Building Mashups for The Enterprise with
SABRE

Ziyan Maraikar'*, Alexander Lazovik?**, and Farhad Arbab!

1 Centrum voor Wiskunde en Informatica, The Netherlands
{maraikar,farhad}@cwi.nl
2 INRIA Saclay, Parc Club Orsay Université, France
lazovik@lri.fr

Abstract. The explosive popularity of mashups has given rise to a
plethora of web-based tools for rapidly building mashups with minimal
programming effort. In turn, this has spurred interest in using these tools
to empower end-users to build situational applications for business. Sit-
uational applications based on Reo (SABRE) is a service composition
platform that addresses service heterogeneity as a first-class concern by
adopting a mashup’s data-centric approach. Built atop the Reo coor-
dination language, SABRE provides tools to combine, filter and trans-
form web services and data sources like RSS and ATOM feeds. Whereas
other mashup platforms intermingle data transformation logic and I/O
concerns, we aim to clearly separate them by formalising coordination
logic within a mashup. Reo’s well-defined compositional semantics opens
up the possibility of constructing a mashup’s core logic from a library
of prebuilt connectors. Input/output in SABRE is handled by service
stubs generated by combining a syntactic service specification such as
WSDL with a constraint automaton specifying service behaviour. These
stubs insulate services from misbehaving clients while protecting clients
against services that do not conform to their contracts. We believe these
are compelling features as mashups graduate from curiosities on the Web
to situational applications for the enterprise.

1 Introduction

A recent trend in web applications has been the emergence of so-called mashups.
Mashups are web applications that literally mash-up or combine disparate web
services, RSS and ATOM feeds and other data sources in new and interesting
ways. They compose these services in ways usually unanticipated by their original
authors. Mashups are thus, ad-hoc by very nature.

More formal approaches to service-oriented computing (SOC), such as WS-
BPEL[9], assume the availability of uniform service interfaces and service meta-
data available in centralised registries. Yet the Utopian promise of uniform ser-
vice interface standards, metadata and universal service registries, in the form

* Supported by NWO project BRICKS-AFM3
** This work was carried out during the tenure of an ERCIM “Alain Bensoussan”
Fellowship Programme

of the SOAP, WSDL and UDDI, standards has proven elusive. Instead, promi-
nent web service providers like Google, Yahoo, Amazon and eBay have opted to
use lightweight protocols like RSS and ATOM to push data to consumers, while
exposing their service offerings as simple REST-style[10] APIs. In turn, each of
these service provider APIs have their own syntax and semantics.

A holistic approach to SOC on the Web, must therefore embrace service
heterogeneity as a first-class concern, instead of relegating it to a mere imple-
mentation detail. Where mashups succeed is in adopting a data-centric approach
to service composition. In a sense, they follow the UNIX tradition of gluing ar-
bitrary programmes together using pipes and text processing tools like awk and
sed, to meet any need. We believe this is a useful approach that complements the
traditional control-driven coordination and orchestration exemplified by BPEL.

Situational applications based on Reo (SABRE) aims to have the best of
both world by marrying formal SOC with the data-driven approach of mashups.
SABRE’s contributions are threefold. First, it structures mashups by introducing
a clear separation of concerns between service coordination and input/output.
Secondly, by using the Reo coordination language[2] (described in §4) we are able
to graphically define not just data mangling, but also the semantics of service
composition, that is, the synchronisation constraints we wish to impose between
services. Thirdly, SABRE’s automatically generated service stubs isolates faults
caused either by services that do not conform to their contracts or by misbehav-
ing clients. We put these ideas into practice by providing a rich suite of tools to
graphically define a mashups’ data-driven logic and service interfaces with pre-
cise formal semantics, automatically generate service stubs and a deployment
environment running in an Java application container such as Apache Tomcat.

The rest of this paper is organised as follows. In §2 we review the state of
the art in mashup platforms and traditional service composition. A discussion
of applicability of mashup platforms for service-oriented computing, together
with a motivating example appear in §3. In §4 we consider Reo as a means of
formalising coordination of services within mashups. In §5 we apply constraint
automata as a unifying formalism for Reo as well as a behavioural specification
of services. We describe a reference implementation for the SABRE framework
and its architectural issues in §6. We conclude in §7, with a summary of the
paper and a discussion of our further work.

2 Related work

2.1 Mashup platforms

Mashups can, and are, built using traditional web scripting languages like Perl,
PHP and JavaScript. Their explosive popularity has however, given rise to a
number of “mashup platforms” for building mashups, with minimal program-
ming. This trend parallels the rise of rapid application development (RAD) tools
to ease the development of graphical user interfaces in the 90’s.

The use of mashups as situational applications in enterprise environments is
addressed in [11]. They use the phrase “enterprise information mashup fabric” to

describe mashup platforms for the enterprise. DAMIA[1] is a concrete realisation
of these ideas for building mashups on corporate intranets. Both SABRE’s tools
and runtime environment have similarities to DAMIA. However, we are more
concerned with enabling compositional construction of mashups with well de-
fined semantics. In this respect the SABRE tools share a common purpose with
the SENSORIA Development Environment[21] (SDE) for semantic-based devel-
opment of service-oriented systems. Whereas SDE is a general-purpose SOC tool
suite, SABRE focuses on exclusively on tools for data-driven service coordina-
tion.

SABRE also borrows ideas from commercial mashup platforms. Google mashup
Editor}(GME) is a textual mashup tool that uses XML based mark-up, com-
bined with HTML and optionally, JavaScript. Each user-interface element in the
mashup is defined using a module tag that groups an input data source with a
template specifying the format of the resulting output. Yahoo Pipes?, another
commercial offering, takes a graphical approach to mashup creation. A variety
of data sources can be plumbed through so-called pipes that filter and transform
data. Predefined pipes are available to connect to data sources like RSS feeds,
REST and SOAP web services, perform string, number, and date manipulation,
and filter and sort data. Complex pipes may be composed of primitives and
invoke external services. Pipes superficially resemble channels in Reo (§4) and
SABRE’s editor closely resembles the Pipes Editor, but Reo and its tool suite
described in §6 actually predates Yahoo Pipes.

Most mashup platforms commingle the core coordination logic of the mashup
with external input/output and user interface concerns. Furthermore, none of
them consider the semantics of the services being used. Consequently none sup-
port true compositional construction of a mashup’s logic. For instance, while
Yahoo Pipes supports composing pipes, its notion of composition is limited to
data transformation operations. Arguably, this notion of composition is suffi-
cient for building the types of simple mashups commonly found on the Web. As
mashups migrate into enterprise environments, however, more formal notions of
service composition and coordination become highly desirable. SABRE aims to
provide the features necessary to support this use case, without unduly burden-
ing the mashup developer.

2.2 Service coordination

Service coordination refers to managing interactions among different business
processes and any atomic services that they may entail. Currently WS-BPEL[9]
and WS-CDLJ[12] are the most widely used languages dealing with orchestra-
tion and choreography, respectively. While BPEL is a powerful standard for
composition of services, it lacks support for actual coordination of services. Or-
chestration and choreography, have received considerable attention in the web
services community, and separate standards (e.g., WS-CDL) are being proposed

3 http://googlemashups . com
4 http://pipes.yahoo.com

for them. However, orchestration and choreograph are in fact, different facets
of coordination. Thus, it is questionable whether such fragmented solutions for
various aspects of coordination, which involve incongruent models and standards
for choreography and orchestration, can yield a satisfactory SOA. Most efforts
up to now have been focused on statically defined coordination (compositions),
as in BPEL. To the best of our knowledge the issues involved in dynamic coor-
dination of web services with continuously changing requirements have not been
seriously considered. The closest attempts consider automatic or semi-automatic
service composition, service discovery, etc. However, all these approaches mainly
concentrate on how to compose a service, and do not pay adequate attention to
the coordination of existing services.

In SABRE we use the channel-based exogenous coordination language Reo [2]
to specify mashup logic. Reo supports a specific notion of composition that en-
ables coordinated composition of individual services as well as composed business
processes. It is claimed that BPEL-like languages maintain service independence,
but in practice they hard-wire services through the connections that they specify
in the process itself. Reo in contrast, allows us to concentrate only on impor-
tant protocol decisions and define only those restrictions that actually form the
domain knowledge, leaving more freedom for process specification, choice of in-
dividual services, and their run-time execution. In traditional SOC, it is often
difficult and costly to make any modification to the process, due to the complex
relationships among its participants. This is a by-product of forcing a process
designer to explicitly define all steps in precise execution order in the process
specification, resulting from the use of essentially sequential, imperative, and
process oriented languages and tools. It is extremely difficult to adapt such over-
specified processes to accommodate even minor deviations in implementation.
By placing interaction and its coordination at the centre of attention, Reo lifts
the level of abstraction for the specification of composed processes.

Several other formalisms have also been developed for composition and co-
ordination of distributed entities e.g., based on Petri nets and w-calculus, and
coordination based on mobile channels[19]. However, these general frameworks
do not particularly cater to certain issues in service-oriented computing, e.g.,
non-deterministic nature of services or late binding of service implementations.

3 Mashups versus service-oriented computing

The upshot of the discussion in §2 is that while mashups and traditional BPEL-
style SOC have their strengths, each has many shortcomings that need to be
addressed. Since SABRE attempts to bridge the gap between classical SOC and
mashups, we begin by trying to identify how SOC best-practises apply to the
mashup building process.

Separation of concerns By virtue of being ad-hoc there is tight coupling be-
tween the data mangling logic, the utilised services and feeds, and user inter-
face elements that render the data in mashups. SOC regards having a clear
separation between these concerns as highly desirable.

Composition and coordination In the context of a mashup, composition
usually boils down to ad-hoc “data mangling”; that is, filtering combining
and transforming various inputs to generate desired outputs. Furthermore, a
mashup’s logic should be composable from reusable blocks to facilitate quick,
modular construction. No mashup platforms known to us, has any notion of
service semantics. Therefore existing mashup platforms cannot support the
notion of service coordination. In SOC is control-driven coordination exem-
plified by BPEL is the norm, but this style does not mesh well with the
data-driven nature of mashups.

Service contracts and fault isolation A service should have both a syntac-
tic specification, using WSDL for example, and a behavioural specification of
its semantics. Such precise service contracts shields services from misbehav-
ing clients, while ensuring services actually adhere to their contracts. This
helps isolate faults due to misbehaving clients or services. Although there is
extensive research on behavioural specification, no industry standards cur-
rently exist.

Service binding There is an inherent trade-off between flexibility in service
binding vs. dealing with service heterogeneity. The late-binding approach
advocated in SOC assumes uniform service interfaces, and universal reg-
istries. Conversely, mashups handle heterogeneity at the cost of being tightly
coupled to the services they use. Ideally, we would like a limited form of late-
binding at least for standard input source like RSS feeds.

M Ajax Fan Assistant O
= E Weather Summal
| Ajax - VVV-Venlo = -) i ry
[Eredivisie: Feyenoord muve_tup afte -: Ao e Atk B W 1 !
Ten Cate says Ne i staying with A | Shcrcan | ey
Ajax dumped out of UEFA Cup by Z | | Hurnidity: 94%

| Alax's Lugue to be sidelined for fou

wind: SE at 7 mph

Today Wed Thu Fri

EE‘F M -‘h _‘h h

Dutch first division leaders

iR,

Ajax's Spanish striker g s e
Alberto Luque will be 5| o i 16/8 187 1610 1611
sidelined for four weeks k" ; -é&f“ : EI
dgeto a groi muscle ¢ .,#“!i\ b2 . Payment status
myury sustained over the) hz R SN By : Pending...
last weekend, the club {0 ' \ e o eoﬁas“ 9
announced on Fowenen i \ S i ’ - 5 n]
Wednesday. via People's GOLISI& M dala 2007 Teke A’Hﬂs__,m;'” roceed Lo paymen
Daily Onlmne Lk : -

P [Discard current ewent]

Fig. 1. Example sports-fan mashup user interface

For the remainder of this paper we use the “Sports-fan Dashboard” example
to demonstrate mashup development in SABRE, and highlight how we achieve
the the first three improvements identified above. Our example mashup shows

relevant information based on the fixture schedule of a sports team. The Dash-
board uses an RSS or ATOM feed containing a schedule of team fixtures. A
fixture calender for Ajax FC for example, is available on Google Calendar®.
Once the user chooses a match of interest the Sports-fan Dashboard display the
following information: (i) a map showing the venue; (ii) news articles about the
match; (iii) weather forecast for the day of the match; (iv) option to purchase
tickets online, if the weather forecast is “good”®. Figure 1 shows a screenshot of
the running application.

4 Specifying Mashup Logic with Reo

We formalise the the core logic within a mashup by encoding it in Reo. Reo
is exogenous in that it imposes a coordination pattern on components, without
any knowledge of the internals of the components and without the components
having any knowledge of the coordination. This makes Reo ideal for coordinating
services from a data-centric perspective. Coordination in Reo is specified by
a connector consisting of nodes and primitives. Formally, a Reo connector is
defined as follows:

Definition 1 (Reo connector). A connector C = (N, P, E, node, prim, type)
consists of a set N of nodes, a set P of primitives, a set E of primitive ends
and functions:

— node : E — N, assigning a node to each primitive end,
— prim : E — P, assigning a primitive to each primitive end,
— type : E — {src, snk}, assigning a type to each primitive end.

A node is where the execution of different primitives is synchronised. Data
flow at a node occurs, iff (i) at least one of the attached sink ends provides
data and (ii) all attached source ends are able to accept data. A node does a
destructive read at one of its sink ends and replicates the data obtained to every
one of its source ends.

Typically, Reo primitives are channels. Channels can be attached to nodes
to compose connectors. The ends of a channel can be either source ends, which
accept data or sink ends which produce data. The actual semantics of a channel
depends on its type. Reo does not restrict the possible channels used as long as
their semantics is provided. Nodes, however, have the fixed semantics defined
above, which specifies their routing constraints. Table 1 describes the behaviour
of some common Reo channels. The top three channels represent synchronous
communication. A channel is called synchronous if it delays the success of the
appropriate pairs of operations on its two ends such that they can succeed only
simultaneously. Note that a Reo connector built from synchronous channels is
stateless and its execution is instantaneous in an all-or-nothing fashion. The

® http://www.google.com/calendar/embed?src=jdtvbcrkivtpnSecdptnnfnd6lcOudfpy
40import.calendar.google.com
8 Admittedly this was contrived to show the utility of channel composition in Reo

Table 1. Behaviour of common Reo channels

Sync —— [Simultaneously accepts data on one end and passes it
out the other end
SyncDrain| »——— |Simultaneously accepts data on both ends

SyncSpout | «—— [Simultaneously produces data on both ends

LossySync |- — — —» |Behaves as a Sync if a take operation is pending on
the output end, otherwise the data is lost

Filter — W —|Passes data matching a filter pattern and loses the
rest

FIFO —{F— |Buffers a single data item.

FIFO channel enables us to add stateful behaviour to a connector. An extensive
discussion of Reo, various channel types and numerous examples can be found
in [2]. Formal semantics for Reo has been given using constraint automatal[6],
connector colouring[7] and structured operational semantics[17].

Once channels are composed into a complex connector, it can be used dis-
regarding its internal details. As an example consider the XOR element shown
in Figure 2, built out of five sync channels, two lossy sync channels, and a sync
drain. The intuitive behaviour of this connector is that data obtained as input
through A is delivered to one of the output nodes F' or G. If both F and G is
willing to accept data then the merger at node E non-deterministically selects
which side of the connector will succeed in passing the data. The sync drain
channel B-F and the two C-F, D-FE channels ensure that data flows at only one
of C' and D, and hence F' and G.

Fig. 2. XOR connector

Services are independent distributed entities that utilise Reo channels and
connectors to communicate. The service implementation details remain fully
internal to individual elements, while the behaviour of the whole system is coor-
dinated by the Reo circuit. A deeper treatment of using Reo for service coordi-
nation is given in [14]. We discuss how we interface services with Reo in SABRE
is §5.1.

4.1 Building the Sports-fan Dashboard in SABRE

Augmenting the Reo tool suite with filter and transformer channels, gives SABRE
the data mangling functionality common to other mashup platforms. Filter chan-
nels take a filter expression e.g. a data type or regular expression to match
against. If a datum matches the filter expression it passes through the channel,
otherwise it is dropped . A transformer channel, likewise, accepts a data trans-
formation expressed e.g. as a sed-like text replacement or using XPath or XSLT.
Each input datum is rewritten according to the transform expression as it passes
through. Filters and transformers can also execute user-defined functions. For
example, a geo-coding channel that converts place names to latitude and longi-
tude can invoke an external service. Semantically, a filter acts as a specialised
lossy sync channel while a transformer acts as a sync.

Calendar
P N H
— - A ~ ~—
8 @
RSS Maps
D
C X
¢ G K
—* xpath://title ,o
E Ul
F \ON
T Weather
R
-3 re:/good|fair/
(0]
P
Checkout

Fig. 3. Reo connector implementing Sports fan mashup’s coordination

Figure 3 shows the coordination in our sports fan application defined in Reo.
The connector works as follows. Whenever the calendar service has a new event,
it is written to node A. From A, the data is passed to node D when the user

interface is ready to accept it. In parallel, data about the new event is also
transferred to the RSS and map services, if they are on-line. Otherwise, the
lossy channels A-B and A-H just discard the data. The map service provides
the location information to the user interface (through the K-G channel) and to
the weather service to retrieve the local forecast (K-J channel). The transformer
C-E uses an XPath expression to extract titles from the RSS feed for display in
the user interface. Whenever the user presses the “Proceed to payment” button,
the connector passes the required data through channel N-R. The SyncDrain
channel Q-R prevents data flow through the N-R-O pair of channels if the output
of the weather service does not “approve” it through the filter channel L-Q,
which accepts the data only if the forecast weather forecast is either “good”
or “fair”. When the ticket reservation is approved (via a Google Checkout test
payment account), the result is put into the FIFO channel P-F. The user interface
application then receives the current payment status from the buffer.

Using Reo as the basis for coordination offers a number of advantages. A
unique feature of SABRE is that connector in Figure 3 completely specifies
not just the data mangling logic, but also synchronisation constraints between
services. Just as in Yahoo Pipes, SABRE’s transformer and filter channels can
be composed to effect aggregate data filtering and transformation operations.
However, thanks to Reo’s semantic compositionality, we can also define much
more powerful constructs such as the XOR connector in Figure 2. Using library
of such predefined connectors, a mashup’s coordination logic can be composed
with precise formal semantics.

5 Behavioural specification of service using constraint
automata

Numerous formalisms for behavioural specification have been proposed such as
I/O automata[16] and open workflow nets[15]. We use constraint automatal6] to
specify the behaviour of services that interact with a SABRE mashup. Constraint
automata enables the to use the same formalism as an operational model for the
core mashup logic modelled in Reo and for behavioural specification of services
we interface with.

Definition 2 (Constraint Automaton([6]). A constraint automaton (over the
data domain Data) is a tuple A = (Q,N,—, Qo) where

— @ is a set of states,

— N s a finite set of port names,

— DC(N, Data) the data constraints, are sets of port name - data assignments,
— — the transition relation of A is a subset of Q x 2V x DC x Q

— Qo C Q s the set of initial states.

For every transition (q¢,N,g,p) €— we require that: (1) N # 0, and (2) g €
DC(N, Data).

10

A thorough treatment of using constraint automaton as an operational model
for Reo connectors can be found in [6]. Intuitively, states represent the config-

urations of the connector, the transitions the possible one-step behaviour. The

N, . . .
meaning of ¢ (.9) p is that in configuration ¢ the port names A; € N have the

possibility to perform I/O operations that meet the guard g and that lead from
configuration ¢ to p, while the other ports A; € N\N do not perform any I/O-
operation. We discuss the use of constraint automata for service specification
below.

5.1 Interfacing web services with the Sports-fan Dashboard

Input/output considerations are an integral part of mashup design. We use con-
straint automata to specify service behaviour in the typical fashion that labelled
transition systems are used as formal models for reactive systems. SABRE uses
stubs automatically generated from behavioural specifications to bind to ser-
vices. We extend the method of specifying service behaviour using constraint
automata described in [20] to allow for asynchronous service invocation.

- A {pay_r}
pay_r=true

{selectTicket}

= ipay_il

- {pay_r}

pay_r=false

Fig. 4. Constraint automaton specifying the behaviour of the Checkout Service

We use the “Checkout” service in Figure 3 to demonstrate behavioural spec-
ification using constraint automata. Suppose this service consists of two opera-
tions: selectTickets and pay. We map each synchronous operations in the ser-
vice interface to a constraint automaton port with the same name. Asynchronous
operations are mapped to two port names suffixed by _i and _r, corresponding
to the operation invocation and return, respectively. In Figure 4, we specify that
selectTickets is a synchronous operation by placing the single port name on
a transition. Following selectTickets, a client must invoke the asynchronous
pay operation that returns a boolean value indicating success or failure. We use
constraints to specify data-dependent state changes. For example, based on the
return value of the pay invocation, we either request payment again, or permit
the client to select another ticket to purchase.

11
6 Implementation

The SABRE implementation consists of a mashup design tool and a runtime
environment for mashup execution. The design tool is an enhanced version of
the Eclipse Coordination Tools [3] (ECT) — a suite of graphical tools for Reo.
Built on the Eclipse Graphical Modelling Framework, ECT consists of graphical
editors for Reo connectors, an animator for visualising a connector’s semantics,
transformation from Reo to constraint automata, and a model checker for con-
straint automata. The addition of filter and transformer channels brings the data
mangling features found in graphical mashup builders like Yahoo Pipes to ECT’s
Reo editor. We are integrating the Smooks data transformation framework” into
SABRE, to enable more powerful filter constraints and data transformations to
be specified in a declarative fashion.

SABRE’s execution environment depicted in Figure 5, consists of a Reo en-
gine and a management interface, hosted in a servlet container such as Tom-
cat. Reo has several executable implementations available, any of which may
be used to run a SABRE mashup. ReoCP is a constraint programming engine
that directly executes a Reo circuit based on the colouring semantics for Reo [8].
CASP [3] generates Java code from a constraint automaton representation of a
Reo connector. A distributed Reo implementation [18] on Scala Actors is on-
going. Any one of these engines may be plugged into the SABRE runtime via
a common interface, depending on the specific deployment needs of the appli-
cation. For example, a deployment requiring run-time changes to the connector
may choose to use ReoCP, while deploying a very large connector is best done
using distributed Reo.

The management interface lets a user deploy Reo connectors, and start and
stop connector instances via a web browser. Once a connectors is deployed and
started, the runtime initialises the Reo engine with the given connector and
instantiates service stubs and other server-side components. Stubs for services
(ovals on the left) and user interface elements (ovals on the right), depicted in
Figure 5, communicate with the engine via synchronous read and write oper-
ations on ports (arrows) of the Reo connector being run by the engine. The
SABRE runtime also maps ports to URLs, which may be used by remote com-
ponents to read and write data to ports using HTTP GET and PUT operations
respectively.

SABRE generates Java service stub classes from a constraint automaton and
a Java interface® declaring operations a service provides. Each start state of the
automaton is mapped to a thread which listens for reads and writes on the ports
of the outgoing transitions of the current state. Once all ports of a transition are
active, the thread invokes the corresponding operation(s) with the parameters
received on invocation ports and/or writes any return values to return ports.

For user interface creation we envisage a library of common user interface
elements like maps and clickable lists. A user interface element may either execute

" http://milyn.codehaus.org/Smooks
8 WSDL specification can be easily translated to Java using tools like Apache Axis

12

Servlet container

Reo engine
H
Calendar .
- oo H
] — e
Connectorn instance
O &
G — 4 J
Checkout SRR .
f ow o Te
0 L@ D
R A E
~+re: fgood | fair/ F User
o o |(\3-1 Interface
N
Management interface j

Fig. 5. Sports-fan Dashboard deployed on the SABRE runtime environment

locally on the same server as the mashup, or remotely on the user’s browser, such
as a component using the Google Maps JavaScript API. Such browser-based UI
elements may use JavaScript’s XMLHTTPRequest object to perform I/O via the

URL mapped ports, with the Reo connector executing on the server®.

7 Conclusion and future work

We have presented a framework for rapid composition of heterogeneous data and
services on the Web. Rather than approach service coordination from the tradi-
tional control flow perspective, we take a data-centric view inspired by mashups.
The SABRE framework permits compositional construction of mashups with
precise semantics and fault isolation, without sacrificing rapid development and
flexibility inherent in mashups. The synchronous semantics of Reo gives us simple
transactions that can ensure that a chain of components connected by channels
all execute atomically. Compensation is another major concern in specification
and implementation of business processes that involve long running transac-
tions. We intend to adapt the schemes used to translate the compensation con-
structs available in the BPMN standard to provide a compensation mechanism
for SABRE [4]. In summary, SABRE improves on the current state of the art in
mashup construction platforms by leveraging the strengths of Reo, by using it
as the basis for formalising coordination logic in a mashup.

9 This is the same technique known as AJAX in common parlance.

13

Specifying service behaviour in constraint automata is onerous for casual

mashup development. An alternative is to describe a service by a UML sequence
diagram and then extract the behavioural specification in the form of a con-
straint automaton [5]. Ongoing work on Reo also makes it possible dynamically
reconfigure connectors based on graph transformations [13]. Dynamic reconfig-
uration opens up possibilities such as run time service discovery and binding.
Finally, we would like to add more prepackaged components along the lines of
Yahoo Pipes and streamline SABRE’s graphical interface to make it accessible
to non-technical end-users.

References

1.

10.

11.

12.

13.

14.

M. Altinel, P. Brown, S. Cline, R. Kartha, E. Louie, V. Markl, L. Mau, Y. Ng,
D. Simmen, and A. Singh. Damia - a data mashup fabric for intranet applications.
In VLDB, pages 1370-1373, 2007.

. F. Arbab. Reo: a Channel-based Coordination Model for Component Composition.

Mathematical Structures in Computer Science, 14:329-366, 2004.

F. Arbab, C. Koehler, Z. Maraikar, Y. Moon, and J. Proenca. Modeling, testing
and executing Reo connectors with the Eclipse Coordination Tools. In Proceedings
of FACS, SCP, 2008. To appear.

F. Arbab, N. Kokash, and M. Sun. Towards using Reo for compliance-aware Busi-
ness Process Modelling. In Proceedings of ISOLA, 2008. To appear.

F. Arbab and S. Meng. Synthesis of connectors from scenario-based interaction
specifications. In M.R.V. Chaudron and C. Szyperski, editors, Proceeding of CBSE,
volume 5282 of LNCS, pages 114-129. Springer, 2008.

C. Baier, M. Sirjani, F. Arbab, and J. Rutten. Modeling component connectors in
Reo by Constraint Automata. Sci. Comput. Program., 61(2):75-113, 2006.

D. Clarke, D. Costa, and F. Arbab. Connector colouring I: Synchronisation and
context dependency. Electr. Notes Theor. Comput. Sci., 154(1):101-119, 2006.

D. Clarke, J. Proenga, A. Lazovik, and F. Arbab. Deconstructing Reo. In Pro-
ceedings of FOCLASA, ENTCS, 2008. To appear.

F. Curbera, Y. Goland, J. Klein, and F. Leymann. Business pro-
cess execution language for web services. Technical report, IBM,
http://www.ibm.com/developerworks/library/ws-bpel/, 2002.

R. Fielding. Architectural styles and the design of network-based software architec-
tures. PhD thesis, 2000. Chair-Richard N. Taylor.

A. Jhingran. Enterprise information mashups: Integrating information, simply. In
VLDB, pages 3—4, 2006.

N. Kavantzas, D. Burdett, and G. Ritzinger. Web services choreogra-
phy description language (WS-CDL) version 1.0. Working draft, W3C,
http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427, 2004.

C. Koehler, D. Costa, J. Proenca, and F. Arbab. Reconfiguration of Reo connec-
tors triggered by dataflow. In Proceedings of GT-VMT, volume 10 of Electronic
Communications of the EASST, 2008.

A. Lazovik and F. Arbab. Using Reo for service coordination. In Conf. on Service-
Oriented Computing (ICSOC-07), Lecture Notes in Computer Sciences 4749, pages
398-403. Springer, 2007.

14

15.

16.

17.

18.

19.

20.

21.

Niels Lohmann, Peter Massuthe, and Karsten Wolf. Behavioral constraints for
services. In Business Process Management, Lecture Notes in Computer Sciences
4714, pages 271-287. Springer, 2007.

Nancy Lynch and Mark Tuttle. An introduction to input/output automata. Tech-
nical report, Centrum voor Wiskunde en Informatica, Amsterdam, The Nether-
lands, 1980.

M. Mousavi, M. Sirjani, and F. Arbab. Formal semantics and analysis of component
connectors in Reo. ENTCS, 154(1):83-99, 2006.

José Proenca. Towards Distributed Reo. Talk presented at CIC workshop, 2007.
http://homepages.cwi.nl/ proenca/distributedreo.

J. Scholten, F. Arbab, F. de Boer, and M. Bonsangue. A component coordination
model based on mobile channels. Fundam. Inform., 73(4):561-582, 2006.

M. Sun and F. Arbab. Web Services Choreography And Orchestration In Reo And
Constraint Automata. In Proceedings of the 2007 ACM Symposium on Applied
Computing (SAC), pages 346 — 353. ACM, 2007.

Martin Wirsing, Allan Clark, Stephen Gilmore, Matthias Holzl, Alexander Knapp,
Nora Koch, and Andreas Schroeder. Semantic-Based Development of Service-
Oriented Systems. In E. Najn et al., editor, Proc. 26th IFIP WG 6.1 In-
ternational Conference on Formal Methods for Networked and Distributed Sys-
tems(FORTE’06), Paris, France, LNCS 4229, pages 24-45. Springer-Verlag, 2006.

