and fed into the PRISM model checker [?]. With this approach, we
can reason about properties like average response times and meetings of deadlines,
and further analyse worst/best case scenarios. Moreover, the QIA model is compo-
sitional and the generated Markov Chains are very compact, enabling an efficient
model checking. As an example, the QIA of the Ordering is shown in Fig. 4.

Fig. 4. Quantitative Intentional Automata of the Ordering connector.

Code generation

Constraint automata are not only used for model checking, but they also serve as
the basis for generating executable Java code. Similar to the model checker, the
code generation is a two-step process. First, the connector is translated to a con-
straint automaton. Then, the automaton is used to generate a Java state-machine
coordinator. A runtime library implements constraint automaton ports as blocking
zero-length buffers. Additionally, a graphical wiring editor lets users connect Java
components to the coordinator by pairing corresponding ports together. Although
the existing code-generator is limited to Java, a new retargetable generator capable
of generating C, BPEL, etc. is currently under construction. The new framework
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also supports loading and interpreting constraint automata at runtime, which is
useful for deploying Reo coordinators in Java application servers etc.

Distributed implementation

A distributed Reo engine allows for the creation of Reo primitives within that
engine, and can be connected to primitives in other distributed Reo engines. This
is performed automatically by allowing a single node to be scattered in more than
one engine. The synchronisation aspect inherent in Reo requires these primitives to
play an active role when searching for an agreement on the global behaviour of the
distributed connector. The deployment view provides the possibility of interacting
with the Reo engines, deploying channels on different engines, and reconfiguring
deployed systems. Higher level operations, such as the discovery of the best engine
for each subpart of a Reo connector, are still out of the scope of this plug-in.

Reconfiguration

We follow an approach to modeling reconfigurations, i.e., changes in the topology of
Reo connectors using algebraic graph transformation [?]. The reconfiguration model
and engine are already implemented together with a basic reconfiguration view. Up
to now, reconfiguration rules are used only inside the editor and for dynamic creation
of connectors from templates. An integration with the distributed engine is planned
in our future work for dynamic reconfiguration triggered by data flow.

4 Conclusion

The Eclipse Coordination Tools is a powerful tool suite for Reo. Key features are
its versatility and strong underlying formal models. Future work includes a formal
comparison and integration of these models, the further development of the existing
tools and an integration with modelling languages such as UML and BPMN.
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