
PROBABILITY 
AND 

MATHEMATICAL STATISTICS 

Vol. 16, Fasc. I (1996), pp. 1-17 

CRYPTOGRAPHY, STATISTICS AND PSEUDORANDOMNESS. II 

BY 

STEFAN BR AND s (AMSTERDAM) AND RICHARD GILL (UTRECHT) 

Abstract. This paper is a sequel to Brands and Gill [5] which 
contained an introduction to the cryptographic theory of random 
number generation. Here we give a detailed analysis of the 
QR-generator. 

l. THE QR-GENERATOR IS PSEUDORANDOM 

Recall from Brands and Gill [5] that the QR-generator is defined as 
follows: for suitably chosen integers x 0 and m, define 

(1) 

and let 

{x~ _ 1 (mod m) 
xn = 2 

m- (xn- 1 (mod m)) 
if x; _ 1 (mod m) < m/2, 
otherwise 

denote the least significant bit of xn. From the theoretical construction of 
Blum and Micali, it is clear that the proof of pseudorandomness of the 
QR-generator is complete if it can be shown that the function displayed in (1) 
defines a one-way permutation under the plausible assumption that it is 
infeasible to factor Blum integers, and that the least significant bit Yn is 
hard-core for this permutation. We discuss the proofs of this. For further 
details, the reader is referred to the original articles of Ben-Or et al. [2] 
and Alexi et al. [ 1]. 

First, we introduce some notions and results from elementary number 
theory that will be necessary to understand the proofs. 

1.1. Number theoretic preliminaries. The subset of integers in Zm that are 
co-prime with m is a multiplicative group, denoted by z;. Let x be an element 
of z;, for which there exists an element y E Z! such that x = y2 (mod m). Such 
an x is called a quadratic residue modulo m, and the set of all quadratic residues 
modulo m is denoted by QRm. 



2 S. Brands and R. Gill 

If x 2 (mod m) equals y2 (mod m), then m I (x2 - y2), and hence m I (x- y) (x + y). 
In case m is a prime number, this implies that x = ± y (mod m); a quadratic 
residue modulo a prime p has exactly two square roots. In particular, th1 
square roots of 1 modulo p are 1 and -1 modulo p. A further immediat1 
consequence is that exactly half of the elements modulo p are quadratic 
residues. 

It is well known that z; is cyclic when p is a prime, which means tha 
there exists an element g e z; the powers of which exhaust all of z;. Since 
z; contains p-1 elements, the order of g equals p-1. If a is even, the1 
ga1 2 (mod p) is a square root of ga (mod p). Because exactly half of the element: 
in {O, ... , p-2} are even, the quadratic residues modulo pare precisely those 
elements that are an even power of g. For x E z;, the Legendre symbol (x/p) o 
x modulo p is defined to equal 1 if and only if x is a quadratic residue modulo p 
otherwise it equals -1. We have already mentioned that the square roots of• 
modulo p are -1 and 1. From Fermat's little theorem we hence infer tha 
x<p-l)/l = ± 1 (mod p). In combination with the foregoing, it easily follows tha 
x<rl)/l = (x/p) (modp), since each xez; can be written as ga (modp) for som 
unique ae{O, ... , p-2}. This is called Euler's criterion. In particular, if th 
prime p is congruent to 3 modulo 4, then (p-1)/2 is odd, and by Euler' 
criterion - 1 is not a quadratic residue modulo p. This fact will turn out to b 
of crucial importance for the construction of the one-way permutation. 

If m is the product of two distinct primes p and q, then from the Chines 
Remainder Theorem it follows that Z! is isomorphic to z; x z4, with a: 
isomorphism that maps x E Z! onto (x (mod p), x (mod q)). A particular coll 
sequence of this is that a number x is a quadratic residue modulo m if and on! 
if it is a quadratic residue modulo both p and q. For x E Z!, the Jacobi symbc 
(x/m) of x modulo m is defined to equal (x/p) (x/q). Contrary to the Legendr 
symbol, x need not be a quadratic residue modulo m if its Jacobi symbc 
modulo m equals 1, since its Legendre symbols modulo both p and q may eqm 
- 1. As a matter of fact, a consequence of the isomorphism between Z! an 
z; x z4 is that precisely half of the elements of Z! have Jacobi symbol 1, an 
only half of these elements are quadratic residues. Since obviously none of th 
elements with Jacobi symbol -1 can be a quadratic residue modulo m, exact] 
one quarter of the elements of Z! are quadratic residues. From a simpl 
counting argument it follows that each quadratic residue modulo m has exact] 
four square roots modulo m. 

1.2. The permutation. Now consider the case where m is the product of tw 
distinct odd primes p and q that are both congruent to 3 modulo 4, and thi 
have approximately equal binary length. Composites of this form are called, i 

mentioned in [5], Blum integers. We will denote the binary length of m by 
From the above discussion it follows that the Jacobi symbol of -1 modul 
m is 1, whereas - 1 is not a quadratic residue modulo m. From this and tl 



Cryptography, statistics and pseudorandomness. II 3 

Chinese Remainder Theorem it follows that the outcome of the patr of 
Legendre symbols modulo both p and q of each of the four square roots of 
x 2 (modm) is equal to precisely one of (-1, -1), (-1, 1), (1, -1) and (1, 1). 
In particular, exactly one of the four roots of a quadratic residue modulo 
a Blum integer is itself a quadratic residue. 

In other words, the mapping fm: QRm--+ QRm, defined by 

(2) fm (x) = x2 (mod m), 

induces a permutation on QRm. In order to formally apply the cryptographic 
theory that we described in [5], we in fact need to define the permutation such 
that m is included as an argument, i.e., f (m, x) = (m, x 2 (mod m)). For 
simplicity, we will write m always as a subscript. 

Although it is easy to prove (see Rabin [1 OJ) that the problem of inverting 
this permutation is probabilistic polynomial-time equivalent to factoring m 
(in a manner similar to the proof we will discuss shortly for a modification of 
(2)), the strongest known result (see Blum et al. [3]) for determining the least 
significant bit of its inverse is that it is as hard a task as solving the so-called 
Quadratic Residuacity problem. This problem consists of distinguishing between 
the quadratic residues and non-residues among the set of elements modulo 
a Blum integer that have Jacobi symbol equal to 1. Although solving this 
problem is believed to require factoring of the modulus, there is no proof 
known for this; assuming that the Quadratic Residuacity problem is infeasible 
seems a stronger assumption than assuming that Blum integers are infeasible to 
factor. 

Since we are interested in a bit generator whose pseudorandomness 
follows rigorously from the assumption that factoring is difficult, the definition 
of the permutation must be slightly modified. For this, we first define 

b {z (modm) 
a s (z) = 

m m-(z(modm)) 

Redefine fm 0 as 

(3) 

if z (mod m) < m/2, 
otherwise. 

Clearly, iterating this function we get precisely the recursion (1) defining the 
QR-generator. If x 2 (mod m) is not less than m/2, then m- (x 2 (mod m)) is. 
Because the Legendre symbol, and hence also the Jacobi symbol, is multi
plicative, it follows that ((m- y)/m) = ( -y/m) = ( -1/m)(y/m) = (y/m) if m is 
a Blum integer. Consequently, exactly one square root of a quadratic residue is 
less than m/2, since every quadratic residue modulo m has exactly two square 
roots with Jacobi symbol 1. Hence, the redefined fm (-) also induces a per
mutation, this time on the set 

{xEZ~ I 0 ~ x < m/2 and (x/m) = 1}. 



4 S. Brands and R. Gill 

Just as for the original permutation (2), inverting fm(·) is probabilist 
polynomial-time equivalent to factoring the modulus. This can be se~ 
as follows. On given as input a number z = y2 (mod m) such that 0 < z < m. 
and a square root y with Jacobi symbol - 1 of z is known, an algorith 
for inverting fm (-) will output with probability lower-bounded by, say, 1/b ( 
a square root x of z in the domain of fm (-). Since (x/m) = 1, and " 
know that (-1/m) = 1, it cannot be the case x = ±y (mod m). Henc 
pq I (x-y)(x+ y) implies that exactly one of p, q divides x + y even] 
Using the Euclidean gcd-algorithm, gcd (m, x + y) can be feasibly compute 
thereby providing one (and hence both) of the prime factors of m. TI 
probability that a randomly selected y E z: has Jacobi symbol -1 is equal 
1/2, as is the probability that 0 < z < m/2. If y is uniformly distributed ov 
the elements with Jacobi symbol -1, then z is uniformly distributed over QR 
Define a Bernoulli experiment as consisting of generating at random ; 
element yEZ:, feeding z = y2 (modm) to the inverting algorithm in ea 
z < m/2 (otherwise, select a new y), and checking whether the output of t 
algorithm is a square root of z. Then one need only do independent repetitio 
of this Bernoulli experiment an expected number of 2£5 (k) times in order 
retrieve a square root that enables factoring of m. If b O is a polynomial in 
and the inverting algorithm runs in polynomial time, then this procedure ru 
in expected polynomial time. 

1.3. Sampling from the domain. If we can prove that the least significant I 
of fm(-) is hard-core, we are finished with the proof that the QR-generator 
pseudorandom assuming that Blum integers are infeasible to factor. Befc 
turning to this issue, we verify the necessary conditions for one-way p1 
mutations mentioned in [5]. Namely, the number of Blum integers of len~ 
k must grow exponentially with k, and pairs (m, x) must be feasibly samplal 
at random. 

The Prime Number Theorem states that the number of primes less th 
n is asymptotic to n/log n. Furthermore, Dirichlet's theorem on primes 
a progression states that the fraction of primes congruent to a (mod b), w 
gcd (a, b) = 1, asymptotically has constant density (namely, l/<p (b)) among 1 
set of all primes. Consequently, it follows easily that there are inde 
exponentially many (in k) Blum integers. 

By performing independent Bernoulli experiments, randomly and indep< 
dently picking in each experiment an integer of specified binary length a 
checking it for primality, the expected number of experiments needed to 
upon a prime congruent to 3 modulo 4 of a specified length is polynomial 
particular, linear) in the specified length. Since there exist well-known proba 
listic algorithms for verifying primality in polynomial time, this shows tl 
Blum integers can be feasibly sampled according to a uniform distribution 
repeating this procedure twice. 



Cryptography, statistics and pseudorandomness. II 5 

The other part of the argument (seed) of the QR-generator is a randomly 
chosen quadratic residue in Z!. Because Z!/Zm-+ 1 if m-+ oo, a randomly 
selected y E {O, 1 }k has a very high probability of being in Z!. This can be 
checked in polynomial time using the Euclidean gcd-algorithm. Now set 
x = y 2 (mod m); then, by elementary probability theory, x has been chosen 
from QRm with uniform probability. 

It is amusing that in a theory which depends on the notion of a probabilis
tic polynomial-time algorithm to characterise feasible and infeasible problems, 
one should go to so much trouble to describe how randomness can be 
generated, or rather expanded, in a deterministic way. A probabilistic al
gorithm is supposed to be able to generate its own fair coin tosses, so looking 
from inside the theory, random number generators are not needed; they 
already exist! 

1.4. The hard-core bit. The hardest and most lengthy part of the proof is to 
show that the existence of a feasible algorithm that can guess the least 
significant bit off ;. 1 (-) with a probability of success significantly exceeding 1/2 
caa be used to construct a feasible algorithm for inverting fm- 1 (-). Together 
with the result of Subsection 1.2, such a polynomial-time reduction implies that 
the least significant bit of fm O is essentially as hard to determine as factoring 
the modulus. As required by the general construction of Blum and Micali for 
pseudorandom bit generators, the reduction must work even if the success 
probability of the algorithm only "slightly" exceeds 1/2. We will henceforth 
denote by (1)1sb an "oracle" that, on given as inputs a Blum integer rn and 
a number x in the range of fm 0, outputs a guess for the least significant bit of 
f ;;. 1 (x) that is correct with probability at least 1/2+ 1/kc for some constant c. 

The main idea to construct a feasible algorithm that inverts fm O by calling 
(1)1sb at most polynomially many times is to retrieve the inverse of fm (·) by using 
a greatest common divisor algorithm. To this end, two randomly chosen 
multiples of fm (x) are computed, fm (ax (mod m)) and fm (bx (mod m)), and an 
attempt is made to compute the greatest common divisor of [axJm and [bxJm 
by manipulating the "permuted values" fm (ax (mod m)) and Im (bx (mod rn)). 
Let us call this an experiment. Here, [y Jm denotes the value congruent modulo 
m to y such that - m/2 < [y Jm < m/2. Note that y (mod rn) and [y Jm are related 
in the following way: 

{
y (modm) 

[yJm = (y (mod rn))-rn 
tf y (mod m) < rn/2, 
otherwise. 

Furthermore, Im ([y Jm) = fm (y (mod m)) and, denoting the absolute value by l·I, 
l[YJml = absm(y). 

When the gcd-algorithm has finished, a representation of gcd ([ax]m, 
[bxJm) in the form [dxJm should be known, such that d and lm(dx (modrn)) 
(=Im ([dxJm)) are known. If [axJm and [bxJm are co-prime, then [dx]m = ± 1, 



6 S. Brands and R. Gill 

and so fm (dx) = 1. Although fm(dx (modm)) = 1 does not necessarily imply 
that [dx]m = + 1 (since 1 has four square roots modulo m), we can always 
check whether this is the case by comparing fm(±d- 1 (modm)) to fm(x). If 
these values are equal, then we have a good chance that one of r 1 (mod m), 
-d- 1 (mod m) is in the domain off, (·) and we are finished. (Computation of . m 
mverses modulo m can be done in polynomial time using the Extended 
Euclidean Algorithm; the prime factorisation of m need not be known for this.) 
Otherwise, we perform a new experiment, i.e., select new a and b (independent
ly) and start over again. 

We are only interested in whether the outcome of an experiment is or is 
not equal to x, so this is in fact a Bernoulli experiment. Suppose for the 
moment that we are indeed able to construct the above inverting algorithm. By 
a theorem of Dirichlet, the probability that two randomly chosen integers less 
than m are co-prime tends to a constant (namely 6/rc2) as m tends to infinity. 
Hence, the Bernoulli experiment of selecting two random multiples of fm (x) 
and running the gcd-algorithm has a probability of retrieving x that equals 
a constant fraction of the probability that the gcd-algorithm outputs the 
correct answer. Consequently, if the probability that the gcd-algorithm outputs 
the correct answer can be lower-bounded by the inverse of some polynomial in 
k, then the experiment needs only be repeated an expected number ohimes that 
is polynomial ink in order to retrieve x. As we will show, this expected running 
time will be blown up by another polynomial factor due to the fact that we will 
have to run polynomially many copies of the gcd-algorithm for each ex
periment, assuming one out of polynomially many possibilities in each run. 
This still keeps the final running time polynomial! 

Therefore, we can invert fm (x) if a polynomial-time algorithm can be 
constructed that implements the gcd-algorithm, using only (l\sb· The Euclidean 
gcd-algorithm makes repeated use of testing whether one integer is greater than 
the other. However, this algorithm cannot feasibly be implemented by using 
only the permuted values, since from fm(ax (modm)) and fm(bx (modm)) one 
cannot in general determine whether (the absolute value of) [ax]m exceeds 
[bx]m; in fact, a feasible algorithm that can do such a test without erring can be 
simply converted into one that factors m. 

1.4.1. Constructing the gcd-algorithm. What is needed is a gcd
-algorithm that only has to make decisions based on the least significant bits of 
the involved integers, since we have access to <'.91sb· This can be realised by using 
a binary gcd-algorithm such as the Brent-Kung gcd-algorithm, although 
unfortunately the way this algorithm (or any other known one) must make calls 
to (91sb turns out to be far from straightforward. 

The Brent-Kung algorithm makes use of the following three tests. Firstly, 
if A and B are two integers, not necessarily positive, and IAI and IBI are both 
even, then 

gcd (A, B) = 2gcd(A/2, B/2). 



( 'n1•1nwaphy, statistics and psrndorundomness. lf 7 

Secondly. if IAI is odd and !BI even, then 

gcd ( 11, B) = gcd (A, B/2). 

Thirdly. if hoth !Ai and iBI an: odd, then 

gcd(A. BI gcd(A, (A +BJ/2) = gcd(A, (A-B)/2), 

and the ahsolut<: value of exactly one of (A+ B)/2, (A -B)/2 is even again. We 
assign that value to B. Because nf the third test, we can iterate. If necessary, we 
must swap A and B before we enter the third test to make sure that the 
absolute value nf H exceeds that of A. In that way, we are guaranteed to keep 
on making prngn:ss and finally obtain the greatest common divisor in A. As 
a mat tcr of fact, we might as well test whether A and B should be swapped by 
comparing their binary kngths length L4) and length (B).This turns out to be 
crucial for sULTcssful implementation of the "permuted" version of the 
gcd-algorithm. 

The precise description of the Brent Kung algorithm is as follows. Given 
two intcgcrs A and H such that kngth (A), length ( B) ::::;; k and A odd, repeat the 
following steps until B 0: 

Step I. While lsh(j/:llJ 0 do B•-Bi2; length(B)+-·length(B)-1 end. 
Step 2. If kngth!H) · length(A). then swap(A, B); swap(length(AJ, 

length (BI) end. 

Step.\. If lsh(i(A +BJ 21) 0, then B •--(A+ B)/2 else B +-(A -- B)/2 end. 
When the algorithm halts (H 0), the variable A contains the greatest 

common divisor ;.vc were looking for. A simple counting argument reveals that 
no more than 6k t \ evaluations of lsb(·J are needed until B becomes zero. 
Notice that if A is no! odd, then lsb(j(A + B)/21) in Step 3 makes no sense; this is 
not a problem ;;ince we can reduce A beforehand to make it odd. 

With A [a\!,,, and B ff>\· J,,,. this algorithm can be implemented while 
working only with fm (ax (mod m)) and ./,,, (hx (mod m)), given access to er 1'h· We 
first introduce tl11.; notation par,JJ for Jsb(absm(·)). Note that 

lsb1!BIJ lshll[hxl,,,ll •••. parm(hx (mod ml). 

In order to obtain lsbllBll we must hence build an algorithm that 
computes par,,,l·l for dcments in Z!, using C Jsh· 

Secondly. note that if IHI is even, then B/2 (which is equal to [hx]rn/2) 
may he computed as [ (2 1 h (mod m))x ]m· This follows from the fact that one 
can apply tbc modulo m operator on intermediate results. Although we never 
know B explicitly sirn.:e we do not know x, we can keep track of B by keeping 
track of b. r·urthcnnorc, length (B) can be kept track of by diminishing 
a counter each time Bis (implicitly) divided by 2 in Step I. In that way, we can 
also make sure that we know when to (implicitly) swap A and B. 

Of course, similar relations can be applied for Step 3 of the gcd-algorithm; 
we can implicitly compute (A J B)/2 as [(2 1 (u ±: h) (mod m))x],,,, and hence 
keep track of this value by working with 2 1 (a± h) (mod m). 



8 S. Brands and R. Gill 

We are now prepared to describe in detail how the inverting algorithm 
works, based on the permuted gcd-algorithm. Suppose we are given a Blum 
integer m and fm (x) for some unknown x in the domain of fm 0 that is to be 
determined. Generate independently at random two elements a, b E Z!,, and set 
length (A)= length(B) = k-1. For the moment, just assume that A is odd (we 
will return to this shortly). Repeat the following steps until b = 0: 

Step 1. While parm(bx(modm))=O do b+-r 1b(modm); length(B)+
length (B)- 1 end. 

Step 2. If length(B)<length(A), then swap(a,b); swap(length(A), 
length (B)) end. 

Step 3. If parm(r 1 (a+b)x (modm)) = 0, then b+-2- 1 (a+b) (modm); 
else b +-2- 1 (a-b) (mod m) end. 

If all calls to parm O were answered correctly (otherwise, the procedure 
might not halt in polynomial time), then in the end A contains the greatest 
common divisor. Although we know A only implicitly, we have kept track of a. 
Due to the fact that squaring modulo m is a multiplicative function, we can 
compute fm(A): 

fm(A) =fm(ax (modm)) = absm((a2 (modm))fm(x) (modm)), 

since we know fm (x). As mentioned earlier, if fm (A) = 1, then with high prob
ability A = ± 1. We already explained how to determine if ±a - 1 (mod m) 
equals x. If we were unsuccessful, we choose new a, b E Z;!; and do another 
experiment. 

It remains to build a feasible algorithm for determining parm (') for 
elements in Z~ from (D1sb· Although we do not explicitly know the numbers we 
want to know parm (·) of, since they are all multiples of the unknown number x, 
we do have some information about them. Namely, we kept track of a and b. 
As shown above, lsb(IBI) = parm(bx (modm)), and we know b. Likewise, 

lsb(l(A+B)/21) = parm(r 1 (a+b)x (modm)). 

In other words, all requests for parmO are of the form parm(dx (modm)) such 
that d E Z! is known. We will show shortly how this can be put to use. An 
important thing to note is that absm (dx (mod m)) gets smaller all the time, since 
IAI and IBI decrease as the gcd-algorithm progresses. That is, if the values 
IAI = absm(ax (modm)) and IBI = absm(bx (modm)) are "small" to begin with, 
then all values dx (mod m) for which parm (') is requested are also small in this 
sense (unless the parity algorithm makes mistakes!). 

To make sure that an experiment, in which we attempt to retrieve 
the greatest common divisor, will not loop more than a polynomial number 
of steps (which can happen if the bit determined for parmO is incorrect). 
the number of times that par m (·) is reg uested must be kept track of in a counter 
If the counter exceeds the strict upper bound (6k-3 in this case), then 
something went wrong and the specific run of the experiment can be halted. 



Cryptography, statistics and pseudorandomness. I I 9 

Finally, we mentioned that A must be odd. This is simple to resolve: 
either we do not care whether A is odd (since this happens only with 
probability 1/2) and then the "upper-bound" mechanism takes care of it, or we 
test parm(ax (modm)) in advance using the same mechanism we need anyway. 

1.4.2. Constructing the parity algorithm. The basic idea of the 
construction of the parity algorithm is to infer par m (dx (mod n)) by comparing 
the least significant bits of s + dx (mod m) and s, for randomly chosen s E ZLm/lJ
Only if no "wraparound" 0 occurs when s is added to dx, then 

(4) parm(dx (modn)) = lsb(s)EBlsb(s+dx (modm)). 

This relation will allow us to compute par m O using @1sb. To ensure that 
wraparounds have low probability of occurrence, we define dx (mod m) to be 
"small" if and only if 

absm (dx (mod m)) < m/b (k) 

for some polynomial b (-). If dx (mod m) is small, then the probability of 
a wraparound 0 is less than 1/b (k) ifs is uniformly distributed. We will return 
to this in detail when we discuss the potential sources of errors. 

Now, A and B are not known explicitly, and so for randomly chosen s the 
values of s+dx (mod m) (and, in particular, their least significant bits) are all 
unknown as well. However, we have access to Clish• which outputs (with some 
advantage over guessing) least significant bits of arbitrary numbers that are in 
the domain(!) of fm('), when given their permuted values. Hence, we can still be 
successful if there is a way to compute the permuted values fm (s) and 
fm(s+dx (modm)) of sand s+dx (modm), respectively, for randomly chosen s. 
This is where the fact that we always know d comes in. Namely, 

fm(dx (modm)) = absm((d2 (modm))fm(x)), 

which can be computed since we know fm (x). 
There is one complication here: in contrast to the method for generating 

"multiplicative randomisations," such as fm (dx (mod m)), it is not known 
how to feasibly generate "additive randomisations" such as fm (s + dx (mod m)) 
for which s itself is known. Indeed, a feasible algorithm for doing so would be 
a major step towards a feasible algorithm for factoring. Therefore, we use the 
fact that 

fm(rx+dx (modm)) = absm(fm(r+d (modm))fm(x) (modm)), 

so rx (mod m) can play the role of s. Now the complication is obvious: 
s = rx (mod m) itself is not known, and so when using (4) we must ask @1sb also 
for lsb (s). This causes the undesirable effect of "error-doubling" when querying 
l!l1sb· In fact, it is not even known whether s generated in this way is less than 
m/2 (again, a feasible algorithm for determining this would lead to a simple 
algorithm for factoring!) which, as we already mentioned (albeit without 
explanation), must be the case. 



10 S. Brands and R. Gill 

From this discussion it will be clear that there are various potential 
sources for errors when trying to apply (4) using @1sb· We next consider these in 
detail, in order to determine a strategy for controlling them. 

1.4.3. Potential sources of errors. At this point, the reader may want 
to skip over to Subsection 1.5, if he is not concerned with the gory details of the 
error sources and how to control them. 

Let us consider what happens when we try to compute parm(-) based on (4) 
by using (91sb· We feed li?isb with Im (s (mod m)) and Im (s + dx (mod m)), and take 
the exclusive-or of the two outputs as a guess for parm (dx (mod m)). This is 
called a dx-measurement. The correctness of a dx-measurement cannot feasibly 
be verified. Nevertheless, if a dx-measurement would be correct with probabili
ty that exceeds 1/2 by some fraction that is lower-bounded by the inverse of 
some polynomial in k, then one can perform a great many (say j (k) for some 
polynomial j(·)) dx-measurements by choosing r independently at random in 
each dx-measurement. Considering the majority value obtained in all 
dx-measurements as a final guess for parm (dx (mod m)), the probability that the 
final guess is correct can then be lower-bounded if the measurements are all 
independent: the Chernoff bound gives a lower bound of 1-0 (1/2j<k>). That is, 
the calls for parm O in an experiment are returned correctly with probability 
almost 1. 

However, the oracle (91sb itself is allowed to err with probability close 
to 1/2. So, even if the error probability of the oracle would be the only source of 
errors in a dx-measurement, then the probability that the exclusive-or is not 
equal to the true least significant bit of dx (mod m) can still be alnwst twice the 
error probability of l?isb· Since we query (()tsb for two numbers in 
a dx-measurement, we need an error probability for parm (dx (mod m)) that 
exceeds 1/2 by a significant fraction in order to make sure that the majority 
outcome is almost always correct. 

To overcome this problem, the dx-measurement procedure is modified 
such that the least significant bit of s is known beforehand with at least 
"significant" probability. One can then query l91sb in all j (k) trials for 
lsb(si+dx (modm)), 1 ~ i ~j(k), only. The error probability in a dx-measure
ment can then be approximated by the error probability of (91sb• and we may 
realistically hope that the probability of error in a single dx-measurement still 
significantly exceeds 1/2. 

Before we show how to do this, we need to be aware that there are two 
additional potential sources of errors in dx-measurements, other than the 
errors made by the oracle. We already mentioned that a wraparound 0 may 
occur, in which case the right-hand side of (4) does not equal parm(dx (mod m)), 
and that this happens with probability less than 1/£5 (!mi) if dx (mod m) is small. 
We also noticed earlier that if ax (mod m) and bx (mod m) are both small to 
begin with, then all the values that are assigned in the gcd-algorithm tc 



Cryptography, statistics and pseudorandomness. JI 11 

ax (mod m) and bx (mod m) (through their permuted values) are small as well 
(i.e., the values dx (mod m) for which the parity is requested are all small) if parm 
is always returned correctly. Since o (-) is a polynomial, the probability that 
ax (mod m) and bx (mod m) are both small to begin with is lower-bounded by 
the inverse of some polynomial in k, so one out of an expected number of 
polynomially many experiments contains such ax (mod m) and bx (mod m). 
This very important detail enables us to easily take care of this error source: by 
performing polynomially many independent experiments, we only need an 
expected number of experiments that is polynomial in k in order to have two 
values a and b for which ax (mod m) and bx (mod m) are both small. In that 
particular experiment, this type of error has a very small probability, if only we 
make sure that s is uniformly distributed over 0 :( s < m/2 instead of over Z!. 
Notice that there is some peculiar interaction here: all the values for which 
parm (-) is requested will only get smaller throughout the gcd-algorithm 
if parm (-)is (with overwhelming probability) correctly computed each time, and 
vice versa the probability that a wraparound 0 occurs is small if the value for 
which par,,,(·) is requested is small. 

A second source of potential errors was also drawn attention to before: the 
success probability of @1sb exceeds 1/2 by some "significant" fraction only on the 
domain of j~ (-). If the oracle is queried for lsb (s + dx (mod m)) (recall that in the 
revised procedure we just announced for sampling the oracle, we will no longer 
query the oracle for lsb (s)), the bit that the oracle outputs does not necessarily 
help us: if s + dx (mod m) is not in the domain of fm (-), then the outcome of 
(91sb corresponds to the inverse of fm (s + dx (mod m)), a value that does not 
equal s + dx (mod m). There are two situations in which this may happen: the 
first is ifs+ dx (mod m) has Jacobi symbol modulo m equal to -1, the second if 
s + dx (mod m) is greater than m/2. The first situation is easy to detect without 
knowing x, since 

(s+dx/m) = (r+d/m)(x/m) = (r+d/m) 

because s = rx (mod m) and (x/m) = 1. (Although from the definition of 
the Jacobi symbol it seems that one must be able to factor in order to compute 
Jacobi symbols modulo m, the Quadratic Reciprocity Theorem of Gauss 
provides a feasible algorithm for this task without ever using the factoring 
of m.) If this happens, i!J1sb will not be queried but the flip of a fair coin will be 
used as a guess for par m (dx (mod m)). In this situation, our guess is correct with 
probability exactly 1/2. The second situation happens with very small 
probability if dx (mod m) is small, which we can take care of by choosing the 
polynomial o(·) appropriately large and s < m/2 (exactly as in the first potential 
source of errors). 

1.4.4. Implementing the dx-measurements. As mentioned, to over
come error-doubling the j (k) points s; = r;x (mod m), 1 :( i :( j (k), with known 



12 S. Brands and R. Gill 

least significant bit are generated according to the following procedure. 
Generate independently at random two elements u, v of z:, and denote 
ux (mod m) by y and vx (mod m) by z. Although y and z are not known, all 
possibilities for their least significant bits can be tried, as well as their location 
in one of the intervals [(i/j (k)') m, (i + 1/j (k)c) m) for 0 :::;; i < j (k)c for some 
suitable constant c > 1. In total, there are 4j (k) 2 c possibilities that have to be 
considered, of which only one is correct. For 1:::;; i :::s;j(k), define si = rix (modm) 
to equal absm(y+iz (modm)). Then si < m/2 as we required. Since y and z are 
known up to m/j(kl, y+iz (modm) is known up to at most 2m/j(k)c-i. The 
probability that y + iz (mod m) does not fall in an interval of length 2m/j (kl 
around 0 or m/2 is 4/j (kl- 1 (since it is uniformly distributed over Zm), and in 
that case the least significant bit of s; can be computed correctly from the least 
significant bits of y and z, and the value of i. 

Although it is not known what the location of y and z is, nor what their 
least significant bits are, the fact that there are only polynomially many 
possibilities implies that there are only polynomially many possible values that 
the "vector" (s1 , .. ., sj(k)) can take on: each guess for the location of y and 
z and their least significant bits specifies exactly one such possibility. Hence, 
each of the values that the vector (s1, ... , sj(k)) can take on can be tried for 
when doing the j (k) dx-measurements. 

Assume for the moment that we are dealing with the possibility in which 
the values we assigned to s1 , ... , sj(k) are indeed the correct ones. Taking all the 
error sources into account, it can easily be shown that the total error 
probability in each one of all j (k) dx-measurements in which these correct least 
significant bits for si are used is still greater than 1/2 by a fraction that is 
lower-bounded by the inverse of some polynomial in k (i.e., it is still 
"significantly" greater than 1/2) if only dx (mod m) is small. Although the j (k) 
points s; generated in this way are not mutually independent (if they were, then 
we would have to enumerate exponentially many possibilities for the least 
significant bits, which would not be sufficient to prove the desired result!), and 
hence the Chernoff bound cannot be used, it is not hard to show that they 
are pairwise independent. Therefore we can still apply Chebyshev's in
equality to lower-bound the probability of correctness of the majority vote 
by 1-0(1/j(k)). 

The way we use this for the inverting algorithm is as follows. In one 
experiment (i.e., using one pair of values for (a, b)), parm (dx (mod m)) must be 
evaluated for polynomially many values of d. For each of these polynomially 
many calls for parm (·), we generate u, v at random, we can enumerate 
polynomially many possible values for the vector (s1, ... , sj(k)) that we can 
derive from u, v, and use these si values in dx-measurements. In each of these 
polynomially many situations, the majority outcome of the dx-measurements is 
taken as a guess for parm (-).We know for sure that in one of all these situations 
we assumed the correct values for each of the si; in that particular case, 



Cryptography, statistics and pseudorandomness. II 13 

the majority vote of the dx-measurements is a guess for par m (") that is correct 
with probability close to 1. In all the other copies, the returned guess for parm (·) 
might be wrong with considerable probability, and those runs of the experiment 
might not halt in polynomial time; however, this is taken care of by the strict 
upper-bound mechanism. In essence, we are running polynomially (for each of 
the calls to parm (·)) times polynomially (for each of the possible values of the 
vector) many copies of each experiment, which is a polynomial number of copies. 
Since we already showed that only an expected number of polynomially many 
experiments is needed to find the inverse, the proof is completed. 

1.5. Applying the construction of Blum and Micali. By using the general 
construction of Blum and Micali that we described in [5], taking as a seed 
a random element (m, x 0 E QRm) with m in the set of Blum integers, one obtains 
a bit generator which at the n-th step outputs the least significant bit of the 
second argument of r (m, x), where 

f ) { (m, x 2 (mod m)) 
(m x = ' (m, m - (x2 (mod m))) 

if x 2 (modm) < m/2, 
otherwise. 

If the problem of factoring Blum integers is infeasible, then the generator passes 
all polynomial-time statistical tests. By combining the bits in groups of suitable 
size, and considering this as the binary representation of an integer, one can 
construct number generators. 

Alternatively, the QR-generator can be defined by the recurrence 

x" = x;_ 1 (mod m), 

such that the bits 

are output. That is, we compute the sequence xn, and at each stage extract 
either the least significant bit of x" (in case x" < m/2) or complement it (if 
xn > m/2). Clearly, for the same seed this produces exactly the same sequence of 
bits. 

2. FURTHER DEVELOPMENTS 

In this section we briefly touch upon further developments of the 
cryptographic theory. 

2.1. Hard-core predicates of multiple bits. A possible handicap in practice 
of generators based on the construction of Blum and Micali is that only one bit 
(the hard-core bit) is output per iteration of the one-way permutation. One 
would like to be able to extract at each stage more bits than just one in order to 
increase the efficiency. 



14 S. Brands and R. Gi 11 

The first idea that comes to mind is to try to come up with other 
(hard-core bits) of the permutation f O under consideration that are hard-core 
as well. For example, for the permutation defining the QR-generator, it can be 
shown that each of the bits in the j (k) least significant positions is hard-core if 
j (k) = 0 (log k). However, it would be wrong to output at each iteration all the 
bits that have individually been proven hard-core, because besides having the 
information f (x), which by itself is not enough to compute a certain given 
hard-core bits of x, extra information is released (namely other hard-core bits). 

As an extreme example one can think of a one-way permutation defined 
on a domain consisting entirely of elements for which both the most and the 
least significant bit have equal parity. Although these bits may be proven 
individually hard-core, revealing the least significant bit makes the most 
significant bit completely predictable. In the output sequence of the generator 
obtained when applying the construction of Blum and Micalj this is readily 
apparent, since it consists of a stream of bits that are pairwise the same. 

Hence, a notion of simultaneously hard-core bits is needed. This notion 
informally amounts to the requirement that no feasible algorithm can guess with 
significant probability of success any of the hard-core bits of the argument x of 
the one-way permutation f O even when, in addition to f (x), it is given all the 
other hard-core bits of f (x). This requirement in fact follows straightforward
ly from the conditions that must obviously be satisfied in order to mathemati
cally justify outputting all these bits at each iteration in the Blum-Micali 
construction. By extending the proof techniques sketched in the previous section, 
it has been shown by Alexi et al. [1] that the least 0 (log k) bits of the function 
defining the QR-generator in fact are simultaneously hard-core, and hence they 
can all be output per iteration of the permutation. The resulting generator is still 
pseudorandom under the assumption that it is infeasible to factor Blum integers. 

2.2. Weakening the theoretical assumptions. While the existence of 
a one-way permutation in the Blum-Micali construction is sufficient for the 
existence of pseudorandom bit generators, it is not necessary. Weaker 
conditions were given by Yao [11], who showed in a constructive manner that 
it is sufficient to assume the existence of a one-way function; it need not be 
a permutation. In fact, it is sufficient if the function is "somewhat" one-way, 
meaning that any feasible algorithm that tries to find an inverse of elements in 
the range of the function has a probability of failure that is lower-bounded by 
the inverse of some polynomial in the length of the input. That is, it must have 
some probability "significantly" bigger than zero of failing to find an inverse, 
rather than an overwhelming probability. The idea is to transform any 
somewhat one-way function into a strongly one-way function, which in turn 
can be transformed into a more complicated one-way permutation that has 
a hard-core predicate. This permutation can be used in the Blum-Micali 
construction, which gives the desired result. 



Cryptography. statistics and pseudorandornness. I I 15 

The first result to state necessary as well as sufficient conditions is due to 
Levin [9]. It is based on the existence of a special subclass of all one-way 
functions, those that are one-way on iterates. Intuitively, this condition ensures 
that the successively induced ensembles of strings in the range of the function 
do not "degenerate" too soon. Using a special concept that he called isolation, 
Levin proved that there exists a pseudorandom bit generator if and only if 
there exists a function that is one-way on iterates. This theorem has the 
drawback that it seems quite difficult to test the plausibility of the assumption 
that J (-) is one-way on iterates. Also, it is not satisfactory in the sense that it is 
not clear if the existence of such special one-way functions is equivalent to the 
existence of ordinary one-way functions. 

A step closer in this direction was made by the introduction by Goldreich 
et al. [6] of another, larger subclass of all one-way functions, called regular 
one-way functions. This condition comes down to the requirement that all 
elements in the range off(-) have the same number of preimages, and enabled 
them to prove that if there exists a regular function that is one-way, then there 
exists a pseudorandom bit generator. The main advantage of the notion of 
regularity is that many quite naturally arising functions are regular, so if any 
one of these can be shown to be one-way (under some plausible assumption), 
then this result can be used to construct a pseudorandom bit generator. The 
proof of this theorem is based on a feasible method to transform regular 
functions into functions that are one-way on iterates, after which Levin's 
theorem can be applied. 

The most recent theoretic results in this area have shown that all of the 
above notions are in fact equivalent. Namely, a theorem of Impaggliazzo, 
Levin, Luby and Hastad states that there exists a one-way function if and only 
if there exists a pseudorandom generator. Actually, this was shown to hold in 
the non-uniform model by Impaggliazzo, Levin and Luby [8], and later in 
the uniform model by Hastad [7]. (The difference between uniform and 
non-uniform complexity is something that we have deliberately not touched 
upon, since we expect the readers of this article to be mainly statistically 
oriented. The relevance of this difference only derives from the details of the 
proofs of certain theoretical constructions.) The proof techniques of Impag
gliazzo, Levin, Luby and Hastad are quite complicated and use entirely 
different concepts (such as entropy) than those used to prove the earlier results. 
An open problem is whether the construction given in the proof of this theorem 
can be made efficient for practical use (i.e., a low-degree polynomial upper-bound 
for the running times of the generator). The construction applied in the proofs 
results in a generator that has a running time bounded from below by a high 
degree polynomial; in practice it seems that the generators arising from the 
construction of Blum and Micali are the most efficient ones. The most efficient of 
all the known generators based on the construction of Blum and Micali is the 
QR-generator, which we described in the previous section. 



16 S. Brands and R. Gill 

3. CONCLUSION 

Pseudorandomness of the QR-generator arising from the cryptographic 
theory is based on a highly respectable assumption. Nevertheless, it is likely 
that it performs better with respect to the standard and stringent statistical 
tests than the classical statistical methods even if the assumption turns out not 
to be true. This is due to the fact that a statistical test that is not passed by the 
QR-generator will probably be extremely non-elementary (as the proof of 
pseudorandomness for the QR-generator suggests). As a consequence of this, 
one can even expect the cryptographic methods to do better in this respect if 
(almost) all of the bits are output at each stage, instead of just the bits that are 
simultaneously hard-core (even though the thus arising generators are perhaps 
no longer pseudorandom in the theoretical sense). 

In fact, although the important results of the cryptographic generators are 
asymptotic, one can expect the cryptographic generators to do better even 
when small parameter choices are involved. A detailed (and tedious) examina
tion of the proofs of the theoretical results and the QR-generator reveals that 
one can get some definite statements such as "If Blum integers with k bits 
cannot be factored using less than n1 bit operations, then no bit of the 
QR-generator with a modulus of k bits can be predicted with any algorithm 
using less than n2 bit operations," for a value of n2 depending on n1 . All the 
above obviously holds as well for other generators that have been proposed in 
the cryptographic literature. 

It is interesting to investigate how many bits of the integers produced at 
each iteration of the cryptographic generators can be output such that all the 
standard and stringent statistical tests are passed, and what length of the 
parameters of the cryptographic generators is necessary to ensure that all 
standard and stringent statistical tests are passed. In particular, it is interesting 
to examine what the performance is of, for example, the QR-generator if 
a small modulus is chosen. A small amount of practical experience with the 
QR-generator (Brands [ 4]) suggests that it is certainly as good, in the 
traditional sense of passing traditional statistical tests of randomness, as 
a linear congruential generator of similar size of which the most significant bit 
is output at each iteration. 

Note added in proof. The authors would like to draw attention to a recent 
book on these topics: M. Luby, Pseudorandomness and cryptographic ap
plications, Princeton Computer Science Notes, Princeton, New Jersey, 1996. 

REFERENCES 

[1] W. Alexi, B. Chor, 0. Goldreich and C. P. Schnorr, RSA and Rabin functions: certain 
parts are as hard as the whole, SIAM l Comput. 17 (1988), pp. 194-209. 

[2] M. Be n-0 r, B. Chor and A. Shamir, On the cryptographic security of single RSA bits, Proc. 
15th ACM Syrop. Theor. Comp., 1983, pp. 421-430. 



Cryptography, statistics and pseudorandomness. II 17 

[3] L. BI um, M. BI um and M. Shub, A simple unpredictable pseudorandom number generator, 
SIAM J. Comput. 15 (1986), pp. 364-383. 

[4] S. A. Brands, The Cryptographic Approach to Pseudorandom Bit Generation, Master's 
Thesis, Dept. of Math., Univ. Utrecht, 1991. 

[5] - and R. D. G i 11, Cryptography, statistics and pseudorandomness. I, Probab. Math. Statist. 
15 (1995), pp. 101-114. 

[6] 0. Goldreich, H. Krawczyk and M. Luby, On the existence of pseudorandom generators, 
Proc. 29th Ann. Conf. on Found. Comp. Science, IEEE, 1988, pp. 12-14. 

[7] J. Hast ad, Pseudorandom generators under uniform assumptions, Proc. 22nd ACM Symp. on 
Theory of Comp., 1990, pp. 395-404. 

[8] R. Impaggliazzo, L. Levin and M. Lu by, Pseudorandom number generation from one-way 
functions, Proc. 21st ACM Symp. on Theory of Comp., 1989, pp. 12-24. 

[9] L. Levin, One-way functions and pseudorandom generators, Combinatorica 7 (1985), 
pp. 357-363. 

[I OJ M. Rabin, Digitalized signatures and public key functions as intractable as factorization, Tech. 
Rep. 212 (1979), Lab. Comp. Sci., MIT. 

[II] A. C. Yao, Theory and applications of trapdoor functions, Proc. 23rd IEEE Symp. Found. 
Comp. Sci., 1982, pp. 458-463. 

Centre for Mathematics 
and Computer Science 

Kruislaan 413 
1098 SJ Amsterdam, Netherlands 
E-mail: brands@cwi.nl 

2 - PAMS 16.1 

Received on 23.12.1994 

Mathematical Institute 
University Utrecht 

Budapestlaan 6 
3584 CD Utrecht, Netherlands 

E-mail: gill@math.ruu.nl 


