EETNENEE.
IEDRRNEEANARARASEERE
SRONGEBEEAREEEREDRER EER
ENENENTIENAEENNEARER BERNESEENE

111

EREE

asa

]
SEENEERARNAEEEOER
ISR ERAEERAEEN a
AEDNRERENEEERERRN IRENUERENRENGEAR
SENEEABERARNEEERENERERAVSEESEARNEEEEE
FESENESSENEREAEEEENDREREENOEEBANNNERNEREREEN
ISESEEENENNEEREENCEERENDRA - NN/ NENERENNRANENE
SEEEEEDEEEREEEAEAENNENANEEERA G INERNDRENOREDEN
ISESEEEEENEREREEEENNEENEEEERRR\ 'PEVARROBURRERS
IBESSAEESEERSNERERAGEREEGEREERER \UDTREREADOEER
IEDEASEEARREOEEGENENEREESENEETNr “/AVEENEAEEEN
IEEERESEEGNUEEOREEERNREDNERRRYY JEAZANERREEN
INESREEEENEAEROSENERINEREERE 4. ‘SIRIEEEREEY
IENAREEEAEAEOEERATNEENETREREEEEL weUansuEans
PEEENEERNPENERSNEAERERRSRNEANEEP Sh. BNEEEER
SENEENEDNENNNENNRERENEOEEREE' A 1Il‘ll§?!1
] PEEESENAESENAENNERERRAREY 40, 180 'BREEE
INEEGERENEONRERENRENSNERARENEEI . END. Illrll====
EEENAERREEEEEERERANENESUNEELANEEEndEEANT

111 T
- n.'==lllnluulluun;l.'qu']l|!|!ullHlﬂUl
EEEL Y LT IEBEREANEN

FENDBENERE gpEavERDERl

Jens R. Calameé

Testing Reactive Systems with Data

Enumerative Methods and Constraint Solving

Testing Reactive Systems with Data

Enumerative Methods and Constraint Solving

Jjens R. Calamé

4 tored in a
ns R. Calame i s ay be reproduc?df § .
ght © 2008 Je 4. No parts of this puth;t;O;\;“néansl electronic, mechamcal,

- . or - .
mltte&el?v:;)e, f\(/)vrirtrtlxout prior permxssxon of the author
T O ,
: ed on 26-03-2008-

\as\‘o&em\s’\

Copyrt
All rights are reserve
retrieval systemy or trans

p\\okocop\]'mg, recording

All web addresses, which this Ypesis tefers O Jhave

Typeset by Jens R. Calamé with TATEX 2¢ using the Palatino, 10pt

Cover: Idea and realization Jens R. Calamé
Image “Silhouette of Bug on Screen” (© Barbara Chase/Corbis

Printed by Ponsen & Looijen B.V., Wageningen

ISBN 978-90-6464-273-9
IPA dissertation series 2008-20

Content in this thesis refers to the following trademarks:

AMD Athlon is a registered trademark of Advanced Micro Devices, Inc.
Conformiq Qtronic is a registered trademark of Conformiq Software Ltd.

Fedora is a registered trademark of Red Hat, Inc.

Firefox is a registered trademark of the Mozilla Foundation

Gecko is a registered trademark of the Netscape Communications Corp.

Java is a registered trademark of Sun Microsystems, Inc.

Linux is a registered trademark of Linus Torvalds

Rational Unified Process is a trademark of International Business Machines, Corp.
SuSE is a registered trademark of Novell, Inc.

UML is a registered trademark of the Object Management Group

Other company, product and service names may be trademarks or service marks of others.

INSTITy, "
7,

(s}
40

|

Al
‘_

4y e \o NWO

4, o
1y o . .
Nig g AV Nederlandse Organisatie voor Wetenschappelijk Onderzoek

GRRVID0y

'
!
ity

The work rgported in this thesis has been carried out at the CWI (Centrum Wiskunde
& Informatica) within the TT-Medal project (Test & Testing Methodologies for Ad-
Z’rancKed Lgl?gfuagtes) and t(he BRICKS project funded by the Besluit Subsidies Investeriin-
gen Kennisinfrastructunr (BSIK). The research took place under the auspi
. Sp1
Instituut voor Programmatuurkunde en Algoritmick (IPg). pices of the

TESTING REACTIVE SYSTEMS WITH DATA
ENUMERATIVE METHODS AND CONSTRAINT SOLVING

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente
op gezag van de rector magnificus,
prof. dr. WH.M. Zijm,
volgens besluit van het College voor Promoties
in het openbaar te verdedigen
op donderdag 4 september 2008 om 13:15 uur

door
Jens Rudiger Calamé

geboren op 21 juni 1979
te Hamburg, Duitsland

Dit proefschrift is goedgekeurd door de promotoren:

prof. dr. J.C. van de Pol
prof. dr. W.J. Fokkink

Contents

1 Introduction
11 SoftwareTestingo
1.1.1 A Short History of Software Testing
1.1.2 Testing and Formal Methods
12 ModelCheckingo oo it
1.2.1 A Short Introduction to Model Checking
1.2.2 Software Testing and Model Checking
1.3 Structure and Contribution of this Thesis
1.3.1 Contribution
1.3.2 Detailed Structure of the Thesis

2 Specifications and Automata
2.1 Specificationsand Automata
2.1.1 Transition SystemsinGeneral
2.1.2 Symbolic Transition Systems
2.1.3 Labeled TransitionSystems
2.2 The Unified Modeling Language
221 SystemBehavior
222 SystemStructure
23 Termsand Algebras.
23.1 TheSyntax: Signaturesand Terms
2.3.2 The Semantics: Algebrasfor yCRL
24 SpecificationsinuCRL oo
2.4.1 Data in micro Common Representation Language (uCRL) . . .
242 BehaviorinuCRL.
2.5 Specifications and Abstraction

3 Transformation from wCRL to Prolog
3.1 ConstraintSolving o
3.2 Transformation of Abstract DatatypestoProlog
3.2.1 Syntactical Transformation of uCRL ADTs to Prolog
3.22 Semantical Transformation
3.3 Transformation of Process BehaviortoProlog
34 RelatedWork

4 Testing with Data Abstraction
4.1 Conformance Testing Theory:ioco
4.2 TestGenerationwithTGV

Contents

43 ChaoticData Abstraction. 65
4.4 Parameterizing Test CaseswithData 72
45 CEPSCaseStudyy 81
46 RelatedWork e 87
Behavior Adaptation in Testing 91
51 A Test Execution Framework 91
5.1.1 Test Execution Algorithms 92
5.1.2 Test Execution Regardingioco 98
5.2 Realization of the Test Execution Framework 102
52.1 Goals in the Developmentof BAiT 102
522 Test Generation and Test Execution with BAIiT 104
52.3 General Architecture of BAIT 104
524 Component ConstraintSolver 105
525 Component DataManager 110
52.6 Component BehaviorManager 116
5.2.7 Component TestRunManager 120
53 Related Frameworks 123
531 TTCN-3 . . oot e e e 123
532 xUnit e 124
533 STG i e 125
534 QONIC o vttt e 125
BAIT in Action 127
6.1 A Behavior-oriented Case Study: ATM 127
6.1.1 Automatic Teller Machine 128
6.1.2 Test Generation and Test Execution 130
613 TestExecution. 132
6.2 A Data-oriented Case Study: MozillaGecko 135
6.2.1 TheTestEnvironment 136
622 Objectiveof theCaseStudy 140
6.2.3 Realizing the Test Environment 141
6.2.4 Modelling Cascading Style Sheet (CSS) in pCRL 141
6.25 RunningtheTests. 145
Bug Hunting with False Negatives 147
7.1 Linear TemporalLogic 149
7.2 Action-based LTLandData 150
73 AbstractingeALTL 152
7.3.1 Abstractionofasystem 152
732 Abstraction of eALTL formulae 154
74 Classes of Counterexamples« 162
7.5 Constructing a Violation Pattern 164
7.5.1 Constructing a Violation Pattern 165

7.5.2 Looking for a concrete counterexample 172

Contents

7.5.3 Correctness of the Framework
76 ACaseStudy: PAR oo
7.7 Relatedwork. e e e e e e e

8 Conclusion

A Excerpts from the Specification for CEPS
B Proofs for Lemma 3.22

Summary

Samenvatting

Zusammenfassung

Curriculum Vitee

Contents

Preface

About ten years have now passed by since my focus has for the first time been turned
to software quality assurance by a book named No More Bugs (Maguire, 1998) — and
a few more years probably since I have for the first time successfully implemented
a bug myself. Now, after having developed loads of more bugs and after having
worked for four years by now on the question how to sort them out again, you hold
my small contribution to the area of software quality assurance in your hands.

When I write nty contribution, I have to be evocative of all the people who made this
book possible. First of all, I would like to thank my promotors Jaco van de Pol and
Wan Fokkink. Jaco’s sharp eyes and his constructive critics over all the years have
been substantial ingredients in producing a thesis with a minimal amount of bugs in
it. Wan contributed a lot of very constructive comments on the drafts of this book. It
was also him who made it possible for me to work at CWI in the first place.

Next, I would like to thank the members of the reading committee of my thesis, in
alphabetical order: Mehmet Aksit, Thomas Arts, Ed Brinksma, Ina Schieferdecker,
Natalia Sidorova, and Mariélle Stoelinga. Their feedback was an indispensable con-
tribution to the quality of this thesis. I would also like to thank Ina for laying the
contact with Wan in 2004. Furthermore, I would like to thank Natalia for her input
on the papers this thesis is based upon, especially on that on Bug Hunting with False
Negatives.

At CWI T had the opportunity to work in a vivid working group with very nice col-
leagues. I would especially like to thank Natalia Yustinova for more than two years
of productive cooperation. I really appreciated the inspiring discussions with you!
Also your comments on the introduction of this thesis have turned out very helpful
to me. Furthermore, I would like to thank Bert Lisser for his support guiding me
through the shallows of uCRL and its associated libraries. Finally, I will keep Anton
Wijs in mind as a very nice room mate, and Mohammad Torabi Dashti, Yanjing Wang
and Taolue Chen as colleagues with whom I could also have a great time at CWI and
elsewhere.

Finishing up the thesis, I would like to name a few more people whose advice I
appreciated in these last months. First of all, I would like to thank Marco Kuhrmann
for meeting the challenge to proof-read this book and for providing a number of
useful comments on its contents. Having a look in the back of the book, I would like
to thank Wan, Anton, Stefan Blom and Jaco for hunting bugs in my Dutch summary.
And having a look at the book’s appearance, I would like to thank Manuel Voigt for
helping me finding an appropriate cover image, and Tobias Baanders for his kind
advice on improvements regarding the cover as such. Finally, I would also like to
thank Paul Klint for supporting me in organizational issues in my last months at
CWL

vi Preface

Doing research and writing a thesis is — in most cases at least — embedded into some-
thing called life. Last but not least, I would like to turn the attention to this aspect. As
a start, I would like to thank my landlady Mieke Langereis for more than 2 years of
very kind hosting, which included not only a roof above my head, but also warmth,
tasty food, lots of tea and long conversations in which I could improve my Dutch
a lot. 1 also really enjoyed mutual visits with my friends and hours with them on
the phone or in Internet chats. Especially in the last time of my studies, the Internet
turned out to be a very important utility to keep my social life up and running. At
last, I would like to thank my family for all their support and their imperturbable
belief in the decisions I have made in my life so far.

My belief in finally overcoming the problem of faulty software is not as imper-
turbable. I actually do not know, whether we will ever reach the state of no more
bugs in software engineering. Already the Romans knew that errare humanun est
(for the main audience of this book: human — [J{ error), so I personally doubt
bug-freeness as long as computers are programmed with human beings involved.
However, we can try to repress bugs as much as possible, and T hope that this thesis
is a bit of a help on the long way doing so.

#5, Japan, June 2008

Jens R. Calamé

Chapter 1

Introduction

Testing is a very inefficient way of
convincing oneself of the
correctness of a program.

(Edsger W. Dijkstra?)

uality is defined as the “degree to which a set of inherent characteristics fulfills re-

quirements” (1ISO 9000:2000; cf. Hoyle, 2005). Measuring — and consequently also
ensuring — quality is a necessity in the development of any kind of product in order
to unveil imperfections, which can lead to more or less severe problems in handling
the particular product. Every class of products has thereby its own set of character-
istics to be measured. For software, those are defined by ISO 9126 as functionality,
reliability, usability, efficiency, maintainability and portability with several subcharacter-
istics (Hendriks et al., 2002).

There exist several approaches to measure the quality of a software product. Each
of them focuses on a subset of the above-mentioned characteristics. Amongst other
things, the approaches differ in the analyzed artifacts, like a model of the software
product (model checking), its source code (static analysis or code reviews), the product’s
behavior (software tests) or even the development process of the product (appraisal
methods). The outcome of such measurements can in many cases be directly inter-
preted, if, for instance, a model has been considered incorrect by model checking.
In other cases, the outcome serves as an input to metrics (cf. Kan, 2003), which then
support the improvement of the product and eventually even that of its successors.

Assuming a certain maturity, the development of a software product follows a soft-
ware development process. Such a process defines development steps in project
stages. Amongst other things, these stages contain the definition of requirements for
the developed software, the design of the software system and its components, as
well as their realization. Measuring software quality is a continuous activity, accom-
panying the whole software development process.

In this work, we will concentrate on two of the named activities supporting quality
measurement, software test and model checking. The one we will mainly focus on, is
the software test. As it has already been hinted, this is a dynamic approach, which
runs a series of experiments on the software product in order to derive, whether it
matches the customer’s expectations. The second approach considered in this work
is model checking, a representative for formal quality measurement. It formally ver-
ifies whether the software model meets a particular requirement, rather than making
an experiment on the software, as does testing.

lat the NATO Software Engineering Conference 1968

2 Chapter 1 Introduction

In the remainder of this chapter, we will first introduce both approaches, then briefly
present the projects, in which this work was carried out, and finally discuss the con-
tributions and the structure of this thesis.

1.1 Software Testing

The software test is a widely-accepted dynamic approach to measure the quality of
a software product. During a test, the use of this product is simulated in a certain
scenario. Within a software development process, testing often happens at a rela-
tively late stage, since the product under test or at least some artifacts of this product
must be available. However, test cases, i.e. the scenarios under which the product is
tested, can already be developed in parallel to the product itself.

Even though, the test in most cases appears as only one or two (atomic) steps in com-
mon software development processes, it is a process on its own. There are several
standards for test processes (e.g. B57925-2 and IEEE 1008 for the test of single com-
ponents, as well as, for instance, TMap as an industrial approach to testing; cf. Van
Veenendaal, 2002). It should be sufficient for our work, that these processes have a
common structure, namely the steps planning, specification and execution of the test as
well as an adjacent interpretation of its results.

1.1.1 A Short History of Software Testing

Testing in computer science has a long history, which goes back to the days of the
first computing machines, and has since then changed its objective several times.
We will here give a brief overview of this historic development, to clarify today’s
comprehension of the meaning of software testing in software development.

Gelperin and Hetzel (1988) have identified five main periods in the history of soft-
ware testing. In the first, debugging-oriented, period, the two activities festing and
debugging, which later got different meanings, were intertwined and could even be
used synonymously, since they both targeted the elimination of programming faults.

This period was replaced around 1957 by the so-called demonstration-oriented period.
Here, we encounter a strict distinction of debugging as the activity to “make sure, the
program runs” and testing as the activity to “make sure, the program solves the problem”
(Gelperin and Hetzel, 1988). This means in short, that testing was used to show that
the program under investigation was correct.

With this idea in mind, the world stumbled into the software crisis of 1968 (Naur
and Randell, 1969). For the area of testing, it then took about one more decade, until
Myers (1979) made the step from testing as a correctness proof to testing as fault
detection. Debugging was from then on defined as the activity to fix faults.

Gelperin and Hetzel name this period from 1979 on destruction-oriented. It was fol-
lowed by two more periods in which, according to the authors, testing was first
integrated into a unified product evaluation process, and then its focus was shifted

1.1 Software Testing 3

from just finding existing faults to also preventing the occurrence of new ones. Ac-
cordingly, over the years the position of testing in software development processes
gradually shifted from a fixed activity at the end (like in the waterfall model) to one
which continuously accompanies the implementation of the software product itself
like in the Rational Unified Process (cf. Kruchten, 2003).

In the twenty years after the publication of the article, finally, the flavor of testing has
surely changed further, for instance with the advent of test-first approaches in Ex-
treme Programming (Beck, 1999), where test cases are even used as software specifi-
cations. The main focus of testing as fault detection, however, has stayed unchanged
for already nearly 30 years by now.

What are faults, bugs and - failures?

In the context of software quality, three terms are regularly used to point out problems:
faults, bugs and failures. The term fault or bug is defined by the ISTQB (2006) as a flaw,
which makes a system deviate from its required functionality. Following this definition,
a failure, i.e. the actual visibly wrong behavior, is caused by a fault. In the remainder of
this thesis, we will mainly use the term failure in the context of testing. The term bug will
later be used in the context of model checking.

1.1.2 Testing and Formal Methods

Testing is in many cases performed in an adhoc manner. This means, that tests are
developed on the basis of informal system requirements and specifications and then
— sometimes still manually — executed. Testing, however, is tedious and costly, so
that attempts are made to automate it.

In particular, two aspects of testing can be automated: test generation and test exe-
cution. The automation of test execution can be already achieved with rather simple
tools, like a manually implemented test driver for a test on the level of the Applica-
tion Programming Interface (API), using, for instance, Unit Testing Frameworks, or
a capture-and-replay tool for the test of a graphical user interface. The tools them-
selves do not have to understand, what they are doing, they just have to repeat a task
over and over again.

Things are different when it comes to the automation of test generation. In this case,
tools have to develop a certain understanding of the entities on which they are act-
ing. Informal system requirements and specifications cannot be interpreted auto-
matically, so that those artifacts must be formalized. Formal methods are based on
mathematical notions for the specification of requirements and specifications. Since
these constructs are inherently well-defined, it is possible for automatic tools to in-
terpret them in a non-ambiguous manner.

4 Chapter 1 Introduction

1.2 Model Checking

1.2.1 A Short Introduction to Model Checking

Model checking (Clarke et al., 1999; Bérard et al., 2001) is a formal method to verify
the correctness of a software model. The verification process is performed automat-
ically by exhaustively searching all states of the system under investigation for pos-
sible faults. The absence of faults may then be interpreted as a sign that the model is
indeed correct.

In order to model check a system, the system must be specified. A system speci-
fication on which model checking can be applied, must be formal. Such a formal
specification can, for instance, be an automaton, a Petri net or a process—algebraic
specification (Petri, 1962; Bergstra et al., 2001). The requirements which the system
is supposed to fulfill, must also be defined. In most cases, these requirements are
given as formulae in a temporal logic, i.e. a logic, which can assert the evolution of
the system over time.

In the actual verification, the model checker takes both the system specification and
the requirement as an input and does an exhaustive search over the system’s state
space. If it does not find a bug, the system can safely be considered correct w.r.t.
the requirement. If it finds a bug, the system is not correct and a counterexample
is returned. This counterexample shows under which circumstances the found bug
can be reproduced.

One approach in model checking is enunerative model checking, which expands all
occurrences of data variables to all possible values for these variables, and examines
the resulting state space. The search over the state space of the system is an exhaus-
tive one. This can lead to problems with systems, which have a large or even infinite
state space — and indeed, it does with most systems. This critical phenomenon is
known as state space explosion, and in most literature refered to as state explosion.

In order to understand this problem, we have to introduce the notion of states. In
the course of its execution, a system follows a particular trace of instructions, the
so-called control flow?. If the system is data-dependent, the instructions in the control
flow interact with and change data values. The subsequent interaction with data
leads to a system’s data flow. Finally, a state of a system is the product of its position
in its control flow together with the values of all data items in the system.

To make it short: The more possible values can be selected for a data item, i.e. the
bigger the data item’s domain is, the more states a system can have — only regarding
this one data item and not even the other ones. This means that the state space of
a system grows over all limits by enumerating over large or infinite data domains.
Model checking as an exhaustive search in a state space has to address this problem.
This can be achieved in two ways. The first one is to use abstraction techniques, the
number of data values and hence the number of states in the system can often be
reduced, so that enumerative model checking can still be applied.

2To clarify the exposition, we do not consider parallel processes here.

1.3 Structure and Contribution of this Thesis 5

The second way to address the problem of state space explosion is to not enumerate
over all data values in the system at all, but to regard the variables themselves in-
stead during the whole verification process. This approach is named symbolic model
checking?®.

1.2.2 Software Testing and Model Checking

Software testing and model checking are two orthogonal aspects of software quality
assurance. While the first approach dynamically simulates the usage of the imple-
mentation, i.e. the final product, the second one statically verifies an intermediate
product of the software development process, the model. This intermediate product
is not as complete as the final one, since a model is always only an image of reality
(lat. modellus: at a small scale). This is, however, an advantage of model checking
with respect to testing, since a model can more easily be checked completely (at least
regarding the checked system properties), while completeness in testing is hardly
ever achieved. Since the two approaches are orthogonal, they complement each
other: Performing model checking at a relatively early stage of the software develop-
ment process already allows to reduce the number of bugs before they are actually
implemented. This decreases the number of testing and debugging cycles, and more-
over diminishes costs for a redesign of the whole application in its implementation
phase.

1.3 Structure and Contribution of this Thesis

Much of the work described in this thesis was done in the scope of the European
project Tests & Testing Methodologies for Advanced Languages (TT-Medal)*. Its objective
was the development of methodologies, tools and industrial experience to improve
the effectiveness and efficiency of testing for the European industry (see TT-Medal,
online). In order to achieve this objective, methodologies have been developed for
the application of the Testing and Test Control Notation, version 3 (TTCN-3) outside
of its home domain telecommunication. TTCN-3 is a language to define modular
platform-independent test cases, which are subsequently executed by the TTCN-
3 runtime environment. Those methodologies developed in TT-Medal were to be
based on a generic testing infrastructure. The domains to which TTCN-3 was applied
were the automotive sector, finances and railways. The research topics touched in
the project comprised the generation of test cases in TTCN-3 especially regarding
the aspect of test coverage, the validation of test cases, regression test techniques for
system integration and the reuse of test cases between phases of a test process as
well as software products.

3“Symbolic” in this context should not be confused with approaches to model checking, which make use
of BDD:s in order to store sets of states and to which the term “symbolic” model checking normally
refers.

4TT-Medal won the ITEA Achievement Award in 2005.

6 Chapter 1 Introduction

Our contribution to this project comprised amongst other things results in the test
of railway interlockings using TTCN-3 (Calamé et al., 2006a) as well as in the auto-
mated generation of TTCN-3 test cases from system specifications in Unified Model-
ing Language (UML), which has been described in Calamé et al. (2006b). This latter
work is based on automatic test generation from formal specifications, which will be
discussed in-depth in this thesis.

In the TT-Medal project, we did most of the research concerning our test-related
research questions. A part of the work was also done in the scope of the Dutch
Basic Research in Informatics for Creating the Knowledge Society (BRICKS) project (see
BRICKS, online). This concerns mainly the research on model checking, but partially
also that on testing.

Test Execution in Practice
Chapter 6

- Case studies:

Automatic Teller Machine (ATM)
Cascading Style Sheets Box Model in Mozilla Firefox

i)

Model Checking of Abstracted Specifications Test Execution on Nondeterministic Systems
Chapter 7 Chapter 5

- Introduction of action-based LTL with data (eALTL) - Adapting test execution to nondeterministic system behavior

- Application of contracting abstraction on eALTL - Development of a test execution framework

- Transformation of abstract counterexamples into violation
patterns in order to retrieve valid concrete counterexamples

- Case study: Positive Acknowledgement with
Retransmission Protocol (PAR)

1 % 1

Process-Algebraic Specifications and CLPs Test Generation and Execution with Data
Chapter 3 Chapter 4
- Transformation of abstract datatypes (WCRL to Prolog) - Application of enumerative test generation on systems with
- Transformation of processes (WCRL to Prolog) infinite data

- Typed data in Prolog - Application of constraint solving for test data selection
- Case study: Common Electronic Purse Specification

(CEPS)

Figure 1.1: Structure of results

1.3.1 Contribution

In this thesis, we will consider research questions from the areas of software test-
ing and model checking. Our research questions mainly focus on the problem, how

1.3 Structure and Contribution of this Thesis 7

to handle systems with data from infinite domains in the several activities testing
and model checking, and how to apply appropriate data selection while perform-
ing these activities. An overview of the results of this thesis is given in Figure 1.1.
Overview on related work will be given in the respective chapters of this thesis. We
can define three main questions, surveying the automatic generation and execution
of test cases with data and the verification of abstracted system models:

1. How can test cases for a data-dependent system be generated using data ab-
straction techniques, so that data dependencies within this system are pre-
served for test data selection?

2. How can these test cases be generated and executed, so that they consider non-
deterministic system behavior during test execution?

3. How can false negatives in model checking be utilized for the generation of
real counterexamples?

Our solution to these questions is partially based on a uniform approach utilizing
constraint solving techniques. For the specifications of the regarded systems, we use
the process-algebraic specification language micro Common Representation Language
(uCRL), as it has been defined by Groote and Ponse (1994). With pCRL, the behavior
of a system can be defined using the common means of expression of process alge-
bras (Fokkink, 2000). Furthermore, pCRL introduces data based on the concept of
Abstract Datatypes (ADTs). Regarding specifications in puCRL and Constraint Logic
Programs (CLPs), the fourth question arises regarding the correlation between these
two:

4. How can process-algebraic specifications in uCRL be transformed to CLPs,
such that their semantics is not impaired?

Question 1: Automatic Test Generation and Execution with Data

In the scope of our first two research questions, we work on the field of confor-
mance testing. In a conformance test, an Implementation under Test (IUT) is tested
for compliance with its specification. Such tests support measuring software qual-
ity mainly regarding the ISO 9126 category functionality (Hendriks et al., 2002). Test
cases for conformance tests can be generated, for instance, using enumerative test
case generators like Test Generation with Verification Techniques (TGV) developed
by Jard and Jéron (2005), which is part of the Construction and Analysis of Dis-
tributed Processes (CADP) toolset. As enumerative model checkers, such test gener-
ators suffer from state space explosion. This problem can be circumvented by either
using symbolic techniques, which use symbolic variables rather than enumerating
all values of a particular datatype, or applying abstraction techniques.

In this thesis, we decided for the latter approach. We specify a system in pCRL and
then abstract its data using a so-called chaotic data abstraction, in which all values
of a datatype are reduced to a single constant for inputs and outputs of the system.
From this abstracted system, we can then generate the control flow of the test using

8 Chapter 1 Introduction

TGV. The relevant data dependencies of inputs and outputs are preserved in a CLP.
This CLP then serves as an oracle during test execution in order to receive test data
for a test run.

Question 2: Test Execution on Nondeterministic Systems

After a test case has been generated, it is executed in parallel to the IUT. Depending
on the reactions of the IUT on input from the tester, a verdict is assigned, which in
short claims that the IUT is faulty or not. Based on this verdict, the development of
the software iterates through a debugging cycle or goes on to the implementation of
further parts or the release of the product.

However, if a system — either in its specification or in its implementation — is non-
deterministic, verdicts are not always reliable. There are two possible reasons for
the nondeterminism of a system: The first one is a specification that leaves certain
decisions open to the implementation stage of the system, rather than choosing a
particular decision already in the design stage. The implementation of such a sys-
tem can still be a deterministic one. The second alternative is a system consisting
of several components, which are executed in parallel and can send messages to the
system'’s environment in any interleaving order.

Test generation from a system specification, however, selects a certain sequence of
inputs to and outputs from the IUT before the execution together with appropriate
testing data. For instance, the test of an Automatic Teller Machine (ATM) could ex-
pect a single 20 € banknote from the machine when withdrawing 20€ from a bank
account. If the machine instead returns two 10€ banknotes, as an example for an
implementation choice as mentioned above, the machine could then be wrongly de-
clared as faulty, even if its specification also allows this alternative.

In this thesis, we introduce dynamic adaption of test execution to avoid this kind of
wrong test verdicts. This approach can be compared to adaptive test cases (cf. Hi-
erons, 2006) from the area of testing with Finite State Machines. In our approach, the
sequence of actions and the appropriate test data are selected before test execution,
too. This corresponds to the expectation of a single 20€ banknote in our example.
However, instead of sticking to this selection, a digression of the IUT during test exe-
cution is detected and, if this is allowed by the specification, the sequence of actions
and test data are adapted to the current situation and the test is executed further.
Therefor, a new matching test trace is computed on the fly and appropriate test data
is selected. In our example, it corresponds to an adaption, that the ATM returns two
10 € banknotes. By adaptation, we prevent a wrong test verdict. The test run from
the example would thus not fail due to the emission of the two 10 € banknotes.

Question 3: Model Checking of Abstracted Specifications

In the scope of our third research question, we work in the field of model checking.
As it had been described earlier in this chapter, this is a formal method to verify the
correctness of a system with respect to a set of properties.

1_.3 Structure and Contribution of this Thesis 9

We consider enumerative model checking here, which suffers from state space ex-
plosion. For this reason, models and requirements must in many cases be abstracted
prior to verification. This abstraction, however, makes model checking in some sense
unprecise: A counterexample on the abstract level might not be reproducible on the
concrete level of the system and properties. These counterexamples are known as
false negatives (Clarke et al., 1999).

False negatives can in most cases be sorted out quite reliably, since it is in princi-
ple possible to verify their non-reproducibility. However, a false negative might still
provide useful information on bugs. We provide a framework in this thesis to not
sort out these false negatives completely, but to abstract further from them in order
to find bugs in their peripherals. The approach is to take a false negative counterex-
ample and to transform it into a more general violation pattern, which preserves the
original property violation, but allows a wider set of possible traces. From this wider
set, we might still be able to select another, reproducible counterexample using con-
straint solving techniques, and so reuse the otherwise unused knowledge from the
false negative.

Question 4: Process-Algebraic Specifications and CLPs

The fourth research question arises from addressing the three other ones. Data se-
lection for test execution, as well as the search for real counterexamples from false
negatives in model checking, have both been approached using constraint solving
techniques. The starting point for our research is the formal specification of a sys-
tem. This specification is formulated in the process-algebraic specification uCRL (cf.
Groote and Ponse, 1994).

We have thus to provide a theoretical underpinning for the transformation of pCRL
specifications to CLPs. We do this in three parts: First of all, we provide a meta
language on top of the constraint solver for convenience. Second, we provide a the-
ory about mapping ADTs from their pCRL notation to that of the constraint solver,
and finally, we provide a similar mapping for the behavioral part of nCRL specifica-
tions. While doing so, we have to preserve the semantics of pCRL in the CLP. This
preservation will be proven for our theory.

Tooling

In the scope of this thesis, a number of tools has been realized, which allow the prac-
tical evaluation of the attained theoretical results. In particular, we developed tools
to apply chaotic data abstraction to a given pCRL specification (cf. Chapter 4) and
to transform pCRL specifications to CLPs in ECLiPSe Prolog (applied in all chap-
ters, esp. see Chapter 3). Furthermore, to execute tests against a system with a
nondeterministic specification or implementation, we developed the tool, Behavior-
Adaptation in Testing (BAIT). It precomputes a trace through the system specifica-
tion and tries to execute it. If the system diverts from this trace, BAIT tries to adapt its

10 Chapter 1 Introduction

execution accordingly. The tool will be introduced in Chapter 5 and will be applied
to two case studies, an ATM and Mozilla Firefox in Chapter 6.

1.3.2 Detailed Structure of the Thesis

Here, we will discuss the structure of this work in detail. We will also name the exact
contribution of the single chapters.

Chapter 2: In this chapter, we will define the preliminaries of formal specifications,
as they are relevant for the remainder of this thesis. We will therefore intro-
duce automata in their several flavors, and the process-algebraic specification
language pCRL, also providing the necessary underpinnings in general alge-
bra. Furthermore, we will introduce the UML as the language, which we use
for illustrative purposes throughout the thesis. Finally, we will give a general
introduction to the abstraction of systems.

Chapter 3: In this chapter, we will introduce constraint solving. We will use con-
straint solving throughout this thesis to determine data and traces, which are
suitable for our purposes in testing and model checking a system.

The contribution of this chapter is a novel theory for the transformation of
HCRL specifications into CLPs on the level of datatypes and behavior.

Chapter 4: In this chapter, we will introduce data abstraction as a means to facilitate
the automatic generation and execution of conformance tests for systems with
infinite data domains. Therefore, we will first introduce the theoretical funda-
ments of conformance tests, before discussing chaotic data abstraction and its
application to test generation.

The contribution of this chapter is a theory, which allows to use data ab-
straction in the context of test generation based on Labeled Transition Systems
(LTSs). In the course of test generation, our approach also preserves data inter-
dependencies in a system.

The basis of this chapter is mainly formed by Calamé et al. (2005).

Chapter 5: In this chapter, we develop a practical realization of the above-named
theoretical approach on test generation and execution.
The contribution of this chapter is a theory on test execution on nondetermin-
istic IUTs with a discussion of the influence of quiescence on test execution.
Furthermore, we present the tool BAiT, which has been developed as a practi-
cal realization of this theory.
The basis of this chapter is mainly formed by Calamé et al. (2007a).

Chapter 6: In this chapter, we present two different case studies for our test gener-
ation and execution approach. The first one is an academic behavior-oriented
case study of a system with a nondeterministic specification. The second case
study regards a real-life case testing an HTML rendering engine.

The contribution of this chapter is the practical show-case, how to apply the
above-mentioned theory to practical software testing.

1.3 Structure and Contribution of this Thesis 11

The basis of this chapter is formed by Calamé (2007) and Calamé and van de
Pol (2008).

Chapter 7: In this chapter, we change our focus to model checking of abstracted
systems. We first introduce the necessary preliminaries for Linear Temporal
Logic (LTL) and its action-based counterpart. Then, we introduce data in what
we name Extended Action-based Linear Temporal Logic (eALTL), and provide
data abstraction for this logic. We then discuss the classes of resulting coun-
terexamples, and provide a theory to widen the use of false negative counterex-
amples.

The contribution of this chapter is the introduction of data for action-based
LTL, its abstraction and the development of an approach to also use false nega-
tive counterexamples in order to find faults in a system model.

The basis of this chapter is formed by an extended version of Calamé et al.
(2007b).

Chapter 8: This chapter concludes the thesis and provides ideas for future work.

In order to understand this thesis, it is mandatory to read Chapters 2 and 3 in se-

quential order. The reader can then choose to read on with Chapters 4; 5 and 6, or to

read Chapter 7 instead. Chapter 8 concludes both traces through this thesis. Each of
the chapter also contains a discussion of related work.

12

Chapter 1 Introduction

Chapter 2

Specifications and Automata

Dem Anwenden muss das
Erkennen vorausgehen.

(Max Planck)

he fundamentals necessary to follow the rest of this thesis will be provided in

this chapter. In this thesis, we test and model check systems, which are for-
mally specified. The specifications that we work on are actually given in the mi-
cro Common Representation Language (W CRL), a process algebra with data (Groote
and Ponse, 1994). Such specifications are in the course of our work transformed
into a representation of their semantics, Input/Output Labeled Transition Systems
(IOLTSs). In order to do so, we will in most cases have to apply abstractions.

In the remainder of this work, we will use Input/Output Symbolic Transition Systems
(IOSTSs) illustrated in the notation of the UML instead of uCRL wherever possible,
since they are easier to communicate. For this reason, we will in Section 2.1 introduce
IOSTSs as a means of specification, and will define how IOLTSs resemble their se-
mantics. In Section 2.2, we will introduce UML as a notation to specify the behavior
and the structure of systems. In Section 2.3, we will introduce terms and algebras as
the basis for the introduction of uCRL in Section 2.4. We finally give an introduction
to abstractions in Section 2.5.

t the reader won't find here

This chapter is organized as a general introduction into those notions, which are neces-
sary to understand the wiiole thesis. However, there are also notions, which are necessary
to understand a part of the thesis, because they are related exclusively to testing or model
checking. Furthermore, there is a whole chapter exclusively dedicated to constraint solv-

ing.
In this chapter, we will thus spare out an introduction to constraint solving, which the

reader will find in Chapter 3. Furthermore, we will postpone the introduction to testing
theory to Chapter 4, and that to model checking-related logics to Chapter 7.

14 Chapter 2 Specifications and Automata

2.1 Specifications and Automata

2.1.1 Transition Systems in General

One possibility to specify a system is to define its behavior using a transition systent.
It allows us to describe a system’s behavior graphically by using nodes for system
states and edges for actions, which are either fired proactively by the system, or
which are given as input to the system by its environment.

There are several classes of transition systems. On the one hand, we classify whether
a transition system explicitly distinguishes system input and output actions (transi-
tion systems vs. input/output transition systems). On the other hand, we distinguish
transition systems which handle data symbolically, i.e. as explicite variables, from
those, which do not explicitly handle data at all (Symbolic Transition Systems (STSs)
vs. LTSs). In this thesis, we will mainly handle input/output transition systems, in
both their symbolic and labeled shape.

2.1.2 Symbolic Transition Systems

First, we will introduce the notion of IOSTSs. These are finite automata, which can
describe the behavior of a system and the interrelation of its data. For reasons of
simplicity, we want to consider only single-domain typing in this section.

Definition 2.1 (Valuation). Let D be a data domain, let Vn be a set of names and let
Var = {x1,...,xn} C Vn be a set of variables. Let furthermore be x; : D of domain
Dfor1 < i < nandletv; € D be a value in D for the same values of i. Then
n € Var x D withn ={x; > vq,...,%n +— vy} is a valuation for Var.]

An assignment of value v € D to a variable x € Var with x : D within a valuation n
will be denoted 1+
Definition 2.2. Let S be a set. Then $* ={(sy,...,sn)m € NU{0}Asy,...,sn € S}. B

Definition 2.3 (Expression). An expression is a general term which is constructed from
names and operators. Valuations of variables are lifted to valuations of expressions
in the standard way. |

Definition 2.4 (Guard). Let Exprs be a set of expressions. Then a guard is a boolean
expression g € Exprs. We will write [g] for the evaluation of g. |

Definition 2.5 (IOSTS; cf. Jéron, 2004). Let Vn be a set of names, let G be a set of
guards and let finally Val be a set of valuations. An IOSTS is a quintuple & =
(Lv VaT, A, Ev (einit) ninit)) with

e [being a set of control states (locations),

e Var C Vn being a set of variables in the system,
e A being a set of actions as defined later, and

e E CL x A x L being a transition relation.

2.1 Specifications and Automata 15

States in an IOSTS are elements of the set L x Val with the initial state (€init, Minit)
being the initial valuation nin;t of all variables in Var at its initial location ;.]

Definition 2.6. Actions and Edges in IOSTSs Let & = (L, Var, A, E, (&nit, Ninit)) be an
IOSTS, let G be a set of guards with g € G, let Exprs be a set of expressions and let
Events = Events;, UEventsy,U{t} be a set of action names.

The set of actions A = Aj,UAoutUA- is divided into input, output and internal actions
as follows:

o Ain C G x Events;, x Var* is the set of input actions,
e Aot C G x Eventsyy x Exprs* is the set of output actions, and
o A. C G x {1} x (Var x Exprs)* is the set of internal actions.

An edge in an IOSTS is defined as a tuple (¢, L,?) € E with t € A. In the remainder,

we will write an edge (¢, L,’f) as £ 5 1. The set of parameters of an action will be
reduced to a single variable for convenience.

The set of actions A in & is divided into three disjunct sets. This distinction has
consequences for the labelling of edges in an IOSTS:

? A~
Input actions: Edges with input actions have the form ¢ st g, Receiving an

event s with an actual parameter v € D for a data domain D and s : D results in
an update of the system’s current valuation 1j,) and a change of the actual

location to {.

! A
Output actions: Edges with output actions have the form ¢ 925(€), 9. This means,

that the event s is sent with an expression e as the actual value for x : D for a
data domain D and s : D. The location changes to (A

Internal actions: which contains system-internal variable assignments. The appro-
priate edges have the form { 92%7%, 7. In case the transition fires, the system’s

current valuation is updated to 1jx,.e] and the actual location is changed to L.
The action name T is left out when labelling an edge with an internal action.

When we regard actions in general without regarding any details, we will denote
an action t. Considering a system as a blackbox, input and output actions are visible

while internal actions are invisible. The guard on an edge steers whether a particular

action can be taken in a particular state of the system. If in a transition { LialLIR tg

evaluates to T, the transition can fire, i.e. the appropriate action can be taken. If the

guard evaluates to L, it cannot. We will use the above-introduced syntax for edges,

¢ 2*™5 7 in continuous text only. In graphical representations of system behavior,

we will use UML state charts, as defined by the OMG (2005). Here, the syntax for
edgesis ¢ 915X). 7. We will discuss the UML in more detail in Section 2.2.

Jéron (2004) treats the states of an IOSTS as a combination of variables, constants and
communication parameters. We, by contrast, distinguish between a location and val-
uations in general. This does not limit the definition of IOSTSs: Variables, constants

16 Chapter 2 Specifications and Automata

and communication parameters contain valuations, and locations can be defined by
a set of variables which by circular reasoning also contain values only. The initial
condition of Jéron is reflected in the initial state of our definition of IOSTSs. In this
point, our model of IOSTSs is limited w.r.t. to the one of Jéron, since the latter al-
lows more than just one initial state of a system. Our further work, however, will
not be negatively affected by this restriction, since the systems that we work on are
specified in a process algebra, which also allows only one initial state for a system.

The introduction of distinct locations, however, allows an easier handling of IOSTSs.
These can now be described as directed graphs, where L is the set of nodes and E is
the set of edges between nodes.

2.1.3 Labeled Transition Systems

Now, we define IOLTSs. Unlike IOSTSs, data cannot be handled symbolically in
IOLTSs. This means, that, while variables in an IOSTS can reach different values
in one location of this IOSTS, this is not possible in IOLTSs. Rather, for each com-
bination of single data values, a single state has to be introduced. Furthermore, a
distinction between actions and action parameters in transitions of the system does
not take place.
Definition 2.7 ((Deterministic) IOLTS). An IOLTS is a quadruple M — (£, A, A, Ginit)
where

o I +# () is a set of states,

o A = A UAGuU{T} is a set of action labels,

e A C X x A x Lisa transition relation, and

Oinit € X is the initial state.

The set of labels A consists of the three disjunct subsets, Aj,, Aou, and {1} denoting
input, output and internal actions.

An IOLTS is deterministic if and only if there is at most one outgoing transition for

each action label A € A in each state 0 € L. 1]
Dcfinition 2.8 (Input-complete IOLTS). An IOLTS M = (L, A, A, Ginit) with
A = AinUAoU{T} is input-complete, if Vo € ZVYA € Ajp. 36 € X0 MeeA 1]

An IOLTS can also be described as a directed graph, where I is the set of nodes and
A the set of edges between nodes. Each transition is labeled with an action label; for
a transition (0, A, 8) € A, we write more suggestively @ Y, 6. An IOLTS defines the
semantics of an IOSTS as is given by the semantic transformation rules in Table 2.1.

Definition 2.9 (Semantics of an IOSTS). Let Events be a set of action names, let G be
a set of guards and let Val be a set of valuations. Then, the semantics of an IOSTS
6 = (L, Var, A, E, (linit, Ninit)) is defined by the IOLTS [S] = M = (X, A, A, 0ini) with

e X C L x Val the set of reachable states in G,

e A C Events x Val the set of actions with evalulated action parameters as the
set of labels,

2.1 Specifications and Automata 17

o A the set of edges from & transformed by the rules from Table 2.1 with g €
G,s€ Events,e,/(’.\ € Land v € D for s(v) with s : Dy, and

® Oinit = (Linit, Ninit) the initial state.

gb?s(x) A

t——Sfet IIg]]n;val =T

II-a
?s{v} A
(6,1) —5 (G Mpay) €A

. ¢ 0eE Igly=T lely=v
(e = @gnyea
X250 eE [gly=T lely=v

II-c

T ~

(e»Tl) - (e,Tl{va])

Table 2.1: Semantic transformation of IOSTSs to IOLTSs

The behavior of an IOLTS is given by sequences of states and transitions 7t = Gin;t A,

op 4L starting from the initial state. In traces, the states are projected out, i.e.
ﬂm]]traces - A*'

Definition 2.10 (Trace in IOLTS). A trace 7 of 9t is a mapping 7y : N — A, where
either N ={1,2,...,n}is finite or N = IN\ {0}, and there exists a mapping 7t : N — L
st (gl — 1] 0 mgli]) € Aforalli € N. If N = N, trace 7 is called an infinite
trace; otherwise, it is called finite. The length of 7 for finite traces is defined as [N| and
referred to as 7.]

In the further text, we refer to the set of traces in 9 as [M]iraces. For reasons of
readability, we will furthermore write 7) only, if we have to explicitly distinguish
it from 7. Otherwise, we will simply write 7t for 7). The relation after provides
possible options for actions after a given trace in the system.

Definition 2.11 (Relation after). Let 9 = (X, A, A, oinit) be an LTS. The relation after
is defined for states and action labels as £ x A — 2% with o after A being the set of
states which can be reached from ¢ by a transition labeled with A: ¢ after A = {0 €

Yo \ee Al

For traces and action labels, the relation after is defined as [M]iaces X A — 2% with
7 after A being the set of states which can be reached by a transition labeled with A
after trace 7: w after A = {0 € L{oinit Loloe A} m

18 Chapter 2 Specifications and Automata

2.2 The Unified Modeling Language

The Unified Modeling Language (UML) has been developed and standardized by
the Object Management Group (OMG) as an industrial approach to the specification
of software systems. The language itself is defined by a meta model (OMG, 2005)
and can be extended by so-called profiles. A relevant example of such a profile is the
UML 2 Testing Profile (OMG, 2003; Baker et al., 2008).

In this thesis, we will use a few of the concepts of the UML for the graphical repre-
sentation of system behavior and the structure of systems. In particular, we will use
an adapted notion of UML State Machine Diagrams to design STSs, UML Sequence
Diagrams to design the interaction of different components in a system as well as
UML Component and Class Diagrams to design the internal structure of a system.
We will introduce these diagram types in the remainder of this section.

2.2.1 System Behavior

System behavior is in this thesis designed using State Diagrams to define the com-
plete behavior of a system and Transition Diagrams to give an example for the inter-
action of different parts of a system.

State Machine Diagrams This diagram type is rooted in the theory of finite au-
tomata which were introduced to the development of software systems by Harel
(1987). Here, we give an example for an STS together with the simplified graphical
UML-based notation, which we will use further in this thesis.
Example 2.12. Let 6 = (L, Var, A, E, (linit, Ninit)) be an IOSTS with

o L ={;,1;, 3} the set of locations,

e Var = {x} the set of variables,

o A = Ajn UAuu with A, = {a}and Ayt = {b, ¢} the set of actions,
x>5p!b(x)

?a(x) x<5plc(x)

o E={l4 0,0 3,0
e (fy,{x — L}) the initial state of the system.

{3} the set of edges, and

The graphical notation used in this thesis for the above-defined system will be the
one of Figure 2.1. Locations {; and { are represented by the round rectangles with
labels 1 and 2. The third location, {3, is represented by the circled dot on the right
side of the figure, which is a final state!. Notice, that {; is preceded by a dot in the
figure, which is an initial state. Initial states in UML state machine diagrams are
pseudo states. We will in the remainder of this thesis use the transition from the initial
state of the diagram to the actual initial location of the system for the initialization
of internal variables from Var.

IThe word “state” is the UML nomenclatura. In this context, it means “locations”, rather than “states”
in an LTS.

2.2 The Unified Modeling Language 19

As a difference to the official UML standard, transitions are labeled as defined earlier
in this chapter. The only difference is the use of square brackets instead of a single
triangle for the guard of a transition. Branches in a system behavior, induced by
guards, are preceded by a pseudo state for a choice, depicted by an empty diamond.
Its ingoing transition is unlabeled.

(03 S 1 a2 =< D5 bx) =@
Y

Y

[x<=5] lc(x)

Figure 2.1: A UML State Machine Diagram

Sequence Diagrams UML Sequence Diagrams can be compared with Message Se-
quence Charts (MSCs), as they have been defined by the ITU-T (2005). They are used
to give an example for the interaction of several components of one or more systems.
A sequence diagram has two dimensions, one dimension distinguishing the partic-
ipating components (horizontally), while the second dimension is the elapsing time
during interaction (vertically).

Component1 Component2
requestMsg
X ~
- —t—
alt

e
msg

r T B
-

msg
I B requestMsgAgain |

e

msg

Figure 2.2: A UML Sequence Diagram

Example 2.13. Let us take Figure 2.2 as an example. The diagram shows two compo-
nents, Componentl and Component2, in interaction. First, Componentl sends a message
to Component2. Afterwards, an alternative block is entered. In the first alternative, the
message sent from Component2 is received by Componentl, while in the second alter-

20 Chapter 2 Specifications and Automata

native, it is lost and has to be resent. Losing a message is depicted by a filled dot in
the diagram, which receives this message.

Alternatives in UML Transition Diagrams are represented by a rectangle, which is
labeled with alt and which covers a subset of the communication acts in the diagram.
The two alternatives are divided by a horizontal dashed line within the alternative
construct.

Finally, we have extended the notation of UML Transition Diagrams by the concept
of timeouts as you can also find it in the specification of the UML 2 Testing Profile by
the OMG (2003). In our example, a timer is started when message requestMsg is sent.
Starting a timer is represented by a stylized hourglass. If Componentl receives the
message msg within the duration of the timer, the timer is cancelled. Component1 sends
the message requestMsgAgain, when the timer has timed out, depicted with an arrow
pointing from the timer at the life line of the component holding this timer. The
concept of timeout, however, had to be added to the standard notation of the UML,
since it is originally not supported, even though timing constraints can very well be
modeled in UML Transition Diagrams. IOSTSs and IOLTS also do not support timers
perse, however, there exist several extensions which we will discuss in Section 5.1.2.

2.2.2 System Structure

A system does not only exhibit behavior, but has also entities which implement this
behavior. While STSs and LTSs concentrate on the behavior only, there are specifi-
cation languages which also allow to consider the structure of entities behind this
behavior, like, for instance, process algebras with a concept of processes as proactive
system entities or object-oriented specification languages. One such language is the
UML, which provides Component and Class Diagrams to design the structural as-
pects of a system and even of the UML itself. Here, we give a short introduction to
these diagram types.

Example 2.14. The example in Figure 2.3 specifies a component MyComponent. A com-
ponent is represented as a classifier (visually a rectangle) with the stereotype «compo-
nent» and an optional graphical stereotype as depicted in the figure. Stereotypes
denote the extension of existing modelling elements in UML mainly providing a us-
age context of the respective element. In our example, the component is realized by
a class MyClass, which is also represented by a classifier. A component is a coarse-
grain design element, which abstracts from its realizing classifiers. A class is a fine-
grain design element, which combines a set of operations (actions) and attributes.
A component can be realized by other classifiers, i.e., for instance, classes and other
components.

Component and Class Diagrams divide operations into inputs, outputs and inter-
nal operations. While internal operations are defined in classes, input and output
operations can be extracted to interfaces. Those are classifiers with the stereotype
«interface». We define two interfaces in our example, of which ProvidedInterface
is implemented or provided, resp., by MyClass and thus by MyComponent, while Re-

2.2 The Unified Modeling Language 21

Interfaces

+ 1

<<interface>>
Providedinterface

Providedinterface

1 B
<<component>>* | MyClass
MyComponent <<realize>> -)
. require>>
Regquiredinterface
<<interface>>
Requiredinterface
AnotherClass { MySubClass

Figure 2.3: A UML Component/Class Diagram

quiredInterface is required from other components connecting with MyComponent or
MyClass, resp.

There are two ways to define the relation between a classifier and its interfaces. The
extended way is depicted on the right side of Figure 2.3. Here we explicitly define
the interfaces and associate the providing or requiring class with an explicit imple-
mentation of the requirement dependency (the arrows from class MyClass to the in-
terfaces). A shorthand notation is depicted on the left side of the figure. It is the
so-called lollipop notation, where a provided interface is depicted as an empty circle
at a handle. A required interface, a so-called socket, is in this notation represented by
a open semicircle at a handle.

Figure 2.3 contains a few more concepts of UML Component and Class Diagrams.
The first one is packages, which provide a means to group packageable elements
like classifiers. In our example, the two interfaces ProvidedInterface and Required-
Interface are grouped in the package Interfaces. The second concept is that of
inheritance. In this example, the class MySubClass inherits from MyClass and by that
extends the operations and attributes of its parent class. Finally, class MySubClass
has a navigable association with a class AnotherClass, which forms, for instance, an
attribute of MySubClass.

While dependencies (realize and require) and implementations are depicted using
dashed arrows, inheritance and associations are depicted with straight arrows>. The
navigation direction in our example points out, that MySubClass “knows” an instance
of AnotherClass, while instances of AnotherClass cannot find out by whom they are
held. By adding an empty or filled diamond on the side of that class, which is at-
tributed with the other class, this association can be made even stronger. We will not
discuss these details here.

2For technical reasons, this difference might not always be visible in this thesis.

22 Chapter 2 Specifications and Automata

2.3 Terms and Algebras

In this section, we will introduce a number of constructs for multi-sorted algebras.
Based on these algebras we can then introduce Abstract Datatypes (ADTs) in the pro-
cess algebraic specification language nCRL. These constructs will first be introduced
by means of their syntax, and afterwards be lifted to their semantics.

2.3.1 The Syntax: Signatures and Terms

A signature forms the foundation of terms in an algebra.

Definition 2.15 (Signature; cf. Ihringer, 1993). A multisorted signature is a triple 3 =
(8,3, o) with

e S a set of sorts,

o ¥ a set of operation symbols and

e 0:F — 8* x § a function, which assigns to an operation f € F the sorts of its
arguments and its own sort.

Terms form the data and function notation of an algebra.

Definition 2.16 (Term; ibid, extended). Let 3 = (8,7, o) be a multisorted signature.
A set of (open) terms is defined as T(F,X) with F a set of operations over J and
X = (Xs)ses a family of variable sets over the sorts from 8. For the elements from F,
the assignment of sorts of arguments and the operations themselves is defined by ¢.

Let$,...,%, € 8. Atermt € T(F, X) is an element of the smallest set, for which the
following holds:
1. Xg C (F,X).
2.V e TV €eT(FX):o(f) =81 x...x 8 = 8= f(ty,...,tn) € T(F, X).
[]

A term is named closed, if it does not contain any variables, otherwise it is named
open. In the further text, we will refer to variables with x, to operation symbols with
f, g, and to terms with t, u, using an index if necessary.

2.3.2 The Semantics: Algebras for nCRL

The next definition addresses the assignment of elements from an algebra to vari-
ables and multisorted algebras. Those address the semantics behind the earlier-
defined terms.

Definition 2.17 (F-Algebra; cf. Bouma, 1991). Let 3 = (8,7, o) be a multisorted signa-
ture. Let furthermore be X be a set of variables. Then 2 = (A, 1} is an algebra over
this signature if

2.3 Terms and Algebras 23

o A the algebra’s carrier set with A = (Ag)ses, and
e 9:X — A is anassignment of elements from A to variables from X, then

e 1, is an interpretation function for elements of § as follows:

feFwithf: 8 x...x 8, = 8= [y(f): Ag, x...x Ag, — Ag

The interpretation of a term f(ty, ..., tn) with the above-mentioned signature is de-
fined inductively as:
Ig((f(tly---»tn)) = Igl(f)(lm(tl)»'-)lgl(tn))
I(x) = dx)
]

In the remainder of this thesis, we will write D; for a set Ag,. For an interpretation
I5(f): Ag, x...x Ag, — Ag, we also write [f] : Dy x ... x D, — D.

The attempt to find solutions for interdependent variables of infinite data domains
is mainly used for the domains of the natural numbers IN and for boolean conditions
of the domain B={T,L}. For this reason, we will at this point exemplarily define a
boolean algebra for pCRL, B,,, as well as an algebra for natural numbers, N,,.

Example 2.18. The boolean algebra, which we define here, will consist of constants
for the boolean values T and 1, and will furthermore contain the standard boolean
operations —, /A, V and equivalence in their default semantics.

Definition 2.19 (Signature for booleans in uCRL). The signature of booleans in pCRL
is defined as
3Bool,, = (Booly, Caoor,, U Mool s TBool,,)

with Cgyol, = {Ty, Fu} and Moo, = {€eqy, andy, oty not,}. The signature of func-
tions o, is defined as

T, : — Bool,
F. : — Bool,
eq, : Bool, x Bool, — Bool,
and, : Bool, x Bool, — Bool,
or, : Bool, x Bool, — Bool,
not,, : Bool, — Bool,

Definition 2.20 (A boolean algebra for uCRL). A boolean algebra for uCRL is defined
as a tuple

B, = (B,{[T]s,,[Fls,, [eqls,, [and]s,, [or]s,, [not]as, }).

24 Chapter 2 Specifications and Automata

Let by, b, € B be variables. Then the interpretations If’B , are defined as follows:

[[Tu]]\gu = T
l[FpII‘B,. = 1
leg,], (b1,b2) = (by Abz)V (=bi A—b3)

[andylm, (by,b2) = biAb;
[oryle, (by,b2) = b Vb
[not,lm, (b1} = —by

Example 2.21. For the algebra for natural numbers, we define a constant for the basic
value 0 as well as a constructor S for all other values of IN. Furthermore, we define
two of the basic computation operations, + and -, and the comparison operations —,
>, >, < and < in their default semantics.

Definition 2.22 (Signature for natural numbers for nCRL). The signature of natural
numbers for pCRL is defined as

3Nat,. = (Natu U B001Ll| CNat‘, o MNat,. » ONat,,)

with Cnat, = {04, Su} and Mna, = {add,, mult,, eqy, gt,, ge,, Ity le, . The sig-
nature of functions ong, is defined as

0, : — Nat,
Sy, : Nat, — Nat,
add, : Nat, x Nat, — Nat,
mult, : Nat, x Nat, — Nat,
eq, : Nat, x Nat, — Bool,
gt, : Nat, x Nat, — Bool,

ge, : Nat, x Nat, — Bool,
lt, : Nat, x Nat, — Bool,
le, : Nat, x Nat, — Bool,

]
Definition 2.23 (Algebra for natural numbers (WCRL)). An algebra for natural num-
bers is defined as a tuple

mu (]N 4 le {[[Op.]]‘.ﬂ,, B [[Su]]‘ﬂ,. » [[addu]]‘ﬁ“ » [[multu]]m,,. Hequﬂ‘ﬁ,, s {{gtu}}mu)
[[geu]]‘ﬁ“ ’ [[ltu]]‘ﬂ,.) IIlep]]'JT,. })

2.4 Specifications in pCRL 25

Let ny,n2 € N be variables. Then, the interpretations I&" are defined as follows:

IIOu]]‘J"(,. = 0
[Splm, (1) = my+1
[addulo, (n1,m2}) = mi+n;

[l
by

Imult,]o, (1, n2) My
leaulm, (1, n2)
[otylor, (m1,m2) = mi>n;
)
)
)

(

(

(
lgeulo, (1,12

(

(

[
by

nz

= mz2n

Mtule, (my,m2) = my<ng

Nteylor, (m1,mn2) = my<ng

2.4 Specifications in nCRL

The language uCRL, defined by Groote and Ponse (1994), is a process-algebraic spec-
ification language with data. Compared to other specification languages like x (Van
Beek et al., 2006) or Focus (Broy, 1998), uCRL is a purely oriented on the process as
such, defining neither objects nor channels for particular system components. The
system is thus specified as a whole.

Definition 2.24 (uCRL specification; Groote and Ponse, 1994). A uCRL specification
is defined as a pair & = (3, £) over its signature 3 and a set of equations &. -

As defined by Groote and Ponse (1994), a pCRL specification & is given by a sig-
nature 3(6) (8,F,A,C,P). It specifies an open system that communicates with
its environment. The set $ defines a set of sorts, F defines a set of functions, com-
posed from constructors and maps (LCRL-"functions”; cf. Definition 2.25). Further-
more, the signature contains a set of actions A, communication definitions €, defin-
ing which action communicates with which other action, and a set of processes P.
These processes then define the system’s behavior. The entry point to the system
behavior is a distinct process initialization (init).

For pCRL specifications, there exists a normal form, the linearized specification, which
we will discuss in Section 2.4.2. In this form, all processes are combined to a single
one, whose control flow contains all possible interleavings of actions, which happen
in parallel, limited by the synchronization of processes by communication.

2.4.1 Data in uCRL

uCRL is a process algebra with data. A uCRL specification defines a process algebra
with a signature of which we first want to regard only the fragment that is relevant
for the definition of ADTs. Data manipulation in uCRL is based on term rewriting
(Bergstra et al., 1989).

26 Chapter 2 Specifications and Automata

Definition 2.25 (ADT-relevant part of uCRL specifications; Groote and Ponse, 1994).
Let 3 = (8,7, 0) be a multisorted signature and let 3,, = (8., F,.,#, %,) be the ADT-
relevant fragment of the corresponding signature of a pCRL specification as defined
by Groote and Ponse (1994). Then 8, = 8 and ¥, C F x o with F,, = CUM being the
union of a set of constructors C, i.e. terminal elements of the sorts from §,,, and a set
of functions (imaps, M), for which term rewrite rules exist (see Definition 2.27).]

Since we will only consider signatures of pCRL specifications in the remainder, we
will skip the subscript p from now on. The set § defines a set of datatypes for the
declaration of variables. Each sort $ € 8 consists of a set of constructors, which have
theformc:— Sorc: $; x...x$, — 8, resp., with $y,..., 8, € 8. These constructors
are used to form typed values v of sort 8.

In ¥, functions of the form f :— $or f: $; x...x$,, — 5, resp., are declared. Each of
these functions is defined by one or more axioms on values of sorts 51, ...,5,. These
axioms have the form s = t where s and t are equally typed terms formed by any
valid combination of typed variables and function symbols.

Definition 2.26 (Constructor terms, function terms and values). Let X be a set of vari-
ables and let 3,, = (8,,, %, 0,0,) be the ADT-relevant fragment of the signature of
a pCRL specification with F,, = CUM. Then we will name a term t

e a constructor term tif t € T(C, X),

e afunction term f(ty,... tn)iff € MAL; € T(C,X) forie{l,...,n},and

e avalucift € T(C,0).

The language pCRL supports data which is represented by terms. Data manipula-
tion in pCRL is built upon term rewriting. Term rewriting again is driven by equa-
tions. An equation is denoted f(tq,...,tm) = g{ur, ..., uy).

Definition 2.27 (Equation). Let 3 = (8, F, 0, (), () be the signature of a pCRL specifica-
tion with § = ClUMand let € be a set of equations. An equation ¢ = (X,t,u) € £isa
tuple with

e X the family of variables, over which the equation is defined,

e t € T5(F,X) is the left hand side of the equation with t = f(ty,...,tn), feM
and t; being function terms, and

e u € Tg(F,X) is its right hand side with u g(uy,...,un), g and u; being
constructor terms, function terms or values,

for some sort 3.]
Figure 2.4 shows the definition of a sort Bool as it had been defined earlier in Exam-

ple 2.18, but now in the syntax of uCRL. In doing so, b is defined as a variable of sort
Bool (see var).

2.4 Specifications in nCRL 27

sort Bool

func T:— Bool F:— Bool

map and: Bool x Bool — Bool
or : Bool x Bool — Bool
eq : Bool x Bool — Bool
not : Bool — Bool

var b: Bool

rew and(T,b)=b and(b,T)=b and(F,b}=F and(b,F)=F
or(T,b)=T or(b,T)=T or(FFb)=b or(b,F)=b
eq(T,T)=T eq(FFT)=F eq(T,F)=F eq(FF)=T
not(T)=F not(F) =T

Figure 2.4: Datatype for booleans

2.4.2 Behavior in pCRL

Basic means of expression for behavior specification The language uCRL defines
several operators for the composition of actions, guards and processes to the com-
plete behavior of a system. The most basic ones are t; - 1, which forms a sequence
of the two actions 171 and 3, and 1; + 12, which defines a nondeterministic choice
between (; and 1>. A deterministic choice between two actions based on a guard is
defined by 11 < g > 1, which reads as if g then v else ;. The summation operator)
allows to introduce local variables, but is also used as an abbreviation for a number
of +-operations. Apart from a few more operators, which will not be used in this
thesis, uCRL also defines two special actions, which we have already met earlier in
this chapter: 7 for internal actions and 6 for deadlocks.

Processes and Linear Process Equations (LPEs) In uCRL, system behavior is de-
fined by processes. Every process defines a control flow of actions 1 € A, which
either happen completely concurrently, or which are synchronized by communica-
tion. In the linearized form of pCRL, LPEs, which we will regard here for reasons of
convenience, these processes are combined to a single one.

An LPE in uCRL in general is of the following form (Usenko, 2002, we restrain for
convenience to single data parameters only):

global vars
N
X(d:§)= 3) silfilde)). X(hi(d, e)) 9gi(d, ei) v
S— s q ~ v~ v v~
rocess el ci8y ction call >cursive call ruard
P 55 N) action ca recursive ca guar

summands [ocal vars

The above formula reads as follows: X(d : $) describes a process X with a single
process variable d of sort $. This variable d is global over the whole process. The
process X can in any state make a nondeterministic choice between several actions

28 Chapter 2 Specifications and Automata

si. This choice is made over summands i € 1, with I being the set of all summands for
process X.

For each single summand in our examplary specification, there exists a variable e;
of sort 8;, which is local for that particular summand. A local variable is declared
using a summation operator (over data this time). Within the scope of a summand,
both the process-global variables (d in our case) and local variables (e;) are visible.

Apart from the declaration of data variables, a summand is always of the form tagpt’.
If the guard g, in our exemplary specification g; with two parameters, evaluates to
T, then the action t (in our example s;(f;(d, e;)}), otherwise the action ' is executed.
Instead of a single action, sequences of actions can be invoked; this also includes
(recursive) calls to processes (in our example a call to X with a changed parameter
computed by h;(d, e;)). In the linearized form of uCRL specifications, t' is always b.
If the guard thus evaluates to L, another summand must be able to fire in the system,
or the system completely deadlocks.

As a final remark, the occurrence of fi(d, e;) as a parameter for s; shall be explained.
The function f; is defined by rewrite rules, as we have seen it in the previous sub-
section. When the actual summand fires, fi(d, e;) is rewritten to a single data value,
using the actual values for d and e; as parameters for f;. The result of rewriting is
then used as a parameter to s;.

The LPE for a system is initialized with the line
init X(dinit)

with dinit € 8 an actual value for the process variables.

Relation between nCRL and IOSTSs With nCRL we can specify systems as we
can with the IOSTSs defined in Definition 2.5. In fact, an IOSTS can serve as a graph-
ical representation of a linearized pCRL specification. In the remainder of this sec-
tion, we want to give a short, more informal insight into the relation between these
two concepts.

In a linearized pCRL specification, we have exactly one process. In this process,
the locations of the corresponding IOSTS (set L) can be stored in a process-global
variable. The summands of this process correspond directly to edges:

X(¢,d : $) has summand s(e).X({,d') < g8

gelsie) ~
1§ .

- c’Tll Nid—d’

X(¢,d: $) has summand } ¢ s(x).X(ﬁ, d')agrb

gp?six) ~

(———in" =na-a

IN:

A distinction between input and output actions on the level of pCRL is not directly
possible; this distinction must be introduced at a later transformation step.

2.5 Specifications and Abstraction 29

2.5 Specifications and Abstraction

As defined in Definition 2.5, the control and data flow within a system is defined
by locations (control flow) and valuations (data flow). These are combined to pairs
(¢,m), which form the states of a system. In an STS, these states are handled symboli-
cally, i.e. they contain variables with either constant values assigned or with a range
of possible values.

When we now transform this STS into its corresponding LTS, we have to enumerate
over all values of a variable rather than treating the variable symbolically. In the
course of this enumeration, the state space grows and might grow over all limits -
an effect known as state (space) explosion.

?a(y) TX=Y

.‘ = X=? | » X=? | o XSy = ‘

Figure 2.5: The specification of a simple system

As an example for state space explosion, let us consider the system from Figure 2.5.
The system has one internal variable, x, and receives an event a(y} from its environ-
ment. Subsequently, y is assigned to x. Let now x,y € N, i.e. both variables have an
infinite domain. Since they are both unbound, enumerating all values for both vari-
ables leads to the LTS in Figure 2.6, which has not three states, but infinitely many.
The state space has exploded.

?a(0) T
x=? | - X=7 > x=0
AY ?a(1)
T
?a(2) y x=? | > x=1
T
¥ ox=? | = X=2
- [§ n
\ - 3 -
\ » 2 -

Figure 2.6: The LTS of the simple system

Analyzing such an infinitely big system to either generate appropriate test cases or to
perform model checking is not feasible, neither for reasons of memory consumption
nor for the duration of the analysis. Abstraction is a technique to make such systems
accessible for enumerative analysis approaches. By using abstraction, the concrete
states of a system are collected to abstract states. Let us consider the concrete system

30 Chapter 2 Specifications and Automata

from Figure 2.6 again. It has not only an infinite number of outgoing transitions from
its first state, but consequently also an infinite number of subsequent states. Let us
now perform an abstraction, by which we divide the interval of the natural numbers
into the two classes “< 2”, denoted by constant ¢y, and “> 2”, denoted by c¢;. In the
consequence, we retrieve the abstract system from Figure 2.7, which has only five
abstract states left. These five states can then easily be analyzed.

X=c,

xX=7 T x=0
—

?a(c,) —
=1
_ =)
x=?
—
— 2a(c,) / _9_\] x=_c_zﬁ)
[\ x=7 D : x=2

P
a =8 9B
N—

T
-
s A B BB
O

Figure 2.7: The LTS of the abstracted simple system

The application of abstraction to systems goes back to the work on Abstract Interpre-
tation by Cousot and Cousot (1977). Abstraction techniques can coarsely be divided
into two categories: approaches, which are based on Galois connections (Erné et al.,
1993; Loiseaux et al., 1995), and those based on homomorphisms. In general, it can be
stated, that abstractions based on galois connections are more flexible, since they do
not only come with an abstraction function, but also with a concretization function.
This allows us to restore the concrete system from the abstracted one. Homomorphic
abstractions just provide an abstraction function.

Since we are not interested in this latter fact, we will in this thesis refer only to ab-
stractions which are based on homomorphisms. These techniques define a homo-
morphic relation between a system S or M, and its abstraction & or M*, resp. An
abstraction function is normally 110t ait injective one, so that in most cases the original
system cannot be restored from the abstracted one by applying an inverse of the ab-
straction function. For our cases, this is completely sufficient, since we will use the
abstract system to apply enumerative methods on, and the concrete system together
with the symbolic technique of constraint solving.

In this thesis, we use abstraction on the level of system specifications, that is on the
level of STSs, to gain a safe abstraction of a system. A safe abstraction preserves all
behavior from the concrete system also in the abstract system. This can be achieved
by choosing an abstraction, which overapproximates the concrete system, i.e. which

2.5 Specifications and Abstraction 31

adds behavior. In order to do so, we abstract data, for instance action parameters, by
combining them into equivalence classes as shown in Figure 2.7.

Such an abstraction is, in its extreme form, the chaotic data abstraction proposed by
Sidorova and Steffen (2001b), which unites all possible input data of a system to
a single class T. We will describe this abstraction technique in more detail in Sec-
tion 4.3. Abstracting systems on the level of STSs rather than that of LTSs inherently
leads to a further overapproximation on the level of the abstracted systems, as has
been shown by Clarke et al. (1994). Since we are interested in overapproximations
anyway, this fact does not affect our further work.

32

Chapter 2 Specifications and Automata

Chapter 3

Transformation from uCRL to Prolog

The Babel fish is small, yellow and
leechlike, and probably the oddest
thing in universe. [...] The practical
upshot of all this is that if you stick
a Babel fish in your ear you can
instantly understand anything said
to you in any form of language.

(Douglas AdanTs)
eactive systems with data, as we regard them in this thesis, build up a system-
internal web of interdependencies between different variables. These interde-

pendencies affect the relation between input and output data on the one hand, on
the other hand they also determine the possible order of events, which the system
exchanges with its environment or accepts from it. When examining such a system,
either by testing it or checking its models, it is necessary to make this internal, quite
implicit knowledge explicit in order to receive sustainable validation and verifica-
tion results.

In model checking, different variables in a system are set into relation with each
other by either an explicit enumeration over all possible combinations of variable
values — a tedious approach which is often even doomed to failure — or by symbolic
approaches for model checking. In testing, this is the task of the so-called oracle (or
test oracle) which predicts the expected results for a particular test run.

In testing, the oracle is not necessarily an automated solution, since in many cases
the prediction must be based on an informal model and is thus coded directly into
the test cases by a human being. However, model-based test approaches in a model-
driven software development approach with models of a certain maturity available
can do without the human and automate the test oracle as well. The state of the art
in model checking has reached this point anyway, since the models regarded in this
area are formal and provide thus the maturity necessary for fully automatic symbolic
model checking.

A suitable class of systems for computations on interdependent data elements for
symbolic model checking and in test oracles are constraint solvers. Constraint solvers
interpret so-called Constraint Logic Programs (CLPs), which themselves encode data
elements and their interdependencies. By solving a CLP, the solver constrains the
possible values for each of the data elements to those sets, for which a solution is
possible. A symbolic model checker or a tester can base its further actions on the
results retrieved from the constraint solver.

To be able to apply constraint solving on a system specification given in pCRL, as
in our case, this specification must first be translated into a CLP in Prolog. We have

34 Chapter 3 Transformation from uCRL to Prolog

developed a transformation of symbolic system specifications in uCRL into CLPs for
ECLiPSe Prolog. On the one hand, we designed a transformation of data equations
to rules in Prolog simulating term rewriting, on the other hand we also created an
accordant transformation of process equations to Prolog as well.

In this chapter, we will first give a general introduction to constraint solving in the
following section. Afterwards, we will present an approach, which we developed for
the transformation of formal specifications in pCRL to CLPs which can be processed
by the constraint solver of ECLiPSe Prolog. In Section 3.2, we will first discuss the
transformation of ADT and their equation systems to Prolog. This transformation is
based on the idea to simulate term rewriting, as it normally takes place when pCRL
specifications are processed, within a Logic Program (LP) without the particulari-
ties of constraint solving. We will prove the correctness of our approach and then
extend it for some aspects, where actual constraint solving shows its strengths best,
namely for arithmetics in combination with numerical and symbolic data types. In
Section 3.3, we will turn our focus to the behavioral part of a uCRL specification and
describe our approach for the transformation of guarded transitions in an IOSTS or a
nCRL specification to Prolog. Finally, in Section 3.4,we will compare our approach of
the transformation of formal specifications to CLPs to one developed by Pretschner
et al. (2004a,b).

3.1 Constraint Solving

Variables in a system or in a single trace of a system’s control and data flow are
often restricted in their values and value domains. These restrictions are in many
cases induced by interdependencies of variables and are enforced by conditions (or
guards), in the system. We employ constraint solving to find suitable values and
value domains for the affected variables in this system.

In order to do so, we use the declarative programming language Prolog with con-
straint solving extensions. In a declarative programming language, the problem to
be solved is itself defined, rather than a particular solution for it. This definition
takes place in a LP. This program is then executed by asking a query to it and, in the
optimal case, produces a solution to the stated problem.

In this subsection, we will first introduce LPs in pure Prolog as a basis for CLPs.
Then, in a second part, we introduce the notion of constraint nets (Guesgen, 2000),
as an intuitive access to the problem of constraint solving, and discuss the syntax of
constraints.

Logic Programming with Prolog
Regarding Prolog, we first have to distinguish two areas, for which this language

is used: logic programming with pure Prolog (Clocksin and Mellish, 1994) as well
as constraint logic programming with additional constraint solver libraries (Apt and

3.1 Constraint Solving 35

Wallace, 2007). In this part, we will define a boolean algebra and an algebra of natu-
ral numbers for Prolog.

The boolean algebra for Prolog defines a standard boolean algebra with T and L as
well as the operations —, A, V and equivalence with the syntax, i.e. the signature, of
Prolog.

Definition 3.1 (Signature for booleans in Prolog). The signature for booleans in Prolog
is defined as

3300],, - (BOOLP» {Dpv failpy =pv /\pv vpv nOtp}v O-Boulp)

with the signature of functions .., being defined as

Op : — Boolp
fail, : — Bool,
=p : Bool, x Bool, — Bool,
Ay : Bool, x Boolp, — Bool,
Vp : Bool, x Bool, — Bool,
not, : Bool, — Bool,

Syntactically, the term A, is in Prolog expressed as a comma (,), while the V; is
expressed as a semicolon (;). The Prolog predicate faily, is syntactically expressed as
fail, while (I, (or short: [J) has no explicit syntactic counterpart, but leaving a clause

empty.

Now, we define an algebra for natural numbers in Prolog. Unlike the algebra for
nCRL in Example 2.21, the standard operations are accompanied by constants c;,
effectively numbers, here, rather than being encoded by successor terms.

Definition 3.2 (Signature for natural numbers in Prolog). The signature for natural
numbers in Prolog is defined as

3nat, = (Natp UBooly, {{cilci € N}, +p, p, =p, >ps Zp, <p, Spls ONat,,)
with the signature of functions onat, being defined as
¢i : — Nat,
+p : Nat, x Nat, — Nat,
» : Natp x Nat, — Nat,

=p : Nat, x Nat, — Bool,,
>p + Nat, x Nat, — Bool,
Zp Nat, x NatP — BoolP
<p : Nat, x Nat, — Bool,
<p : Nat, x Nat, — Bool,

36 Chapter 3 Transformation from pCRL to Prolog

In addition to the above-mentioned operators A, V, and not,, Prolog also provides
an operator for if-then-else constructs.

Definition 3.3 (If-then-else in Prolog). Let 3pool, = (Booly, Fpool, s OBool o) be the signa-
ture of the boolean algebra for Prolog. Let furthermore t;,t2,t3 € Tgmlp(ﬂ’gmlp, X)
be terms in Prolog. Then: t; — t2;t3 = (t1 Ap t2) Vpp (notp(t) /\p t3).]

LPs in Prolog are defined by a set of rules, which formulate statements about objects
and the relations between objects. We can distinguish rules in general and tautologi-
cal rules, which are known as facts. Furthermore, we can ask queries to Prolog, which
are solved using the predefined set of rules in the LP.

Definition 3.4 (Rule). Let f be a function symbol and t1,...,t, be terms of any sort.
Then a rule in Prolog is defined as a tuple p = (f(ty,...,ts), q), denoted

f(t1v"'|t!’l) <_q‘

with f:... — Bool, q :— Bool. The left side, the head, consists of a predicate (f) and

a list of arguments, the right side consists of a query q. |
Definition 3.5 (Fact). A factisarule p = (f(ty,...,t,),0). |
Definition 3.6 (Query). A queryisarule p = (], q}. |

A procedure in Prolog is a collection of rules with the same predicate. A Logic
Program (LP) consists of a set of procedures.

Queries to LPs are in Prolog solved following the resolution principle introduced by
Robinson (1965) for Horn clauses. Our definitions for rules, facts and queries corre-
spond to that of Horn clauses (Clocksin and Mellish, 1994). Let us consider a query
as a conjunction’

pd = (0,1 A...Adn)

and an LP

‘B ={ p]‘—q]]/\“‘/\q]m‘
Pn < Qqn, /\~--/\(]n(,.

b

Prolog starts resolving the query by trying to find a matching rule for q; in ‘B. As-
sume, there is a unification 0 for variables in q; and p;, such that q?‘ p?‘ . Then
d1 is unified in one resolution step, such that the complete query is transformed to

pl = (045! AL AG]! AdS' AL AGY).

! Disjunctions are possible, but can be expressed as adjacent queries, so we do not want to regard those
here.

3.1 Constraint Solving 37

Now Prolog tries to find a resolvent for q?]’ to unify it with. Unifying a query with
a fact has the consequence, that the query under consideration is dropped out, and
Prolog subsequently tries to find a resolvent for the following query. Regarding the
query above as

ol = (0,08 Agl A AG] AL AGY)

0,02

?f =gy, . Then, the resulting query

and assuming a rule p;, € P with p?f —0Op
is reduced to
o2 =(0,a]! AL AGIF AL A0

n

and Prolog goes on treating q9192. The query succeeds, if it can be resolved to Pk =
(0,0), k € IN. i

While for a query and rules without any variables, a rule matches a query if they are
both identical, this is not the case when we introduce variables into our LP. Matching
queries and rules with variables means finding a combination of both, where the
predicate is identical and variables can be instantiated in a way, that they also get
identical values. If such an instantiation does not exist, the rule does not match the
query. If such an instantiation does exist, variables for which this instantiation is
unique get instantiated, while those for which there is no unique instantiation stay
uninstantiated. Furthermore, the value of an instantiated variable is propagated to
all equally named variables in a conjunction of queries (either the respective rule or
Pa)-

Definition 3.7 (Relation =.p). We write py =Lp py, if there is a resolution of p4 which
leads after one or more steps to py- |

A rule in Prolog does not have a return value as in other, for instance imperative,
programming languages. A possible return value is defined as one more data el-
ement in the argument list of p. Another limitation of Prolog is its missing type
system. Variables in Prolog are untyped, which means that we have to introduce the
simulation of a type system in order to achieve typedness of Prolog LPs.

Constraint Logic Programming

Constraint logic programming extends logic programming by the idea of constraints.
Constraints define the interrelation between different data elements like variables.

Definition 3.8 (Constraint; Guesgen, 2000). A constraint € is a pair € = (X,R) of a
set of variables X = {x1,...,xn} with domains Dy,...,D,, and a decidable relation
R C Dy x...x D, between these variables. |

Examples for constraints are ({x}, <), defining x < 5 or < (x,5), resp., or ({x,y},f)
with f : IN x N being defined as f{x,y) & x <5Ay > x.

Different constraints on variables can form a so-called constraint net by which a num-
ber of variables is interconnected with each other by a number of constraints.

Definition 3.9 (Constraint net; ibid). A constraint net on the variables x;,...,x, is a
set of constraints, s.t. all variables of each constraint are a subset of xy,...,Xn.]

38 Chapter 3 Transformation from pCRL to Pro_I%

A CLP defines such a constraint net. A constraint net is also named a constraint domain
D (Marriott and Stuckey, 1998). A logical theory T determines, which constraints in
D hold under a certain valuation 8, and which do not. If a constraint € holds under
T of a constraint domain ®, this is denoted © = [€]lg. In this case, 0 is a solution
for €. Such a solution can be found only for a k-consistent constraint net with k the
number of variables.

Definition 3.10 (k-Consistency; ibid). Let there be a constraint net over the variables
X1,...,%Xn Of domains D1,...,Dn. Let (t;,,...,ti, ,) € Dy, x ... x Dy, , with
i; = {1,...,n} forj = {1,...,k} be the assignment of values to k — 1 pair-wise dif-
ferent variables, which fulfills all constraints between these variables. The net is k-
consistent, if, by adding an arbitrary variable x;, withk € {1,...,n}, the assignment

of values can be extended to (t;,,...,ti,) € D;, x ... x D;, such that all constraints
between these k variables are also fulfilled. []
Definition 3.11 (Consistency). A constraint net over the variables x1, ..., xn is consis-
tent, if it is k-consistent for k = n. [}

Example 3.12. In Figure 3.1, an exemplary net of binary constraints over the variables
x,Y,z is shown. All variables initially (0) have the domain D = {1;2;3;4;5}. The
constraints over the variables are x < y, x < zand z < y. We now stepwise make this
constraint net consistent (i.e. 3-consistent for this net), s.t. the data domains of each
of the variables reflects the possible values, which can be assigned to the respective
variable without violating any constraints. In a first step (1), we regard the constraint
x < y. Since neither x = 5 nor y = 1 would satisfy this constraint, we remove
them from the respective domains. Then (2), we regard x < z and remove z = 1
for the same reason. Afterwards (3), we remove y = 2 and z = 5 regarding z < y.
Checking the consistency of the net, we find out, that the last operation did not affect
the constraint x < y, but leads to an inconsistency regarding the previously solved
constraint x < z, s.t. we have to remove x = 4 in a last step (4). Now, the whole
constraint net is consistent.

From a consistent constraint net, we can now select a solution 8. For our example,
such a solution is 8 = {x — 2,y — 4,z — 5). However, not every combination of
values in a consistent constraint net can be a solution; {x — 3,y — 2,z — 3}, for
instance, violates the constraints x < y and x < z and is thus no solution for the set
of constraints.

If the domain of one or more variables becomes empty while solving a constraint
net, then there exists no solution for the set of constraints. Furthermore, it should be
mentioned, that constraints do not always have to be binary, as shown in the exam-
ple. Already relatively simple expressions like x = y + z result in n-ary relations.
This holds a fortiori for complicated sets of constraints, like those over a trace in a
system.

3.1 Constraint Solving 39

X < y X < y
{1:2;3:4,5} r 1 {1;2;3:4,5} J {1,2,3:4} | {2:3;4.5}
- b —>— — o = yan
< . ~ ‘< < - 5 <
Z z
| 234 | | przsas |

J L —
©)
!
X L < y] X l < | y
{1:2:3:4) 1 @aas | (1234 | {3:4:5)
< — ol < < <
[[
z L . z
{2:3:4:5) 1 {2:3:4)
R -
) @)
[[
X < y
23 | T pas)
J L
A
2 v
{2:3:4}
)

Figure 3.1: A sample constraint net

40 Chapter 3 Transformation from uCRL to Prolog

3.2 Transformation of Abstract Datatypes to Prolog

In the following two sections, we develop a transformation of pCRL specifications
to Prolog CLPs. By that, we are able to apply constraint solving on data selection
for systems specified in pCRL. To give the reader an idea of this transformation,
we begin with a small example. It is the specification of a sort for lists in pCRL
with only one operation which provides the length of a given list. The associated
process defines an infinite loop which performs an action notempty, if the list is not
empty, i.e. its length is greater than 0. The system is specified as follows (in excerpts;
the definitions of Bool and Nat are standard definitions as given in the previous
chapter):

sort List, D, Bool, Nat
func % definitions of Bool and Nat

empty :— List list:D x List — List d:— D
map gt: Nat x Nat — Bool
len: List — Nat

var L:List, x: D, y7,y2 : Nat
rew gt(0,0)=F gt(0,S(y2)) =F gt(S(y1),0)=T
gt(S(y1),S(y2)) = gtly1,y2)
len(empty) =0 len(list(d,1)) = S(1)
act notempty
proc X(1: List) = notempty.X(1) < gt(len(1),0) > 8

The above specification is now transformed according to our approach to the follow-
ing Prolog CLP:

gt(]N(X))]N(y)\]B(T)) — (X#> y—Tr= T,'T — _J_)

len(L(empty),N(x;)) « x; =n 0
len(L(list(D(d), L(y))), IN(x;))

« len(L(y), N(x")) Ap X" =n 1A,

x1 =n x2 Np add(IN(x"), IN(x"), N(x,))

notempty(global(LL(l)), global(L(1l)), param)
— len(L(1), N(x)), gt(IN(x),IN(0}), B(b)), B(b)

3.2 _TEnsformation of Abstract Datatypes to Prolog 41

3.2.1 Syntactical Transformation of nCRL ADTs to Prolog

In the previous section, we introduced constraint solving as a tool to solve the inter-
dependencies of variables in a system in general. In the remainder of this thesis, we
will apply constraint solving on the data of a system specified in uCRL. Therefor we
have to transform the several parts of a pCRL specification to a CLP in Prolog. In
this section, we will discuss our approach to transform ADTs from pCRL to Prolog.
In order to do so, we will describe the transformation of terms to pure Prolog and
prove it equivalent to a fragment of term rewriting Bergstra et al. (1989). First of all,
we define the general structure of CLPs for specifications.

Definition 3.13 (CLP B(&)). The CLP for a specification & is a tuple P(S) = (Paar(6),
Brroc (S)) consisting of two sets of Prolog rules with
Paat(S) representing the equations € € €inG = (3,€)and
Prroc(S) representing the summand rules from Proc in &.
]

In the remainder, we will abbreviate (&) by PB. Furthermore, we will concentrate
on Paa: only, since we consider ADTs. We will now first regard the treatment of
constructors in general and for numerical data, before later discussing the transfor-
mation of equations.

We will first need to introduce the notion of stacks, which will be used later in order
to define the transformation functions for terms to Prolog. A stack is a last-in first-out
memory with the two operations push and pop.

Definition 3.14 (Stack). Let a stack be defined for data elements of type T as follows:

sort Stack, T, Bool

func [:— Stack
push: T x Stack — Stack

map pushS : Stack x Stack — Stack
pop : Stack — T x Stack
empty : Stack — Bool

var x:T, s1,s2: Stack

rew pushS(sy, 1) = si
pushS([l,s2) =s2
pushS(push(x,s1),s2) = push(x, pushS(s1,s2))
pop(push(x,si)) = (x,s1)
empty([l) =T
empty(push(x,s1)) =F

42 Chapter 3 Transformation from uCRL to Prolog

Terms are transformed by the functions transformTerm and transformTerm’. A
term in uCRL is provided to transformTerm for processing. This function passes
the term on to transformTerm’. Here, all parameters of the term are first pro-
cessed recursively. The result is a stack, which contains variable assignments and
Prolog terms for the processed parameters. If now the main term processed by
transformTerm’ is a constructor term, then the stack with necessary variable as-
signments for the term’s parameters is returned together with the term itself as a
Prolog term. If the main term is a function term, then it is processed and added
itself to the stack of variable assignments. The second component of the result of
transformTerm'’ is then the variable, to which the result of the function term is as-
signed to. As a last transformation step, transformTerm constructs a conjunction
of all variable assignments from the stack and the processed main term. The two
functions are defined below.

Definition 3.15 (Transforming terms). Let x; be fresh variables and t/ be fresh terms.
For each sort $; with t; : $;, we introduce a function symbol D; : T — ¥ with D; the
domain denoted by 8; for explicit typing in Prolog. Furthermore, we introduce an
operator =p,: D; x D; — B for each domain of t;. Then, the helper function

transformTerm’: T(F,X) — Stack[T(FUSU{=p}, X UX)] x F(FUS, X UX')
is defined in Algorithm 3.1. The function
transformTerm : ¥(F,X) — %(F U S U Bool, U{=p}, X UX’)
itself is defined in Algorithm 3.2.]

The algorithm takes an arbitrary term f(t,,...,t,) and initializes a stack to cache
subterms. In case, this term is a function term, it transforms all parameters t; to t!,
finally pushes the Prolog rule for f with the parameters t{ and an additional param-
eter for the function return value on the stack and adds this additional parameter as
the second element of the result pair of the algorithm. In case, the processed term
is a constructor term, its parameters are processed in an equal way, but the whole
transformed term is not pushed on the stack, but forms the second element of the
result pair of the algorithm. In this case, there is no fresh variable introduced, either.

This algorithm transforms a term with transformTerm'. The elements of the result-
ing stack are afterwards conjoined by the operator A, with the top element of the
stack being the last conjunct. All other elements of the stack keep their order. If the
transformed term is not a function term, a new variable is introduced and the term
is assigned to it.

Example 3.16. Let list,empty, d;, d2 € C be constructors, of which list with an arity

of 1 and empty, d, d; with an arity of 0. Let furthermore len € M be a function.
Then:

—

transformTerm(list(d, list(dz, empty))) — |
x =g, list(D(dq), L(list(D(dz), L(empty)))) J

3.2 Transformation of Abstract Datatypes to Prolog 43

Algorithm 3.1 transformTerm’

Require: f(t1,...,tn)
Ensure: pair € Stack x ¥
. L":=1[]; x is fresh variable;
if f € M then
foralll1 <i<ndo
(Li, t]) := transformTerm/(t;);
L’ :=pushS(Li,L');
od
L := push(f(IDq(t}),...,Dn(t,), D(x)),L');
8 pair:= (L, x);
+ elseif f € C then
10 forall1 <i<ndo
1" (Li,t!) == transformTerm’(t;);

R Y T A S)

12 L= pushS(Li, LI);

13 od

" pair:= (L, f(Dy(t}),...,Dnlt]))));
s fi

v return(pair);

transformTerm/(list(dy, list(dz, empty))) -
(0, list(D(dy), L(list(D(d2), L{empty)))))
transformTerm/(d;) — ([, d1)
transformTerm/(list(dz, empty)) — ([, list(D(d;), L(empty)))
transformTerm/(d;) — ([, dz)
transformTerm/(empty) — ([l, empty)

transformTerm(len(list(d;, list(d2, empty)))) —
len(list(D(dq), L(list(D(d2), L(empty)))), N(x))

transformTerm/’(len(list(dy, list(dz, empty)))) —
(len(list(D(d;), L(list(D(d;), Liempty)))}, N(x))], x)
transformTerm/(list(d;, list(d2, empty))) —
(0, list(D(d;), L(list(D(dz), L{empty)))))
transformTerm’(d;) — (0, d1)
transformTerm’(list(d2, empty)) — ([, list(D(d;), L(empty)))
transformTerm’(d;z) — ([, d2)
transformTerm’(empty) — ([, empty)

44 Chapter 3 Transformation from puCRL to Prolog

Algorithm 3.2 transformTerm

Require: f(ty,...,t,)
Ensure: term e ¥
i if f € M then
2 (B,x) := transformTerm’(f(ty,...,tn));
+ (t/,B) :=pop(B);
i while —empty(B) do

s (b, B) :=pop(B);

6 t=b At

7 od

8 term :=t’;

« else

10 {B,t) := transformTerm'(f(t;,...,tn));
1 t' =0

12 while —empty(B) do
8 (b, B) := pop(B);

14 t':=b /\p t/;

15 od

16 x is fresh variable;

17 term:=t' Ay x =p t;
18 ﬁ

» return({term);

We will now define a function, which transforms algebraic equations from nCRL
to Prolog. This function has a similar functionality as transformTerm from Defi-
nition 3.15. There are, however, two differences: First of all, transformEquation
processes two terms at the same time, namely the left and the right hand side of
an equation. Secondly, all assignments to variables concerning the term from the
left hand side of an equation are after transformation of this equation to a Prolog
rule defined in the body of the rule rather than in its head. The head of the Prolog
rule contains only the main term from the left hand side of the original equation.
The body of the Prolog rule contains both the variable assignments for the left hand
side term, as well as the transformed right hand side term from the equation. The
according function

transformEquation : T(F U {=},X) - T(FU S U Bool, U{=p, <}, X UX')

is defined in Algorithm 3.3.

Using transformTerm/, this algorithm transforms two terms t and t4 of an equa-
tion t¢ = tg. The elements of the resulting stacks are afterwards conjoined by the
operator /\p. Hereby forms the top element of the stack for t¢ (B¢) the head of the
rule, while all the other elements of B¢ and those of the stack for t (Bg) are conjoined
with the operator A, and the top element of the stack B, being the last conjunct. If
the transformed term t, is not a function term, it is assigned explicitly to the result

3.2 Transformation of Abstract Datatypes to Prolog 45

variable of the transformed term t/. Otherwise, the two result variables of the trans-
formed terms t{ and t/ are explicitly assigned to each other just before the occurrence
of the transformed main term tg.

Remark 3.17. The function transformEquation defined above does not reuse the
function transformTerm from Definition 3.15. The reason is, that during the trans-
formation of equations, terms have to be divided into segments, of which one part
forms part of the rule head in Prolog, while the other forms part of the rule body.

We will later prove the correctness of the function transformTerm w.r.t. term rewrit-
ers with an innermost term rewriting strategy. Due to the commutativity of the /-
operator in Boolean algebras, this proof also holds for the segmented term transfor-
mation from Algorithm 3.3.

Example 3.18. As an example, let us consider two rules defining the length of a list:
len(empty) = 0 (3.1)
len(list(x,y)) = S(len(y)) (3.2)
The transformation of (3.1) happens according to the case g ¢ M from Algorithm 3.3:

[|
| transformEquation((?, len{empty),0)) — ’

| len(L(empty),N(x1)) < x1 =n 0 J

transformTerm’(len(empty)) — ([len(L(empty), N(x1))],x1)

transformTerm/(empty) — (I, empty)
transformTerm/(0) — ([1,0)

Now, we show the transformation of equation (3.2) in an LP-only setting without
making use of any of ECLiPSe Prolog’s CLP features.

-

| transformEquation(({x,y}, len(list(x,y)), S(len(y)))) - ‘
len(L(list(Dx(x), L(y))),N(x1)) «
| ten(L(y), N(x') Ap x1 = S(N(X') |
L 1
transformTerm/(len(list(x,y))) — ([len(L(list(Dx(x),L(y))),N(x1))],x1)
transformTerm/(list(x,y)) — ([, Ust(Dx(x),L(y)))
transformTerm’(x) — ([, x)

transformTerm’(y) — ([0,y)
transformTerm’(S(len(y))) — ([len(L(y),N(x'))], S(x"))
transformTerm’(len(y)) — ([len(L(y), N(x'))],x’)

We will discuss the an alternative transformation of the second rule later, when we
introduce the constraint solving part of the transformation.

46 Chapter 3 Transformation from pCRL to Prolog

Algorithm 3.3 transformEquation

Require: (X,f(sy,...,5n),9(t1,...,tm)) €& feM
Ensure: terme€ ¥
X1, X2 are fresh variables;

: if g € M then

3 (Bf,x1) := transformTerm/(f(s1,...,sn));
4 (Bg,x2) := transformTerm/'(g(t1,...,tn));
s (t}B¢) == pop(By);

o (tg,Bg) :==pop(Bg);
7 bf = D;

8 while —empty(B¢) do
’ (b, Bf) := pop(B¢);

10 bf =b Ap bf,‘

11 od

12 bg = D,'

13 while —empty(B,) do

14 (b,Bg) :=pop(By);

15 bg =b /\l;J bg;

16 od

17 term:=t{ « bs A, by Npx1 =p x2 /\p tg;
1 else

19 (Bf,x1) := transformTerm/(f(sy,...,sn));
2 (Bg,tg) := transformTerm’(g(ty,...,tn));
a (tf,Bf) :==pop(B¢);

2 bf = D;

2 while —empty(B¢) do

2 (b, B¢) := pop(Bs);

25 bf =Db /\p bf;

26 od

7 bg = D,‘

» while —empty(Bg) do

» (b,Bg) :=pop(Bg);

% by :=b A, by;

31 od

2 term := t; — b¢ /\p bg /\p X1 =D té,‘

3 ﬁ

x return{term);

3.2 Transformation of Abstract Datatypes to Prolog 47

Now we define, that all equations in a specification are transformed to rules in the
resulting CLP.

Definition 3.19 (Transformation of Term Rewriting System (TRS) to a CLP). Given &,
we define the corresponding CLP (or LP)

Baa: == {transformEquation(e) | ¢ € €}

Now, we define two term rewriting relations. The first one is general: Two terms are
in a rewrite relation, if the following holds: If a term can be rewritten, its substitution
can, too (first rule). And if a term can be rewritten to another term, then this can also
happen in the context of a third term (second rule). The second definition defines the
same relation for innermost term rewriting. Here, a term can only be rewritten, if all
of its parameters have already been (substitution rule) or - if it is a parameter itself
in the context of a third term — it can be rewritten only if all preceding parameters of
the same context have already been rewritten.

Definition 3.20 (Relation =-trs). We write s =rs t if there a term s can in one or more
steps be rewritten to t. Rewriting is hereby defined as follows:
f(s1,...,8n) >t s =TRs t

I11-¢ I1I-b
TTH(sY,...,5%) >1Rs t° (o0 8y) =TRS Tloevrtyens)

Definition 3.21 (Relation =1gs,). We write s =g, t if there a term s can in one or
more steps be rewritten to t by an innerniost rewrite strategy as follows:
- flsi,....sn) =t s{#ms 0 Si=s Vj <i:sj #TRs,
o— -
f(sy,...,s3) =1rs, t7 f(...,81,...) =1rs, fl. 00 t0,..0)

Lenma 3.22. Given a system of equations € and a corresponding CLP Pagt, it holds
that
s =1gs, t & transformTerm(s) =vp transformTerm/(t)

with transformTerm(s) =p transformTerm(t) including substitution steps after
the actual resolution of transformTerm(s).]

The proofs for this lemma can be found in Appendix B.

3.2.2 Semantical Transformation

In the previous section, we defined the syntactical transformation of uCRL ADT
equations to pure Prolog rules. However, pure Prolog does not provide full-fledged
constraint solving. In order to make use of constraint solving techniques, we have
to employ and use Prolog constraint solving extensions. In the remainder of this
section, we will define the transformation of a subset of hCRL ADT equations to
constraint solving-enabled Prolog rules.

48 Chqpter 3 Transformation from uCRL to Prolog

In our approach, constraint solving is used in order to calculate ranges and solutions
for numerical or symbolic variables in a system. For constraint solving, we use a
CLP(R)-solver, which has the theories for natural numbers, real numbers and enu-
merative data built in. In the remainder, we will discuss transformation rules for
natural numbers as well as for enumerations only.

First of all, we have to consider the conversion of terms of type TNat, to terms of
type Snat, . This conversion is achieved by the function transformSuccessor, which
transforms a successor term either to an element of the natural numbers, or to a term
¢ + x with ¢ € IN being a constant and x € IN being a variable.

Definition 3.23 (Transforming successors). The function
transformSuccessor : IN x TNat, — TNat,

is defined as follows:

i «~—= x=0
transformSuccessor(i, x) i4px — xeX
transformSuccessor(i+ 1,n) <= x =S(n)

]
Example 3.24.
1. transformSuccessor(0, S{S(0))) — transformSuccessor(2,0) — 2
2. transformSuccessor(0, S(S(x))) — transformSuccessor(2,x} — 2 + x

Assumption 3.25. Successor terms transformed by the function transformSuccessor
allow only other successor terms or variables as parameters. Any other type of con-
structor or function term is not allowed.

This assumption does not affect the generality of the approach, since terms of the
form S(f(x)) with f € M and x a variable can in theory be expressed as a term
add(f(x),S(0)). As a second step, we extend the algorithm transformTerm’ from
the previous section for the treatment of natural numbers. Therefore, we add a case
for natural number term to be given as a parameter to the function, leaving the rest
unchanged. The according helper function

transformTerm’ : T(F,X) — Stack[T(FUSU|[—p/, XUX)] x T(FUS,XUX')

is defined in Algorithm 3.4.
Example 3.26. Let ¢ € C be a constructor. Then:
transformTerm(c(S(S(0)}))) — xy = 2Ap c(IN(x1))
transformTerm/(c(S(S(0)))) — ([x1 =p 2], c(IN{x7)))
transformTerm(c(S{S(x)))) = x1 =p 2+ x Ap c¢(IN(x1])
transformTerm/(c(S(S(x)))) = ([x1 =p 2 + x],c(N(x;)})

3.2 Transformation of Abstract Datatypes to Prolog 49

Algorithm 3.4 transformTerm’

Require: f(t1,...,tn)
Ensure: pair € Stack x ¥

v L=

, iff: > INA(f=0V{=S)then

x is fresh variable;

4 t := transformSuccessor(0, f(t1));
5 pair == (push(x =n t',[1),t');

. elseif f € M then

7 x is fresh variable;

s foralll1 <i<ndo

o (Li, t!) = transformTerm’(t;);
10 L' := pushS(Li,L');

11 od

12 L:=push(f(Dq(t}),...,Dn(t}),D(x)),L);
1 pair:= (L,x);

1w elseif f € C then

15 foralll1 <i<ndo

o (Li, t!) := transformTerm'(t;);

- L' :=pushS(Li, L');

18 od

o« pair:= (LD (t]), ..., Dalty), D(x)));
» fi

x Teturn{term);

Example 3.27. Now let us come back to the transformation of equation (3.2):
len(list(x,y)) = S(len(y))

It happens according to the case g € M from the same definition. Prior to transfor-
mation, we have to rewrite the equation as follows:

len(list{x,y)) = add(len(y), S(0}) (3.3)

This step is necessary to comply with our assumption about successor terms (As-
sumption 3.25). Now we can transform the equation:

—— I S —

transformEquation(({x,y}, len(list(x,y)), add(len(y), S(0)))) —
| len(L(list(Dy(x), L(y))), N(x1))
len(L(y), N(x")) Ap x" =n 1A,
| x1 =n x2 Ap add(IN(x"), IN(x"), N(x2))

50 Chapter 3 Transformation from puCRL to Prolog

transformTerm/(len(list(x,y)))} — ([len(IL(list(Dx{x),L{y))), N(x1))],%1)
transformTerm/(list{x,y)) — ([, list(D(x), L{y)))
transformTerm/(x) — ({, x)
transformTerm/(y) — (0,y)
transformTerm/{add(len(y), $(0))) —
(" = 1, add(IN(x"), N{x"),N(x2)), len(L(y), N(x'))], x2)
transformTerm’(len(y)) — ([len(L(y), N(x'))], x’)

transformTerm/(S(0)) — ([x" =n 11, x")

Arithmetics

After having defined the basics of term transformation for natural numbers, we will
define the semantic transformation of a few functions for this domain. We start with
a set of rules for numerical arithmetics. The operator =y used previously is trans-
lated to the according Prolog operator #=.

add:INxIN —- NN -
add(N(x},N(y),N(r)) « r#=x+y
Lf sub:INxIN - NN -
sub(IN{x), N(y),IN(r)) « m#=x —y

mult : NxIN—-IN
mult(IN(x), N(y),IN(r)) — t#=x*y

div:NxIN—-N
div(IN(x), N(y), N(7)) « m#=x/y

l-e

l-g—

111-h

Arithmetic Comparisons

Here, we define the Prolog rules for comparison of numerical values again for both
natural and potentially non-natural numbers. We will begin with the rules defined
for positive comparisons (brackets around the bodies of the rules appear here only
to improve readability):

eq-NxIN—-B
eq(IN(x)},IN(y), B(r)) « (x#f=y »1=T;r= 1)
7 It:NxN—-B
Llt(IN{x),N(y),B(r)) « (x#f<y »1=T;r = 1)

le:INxIN— B
le(N(x),N(y),B(r)) « (x#f=<y —-1=T;r= 1)

ge:NxIN—-DB
ge(IN(x},IN(y),B(r)) « (x#>=y »1=T;1= 1)

I-i

1114-

MI-k

MI-1-

3.2 Transformation of Abstract Datatypes to Prolog 51

- gt:INxIN—B
m—
gt(]N(x),]N(U)»IB(T)] (X“>y — T=1,T=)

A separate issue is the handling of the negation operator in Prolog. ECLiPSe Prolog
already defines such an operator, however, it cannot be applied in all cases. As an
example, have a look at the constraint x#< 5 assuming x being a numerical variable.
This constraint restricts the values of x to those values, which are smaller than 5.
Intuitively, not(x#< 5) should restrict the values of x to those, which are greater than
or equal to 5, and should thus be equivalent to the expression x#>= 5. However, the
constraint solver will simply fail and not return any results for x.

Let us have a look at the reason: Evaluating the constraint x# < 5, the constraint
solver tries to prove, that 3x : x < 5. Evaluating the constraint not(x# < 5), the
solver consequently tries to prove —(3x : x < 5) > Vx : x > 5. This is not true, so the
solver fails. In order to surround this problem and to recover the intuitive meaning of
the negation operator as it is also used in pCRL, we define a mirror-inverted Prolog
rule for each rule defining arithmetic or symbolic comparisons as well as equality
in general. The arithmetic comparison rules from above, are thus completed by the
following ones (brackets are again inserted to improve the readability):

not(eq(x,y)) not:B—B,eq:NxN — B
neq(N(x),N(y), B(r) « (#¥\=y >1=T;r=1)
not(lt(x,y)) not:B—B,lt:NxN—-B
nlt(IN(x), N(y),B(r)) « (x#h>=y »r=T;r=1)
not(le(x,y)) mnot:B - B,le:NxN—B
nle(IN(x),IN(y), B(r)) « (x#f>y -1 =T;r= 1)
not(ge(x,y)) not:B—-DB,ge:NxN—-B
nge(IN(x),IN(y), B(r)) « (x#<y —-71=T,r= 1)
not(gt(x,y)) mnot:B—-B,gt:INxN - B
ngt(IN(x),N(y),B(r)) « (x#f=<y —-rv=T;r=1)

[I-n

-0

l-p

lll-q

l-r

Symbolic Comparisons

Finally, we will define the transformation of comparison equations for symbolic, or
enumerative, data. We will only define the transformation of equality and inequality,
since any of the other comparison rules implies an order of elements of the particular
datatype. Such an order can, however, not be explicitely defined in pCRL (if at all,
the order of constructors can be interpreted). The previously used general operator
for equality for data of enumerative domains, =, is translated to its Prolog counter-
part & =. The two transformation rules are (brackets are again inserted to improve
the readability):
eq:ExE—B

-5 eq(]E(x),]E(U),]B(r)) — (x&=y 1= T;r= .L)

52 Chapter 3 Transformation from pCRL to Prolog

Lt not(eq(x,y)) mnot:B—B,eq:EXxE — B
"~ neq(E(x),E(y),B(r)) « (x&\=y »1=T;7r=1)

3.3 Transformation of Process Behavior to Prolog

A parameterized test case may contain traces introduced by data abstraction. More-
over, information about the relationship of symbolic variables or concrete values
they can be substituted with is absent. To sort out spurious traces and to obtain
information about valuations for symbolic variables, we employ constraint solving.

We transform the original specification & to a CLP B. This CLP can then be queried.
A trace T which is selected from, for instance, a test case, is transformed into a query
q := D,(0). Let the set of symbolic variables in the specification be Vargmp. If there
is no solution for the query, 7 is a spurious trace, which can be introduced by data
abstraction. Such traces are not considered further, since they actually do not exist.
If there is a solution 6 in *B for the query, the trace 7 can be mapped to the trace of
the original system.

We refer to trace with symbolic variables substituted according to 8 as an instanti-
ated trace, denoted 7t(8). The instantiated trace 7t(6) is a trace of the original system
m.

¢ grlsie) @E E

l-u — yg—
s(state((, Var), state((, Var), param(e)) « g.

l-v

s[state(f,_\/?),state(%, Var(,, .,), param(y)) — g.

LN h e

Mw— P e——
T(state(l, Var), state({, Varj,, ..), param) « g.

Table 3.1: Transformation of specification & into a CLP

Transformation from the original specification & = (L, A, E, ({init, Minit)) with a set
of names Eand s € E, (,{ ¢ L, G a set of guards with g € G, x € Var, e ¢
Exprs(Var) to the CLP P is defined by the inference rules given in Table 3.1. These
rules map edges of the specification to rules of PB. All the rules are of the form
p(state(, Var),state(l, Var), param(y)) « g. The first state parameter describes
the source state of the edge in terms of the specification location and the process vari-
ables. The second state parameter describes the changed target state in the same
terms. The third parameter param contains all symbolic variables or expressions
which are local for this edge. These are the action parameters.

_3.4 Related Work 53

Rule I1I-u transforms an output edge ¢ 95, P into a rule
s(state(E,Var),state(@,Vur],param(e)] «— g.

The name of the rule coincides with the signal s. The edge leads to a change of
location from ¢ to €. The values of the process variables Var remain unmodified. The
signal is parameterized with a value given by expression e that becomes a parameter
of the param-part of the rule. The rule holds only if the guard is satisfied.

gr?s(x)

Rule HI-v transforms an input edge ¢ *L Tintoa rule

s(state(¢, Var), state({, Vary..,)), param(y)).

Here, input leads to the substitution of process variable x by a symbolic variable y
that is local for this rule.

Rule [TI-w maps an assign-edge ¢ 97X7¢, Tinto a T-rule
t(state(t, Var), state({, Vary,_.), param) « g.

The rule is satisfied only if the guard g is satisfied. An assignment is represented
by substituting process variable x by expression e. t-rules have no local parameters,
thus the structure param has the arity 0.

3.4 Related Work

The use of constraint solvers in symbolic testing or model-checking approaches is
in general quite common. This always leads to the question, how certain specifica-
tions can be correctly and efficiently be transformed into CLPs for certain constraint
solvers. In this section, we will thus not lead a general discussion of this topic, but
turn our focus to one particular approach which also uses Prolog-based techniques
in order to do constraint solving on formal specifications.

The approach under consideration is the transformation of specifications in Auto-
Focus to CLPs developed by Lotzbeyer and Pretschner (2000). AutoFocus is a CASE-
tool (Computer-Aided Software Engineering tool) based on the specification lan-
guage Focus for distributed systems. In Focus (Broy, 1998), a system is modeled
as a set of components, which are composed by typed channels. The relation of
the histories of a component’s input and output streams define the behavior of this
component in the system.

Technically, the approach by Lotzbeyer and Pretschner transforms AutoFocus speci-
fications into Constraint Handling Rules (CHR), a high-level language which allows
the definition of customized constraint solvers and the extension of existing ones.
Our approach, defined in this Chapter, is built upon the standard Prolog mecha-
nisms and the ic constraint solver for natural numbers. The main differences beyond
technicalities of the two approaches can be located in the two areas of data and be-
havior representation in the CLP.

54 Chapter 3 Transformation from uCRL to Prolog

User-defined datatypes in Focus are provided in a Gofer-like syntax. pCRL makes
use of a syntax which is based on equations and explicitly makes use of term rewrit-
ing techniques. As a consequence, our approach simulates term rewriting, esp. for
structured datatypes and nested function calls. Arithmetic expressions on numer-
ical or symbolic variables and values are translated to the respective Prolog con-
straint solver operators in both approaches, with Lotzbeyer and Pretschner doing
an in place translation of these constraints. In contrast, we keep the original expres-
sions from the specification in place and transparently provide a custom realization
of the respective operations as rules in the CLP. This provides us with more flexi-
bility w.r.t. possible manual or automatic adjustments of the operations directly in
the CLP. Typing of data elements in the AutoFocus approach is provided by a rule
isType for each datatype. This, of course, leads to an additional rule invocation for
each datatype lookup during constraint solving. Our approach of an in place typing
does not require this extra invocation, but allows Prolog to match types on the fly.

The behavior of components in AutoFocus is defined in state transition diagrams.
Those are in principle comparable to resp. IOSTSs and pCRL specifications. A sig-
nificant difference is that transitions in AutoFocus contain labels with explicit input
and output statements rather than parameterized action calls. These statements hold
a pair of a channel name and a pattern or expression. This difference is due to the
fact that system behavior in AutoFocus is defined by the history of channels rather
than traces of action calls. This fact also has consequences for the definition of Prolog
rules for action steps in the system. The AutoFocus approach defines only one pro-
cedure named step with all the further information about particular transitions in
the system being given as parameters of the respective rules. We, however, directly
name the Prolog rules after the respective actions, which allows Prolog to look up the
rule needed for a particular transition in the system at least as fast as the AutoFocus
approach. The approach for AutoFocus specifications has the advantage of a higher
flexibility, probably with the background that parallel composition of components is
defined on the level of Prolog. We do not need this flexibility in our approach, since
parallel composition of processes happens in the pCRL specification already.

Idle transitions in AutoFocus need to be complemented by special rules; this is not
necessary for uCRL. However, also for uCRL complementation of rules is connected
to the negation problem of Prolog like it is for the AutoFocus approach. The problem
is solved in a quite similar way in both approaches, however, our approach is a bit
more general, since it does not only consider (in)equalities, but the negation of all
possible boolean expressions, as can also be found later in Section 5.2.4. This seems
not to be the case for Lotzbeyer and Pretschner (2000).

The two approaches, we have just compared, are also used in different settings. The
AutoFocus approach is used by Pretschner et al. (2004a,b) for the generation of test
cases. Our approach is used for test data selection only, while the generation part
is undertaken by the enumerative approach based on LTSs, which we will discuss
in Chapter 4. An actual trace computation by the constraint solver takes place only
in the context of model checking and bug hunting with false negatives, as it will be
discussed in Chapter 7.

Chapter 4
Testing with Data Abstraction

Als de computer mij een uitkomst
geeft die zegt dat ik zes meter
naast mijn baanviak zit dan wil ik
er drie meter van geloven maar
niet alle zes.

(Buzz Aldrin)
he test of a software product is a crucial aspect in every software development
process. In today’s form as an approach to show up failures in a software, it

has been established by Myers (1979). There is no single activity named “testing”
with one well-defined semantics, however, there is a multidimensional typology of
testing as can, for instance, be found in the thesis of Brandéan Briones (2007, Section
1.1). Let us first have a brief look at this typology, in order to position our further
work in this and the next chapter.

One dimension of the typology regards the different quality characteristics, which
we had already mentioned in the beginning of Chapter 1. It defines the fest target,
which can be roughly categorized into functional requirements (suitability, accuracy,
interoperability, security and compliance with ISO 9126; cf. Van Veenendaal (2002),
Appendix B), and non-functional requirements like the performance of the tested
software or its robustness (ibid).

The second dimension regards the visibility of internals of the System under Test
(SUT) to the tester. Here, we distinguish whitebox, graybox and blackbox testing.
While whitebox tests are based on the interna of the SUT, like its source code, which
are completely visible to the tester, blackbox tests are restricted to information that is
available externally to the SUT. In many cases, this is its specification and interface
definitions. Graybox tests, finally, can refer to more information than just that of the
system specification, but still not to all interna of the SUT.

The third dimension is the position of a particular test in the software development
process. This becomes especially clear in the V-Model as introduced by Boehm
(1979), which explicitly distinguishes the component test, the integration test, the
system test and finally the acceptance test. While the component test validates sin-
gle components of the SUT, these components get gradually integrated during the
integration test until the whole system is tested at once (system test). While these
three tests are accomplished by the contractor, who produces the software system,
the last, the acceptance test, is accomplished together with or even just by the cus-
tomer of the software.

In this thesis, we concentrate on the blackbox system test, targeting functional re-
quirements. In order to validate functional requirements of a system, we apply

56 Chapter 4 Testing with Data Abstraction

<<realize>>
SuUT f« | T

desktopCale:lUT

calculator:SUT
webbasedCalc:IUT

Figure 4.1: Realization relation between SUT and IUT

model-based testing. This approach emanates from a model or a specification of
the system, and validates the IUT against this specification. It is therefore a test-
last approach, since we do not use the test cases as the specification of the system’s
functionality.

bet

At this point, the well-disposed reader might have found out, that we switch between the
terms System under Test (SUT) and Implementation under Test (IUT) from time to time.
In most literature, you will find either SUT or IUT, however, such a decision seemed not
to be sufficient in our case.

Figure 4.1 shows the relation between the two terms as we want to understand it in this
thesis by means of a small example. The requirements and specifications of the calculator
in the figure form the SUT, which will be considered during test generation. This SUT is
at some point realized by an IUT. This IUT can have different characteristics, as in this
example shown by a desktop-based and a web-based implementation of the SUT. Test
execution is then performed against one of these implementations.

Conformance Testing Conformance testing (ITU-T, 1996) is one of the most rigor-
ous among existing testing techniques, checking whether an IUT is consistent with
its functional specification. Roughly speaking, this is only the case if every observ-
able behavior of the IUT is allowed by the specification. Test cases are generated
from the system’s specifications. In some cases, this process is guided by so-called
test purposes, which are sketches of possible test scenarios. The generated test cases
do not reject consistent IUTs, and do not accept IUTs showing behaviors not allowed
by the specification. Two major problems of automatic test generation are its termi-
nation and the number of generated test cases. If the generation process is not guided
except for the specification documents, it may not terminate at all or produce many

57

unnecessary test cases around a few useful ones. Test purposes allow us to focus the
generation on certain aspects, like the main risks of a system (risk-based testing).

Not only the selection of behavior is crucial for successful test generation, but also
that of data. Software in most cases interacts with an environment, which stimulates
the execution of interface actions parameterized with data values coming from large
or even infinite domains. Considering these parameters already at the stage of test
generation leads to problems for enumerative techniques concerning the state space
of the system — state space explosion was already mentioned in the introduction,
Chapter 1. It also reduces the reusability of the resulting test cases. For this reason,
we have to abstract away from concrete data and concentrate on behavioral aspects
only for test case generation, and reintroduce data for test execution only.

In this chapter, we present a test generation framework (Calamé et al., 2005, 2007a).
Starting from the specification of an SUT and an appropriate test purpose, we ab-
stract away input and output data from the specification using the idea of claotic
data abstraction by Sidorova and Steffen (2001a). The abstract system then shows at
least the behavior of the original system, as has been worked out by Ioustinova et al.
(2002b). Afterwards, abstract test cases are generated, which contain a control flow
and are parameterizable with concrete data values during test execution. These data
values can be obtained from a CLP, which is set up in parallel and produces data
intervals for data selection and serves as a test oracle.

We implement our approach to generate test cases from pCRL specifications. Chaotic
data abstraction has first been proposed by Sidorova and Steffen for specifications in
SDL (Specification and Description Language). In this chapter, we develop a chaotic
data abstraction for uCRL. In order to do so, we define abstracted datatypes besides
the original ones, and lifting functions from the original datatypes to their respective
abstracted counterparts. The necessary propagation of abstracted data values can
happen on the level of summands in pCRL. In order to overapproximate the original
systems by the abstracted one, guards for transitions must be realized with a nay-
semantics. This semantics has originally been introduced by Larsen and Thomsen
(1988), has then been implemented for SDL by Ioustinova et al. (2002a, 2004) and is
in this chapter realized for the process algebra pCRL.

The actual generation of test cases is performed by the tool TGV. TGV (Jard and
Jéron, 2005) is an automatic generator of test cases from formal specifications of reac-
tive systems. TGV implements algorithms based on adaptation of on-the-fly model-
checking algorithms. Test selection in TGV is based on the concept of test purposes.
However, specifications of systems operating on large or infinite data domains are
beyond the scope of TGV, even with on-the-fly test generation using test purposes.

This chapter is organized as follows. In Section 4.1, we give a formal introduction
to conformance testing, which our approach is based on. The test generator TGV is
introduced in Section 4.2. Then, the approach of data abstraction and test generation
with TGV is worked out in Section 4.3. Section 4.4 discusses the determination of test
case parameters using constraint solving. In Section 4.5, we work out the application
of our approach to the CEPS as defined by the CEPSCO (2000). Finally, in Section 4.6,
we will discuss related work in the field of model-based testing.

58 Chapter 4 Testing with Data Abstraction

4.1 Conformance Testing Theory: ioco

Our approach is based on conformance testing that validates whether an implemen-
tation conforms to its specification. In a theory of conformance testing by Tretmans
(1996), the notion of conformance is formalized by a conformance relation between
specification and implementation that are assumed to be IOLTSs. Tretmans describes
several such implementation and conformance relations, of which the most rigorous
one is the relation ioco.

In principle, conformance means that — given specified input — an implementation
produces at most the output, which had been specified in its specifications. We will
first define a function, which provides all possible system output for a given set
of states and then define a relation of conformance for a specification 9t and an
implementation J.

Definition 4.1 (Function out; Tretmans, 1996). Let M = (I, A, A, 6init) be an IOLTS.
The function out : 2% — 2/ is defined for a set of states ' C I as: out(X’) = {A]A €

At ATo eI 0 8. m

Definition 4.2 (ioconf; ibid). Let 9t be an IOLTS and let J be its input-complete im-
plementation. Then

Jioconf M < Vit € [Miraces : out(J after 1) C out(IMN after m)

This relation covers already quite a lot of cases, however, it does not properly con-
sider the one case: that the implementation J does not produce output after a partic-
ular input. According to the above definition, an implementation J conforms to its
specification &, J ioconf M1, even if it does not produce any output: Vit € [Miraces
C out(M after 7). While for the licensee of a gambling machine such a behavior
might realize great income, a bank operating ATMs which behave like that would
for sure lose customers. To make a long story short: We need a way to express the
absence of output and to include it in the conformance relation.

The solution is a stronger variant of ioconf, ioco, which does exactly this. First of
all, it introduces the notion of quicscence in order to describe absent output, then it
extends ioconf by the handling of quiescence. Quiescence itself is originally defined
as follows:

Dcfinition 4.3 (Quiescence; Tretmans, 1996; Vaandrager, 1991). Let M = (I, A, A, it
be an IOLTS with A = AjnUAUA . Quiescence is defined as a function quiescent :
Y. — B. For a state ¢ € L holds:

quiescent(o) =—3IA € Ayt UA;: @ MoeAwithges
1]

In Tretmans (1996), the action 6 ¢ A is introduced to denote a deadlock for ¢ € T
with quiescent(o). Traces ending in quiescence are named quiescent traces.

4.1 Conformance Testing Theory: ioco 59

Definition 4.4 (Quiescent Trace; Tretmans, 1996). A quiescent trace is a trace .o €
[9M] iraces, 1-€. a trace ending in a quiescent state.]

For the moment, a state is quiescent, if it has only internal outgoing transitions (-
steps), and a trace is quiescent, if it ends in a quiescent state. This is inconvenient,
since we want to use quiescence to denote the absence of oufput rather than that of
external transitions. Furthermore, we are not interested to let a trace end at the first
occurrence of quiescence, but want to be able to provide input and follow the trace
further. So on the way to a definition of ioco, there lie still the definitions of traces
which allow the occurrence of quiescence not only at their end, but also midway:
failure traces and suspension traces.

Definition 4.5 (Failure Trace; ibid). A failure trace contains both actions as transitions

b . Are .
o™ 6, and refused actions A as self loops ¢ == o. The set of failure traces for

T
is EmIBFtraccs ={7T€ (AUZA)*IEUI _”} L
Definition 4.6 (Suspension Trace; ibid). A suspension trace is a trace m € [97] Feraces
(A U{8})*. The set of suspension traces is [M]straces-]

While a quiescent trace thus only ends in quiescence (in a deadlock), a suspension
trace can contain 5-loops repetitively. The occurrence of a 6-loop means, that input
must be given to the machine. The action 4 is handled as explicit, observable output.

With these definitions, we can extend Definition 4.2 by the notion of absent output
from the implementation J:

Definition 4.7 (ioco; ibid).
Jioco M < VY € [Mlsraces : out(J after v) C out(M after)

In the remainder of this chapter, we will not be concerned by a full ioco. The test

generator TGV can explicate the above-mentioned “output” of absent output for sys-

tems specified as LTSs by introducing loops o OUTPUTLOCK, 5 for a state 0. However,

for systems with data, Zinovieva-Leroux (2004) argues that quiescence is in princi-
pal undecidable, because it can be induced by t-loops in a system (livelocks), which
might not be detectable in finite time. For this reason, Zinovieva-Leroux decides to
regard the theory ioc instead, which is practically ioconf lifted to systems with data.
A theory comparable to ioco can, according to Zinovieva-Leroux, only be strived for
by prohibiting livelocks in the syntax of the system specification. However, even
though this allows to generate a suspension automaton for the system - as TGV
does to explicate absent output —, a full blocking detection on the level of IOSTS is
still untrackable.

As a practical solution for this problem, Zinovieva-Leroux proposes to use a timer
during test execution. If this timer times out, then the tester can decide to no longer
wait for any output from the IUT. However, this decision can, of course, easily be a
wrong one, if the timer duration is chosen too short. We will come back to this topic

60 Chapter 4 Testing with Data Abstraction

in Chapter 5, where we work out the execution of tests. There, we will discuss the
treatment of absent output during test execution with a outlook on timed versions
of ioco.

4.2 Test Generation with TGV

IOLTSs modeling IUTs are assumed to be input complete, meaning, the implemen-
tation cannot refuse any input from the environment. Given a model J of an im-
plementation and a model 91 of a specification, the implementation conforms to the
specification if and only if for each trace 7t in [MMraces, J after 7t produces only out-
puts that can be produced by 9 after 7. In case, 9 is input complete, conformance
is the standard trace inclusion relation.

We are interested in test generation where the test selection is guided by a test pur-
pose (Jard and Jéron, 2005). In order to define the notion of test purposes, we have
to define that of trap states. A trap state is a state, which cannot be left anymore by
any of its outgoing transitions.

Definition 4.8 (Trap State). In an IOLTS 9t = (I, A, A, Oinit), a trap stateisastate 0 € L
for which trap : L — B defined as trap(c) = Vo Mo eAio= o’, holds.]

A test purpose forms a sketch of the scenarios for the test cases, which TGV is sup-
posed to generate. It is a deterministic IOLTS Mirp that is equipped with a non-empty
set of accepting states I,.. and a set of refusing states L. which can be empty. These
two sets form the end points of traces, which are allowed or explicitly unwanted in
the test, resp. Both accepting and refusing states are trap states. Moreover, Mrp is
input complete in all the states except of the accepting and refusing ones.

Definition 4.9 (Test Purpose). Let 9t = (L, A, A, oinit) be a specification. A test pur-
pose is a deterministic IOLTS Myp = (L7, ATV, AT 6T) with a set of labels AT
A1 UAQG U{Aace, Mref}- Internal actions of & are not considered here.

Let furthermore be:

ZIL[: (o€ £ trap(c) AJt € AT : t = (0, A\ace, o)} and

5T = {oe XMtrap(a) At € AT 1t — (0, Aes, 0)).

ref

):TI’

acc
following must hold for a test purpose:

is the set of accepting states of the test purpose, LIT the set of refusing states. The

ref

I L OAEIT NI = 0.

acce ref
Transitions labeled with A, or A, are allowed in trap states only. m

A test purpose does not have to be designed as a complete test purpose by the test
engineer. A complete test purpose has outgoing transitions for all action labels from
the original specification in each of its states. A test purpose can rather be designed
incompletely, i.e. each state in the test purpose has only outgoing transitions for a

4.2 Test Generation with TGV 61l

subset of the set of action labels of the original specification. In this case, the test
purpose is completed by TGV prior to test generation. Therefore, TGV introduces a
*-loop ¢ = o in each state o of the test purpose. This *-loop is further expanded in
a way, that a complete test purpose is retrieved. This complete test purpose is then
used in the further test generation process.

Definition 4.10 (Semantics of *-loops). Let Mrp = (Z™0, AT, ATF, 6T) be a test pur-

» Vinit
pose for M — (X, A, A, Oinyt). Let furthermore Mypr = (X7, ATP U {(},AT" oI) be
this test purpose, with AT"" = AT U{o % ofc € Z™F} the *-loops implicitely intro-

duced by TGV.

Let furthermore 6,8 € £'° be two states in this test purpose. The semantics of a
«-loop & - & is defined by the function expand : AT" — 2% *AT*IT a5 follows:

expand(6 X 8) = (6 X 81u(e 2L 6 e AA-T6 2. G e AT
m

Test generation guided by a test purpose consists in building the synchronous product
of the system and the test purpose MMsp = M x Myp, and finally transforming it
into a Complete Test Graph (CTG) Micrg by assigning verdicts. The state space of
the synchronous product Msp forms the reachable part of £ x ™. The set A% is
constructed by matching the labels of transitions in 9t and 9M™. By doing so, the
complete behavior of the specification 91 is reduced to scenarios sketched by the test
purpose.

Definition 4.11 (Synchronous Product of 9t and 9irp; Jard and Jéron, 2005). The syn-
chronous product Mgp of the system specification M = (L, A, A, oinit) and a input
complete test purpose Myp = (X7, ATP, ATP 611) is the IOLTS Mgp = M x Myp -
(ZSPUASPASP 63T) where:

o A" = A U{Auc, Mrer) is the alphabet of the IOLTS,
e A% is the set of transitions such that

(0,0") X (0", 6") € AT = ((cr No'leANd" Mg e ATV
(O../l Ancc. 0_III € ATP/\OJI 0_/II)\/

A
(0_// ,[_’ 0_/// € ATI’/\O_// — 0_///))’

and

o o7

P = (Oinit, 01h) € I57 is the initial state.

For the moment, the synchronous product contains the system behavior and some
additional information, which traces are acceptable and which should be refused.
However, in order to produce test cases, in principle two more things have to hap-
pen:

62 Chapter 4 Testing with Data Abstraction

1. The focus has to be changed from the SUT to an external tester, i.e. inputs and
outputs have to be mirrored.

2. The additional information on accepted and refused traces must be translated
in actual test verdicts.

TGV takes these steps in order to produce a CTG, which can already be used for
testing the system.

Definition 4.12 (Complete Test Graph; Jard and Jéron, 2005). The CTG is an IOLTS
Mere = (€76, ACTC ACTC 6CTG) which is determined from the synchronous prod-
uct Mgp in the following way:
1. The set of actions is determined by mirroring the set of actions of Mcr¢:
ACLTG = ASTG) ASTE with ASTC C Apand ASTC = Ao.
2. The set of states is determined. This set is divided into four subsets
ICT6 = yTOULETe UICIS, which are defined as follows:

Inconc

Lead to Accept: £LI$ = {0 € 573 € [Mspliwaces(0 L o' Ao’ € 50},

acc
Pass: The set £51C C £TC is defined as ISI¢ = £50. This set

must be non-empty.
. A
Inconclusive: ITC —({o'3o€ LTS, o' ¢ IS 1€ AT (0 = o’ € ASFY),

-, CTG _ [-CTG) CTG 4 5SP
Fail: kil = (ki by Oq” & L

For reasons of manageability of the resulting IOLTS, the state of . exists only

implicitly and is assumed as end point for all possible traces o ¢ [Msp[iraces- It
is not actually generated.

3. The set of transitions of the CTG is defined as ACTC = ACTC U ACTG () ACTG

. Inconc Fail
with:
CTG SPp CTG CTG CTG
Ay = AT O(Zpa x AT X IRR),
CcTG SP ~ (vCTG CTG CTG
Alnconc A (ZLZA X Al X Zlnconc)|
A (TG 1
ASIS = {0 otlClo € IS AN € ATTC Ao after A = 0.

A CTG may contain loops and choices between several outputs in the same state or
between inputs and outputs, and is thus not (necessarily) controllable.

During generation of the Micyg, all input and output actions are mirrored, so that
the set of input actions of the Mc1 equals the set of output actions of the M and
the set of output actions of the Mcrg is a subset of the set of input actions of the M
(Figure 4.2). The reason for mirroring inputs and outputs lies in the relation between
a test case and the IUT, as the input of the IUT is the output of the test case and vice
versa. However, since a test case can normally not test all possible inputs of an SUT,
its set of outputs A is limited to a subset of the SUT’s set of inputs A;.

4.2 Test Generation with TGV 63

| output |npu_t>!

Tester T
- o
| input output |

Figure 4.2: Mirroring inputs and outputs on the tester

The sets of accepting and refusing states of Mgp induce the sets of accepted and
refused traces, denoted [Mspllatrace OF [Msplrtrace, resp., where [Msplatrace C [Miraces
and [Msplrirace = [Miraces \[MMsplatrace- Depending on the trace, executed during the
actual test, a verdict is assigned.

Definition 4.13 (Verdict). A wverdict is the result of the execution of a test case. It is
determined by the comparison between the actual behavior of the IUT during test
case execution and its expected behavior. In general, there exist five types of verdicts
of which we consider the following four: Pass, Inconc, Fail and None.

The verdict is set by a function setverdict : [Displiraces — Verdict, which is defined
as follows:

Pass — TE IImISP]]ah’ace

Inconc <= 7 € [Msplrirace

Fail — T ¢ (IIDJISP]]atrace U IHIRSI’Ilrtrace) AN I7TI >0
None <— |nl =0

setverdict(mn) =

The types of verdicts can be structured in the following partial order:
None C Pass C Inconc C Fail

The fifth type of verdict, Error, is not considered here: It is assigned only, if the
test run itself runs into an undefined (exceptional) state. In the above partial order
relation, it resides above Fail: Fail C Error.

The Pass verdict is assigned to those states of Mcrg, which correspond to the final
states of traces from [Msplatrace and thus to the accepting states in the test purpose.
The Inconc verdict is assigned to states from which accepting states are not reach-
able. In this case, the state is still on a trace of 91, but the trace does not satisfy the
test purpose (traces from [Msp]irace). The Fail verdict is implicit. All unspecified
output leads to this verdict.

When is a test successful?

The answer to this question has changed over the years with the changing objective of
testing, as discussed in the introduction (Chapter 1). While in earlier years a test might
have been successful when the functionality of the IUT could be confirmed, e.g. by a
number of tests resulting in a Pass verdict, this has changed significantly. Regarding the
fact that a test serves as a fault detector (Myers, 1979), it is only successful if it leads to a
Fail verdict.

64 Chapter 4 Testing with Data Abstraction

Since this fact might be irritating for the reader, and since it is not really obvious which
verdict is then assigned to a failing test, we will use neither of these expressions in this
thesis. Rather, we will name the verdict to which a particular test leads.

As we said before, Mt may contain choices between several outputs and choices
between inputs and outputs. Controllable test cases are derived by resolving these
choices, meaning, a test case does not contain these choices between outputs or be-
tween inputs and outputs anymore.

Definition 4.14 ((Controllable) Test Case). A test case is a deterministic input complete
IOLTS Mrc = (ETC, ATC, ATC 61C) derived from Merg with

TC CTG .
L g X Z ZLZA U zl’ass U zlnconc ZFall and

CTG CTG CTG.
ZLZA LZA ’ ZI’aqe I’ass ’ zInconc = Zlnconc' ZFaxl Fail ’
ATC C /\CTG . ATC C ACTG /\/\TC — ACTG.
TC CTG
A c A AL2A Inconc U Aqul and
CTG CTG.
AlSa € AGR Alvcone € Afneone Afsit € Dkair;
TC CTG
0.lmt 0.lrut .

Similarly to the sets of accepted and refused traces in CTG, the final states of a test
case induce the sets of traces leading to a Pass (Inconc or Fail) verdict, denoted
[9Mrclpass ([Mrclincone OF M rclfain)-

A test case is controllable, if the TUT has no chance anymore to choose between several
outputs or between inputs and outputs, i.e.

Voe s (13 M A e AT V(3 A e ATCA-T Biae AT,
|

The test cases we treat in this chapter, are loopfree and controllable. They are exe-
cuted in parallel with an IUT. The traces in a test case are chosen in a way that one
trace leads to a Pass state. From this trace, several branches lead to Inconc states
in one step. These Inconc states represent traces in the test purpose which end in a
refusing state.

Definition 4.15 (Soundness; Rusu et al., 2000). Given a specification 9, a test purpose
Mrp and a test case My, a verdict of a test case Myc is sound if and only if the
following holds for the executed trace 7

Pass S mME IImTP]]atrace N ﬂm]] traces
setverdict(m) Inconc < 7 € [Mrrlrtrace N [Miraces
Fail <~ T ¢ [mﬂl traces

4.3 Chaotic Data Abstractio_n 65

The verdict None is not considered here, since it is a construct to assign a test verdict
to a trace that has not yet been executed. If for all traces in a test case a sound verdict
is assigned, the test case is sound.

Using test purposes as selection criteria, it is possible to generate test cases on-the-
fly without generating the whole state space of a specification. However, a CTG can
easily be too large or even infinite, due to all possible data.

4.3 Chaotic Data Abstraction

Chaotic data abstraction has first been proposed by Sidorova and Steffen (2001b).
They assume that a system is embedded into a chaotic environment, from which it
can receive signals carrying ainy value. This can easily boost a system’s state space to
infinity, which makes the application of abstraction techniques mandatory in order
to be able to analyze the system.

While most abstraction techniques make assumptions about those values from the
environment by, for instance, dividing them into equivalence classes, the approach
proposed by Sidorova and Steffen does not make any assumptions. This means,
one can conceptually abstract values influenced by the environment via inputs and
assignments to one abstract value, denoted T (chaos). That basically means ignoring
these values and focusing on the control structure of a process.

System-internal data can be divided into two classes: Values that are not influenced
by the environment remain the original ones, and so they should be treated in the
same way as in the original system. Directly or indirectly influenced values are all
transformed to the constant T. For guards in the system, this leads to a three-valued
logic, as we will discuss later. Sidorova and Steffen (2001b) and Ioustinova et al.
(2004) proposed an approach to transform this three-valued logic back to the stan-
dard two-valued one, preserving in the abstracted system at least the behavior of the
concrete one.

In this chapter, we implement chaotic data abstraction as a transformation on the
level of system specifications in uCRL. Abstraction on the level of specifications is
well developed within the Abstract Interpretation framework (Cousot and Cousot,
1977; Dams, 1996; Dams et al., 1997). The program transformation implementing this
data abstraction transforms the signature and the process definition. For each sort S,
we introduce a sort $7 that consists of two constructors, Tg :— $T and x : § — $T.
The first constructor defines a T value of the sort. The constructor k (kiowrn) lifts
values of sort $ to values of sort $7. For each concrete mapping m: $1 x ... x $, —
$, we define a mapping m" : 8T x ... x §T — §7 mimicking the original one on
the abstracted sorts. In the general case, mimicking is ensured by providing the
following rewrite rules for each abstract mapping m™:

ml(k(x1),...,k(xn)) = k(mx1,...,xn))
mT(xy,...,xn) = Ty e Fiell;.onf:x; =T,

66 Chapter 4 Testing with Data Abstraction

7 ~
¢ 20 7 e
?2s(T) Tox:=T

IV-a E
LT eET

grls(e) ~»

{——1lct

¢ y(gMpts(e™) A
—_—

CeET

IV-b

gpxi=c 4

{——I{ckE

yigTex:: c'_) TeET

IV-c

¢
Table 4.1: Transformation of edges (& — Ch)

The transformation of the process specification consists in lifting all variables, ex-
pressions and guards to the new sorts. Each occurrence of a variable x of sort 5, is
substituted by an occurrence of the variable x" of sort $7, where $7 is a safe abstrac-
tion of sort $. Each occurrence of an expression e of sort $ is lifted to an expression
e of sort $7. Thereby, all the newly introduced symbols (constructors and rewrite
rules) are used and replace the appropriate original ones.

Transformation of guards is similar to the transformation of expressions. Every oc-
currence of a guard g is lifted to a guard g" of sort Bool". While transforming guards
we have to ensure that the abstract system shows at least the behavior of the original
system. Therefore, the guards evaluated to k(T) or k(F), behave like guards evalu-
ated to T or F, resp., while guards evaluated to T, behave as guards evaluated to T.
We implement this by introducing an extra mapping v : Bool™ — Bool that evalu-
ates to T whenever a guard is evaluated either to T or to k(T) and to F otherwise. To
avoid introducing unnecessary nondeterminism, we apply a more refined transfor-
mation to the sort Bool. Its abstraction, sort BoolT, is shown in Figure 4.3.

Definition 4.16 (May Semantics for Chaotic Guards). While a guard g is defined as a
function g : $ — Bool, a chaotic guard is defined as a function g": 8" — Bool". To
map this three value logic back to a two value logic, a nay-function y : Bool™ — Bool
is defined as follows:

[Teb=xTVb=T
Y(b’—{ Feb=«k(F)

After transforming the specification’s signature by adding the chaotic counterparts
as described above and lifting system variables, expressions using the constructor
k as described above and guards using the function v (see Definition 4.16), we ob-
tain a system that still can receive all possible values from the environment. The
environment can influence data only via inputs.

Let & = (L, Var, A, E, ({init, Minit)) be a specification, G be its set of guards and E be
its set of action names. Let €, (X= L,x € Var, e € Exprs(Var),ve D fore: D with D

4.3 Chaotic Data Abstraction 67

sort BoolT
func Tgoot :— BoolT
KBool : Boal — BoolV
map and": Bool" x Bool™ — Bool"

v : Bool™ — Bool

var b,b’:Bool

rew and"(k(b), k(b’)) = k(and(b,b’))
and"(Tgeot, (F)) = k(F)
andTr(K(F)’ Tgoot) = &(F)
andTr(-“-Bool» K(T)) = .“-Bool
andv(K(T)) .“-Bool) = FBool
and™(Tgoot, Teoot) = Moot

:Y'(.“—Bool) =T
v(k(b))=b

Figure 4.3: Transformed sort Bool"

a data domain. We transform this specification to " = (L, Var™, AT, ET, (i, 0T))
according to the rules given in Table 4.1. Strictly speaking, we transform every in-

put { 1), { from the environment into an input of signal s parameterized by the
T-value of the proper sort followed by assigning this T-value to the variable x (see
Rule IV-a in Table 4.1). Assignments and outputs are treated w.r.t. the rules in Ta-
ble 2.1. The semantics of the transformed system is given by the inference rules in
Table 4.2.

?s(x) Tox:=T 4 T
g 2, T T G g

?2s(T) A~
en") == @nl_q)

e YO (gl =T lely = v

Is(v)

IV-e

eI (gl =T el —v

IV-f ——
(€,n) — (&,nlx — v])

Table 4.2: Step-semantics of transformed edges (67 — M)

68 Chapter 4 Testing with Data Abstraction

S Tab. 4.1 61]'

Tab. 2.1l lTab. 42
M < mr

9MT can receive only T values from the environment, so the infinity of environmental
data is collapsed into a single value. Basically, the transformed system shows at
least the traces of the original system where data influenced by the environment are
substituted by T values. This means, that 9" simulates 9. Further, we give an
overview of preservation results based on Ioustinova (2004); Ioustinova et al. (2004).

An automaton 901, simulates another automaton 9, My << M,, if for every tran-
sition in <Mty there is a simulating transition in 9M>. A simulation transition in m,
starts in a state, which stands in a simulating relation to the starting state of the tran-
sition in 9, and also ends in one. Furthermore, the action, this transition in 9M; is
labeled with, must stand in a simulation relation to the label, the original transition
in 901, is labeled with. Simulation relations on the level of states and action labels
will be discussed later in this section.

Definition 4.17 (<-Simulation). Let 9 = (ZV, A", A, 0]) and

init
M, = (L2,A?, A2, 02,) be two IOLTSs. Let furthermore 01,81 € ', 6,,62 € X2,
A1 € Aland A; € A2, (<4, <p) is a simulation, if and only if Vo, 01,02,A1.362,A2 ¢
01 <q 020y M, 61 = A <o MAB <gB2A 02 LEN 82). We write Iy << M> if
there is such a relation between 9; and 901, also relating their initial states o, <a
2

Oinit- m
The defined simulation relation exceeds standard simulation relations in the aspect,
that it is a relation between two different kinds of components of a system, namely
states and transitions. While transitivity is given, an aspect we do not want to prove
here since it is not related to our work, we will define a concrete simulation relation
below, for which the statement that any trace in the simulating automaton is also a
trace in the simulated one does not immediately hold, since the simulating automa-
ton shows an overapproximation of behavior (safe abstraction). This aspect will be
adjusted in Section 4.4 by an appropriate selection of data values for testing.

The simulation relation is now defined for concrete and abstracted IOLTSs. Before
relating the traces of the transformed system to traces of the original system, we
define an order relation on the states and on the labels of the systems. To relate the
states L x Val of the original system with states of the transformed system L x ValT,
we define the relation <s on states as <s: L x L". A state in 9, simulates a state in
9M,, if its valuation is either identical to that of the state in 91;, or all differing data
elements have the value T.

Definition 4.18 (Relation <s). Let 0 = ({,) and ¢" = (¢,n7) be two states of the
IOLTSs 9 and M with specifications & and 7. <s: L x LT is defined as ¢ <s ol
if and only if Vx € Var: [x],;r = TV [x];r = k([x]5). []

4.3 Chaotic Data Abstraction 69

To relate labels A of the original system with the labels of the transformed system AT,
we define the relation < : A x AT. An action label on a transition in 9%, simulates an
action on a transition in 9y, if both have the same name and their parameters have
either identical values or those values differing are T for 91;.

Definition 4.19 (Relation <). Let A € A and AT € AT. Then A < AT is defined as
follows:

ST T,
e ?s{v) < ?s(v'}) if and only if either v/ = T or v/ = k(v);
e !s(v) <!s(V) if and only if either v = T or v = k(v).
- |
Lemma 4.20. Let & be a specification and &7 be a specification obtained from & by
the transformation defined in this section. Let 9t and 9" be IOLTSs obtained from

respectively G and &7 by the rules in Table 2.1 or Table 4.2, resp. Then M << M7
and (<s, <) is this simulation. a

Proof. The lemma can be proven based on Definition 4.17. Let a specification G and
its abstracted counterpart G" be given as follows:

6 = (L, Var, A,E, (fiit, Minit))
6" = (L",Var,A,E", (linie,nls))

Tlinit is the initial valuation of all global variables in &. Analogously, nLt is the initial
valuation of all global variables in &7 with some values possibly being set to T.
The semantics of the specifications are given by two IOLTSs 9 and 9" defined as
follows:

m = (Z)AyAy Uinit)
m' = (ZT, AT, AT, o)
Furthermore, let 0,6 € X, 0 2, & in the set of transitions and ¢" € 27 be given. We
prove the lemma by first considering the relationship between the initial states of
both systems and then considering the relation of an arbitrary step.

T.: We consider the initial states first. o, = (Cint,nT,) is
derived from oinit = ({init, Minit) by substituting either none or some or all variable
values in ninie by T, while the control location fin; stays the same all three cases.
Substituting values in this way leads to nT... The relation <s holds here. If n" is
initialized with the original values from 9, Vx € Var : [x]5 = «([x]y,,) holds.
If all initialization values are set to T, Vx € Var : [x],,, = T holds. For a mixed
valuation, Var can be divided into exactly two disjunct subsets for which the two
conditions above hold as well so that Definition 4.18 is fully satisfied.

Initial step — ot <s o

70 Chapter 4 Testing with Data Abstraction

T.

General step — A < AT Ao <s o': Now, we consider the general step. Assume

that 0 <s o" and let o 2, & in M be given. Under these conditions, we can prove
that:

T AT T epe T T
e Jd07 2= 8T in the set of transitions of M" such that A < A" and
o 0 <g a".

Ll
We have to prove that an appropriate transition o" 2, 87 is generated in M with

8 <s 6". In order to do so, we have to distinguish three different cases, namely input
actions, output actions and T-steps. In all three cases, the actlon in 9 starts in a state
o = (¢,n), that in M starts in a state 67 = ({,nT) with o <5 6" & (¢,n) <s (L,m").

Input action: Let A =?s(x). The semantics of the step ¢ SLLINY N given for MM in
?s(v)

Table 2.1 as (£,1]) —= (£,Mxsy]). For M, Rule IV-a transforms the step

o¢ 2, Tex=T, 3 s step semantics, given as Rule IV-d, finally leads to
(en") — 75 () (E nr). It holds that ?s(v) < ?s(T), since ?s(v) < ?s(V') with
[x—T]

v/ = T. Furthermore, ((’.,n[x,_,‘,]) <s (/E\,n}rx,_,m), since Vx € Var : ([[x]]nr =
k([xIy)) V (Ixl,r = T). With 6 = (€, 0x—v)) and 87 = (€, M), this imme-
diately leads to 8 <s 8.

Output action: Let A = gp!s(e). The step semantics for ¢ ovislel, T given in Table 2.1

's(v)

Tt

is (1)) (¢,n) with [el,, = v for M and (6,n7) X225, (¢ q7) for M.
The fact, that 1 < n" holds has already been shown above. It is guaranteed
that this step appears in IMT, since Vg : g = v(g")) per defmltlon (Deﬁnl-
tlon 4.16). As defined in Definition 4.19, !s(v) < !s(v") holds for vl = k(v). 1

v" is influenced by T in 97, this leads to !s(v) <(!s(T), which also holds as of
Definition 4.19. & <s 67 for the same reason as shown above; there has even
been no change in the valuation 1 or j".

t-step: Let A be an assignment x := e. The semantics of the step ¢ S8, Tis given

for M in Table 2.1 as (¢,n) > (/E\, Mxe|). FOr 9T, Rule IV-c transforms the step

yiglex=e" ~ . . - m™ T
to { ————— {. Its step semantics, given as Rule I'V-f finally leads to (¢,n") —

(/f, n?LH eT)). It is trivial to show that T < T holds, since we have equal actions
here without any data parameters. Furthermore, (@,Tl:x.-.c]) <s (@,n?‘;._, c1r:),
since ¥x € Var : ([xl,r = x([xly)) V (Ixl,r = T). With & = (€, Mxe) and
o7 = (@,n&_, ov(), this immediately leads to 8 <s 8T,

O

4.3 Chaotic Data Abstraction 71

Using Lemma 4.20, it is easy to show that every trace of 9 can be mimicked by
a trace of MT. For the lemma, we have to define, that two pairs of states are in a
simulating relation, if their single components are.

Definition 4.21. Let (¢',02) be a state of Z; x I, and (0°, o) be a state of Z3 x L.
Then the following holds:

(¢',0%) <s (0°,0%) & o' <s 0®> Ao? <s 0.

]
Lemma 4.22. For the synchonous product of automata 9, and M1, with 915 holds:

Py =< My = My x M3 << WMy x M3
under the simulation relation (<s, <). |

Proof. Let ¢',8" € Z', 0 € £2 and 0° € I3 be arbitrary states in the automata’s
state spaces. We assume that (0',0%) <s (62, 03), since My << M, following
Definition 4.21. Furthermore, we can assume (see the proof for Lemma 4.20) that
61 <s 62, 62 € X2. As of Definition 4.21, (8',63) <s (8%, 83) since both 8! <s 87
and 63 <s 63 (trivial).

(c',0%) <s (0%,0)

A
©,6%

1 2 3

Now let there be ' & 67,62 % 82 and 03 2 6. Building the synchronous
1x3

product over the automata leads to the transitions (¢, 0°) 277 (8,63 and

2x3
(02,03) 5777 (82,83). Building the synchronous product over two of the automata
does not change anything about the action A under consideration, so if A < A holds
for 9 and 91, it will do the same for My x M3 and M, x M3. O

Now, we define, that two traces are in a simulation relation, if they are of the same
length and their action labels are pairwise in such a simulation relation.

Definition 4.23 (<-inclusion on traces). Let 7 and 7t; be traces of IOLTSs 91 and 90,.
Trace 71; <-includes 77, written 7t; < 72, if and only if |7y | = |m2] and 7, [+ 1] <t
1z, [L+ 1 foralli e {0;...;|ml} []

Finally, we lift the notion of a simulation relation to the level of automata.

Definition 4.24 (<-inclusion on automata). The set of traces generated by IOLTS M1,
<-includes the set of traces of M, written as [9M1]iraces C< [M2]traces, if and only if
for every trace 7y of M there exists a trace 7tz in 9, such that 71y < 71,. []

Lemma 4.25. Let Mrp be a test purpose, Misp be a synchronous product of M with
Mrp, and MY, be a synchronous product of M with Mrp. Then [Msplarace C<
[[mgp]!ah‘ace and [Msprrace C< [[mgp]]rtrace- u

72 Chapter 4 Testing with Data Abstraction

Proof. Let M x Mrp be the synchronous product of a system and a test purpose and
let MT x Mrp be the synchronous product of an abstracted system and the same
test purpose. For both products, the sets of traces are defined as the disjoint sets of
accepting traces, which end in an accepting state, and refusing traces ending in a
refusing state. That means [X M1pliraces = MM X Mrplatrace VI X Mrplrtrace and
ﬂm’lT X 9:n'l‘l"]!traces = |[ngT X SUI’I’I”]]atraceuHS):RTr X 9JIITP]]rtrace- We have to show that the
following holds:

1. [99t x Mrplatrace Cg [T x Mplatrace and
2. ﬂm X 9:nTI’]Irtrace Qs IImF X 9JII'I'P]]rl-race-

As we have proved before, 90t x Mp << M x Myp holds (Lemmata 4.20 and 4.22).
It follows from Definitions 4.23 and 4.24 that [x M1platracelVIIM X Mrp)rirace -
9T x Mrplatrace VIMMT X IM1plrirace. From this we can conclude that

1. [99% x Mrplatrace C< [T x Mrplatrace JIOMT x M1pletrace and
2. 99t x Mrplrtrace Cg [T x S):RTP]]atraceL'JIIS):R“- X DMrp]rerace-

To prove the above claim, we have to show that

1 [9% x Mrplatrace N ﬂm'ﬂ' X MM1plrtrace = @ and
2. ﬂg-n X S)-'RTI’]]rtrace n I[S)RF X S)-Tt'l‘l"‘."rtrace = w

This is easy to show. There exists no trace 7 € [x Mplatrace which would ever end
in a refusing state, so we can conclude immediately 7 € [9Xx Mrplagrace = 7 & [MT x
IM1plrtrace- Analogously, we can say that 7w € [9 x Mrplitrace = T & [MT X Mrplatrace-
For this reason, our entrance claim holds.]

4.4 Parameterizing Test Cases with Data

In this section, we will complete the test generation approach with data abstrac-
tion from the previous section by discussing test case parameterization. Here, we
will discuss a static approach for the parameterization of controllable test cases (see
Definition 4.14). In Chapter 5, we will present a holistic approach to behavior-
adapting test case execution with test data selection, which is founded on CTGs
(Definition 4.12).

Our goal is to obtain parameterizable test cases, for instance in TTCN-3 as defined
by the ETSI (2003a), together with information about values that can be used to in-
stantiate them. In a first step towards the full functionality of BAIT (cf. Chapter 5),
we are interested in test cases where no nondeterministic choice is possible between
several outputs or between inputs and outputs. Therefore, we single out a subgraph
of M that contain neither choices between several outputs or choices between
inputs and outputs nor loops. We refer further to this subgraph as an Abstract Test
Case (ATC), denoted M.

Even though we are still working on the level of IOLTSs here, we now have to in-

troduce variables for parameterization. In M7, each occurrence of T is substituted

4iParameterizing Test Cases with Data 73

by a unique symbolic variable vi; parameterizing inputs and outputs. The double
index is necessary to identify the state in which the transition with the variable starts
(index i), and to uniquely identify this variable within the set of variables on transi-
tions from state i (index j). These variables are embedded into the transition labels
of the IOLTS, but are distinguished as a separate set Var in the further regard. A
parameterizable test case is thus in principle a CTG with variable parameters on
actions.

Definition 4.26 (Parameterizable Test Case). Givena CTG
M = (L x Val, Varcre, A, Act, (Linits Tinit)),
a parameterizable test case
MI = (L’ x Val, Varre, A, Arc, (Ginit, Minit)}

is an input complete IOLTS, where Varre € Varcrg, L’ x Val € Lx Val, and the test
case shows only Pass, Inconc and Fail traces possible in the complete test graph,
ie. ﬂmTTrC]]Pass - IIDJITC[-TG]]PGSSI [[m’}‘rc]]lnconc - [[mg'[c;]]lnconcr and [[m][TC]]Fail - ﬂmz:r'r(‘,]]l:ail-

Before such a test case can be executed, it must be instantiated. This means, that each
of the variables vi, € Var must be preset with a value such that a Pass-state in the
test case can be reached with this valuation Tjiy;;. In order to do so, a trace to Pass is
selected, transformed into the test oracle, and by constraint solving the appropriate
test case parameters are determined. The selection of a trace to Pass is in case of a
controllable test case already taken by TGV. In case of a CTG, we will discuss the
according algorithms in Chapter 5.

Building the Test Oracle

A parameterizable test case may contain traces introduced by data abstraction. More-
over, information about the relationship of symbolic variables or concrete values
with which they can be substituted is absent. To sort out spurious traces and to
obtain information about valuations for symbolic variables, we employ constraint
solving.

In blackbox testing, the idea of test oracles has been established. As of the ISTQB
(2006), a test oracle is “a source to determine expected results to compare with the
actual result of the software under test”. The IUT receives input from the tester and
returns output to the tester. This output is then compared to expected results, which
are delivered by the test oracle. The test oracle in turn bases its decisions on sources
like the specification of the IUT.

In our approach, we slightly extend the meaning of test oracle by also letting it com-
pute possible inputs to the IUT, as far as those can be determined by the constraint
solver. Where this is not possible, we have to apply other test data selection tech-
niques. A test oracle is a CLP, which has been generated from the data definitions
and the process definitions of a uCRL specification according to Sections 3.2 and 3.3.

74 Chapter 4 Testing with Data Abstraction

Definition 4.27 (Test Oracle). Given a CLP P = (Bapr, Prroc) of a specification &, an
ATC MY and a trace m € [T Jiraces which leads to a Pass verdict. Then D,(0) =
(B, qx(0)) is a test oracle over P and a trace-dependent query q(8) with solution 6.

|
Remark 4.28. For a test oracle, we define a query for the selected trace as a function
within the test oracle. While it is explicitly part of the test oracle in this section, we
will dynamically create this query during test execution in Chapter 5. u

In order to generate the oracle, we generate a CLP ‘B as described in Chapter 3.
This CLP can then be queried. The Pass-trace 7, which is selected from ‘JJ?}TC, is
transformed into a query q(8). Let the set of symbolic variables in the specification
be Vargmp. If there is a solution 0 : Vargymp — D* in P for the query, the trace 7 can
be mapped to a trace of the original system.

We refer to trace with symbolic variables substituted according to 0 as an instanti-
ated trace denoted 7t(8). The instantiated trace 7t(8) is a trace of the original system 9.
As we will prove later in Chapter 5 for general test execution, the verdict assigned
to a test run of 7t(0) is sound.

([l = r=1

[t(state(liy, VaTim), state(£,, Vary), param) query(1,7)],

< i=0AT= ULO’H"]

[s(state(€iir, Vari), state(ty, Vary), param(y))|query(1,v)]
query(i,t) = — i=0A(r=[Um—y)>dir’ Vr:[cﬂ»o’.r'])

[t(state(¢;, Var,), state(€; .1, Vari,), param)|query(i + 1L,
< i>0AT= [0'1» U"r’]

[s(state((;, Var;), state(€; 1, Vary,,), param(y))query(i +)],
<= i>0A(r= [0‘ SLIN o"r’] Vr= [Ul o"r’])

Figure 4.4: Transformation of a trace of € I[E);’I}T(:]]traceS into a query q,

In order to query the oracle, we transform the Pass-trace 7 into a query g :=
query(0, 7t) using the function given in Figure 4.4. Basically, a query is a sequence of
rule invocations corresponding to the transitions along the chosen Pass-trace. Each
transition along the trace is transformed into a rule invocation, which has the name
of the action under consideration. The parameters of this rule invocation are the state
of the system where the transition starts (first parameter), the system'’s state after the
transition and the action’s parameters. In the first transition, which is characterized
by the counter i = 0, the starting state of the transition is set to the initial state of
the system. The function query then iterates through the trace and appends all rule
invocations to one list, which forms the oracle.

In g, not all free variables in the system have yet been bound to values. This hap-
pens by applying the constraint solver to the test oracle with 8 := solve(, q., Oconst)-

4.4 Parameterizing Test Cases with Data 75

Sometimes a trace has not yet been fully instantiated, i.e. some values for data ele-
ments have already been defined while others have not. Such a trace is a partially
valuated trace.

Definition 4.29 (Partial Valuation). Let vars : [iraces — Var be a function that
projects the set of variables Var of 9 to that subset that is actually used in a given
trace from [iraces-

Given a valuation 0 : vars(n) — D* and a trace 8, which is a prefix of 71, we define
the partial valuation |8]g : vars(p) — D* such that |8](x) = 8(x)Vx € vars($). W

The parameter Beonst € B can be used to define a set of constant valuation assign-
ments. For instance, if a prefix p of 7 has already been executed during a test and
only for the suffix of 7 a new valuation has to be found, 8const := |0 g can be defined
as this set of constant values. Partial valuation and constant valuation assignments
in the context of trace prefixed will become important in Chapter 5.

In all cases, where this situation is not applicable, i.e. no part of 8 has to be con-
stant, the optional parameter Bconst can be defined as) and is further ignored. Hav-
ing calculated a valuation 6 for a trace 7, the constraint solver can check, whether
(qr(0), T) is solvable. If it is solvable, the test can be executed with the computed
test input data, and results from the IUT can be checked against the computed test
output data.

Lenmma 4.30. Let 7(0) be a trace 7t of the ATC for the system specified by 9. Let be
instantiated with the valuation 8. Then:

“B F qﬂ'(e) A 7'[(9) € [[m]]traces

Proof. To show the equivalence stated above, we have to divide the proof into two
parts, proving each direction separately.

P+ qr(0) < m(8) € [Mlygaces We begin with proving the lemma for test queries
consisting of only one step.

1. Let 7t(0) be a trace of one transition
init — 08 = (Linit, VTinit) — (£, VaTinigxy))-

As defined in the step semantics in Table 2.1 (Rule II-c), the appropriate step

in the specification is {init 9%7C, 7 with [gle = T and v = [elg. According to
Rule III-w in Table 3.1, the CLP ‘B contains the rule

T(state(linit, VaTinit), state(?, Variixe), param) — g.

Following the function query in Figure 4.4, the query g only contains the rule
invocation
T(state(€init, VaTinit), state(£y, Vary), param).

This query holds since

76

Chapter 4 Testing with Data Abstraction

a) P contains the appropriate rule (see above),
b) this rule instantiates e with [e]g when invoked, and

¢) this rule holds for { = ¢, Varipitix—el = Vary under valuation 8 and
[gle =T.
2. Let m(8) be a trace of one transition

ts(v) N g
Oinit ——s 6 = (Binit, VaTinit) — (2, Varing).

As defined in the step semantics in Table 2.1 (Rule II-b), the appropriate step

in the specification is ¢ grisle), T with [gle = T and v = [els. According to

Rule III-u in Table 3.1, the CLP ‘B contains the rule
s(state(Cinir, Varin), state(?, Varin), param(e)) « g.

Following the function query in Figure 4.4, the query g only contains the rule
invocation

s(state(linit, Varing), state(dy, Vary), param(v))

with v = [e]g. This query holds since
a) ‘P contains the appropriate rule (see above),
b) this rule instantiates e with [e]g when invoked, and
¢) this rule holds for § = &, Vary; = Var, under valuation 6 and [ole = T.
3. Let (@) be a trace of one transition

?s(v) — ?s{v) A —
Oinit — 0 = ({init, VaTinit) —— (£, VaTinitixov)-

As defined in the step semantics in Table 2.1 (Rule II-a), the appropriate step in

the specification is G — - . According to Rule Ill-v in Table 3.1, the CLP B
contains the rule

s(state(linit, VaTint), state(?, Varixy)), param(y)).

Following the function query in Figure 4.4, the query g, only contains the rule
invocation

s(state(finit, Varine), state(€y, Vary), param(v)).

Thus, this query holds since
a) P contains the appropriate rule (see above),
b) this rule instantiates y with v when invoked, and
¢) this rule holds for f= ¢y and W[x»»y, = Var; under valuation .

4.4 Parameterizing Test Cases with Data 77

Since we assume the constraint-solver to work correctly, this will be the case if(B) €
ﬂmﬂl traces-

Now we regard the general step of the proof. We assume to have an query qg, which
holds under 6 since p € [Miraces: We extend $ by one transition to completely
describe trace 1t € [Miraces With the prefix 3.

4. Let 7t(0) be a trace with the prefix B followed by the transition
o568 =(,Var) S (0, Vary.v)-

As defined in the step semantics in Table 2.1 (Rule II-c), the appropriate step

in the specification is ¢ X7 7 with [gle = T and v = [els. According to
Rule ITII-w in Table 3.1, the CLP B contains the rule

t(state((, Var), state(f, Var x_.¢), param) « g.

Following the function query in Figure 4.4, the query g only contains the rule
invocation

t(state(l,, Vary,), state(€n 41, Vary1), param).

This query holds since
a) P contains the appropriate rule (see above),
b) this rule instantiates e with [e]e when invoked, and

¢) this rule holds for 1 = 0, % = tns1, Var = Var,, Varw.e = Varns
under valuation 0 and [gle = T.

5. Let 7t(0) be a trace with the prefix B followed by the transition

Is(v)

6 = (¢, Var) 2L (2, Var).

As defined in the step semantics in Table 2.1 (Rule II-b), the appropriate step

gbls(e) »

in the specification is ¢ — ¢ with [gle = T and v = [e]s. According to
Rule IlI-u in Table 3.1, the CLP B contains the rule

s(state(¢, Var), state(, Var), param(e)) « g.

Following the function query in Figure 4.4, the query q only contains the rule
invocation

s(state(l,, Vary,), state({n4+1, Varn41), param{v))

with v = [e]g. This query holds since
a) ‘P contains the appropriate rule (see above),

b) this rule instantiates e with [e]s when invoked, and

78 Chapter 4 Testing with Data Abstraction

c) this rule holds for 1 = ¢, { = €., Var = Var,, = Var, ;1 under valua-
tion 8 and [g]e = T.

6. Let 71(6) be a trace with the prefix 3 followed by the transition

ﬂ) 6= (e)m) lv)) (/étm[xv—»v,)-
As defined in the step semantics in Table 2.1 (Rule II-a), the appropriate step

in the specification is £ SSlLIN) According to Rule III-v in Table 3.1, the CLP
contains the rule

s(state((, Var, state(?, Varp..y)), param(y)).

Following the function query in Figure 4.4, the query q, only contains the rule
invocation

s(state(ln, Vary), state(€n 1, Varn 1), param(v)).

Thus, this query holds since
a) P contains the appropriate rule (see above),
b) this rule instantiates y with v, when invoked, and
¢) this rule holds for 1 = tn, { = £ 11, Var = Var, and Variy,...,; — Varn,,
under valuation 6.

Since we assume the constraint-solver to work correctly, this will again be the case if
7(0) € [Miraces-

Pt ar(8) = n(0) € [Mgaces We begin with the trace consisting of one transition
again.

1. 7 Step: Let g, contain only the rule invocation
T(state(linit, Varing), state(y, Var;), param).

This is the final situation after having applied the function query to a trace 7,
which contains one transition

Ginit — 8 = (Linit, VaTini) = (£, Variitxisv))

only (see Figure 4.4). The transition itself has been generated from a specifica-

tion with an edge £in; xe, ?, [gle = T and [e]e = v (see Table 2.1, Rule II-c).
g holds under 8 because of the rule

T(state(binit, VaTin), state(?, VaTinxn), param) « g

in B, which holds under 8 with v = [e]g, { = ¢; and Vatiitxry = Var;. This
rule has been generated from 9 by III-w (see Table 3.1) for the named edge.

4.4 Parameterizing Test Cases with Data 79

2. Output action: Let g, contain only the rule invocation
s(state(linit, VaTiit), state(¢q, Vary), param(v))

with v = [elo. This is the final situation after having applied the function
query to a trace 7, which contains one transition

Is(v) — 15(v) A =
Ginit —— 0 = (linit, VTinit) —— (£, VaTinit)

only (see Figure 4.4). The transition itself has been generated from a specifica-
gbls(e) A

tion with an edge &init ——— £, [gle = T and [e]s = v (see Table 2.1, Rule II-b).
g holds under 6 because of the rule

s(state(linit, VaTinit), state(d, Varin), param(e)) < g

in B, which holds under 0 with e being instantiated with [e]s, v = [ele, 1=
{; and Vary = Var;. This rule has been generated from 9t by Ill-u (see
Table 3.1) for the named edge.

3. Input action: Let g contain only the rule invocation
s(state(linit, Varinit), state({y, Vary), param(v)).

This is the final situation after having applied the function query to a trace 7,
which contains one transition

?s(v) SN ?s(v) A 55—
Oinit —— 0 = (linit, VaTini) — (£, VaTinitix—v))

only (see Figure 4.4). The transition itself has been generated from a specifi-

cation with an edge it SiLIN [(see Table 2.1, Rule II-a). q, holds under 6
because of the rule

S (State(einih Varinit)) state(@, varinit[w—»yj.) ’ param(y))

in 7B, which holds under 6 withy = v, { = ¢; and VaTipix.) = Var. This
rule has been generated from 9 by IIl-v (see Table 3.1) for the named edge.

Since we only regard a one-transition trace 7t here, 7 € [97] traces holds in all three
cases.

Now we assume an query qg which holds under 8 since there exists a 71(0) € [MDiraces-

In the general step, we add a rule invocation to the query to complete q for trace 7
with its prefix 3. We then show that 7t(8) € [9races-

4. 7 Step: Let g, contain the rule invocations for qg and one additional rule invo-
cation
T(state({,, Vary), state(€, 1, Vary 1), param).

80 Chapter 4 Testing with Data Abstraction

This is the final situation after having applied the function query to a trace 7,
which contains the transition
o 1’ g = (E)W) 1’ (@ymfxo—»vl)
only (see Figure 4.4). The transition itself has been generated from a specifica-
tion with an edge ¢ gxize, /f, [gle = T and [els = v (see Table 2.1, Rule II-c).
g~ holds under 6 because of the rule
T(state((, Var), state(?, Var), param) « g

in B, which holds under 8 with v = [e]o, 1 = tn, T = thiy, Var = Var,
and Varj,,_.,) = Var, . This rule has been generated from MM by II-w (see
Table 3.1) for the named edge.

5. Output action: Let q, contain only the rule invocation

s(state({,, Var,), state({, 41, Var, 1), param(v))

with v = [e]s. This is the final situation after having applied the function
query to a trace 7, which contains one transition

Is(v Is{v)

L6 = (¢, Var) =YL (2, Var)

only (see Figure 4.4). The transition itself has been generated from a specifica-
gbls(e) »

tion with an edge (it ——— (, [gle = T and [e]o = v (see Table 2.1, Rule II-b).
g~ holds under 0 because of the rule

s(state({, Var), state(/C\, Var),param(e}) «— g

in B, which holds under 8 with e being instantiated with [eo, v = [ela, 1 = {y,

{ = {y41 and Var = Var, = Var, . This rule has been generated from M
by lII-u (see Table 3.1) for the named edge.

6. Input action: Let q contain only the rule invocation
s(state({,,, Vary), state({,, 11, Varn 1), param(v)).

This is the final situation after having applied the function query to a trace 7,
which contains one transition
?s{v . 7s(v s
0 —— 0= ((,Var) — ({, Var_,|)

only (see Figure 4.4). The transition itself has been generated from a specifica-

?s(x)

tion with an edge { . (see Table 2.1, Rule II-a). g, holds under 8 because
of the rule

s(state(ﬁ,m),state(?,mf,wy), param(y))

_i@, which Eolds under 6 withy = v, 1 = (,, { lhi1, Var = Var, and
Var(,, .,) = Varp,y. This rule has been generated from 9t by Ill-v (see Ta-
ble 3.1) for the named edge.

Since the prefix of m holds under 8 and there exists one of the transitions named
above, which also holds under 0, 7t € [M]iraces holds. O

4.5 CEPS Case Study 81

4.5 CEPS Case Study

In this section, we describe the application of our approach to the case study Com-
mon Electronic Purse Specifications (CEPS). The CEPS define a protocol for elec-
tronic payment using a chip card as a wallet. The specifications consist of the func-
tional requirements (CEPSCO, 1999) and the technical specification (CEPSCO, 2000). A
complete electronic purse system covers three roles: a card user, a card issuer (the
issuing bank institute, for instance) and a card reader as a connection between these
two. The hardware of such a system is given by the purse card itself, the card reader
and some network infrastructure. Software applications are running on the card, the
card reader and at the site of the card issuer. These applications communicate with
each other. Their collaboration is depicted in Figure 4.5.

card:CEPCardApp issuer:CEPCardIssuerApp

— -

reader:CEPCardReaderApp

Figure 4.5: Collaborating system roles in CEPS

In our work on the case study, we aim to evaluate our test generation process by
automatically generating parameterizable test cases from a pCRL specification for
the card application CEPCardApp in Figure 4.5. Our approach starts from a formal-
ized version' of the technical specification of the CEPS system, which we realized
as a pCRL specification. In this specification, all input variables are substituted by
the abstract value T. By doing so, the problem of state space explosion in the next
steps of the process is avoided w.r.t. the system’s interaction with environment. Af-
terwards, an LTS is generated from this abstracted specification. Further, this LTS
is used for the actual test case generation. The generation process itself is guided
by a test purpose. The scenario for the test purpose is derived from the system’s
functional requirements documents. From the abstract specification LTS and the test
purpose a set of abstract test cases are generated. Using the original specification,
these test cases are parameterized based on a CLP for actual data selection.

Here, we consider the card application CEPCardApp as the SUT. Doing so, the card
reader application (CEPCardReaderApp) must be the stimulating tester. The card issuer
(CEPCardIssuerApp) can be simulated by the card reader application since there is
no direct communication between the issuer and the card (see Figure 4.5). Testing
the card application thereby means stimulating it with messages and verifying the
received responses whether they are plausible.

Lsee: http://www.irisa.fr/vertecs/Equipe/Rusu/FMEB2/ceps.if

82 Chapter 4 Testing with Data Abstraction

For the derivation of the test purpose, we regard the use case load transaction. The
use case load transaction is described by Jiirjens (2005). In the following description,
which is partially based on an existing NTIF specification (courtesy of the VASY team
at INRIA Rhoéne-Alpes; cf. Garavel and Lang, 2002) of the purse card specification,
all messages between the card reader application and the card are named after the
NTIF card specification, while the messages between card reader application and the
card issuer are named after Jiirjens (2005), since there is no counterpart in the NTIF
specification.

The interactions in this use case are depicted in Figure 4.6. In a first step, the reader
initializes the card by sending a CepCommand message, parameterized with LOADINIT,
and receives a response CepReply, telling that the initialization was successful (code
x9000). Then the transaction starts. The card reader application requests money from
the card issuer (Load message) and gets it with a response RespL. This money is then
credited on the card by another CepCommand message, which is this time parameter-
ized with LOADCREDIT. The response CepReply from the card is accepted by the card
reader application and the card issuer is informed via a Comp message. Sets of pa-
rameters in the messages, which are irrelevant for our case, are marked with one
hyphen.

:CEPCardApp :CEPCardReaderApp :CEPCardlssuerApp

CepCommand(LOADINIT -)

CepReply(-.x9000)

Load(-)
= RespLoad(-)
CepCommand(LOADCREDIT,-)
CepReply(-,x9000)
Comp(-)

Figure 4.6: Interactions in the test purpose scenario

In the following subsections, we discuss the application of our test generation pro-
cess, namely the generation of abstract test cases and the concretization and param-
eterization of these test cases, to the case study.

4.5 CEPS Case Study 83

Test Case Generation

In our case, test case generation is based on the model of the SUT given as a pCRL
specification. This specification is abstracted and an LTS is generated, which is then
combined with the test purpose, given as an LTS, too. Depending on the states,
reached in the test purpose (refusing or accepting states), verdicts are assigned to the
according traces in the resulting abstract test case. Test data, and thus the possibility
to identify spurious traces, is introduced by constraint-solving.

For test case generation, we first realize the NTIF specification in pCRL and sim-
plify it. The interested reader can find some excerpts from the pCRL specification in
its original and abstracted version in Appendix A. We do not want to test the log-
ging activities of the SUT (as can already be seen in our test scenario in Figure 4.6),
so that this part is not modelled. We took a part of CEPS and manually removed
several interface variables, which were affected by slicing CEPS, to reduce the size
of data structures. By doing so, CommandType, the data structure sent with the action
CepCommand, is reduced from 15 elements to 5, ReplyType, the data structure for replies
from the SUT, from 22 to 16 elements.

The internal variables of the SUT, which also includes internal arrays, are left un-
touched. These internal arrays are necessary for CEPS to, for instance, manage slots
on the purse card for different currencies. For this reason, we not only have to han-
dle arrays of data elements, but also arrays of data structures. A purse card has three
slots for different reference currencies, implemented as an array with three elements.
Each element is a data structure of two fields, describing one such reference cur-
rency. 16 further slots on the card refer to the reference currencies, storing amounts
of money in each of these currencies. Each element of this array is again a data struc-
ture of five fields, leading to gross 80 variables for this array. A third array then stores
a boolean value for each of the elements of the second array, telling whether this el-
ement has been reported or not. Due to the arrays and data structures involved, the
44 global variables for the purse card represent brutto 207 single data values, local
variables not yet included. During constraint solving, which is described later in this
section, the number of these internal variables that has to be handled, increases with
each step of the abstract test case, ending at approx. 7,245 single data values for the
smaller of the two examples (and 118,818 single values for the larger one).

In a next step, the specification is abstracted. Thereby, for every datatype, an ad-
ditional abstracted datatype containing Tg (TT_<datatype>) and the lifting function
k are introduced. The abstracted specification is then parsed, and an LTS is gener-
ated. The resulting LTS is minimized modulo strong bisimulation semantics by a
tool which we used for state space reduction. We experimented with two mutants
of the specification. In the first mutant, a status variable of the process was after ac-
tion CepReply (updateStatus(mSlotInfo, x940A)) updated with value x9409 instead of
x940A. In the second mutant, this error was corrected.

In order to understand the applied state space reduction, we have to introduce the
notion of strong bisinnlation. Two automata are strongly bisimular, if they can pair-
wise simulate each other, whereas action labels have to really be identical (unlike

84 Chapter 4 Testing with Data Abstraction

the simulation relations defined earlier in this chapter). This guarantees us that test
cases generated from the reduced state space are the same like those generated from
the original state space.

Definition 4.31 (Strong Bisimulation; Park, 1981). Let 9M; = (Z;,A,A;,047,,) and
My = (X3,A,4;3,0;,,) be two LTSs. A binary relation R C L x L, is a strong
bisimulation, if VA € AVo; € £;,0; € £5.01R02:

e O] A—*O'IIEA]-_—}E]OJZEZzZO'Z }L)O'IZEAz/\O',]RO'IZ

° O'ZLO',ZEA2=>30"| &Z]ZO’]LOJI EA]/\O"IRO'IZ
[|

For the first mutant, the whole process of LTS generation and minimization took
9:26 minutes on a cluster of five 22GHz AMD Athlon 64 bit single CPU comput-
ers with 1 GB RAM each, running under SuSE Linux 9.3 (Blom et al., 2007). The
abstracted specification had about 3.02 million states and 17.5 million transitions,
which could be reduced modulo strong bisimulation to 1626 states and 5487 transi-
tions. Finally, two single test cases without loops are generated using TGV, one of
them limited to a maximal depth search for its preamble of 100 steps, the other one
unlimited. Starting with the minimized abstracted system model and a test purpose
of 5 states and 5 transitions, the generated unlimited test case contained 594 states
with 597 transitions. The limited test case contained 108 states with 111 transitions.
Test case generation took 0.65 seconds or 0.42 seconds, resp., on a workstation with
one 2.2GHz AMD Athlon XP 32 bit CPU and 1 GB main memory under a Redhat
Linux Fedora Core 1. For the second mutant, we received a comparable LTS in about
80 minutes, so that we can claim, that enumerative test generation with a prior ap-
plication of chaotic data abstraction to CEPS can be performed in a reasonable time.

Test Case Parameterization

In this case study, we are interested in controllable test cases, preselected by TGV.
Those test cases consist of only one trace to a Pass verdict and a few single steps,
diverting to Inconc from this trace. For test case parameterization, we thus select the
trace to Pass verdict from the generated abstract test case. Here, we are not interested
in traces leading to Inconc. Parts of the trace to Pass is shown in Figure 4.7.

This test case is derived from the specification of the SUT together with the test pur-
pose for the scenario in Figure 4.6. It is easy to recognize, that the test case con-
tains more actions than the test purpose. The reason is, that the test purpose only
sketches the main focus, while the test case must also cover initialization actions like
Power (ON) as well as preparing actions for the test purpose action (for instance, iter-
ation through an array to a certain position). The actions from the test case are later
relevant for the determination of the test oracle.

In parallel to test case generation, a test oracle had been generated from the system’s
specification. The test oracle is a CLP, as it had been introduced in Chapter 3. An
excerpt from of the oracle can be found in Appendix A. The test oracle is now used

4.5 CEPS Case Study 85

:CEPCardApp :CEPCardReaderApp
T T
Power(ON)
r -
Reset
ATR
o
o8 -l

CepCommand(LOADINIT,0,TxLoad 4,5)
CepReply(0,0,0,0,0,0,0,0,0,0,0,5,6,7,0,x8000)
L= 4
CepCommand(LOADCREDIT,* TxCancelLastPurchase,*,*)

CepReply(0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,x9580)

CepCommand(ALLSLOTS00,*, TxCancelLastPurchase,* *

CepReply(0,1,1,1,0,0,0,0,0,0,0,0,0,0,0.x9580)

CepCommand(REFCURR,*, TxCancelLastPurchase,*,*)

c1=getCurrency(1,1)
b1=getBalMax(1,1)
c2=getCurrency(2,2)
b2=getBalMax(2,2)

c3=getCurrency(3,3)
b3=getBalMax(3,3)

CepReply(0,1,1,1,3,c1,b1,c2,b2,c3,b3,0,0,0,0,x9000)

Figure 4.7: Test case example for CEPS

86 Chapter 4 Testing with Data Abstraction

to find possible valuations for action parameters, with which the selected trace from
the test case can be instantiated. The query to the oracle is a conjunction of a rule
for the system initialization together with all rules for which there appears an action
step in the abstract test case.

The first rule of the query defines the initial control location of the process as of
the specification. All other parameters define initial values for the global variables.
The card application has four groups of global variables, which are the parameters of
the card application like issuer’s and card identification numbers or the card’s expi-
ration date, the static storage of the card, its working storage and messages, which are
exchanged between the card and the card reader. Since the last two groups have to
be initialized, simply because they exist, but their initial values are not relevant at
all, we only concentrate on some aspects of the static storage, the card’s slots.

For our case, the card has 15 slots, of which the first 3 are used. Each of them is
initialized to be in use (T) and that the currency for its slot cannot be changed (also
T). Furthermore, each slot gets a currency identifier and a balance in this currency. In
our injtialization, this actual balance is equal to the maximal balance possible for this
card slot. These three currencies described here are at the same time the reference
currencies of this card. All the other card slots are initialized with placeholder values
(0 and L). The array of reported slots, the next parameter, is completely initialized
with L since at the start time of the process, which we are describing here, no array
slots can have been reported to anyone.

A limitation for Prolog CLPs and also constraint solving in general is the limitation
of computer memory. Already the CEPS example leads to a vast amount of vari-
ables in our test oracle, for the limited test case 22 input and 3960 internal variables
which must be introduced and which are in parts themselves data structures of, for
instance, 16 elements each (e.g. ReplyType or the arrays; also see a previous para-
graph of this section for the number of variables in the examples). At this point, the
approach of constraint solving for test data selection can relatively easily reach cer-
tain limits. However, in our sample test case it is possible to calculate solutions for
the constraints, so that the test case can be instantiated for execution.

Regarding the actual computation of solutions for the constraint system, again the
question comes up, if a calculation in advance to the test execution or on-the-fly is
the better choice. In this case, the on-the-fly solution is more promising. Calculating
a complete constraint solution in advance to the test execution fixates it to exactly
one trace through the SUT model. But if the SUT reacts in a nondeterministic way,
this approach will lead to faulty Fail or Inconc verdicts, if the SUT chooses an-
other trace to Pass than the one precalculated. Calculating all possible traces to Pass
would also be at least very inefficient, so that an on-the-fly calculation, adapted to
the actual execution trace, is the better solution here. However, test data derived
from on-the-fly constraint solving can still be collected and possibly reused in later
test reexecutions. The considerations of test execution and, connected to that, data
selection are an integral part of the next chapter.

4.6 Related Work 87

4.6 Related Work

Over the last years, the automation of testing has been an area of active research.
In this section, we want to concentrate on those works, which are relevant for the
model-based generation of test cases. The automated execution of test cases will be
discussed in the next chapter.

A good overview of the area of model-based testing is given by the book of Broy
et al. (2005). There, it becomes obvious, that we have to distinguish three different
main strategies to testing and test generation. We have to distinguish the test of

e Finite State Machines,
e Labeled Transition Systems and

e Symbolic Transition Systems.

All these different kinds of models require different test and test generation ap-
proaches. In the remainder, we will discuss their advantages and disadvantages
and will compare them to our approach. In doing so, we will concentrate on the
named three approaches, since they are closest to our work. Other test generation
approaches based directly on process algebras (e.g. Nogueira et al., 2007) or testing
based on exploratory approaches like Directed Automated Random Testing (DART;
Godefroid et al., 2005) will not be discussed here.

Finite State Machines

The approach of using Finite State Machines (FSMs) in testing must be seen a bit
separately from those approaches using LTSs or STS. For this reason, we will only
give a short overview along the lines of Gargantini (2005).

AnFSM § = (1,0,S,6,A) is a Mealy machine defined by a finite set of states S, two
sets of input and output symbols [and O, a state transition function 4 : S x I — S
and a state output function A : S x I — O. A state s € S is left on an eventi € I by
a transition with target 8(s,1) € S. During the transition, an output is A(s,1) € Ois
generated by the machine.

An FSM is tested by resetting it to its initial state and then walking along its tran-
sitions, providing inputs and checking the received outputs. Accordingly, the main
objects of research are methods to reset an FSM, for instance by distinct traces, which
always end in the initial state, coverage criteria and methods to meet these criteria
as well as the possibility to distinguish a correct implementation of an FSM from a
wrong one by only evaluating its input/output behavior.

FSM-based testing methods are often on-the-fly techniques rather than generating
distinct sequences of actions (test cases), which can be applied to an FSM over and
over again. For this reason, test purposes, the generation of a synchronous product
of a test purpose with a specification and the explicit assignment of different types of
verdicts, as we have discussed it in this chapter, are not handled by these approaches.

88 Chapter 4 Testing with Data Abstraction

An advantage of FSM-based techniques is, that they already by definition do not suf-
fer from the state space explosion problem. However, data is not handled by existing
techniques, neither explicitly, which would in case of infinite domains immediately
lead to an infinite state space of the Finite State Machine, nor symbolically. For this
reason, the generation of parameterizable test cases is not possible with FSM-based
testing techniques. An extension to FSMs, Extended Finite State Machines (EFSMs),
however, also allows to consider data (cf. Cheng and Krishnakumar, 1993), leading
to problems similar to the ones discussed in this chapter.

LTS-based Approaches

LTS-based approaches to testing have been studied since the papers of De Nicola and
Hennessy (1983) with a later extension to input/output automata by Segala (1993)
based on the theories of Lynch and Tuttle (1987). For conformance testing, LTS-based
testing approaches have been extended by several conformance relations, of which
we discussed the ioco relation by Tretmans (1996) earlier in this chapter.

For testing or test generation, the model of the SUT is given as a potentially infinite
automaton, the LTS. As it has been defined earlier in Definition 2.7, an LTS forms a
structure of states and transitions. These transitions are labeled, but those labels do
not particularly distinguish action names and data parameters. In order to describe
the transition of an action with variable data parameters, one must generate an own
transition for any possible concrete data parameter of an action. For parameters of
infinite domains, this factor leads to the well-known state space explosion problem.
In most cases, this problem is surrounded by data abstraction, but that again on the
cost of the data parameters.

In order to generate a test case or run a test, the given model of the SUT is examined
either randomly, like, for instance, by the tool TorX (Tretmans and Brinksma, 2003) or
directed by a test purpose, as this is done by TGV, which had been discussed earlier
in this chapter. The latter approach logically has the advantage of generating more
goal-oriented test cases. However, LTS-based test generation approaches still suffer
from either state space explosion or the abstraction-induced impreciseness of data.
This impreciseness covers, for instance, lost dependencies between several action
parameters on one trace, hampering test data selection for testing. In our extension
of TGV'’s test generation approach, where data dependencies are treated separately
and are reintroduced for the instantiation of a test case, this problem is also solved.

The CLPs, which we generate to determine test data, are comparable to Pretschner
et al. (2004a,b), where also constraint rules are generated encoding the visible inputs
and outputs, guards and internal state changes. These rules are then used to generate
a set of test cases by transforming a system specification in its whole into Prolog.
However, in our case, test cases are alreacly present.

4.6 Related Work 89

STS-based Approaches

Quite close to our approach is that of symbolic test generation as it has extensively
been studied by Rusu et al. (2000), Jéron (2004), Zinovieva-Leroux (2004) (both also
in Clarke et al., 2002; Jeannet et al., 2005), and Frantzen et al. (2005). This method
works directly on higher-level specifications given as IOSTSs without enumerating
their state space. Given a test purpose and a specification, their product is built. The
coreachability analysis is in these cases over-approximated by Abstract Interpreta-
tion (Cousot and Cousot, 1977).

The purpose and usage of abstraction techniques in our approach is conceptually
different from the one of symbolic test generation, since we use a data abstraction
that mitigates infinity of external data. This enables us to use existing enumerative
test generation techniques for the derivation of abstract test cases which are then
instantiated with concrete data derived by constraint solving. In the symbolic test
generation approach, approximate coreachability analysis is used to prune paths po-
tentially not leading to Pass-verdicts.

Both approaches, symbolic test generation as well as test generation with data ab-
straction, are valid for any abstraction leading to an over-approximation of the SUT’s
behavior. They both also employ constraint solving to choose a single test trace dur-
ing test execution. However, constraint-solving is applied during test execution,
which is discussed to be a performance issue (Constant et al., 2007). In our approach,
a trace is preselected and constraint-solving is applied to this trace prior to the actual
test run. This can, in the case of nondeterministic systems, lead to some difficulties
treating the diversion of the test run from this preselected trace. This situation is
handled by Belavior-adaptation in Testing, which is discussed in the next chapter.

90

Chapter 4 Testing with Data Abstraction

Chapter 5
Behavior Adaptation in Testing

What's right is wrong

what's come has gone

what's clear and pure is not so sure
It came to me

All promises become a lie

all that's benign corrupts in time...

(Greg Graffin)

oftware systems often behave nondeterministically. This nondeterminism can,

for instance, be introduced by a nondeterministic specification for a determinis-
tic system, which leaves some decisions open for its implementation phase. Such a
system will later be regarded in Section 6.1. Other systems may even have a nonde-
terministic implementation, for instance, if they evaluate data being sent from differ-
ent sources or if the system consists of several components, which act independently
from each other. In this case, it is not possible to predict the order of events being
sent from the system to its environment. We will regard such a system in Section 6.2.

In the previous chapter, we introduced the generation of test cases with a separate
consideration of system behavior and system data. The resulting test case was a
controllable one, consisting of a single trace to a Pass verdict and several single tran-
sitions from this trace to Inconc verdicts. However, for the test of a nondeterminstic
system like the ones described above, such a test case is insufficient. In these cases, it
is possible that during test execution the IUT leaves a trace to Pass which had been
calculated beforehand and which is in principle a valid trace. When that happens,
the execution of the test case has to be adapted to the new situation dynamically,
otherwise, the resulting test verdicts may become useless due to a possibly large
number of false positive Inconc verdicts.

In this chapter, we will develop a framework for test execution on nondeterministic
IUTs, BAIT. In Section 5.1, we will develop the fundamental theory for BAiT. In
Section 5.2, we will describe the realization of this framework. Afterwards, we will
discuss the relation of BAIT to other test execution frameworks in Section 5.3.

5.1 A Test Execution Framework

In this section, we present the theoretical basis for test execution with behavior-
adaptation. We will first present the algorithms for test execution. Then, we will
link the algorithm to the ioco theory from Section 4.1 and discuss some practical
aspects regarding the occurrence of quiescence in test execution.

92 Chapter 5 Behavior Adaptation in Testing

5.1.1 Test Execution Algorithms

Here, we first give an algorithmic overview over the whole process of test selection
and execution with data abstraction. Then, we describe how the activities test se-
lection and test execution work algorithmically. Finally, we review our approach and
prove the soundness of verdicts derived from test execution.

ol
Build the

- " ’ Select D:
ystem R “® lest Orack Ll Tef: acle » Select Data .
specificati or Data ata ue
Select
N
4.
3| n]
Test Execut
Abstract the
\ Specificat “r\ - Abstract Impleme - and > T ;
' System tation unde Dynamic Adapti with
Specificati Test Verdict
«
A
- >enerate the - Parameteri- |/

Test Cases

Test Purp zable

Test Case

Figure 5.1: Structure of test generation and execution with BAiT

In Figure 5.1, we find an overview of the different activities for test generation and
execution using BAIT. The system specification is abstracted and from the resulting
control flow, parameterizable test cases are generated using TGV. In parallel, the
data-interdependencies within the system are captured in a test oracle such that test
data can be selected prior to or during test execution. Finally, the test is executed and
results in a test log.

Algorithm 5.1 SelectAndExecTest

Require: S, Mrp

Ensure: verdict € {None, Pass, Inconc, Fail}
setVerdict(None);

. &7 .= abstract(S);

. P := buildTestOracle(S);

+ ML := generatelLTS(G");
ML := generateCTG(ME, Mp);

. (m,0) := NewPassTrace(no_trace,), ML);
if (71, 0) # no_solution then

5 ExecTest(m, 8, no_trace, MT-);

terminate;
o fi

5_.} A Test Execution Framework 93

Algorithm 5.1 describes the test process in more detail. Its input parameters are a
specification & and a test purpose Mrp. & is abstracted to S" according to Table 4.1.
Then ML is generated from G". In parallel, a test oracle B is built according to
Chapter 3, containing all conditions from &. 98 will later be needed to select test data
during test execution. From the two IOLTSs, the complete test graph M is gener-
ated using TGV. M may contain choices between several outputs to the IUT or
even between inputs and outputs, so it is not necessarily controllable. Furthermore,
M is an overapproximation of all test cases of the original system which satisfy
the test purpose, so it may contain traces leading to unsound verdicts. The tester
together with the test oracle assure during test execution, that these potentially un-
sound verdicts do not turn into actual unsound verdicts. We will prove this later in
this section.

The algorithm NewPassTrace plays a crucial role in trace selection for test execution.
It is not only refered to by the algorithm SelectAndExecTest, but also by ExecTest,
which actually executes a particular test trace.

Algorithm 5.2 NewPassTrace

Require: 3,0 M
Ensure: (7,0') € [MIlpass x {(Var — D}
7= selectFirst(p, [[WIETG]IMSS);
while 7 # no_trace do
9. .= oracle(0,);
3 0’ :=solve(P, O, [0]3);
q:= O,(0);
if (g, T) is satisfiable then
return (7, 0’);
else
7 :— selectNext(B, [T Ipass);
fi
od
return (no_solution);
NewPassTrace is shown in Algorithm 5.2. The algorithm takes a trace prefix (3,
a valuation 0 and a test case M as input parameters and returns a trace 7 ¢
[MEIpass as well as an appropriate valuation (here €’). It iterates over all possible
traces to Pass with prefix f in the test case and returns the first, which contains 3 as
its prefix and satisfies the query g under the valuation 8. 8’ is derived by solving the
CLP ‘B for the trace 7t with a partial solution |8 | given. This partial solution cannot
be changed anymore, since it gives the (proper) valuation for the already executed
trace 3. The new trace found by NewPassTrace must satisfy (O,(0’), T). If it does
not, then the next possible trace to Pass is selected.
Let 7t be a Pass-trace of M, 6 be a solution for the query obtained from 7 by the
rules in Figure 4.4, and {3 be the already executed prefix of 7, which is initially empty.
Let next be a function that returns the next step of trace or no_step, if no such step

94 Chapter 5 Behavior Adaptation in Testing

Algorithm 5.3 ExecTest

Require: 7, 6, B, ML,
Ensure: verdict € {None, Pass, Inconc, Fail}
1 step :=next(m, 3);
» if step = no_step then
a if || > 0 then
setVerdict(Pass);
else
setVerdict{None);
fi
else if step = T then
ExecTest(m, 8, add(B, step), M);
else if step =!s(x) then
sendTolUT(s([x]g));
= ExecTest(n,8, add(pB, step), MI+.);
i else if step =?s(x) then
4 receiveFromIUT (sig(y));
1 if sig = s A Jy] = [x]e then

-

o ® N oz .

5

" ExecTest(m, 8, add(B, step), Mo);
17 else
0 B’ := add(B,sigly));
10 Og := oracle(0, B');
20 qp: Dﬁl(LeJﬁ.xp-"yL);
a1 if —satisfiable((qg/, T)) then
» setVerdict(Fail);
2 else
” (', 8') :— NewPassTrace(B’, |0 px—y1 P&ra)s
2 if (', 08’) = no_solution then
s setVerdict(Inconc);
g else
ExecTest(n',0', B/, ME);
0 fi

fi

fi

5.1 Alast Execution Framework 95

exists. Sending a signal to the IUT happens by the function sendToIUT, receiving by
receiveFromIUT. Both functions are parameterized with the sent or received signal.

Test execution works as described in the recursive algorithm in Algorithm 5.3. First,
the actual step under consideration is computed. Then a decision is made, based on
the type of this step. If the next step is no_step, that means no further step has been
found in the test trace. Then the algorithm assigns either the None verdict, if no steps
have yet been executed, or the Pass verdict. In this case, the test execution finished
without finding any failures or inconclusive situations in the IUT. If the next step is
a 1-step, ExecTest is invoked recursively, adding the T-step to the trace prefix, which
has already been executed. An output step !s(x) is treated nearly equally, except that
s is sent to the IUT. Its parameters are instantiated according to ©.

5 N E
This algorithm is designed in a way, that T-steps are de facto part of the communication
between the tester and the IUT. In practice, this is not the case, since T-steps are internal
steps in the IUT. In the practical realization of the algorithms of this section, which is
described in Section 5.2, t-steps will be “executed” by assuming that they appear in an
executed trace.

Of course, this assumption does not have to be true. If there is logic in the SUT deter-
mining the amount of t-steps to be executed in the IUT, BAIT can get out of sync with
the IUT. E.g. if two traces a.1.1.b and a.1.b are defined in the specification of the ITUT
and the IUT executes the trace a.1.7.b while BAIT assumes a.T.b has been executed, we
get into such a situation. The yet executed trace stub is only extended during a test run,
but never substantially changed in its structure. This means, that BAiT has no possibility
to adapt this part in order to correct its wrong assumption about the progress of the test
run. For this reason, such a test run will - in practice - lead to an unsound verdict.

However, the question is still open, why to treat internal steps of a system in a blackbox
test anyway. The reason is, that some actions, like assignments, can be encoded in this
way, but it is important to assure, that there is no logic defined in the SUT, which makes
it possible to execute different amounts of (invisible) internal steps between two (visible)
actions. If this is assured, BAIiT may also safely assume internal t-steps in a blackbox
test.

Handling an input ?s(x) is more complex. First, the input is received from the IUT
as ?sig(y). If now both the signal sig and the valuation of its parameters [y] are
as expected, then the step is just added to the executed trace prefix and a recursive
invocation of the execution algorithm happens. If the signal sig or the parameter
valuation does not fit the expectations, then it is checked, whether test execution has
already left the valid traces in the system specification. In this case, Fail is assigned,
otherwise a new trace to Pass with the new valuation is searched. If no such trace
exists, Inconc is assigned. Otherwise, the algorithm is invoked recursively and test
execution goes on.

We argue the correctness of our approach by proving that the verdicts assigned to
the IUT after having applied the algorithm ExecTest, are sound. From the generated

96 Chapter 5 Behavior Adaptation in Testing

CTG MY, we select a trace 7 to Pass. This trace is instantiated with data, which has
been derived from a query to . The trace 7 is then executed. An already executed
prefix of 7 is trace f3.

In the following, we will first prove some invariants over the algorithm. Then we
prove that the test verdict assigned to a test case after execution of the algorithm is
sound. All line numbers in the proofs refer to those in ExecTest (Algorithm 5.3).

Lemma 5.1. Given a finite trace 7, the test execution algorithm always terminates,
given that the IUT has no deadlocks or livelocks. [|

Proof. As its first statement, the algorithm ExecTest always executes a function next
on trace 7t to derive the next step in the test to execute. Given a finite trace 7, at
the end of this trace the function returns no_step. In this case, the trace has been
executed completely and the algorithm terminates with either verdict Pass or None
(lines 4 and 6).

The function next determines the next step in 7 by comparing it to its already exe-
cuted prefix B. Each step executed during the test is appended to 3 before the test
execution algorithm is reinvoked. This happens in lines 9, 12, 16 and in line 18 before
the reinvocation of ExecTest (line 28). In so doing, it is guaranteed that 3 always re-
flects the actual state of test execution and that next always returns a correct next

M

step or no_step after 7 has been executed completely. O

Lemma 5.2. When the test execution algorithm terminates, it always assigns a verdict.
]

Proof. The test execution algorithm either completely executes 7t and then terminates
assigning Pass or None (see Lemma 5.1), or it already terminates in line 26 assigning
Inconc or in line 22 assigning Fail. In all other cases (lines 9, 12, 16 and 28) it is
reinvoked and does not terminate with the actual step. O

Lemma 5.3. For all $(08), for which the algorithm does not terminate with a Fail
verdict, holds: ${8) € [Ms]iraces- m

Proof. This lemma is proven by induction over the length of trace 7.

First step: The initial trace 7 has been chosen by NewPassTrace(no_trace,), M)
for execution. In the invocation of this algorithm, no trace prefix is preselected
(parameter no_trace) and the possible resulting valuation for the chosen trace
has also not been limited (parameter). The selection made by the Pass trace
selection algorithm is the trace 7 which is per definition (Definition 4.14) a trace
in [MTiraces- The trace can be instantiated by 6 to 7(0) € [MeJiraces, since
NewPassTrace ensures 9, :— oracle(0, 1) A0 := solve(‘B,Dn.imgTG) Aq:
D,.(0) A (q,T) is satisfiable, which holds if and only if 7(68) € [Ms]iraces
(Lemma 4.30 and proof). Since (3(8) is a — possibly empty — prefix of n(0),
the aforementioned claim also holds for 3(9).

5._1 A Test Execution Fr_a_mevyork 97

Inductive step: The test execution algorithms recursively executes 7t(8) transition
by transition with B(8) being the prefix, which has already been executed. Tak-
ing such an arbitrary transition, we now have to regard the recursive invoca-
tion of ExecTest, whether 7/ (0’) € [Msliraces still holds if 71(8) € [Ms iraces-

1. First we have to regard the recursive invocation in lines 9, 12 and 16. In
all three cases ™' = A 8’ = 6 so that our claim holds (trivial case). The
already executed prefix of 7’ is $(6’) in this case, for which of course
B'(8") € [9Ms]iraces also holds, since neither 7 nor 8 have changed.

2. In line 28, both ' # 7 A 0’ # 6. In this case the new trace 7’ to Pass is
searched by NewPassTrace, and executed only if O,/ := oracle(0, ')A
0 = solve(P, On, M) A q := O (0') A (q,T) is satisfiable, which
holds if and only if 7'(6’) € [Ms]iraces. Thus for the already executed
prefix of 7'(6’) also holds: $/(8') € [Msliraces-

In all cases, where 7t € [Ms]iraces, this is discovered and test execution termi-
nates with a Fail verdict (line 22 and appropriate proof).

O

Lemma 5.4. In case, that the verdict Fail is assigned, for the trace ' = add(p, sig(y))
holds: [3’(9 x—[[y]) ¢ [[gﬁﬁl]tmces- m

Proof. First of all, the Fail verdict is assigned only in line 22, where input from the
IUT is evaluated. It is checked whether the executed trace B’ = add(f,sig(y)) €
[9M s Jiraces under |6 | Blx—lyll-

The valuation 6 has been precalculated for the whole test sequence 7. 8]z denotes
that part of 8, which is relevant for the subtrace 3. Accordingly, |8]a(x.—[y)) denotes
the same part of the valuation with x being set to the value of y.

A trace is valid only if g = Op/(|8]pix—y)) A (aps, T) is satisfiable (see Lemma 4.30
and proof). The verdict Fail is set only in those cases where (qg-, T) is not satisfiable
and thus /(8] gix—iyi) & [Mslraces. For this reason, the assignment of the Fail
verdict is sound. O

Lenuna 5.5. In case, that the verdict Inconc is assigned, for the executed trace 3 holds:
B € [[gn@]]traces A B ¢ ﬂmCTGHPass- a

Proof. The verdict Inconc is assigned in line 26.

In this case ' (8. .1y]), consisting of the previously executed trace 3 and the action
under consideration sig(y) (both under valuation .. is a trace from [Jiraces
(q:= Op/ (0] gx—iyi) A{a, T) is satisfiable; cf. Lemma 4.30), and no further trace
to a Pass verdict could be found, so that NewPassTrace returns no_solution. This
means, that either no trace has been found in the test case, or a trace 7' has been
found, but 7’ = NewPassTrace(p’, 8] gx [yl NI) A D = oracle(0, W) A =
solve(B, Or, 18] gixeiyn) A d := O (6) A (q, T) is not satisfiable. In both cases,
verdict Inconc has to be assigned per definition (see Definition 4.14). Thus, the
assignments of verdict Inconc in the algorithm ExecTest are sound. a

98 Chapter 5 Behavior Adaptation in Testing

Lenmma 5.6. In case, that the verdict Pass is assigned, the executed trace 3(8) €
[MeTiraces A B € [MEclpass A7l > 0. In case that || = 0, None is assigned. [

Proof. The Pass verdict is assigned in line 4 in those cases only, where a trace m(8) €
[9Ms]iraces (cf. Lemma 5.3), with m having been found in MY by NewPassTrace,
could be executed to its very end without any Fail or Inconc verdicts assigned.
Under these conditions and if the executed trace has at least one transition, then
assigning the Pass verdict is sound (see line 4). In those cases, where no transition

had been executed, setting the None verdict is sound (see line 6). 0
Proposition 5.7. The assignment of the test verdict to a test trace is sound. |
Proof. This proposition immediately results from the three previous lemmata. ad

5.1.2 Test Execution Regarding ioco

Up to this point, Algorithm 5.3 is correct w.r.t. ioconf, as it has been introduced in
Section 4.1 (Definition 4.2). However, ioco is not covered, since the algorithm does
not interpret an input d from the IUT. In order to also consider quiescence, we have
to modify the algorithm from line 13 on.

We extended the original algorithm in Algorithm 5.4 by the lines 8 to 12. This modifi-
cation allows to silently accept possibly appearing &-steps announcing quiescence. If
a d-step occurs that is not allowed in the specification, this 6-step is also not possible
in the test case, since it does not appear in the synchronous product D" xMyp. In this
case, appearance of b violates the conformance of IUT with 9 and thus, the verdict
is set to Fail and test execution terminates. If it is allowed, however, its occurrence
is ignored and test execution proceeds. The drawback is, that if 6 is allowed in the
specification and it is specified as a 8-loop, test execution not necessarily terminates.

In practice this approach also has the drawback, that most IUTs do not announce
quiescence by sending a 6 to the tester. User interfaces waiting for user input show-
ing a prompt are an exception for this. In systems without this feature, can only
be assumed, if we are waiting for input from the IUT. In case, the tester has to pro-
vide output, i.e. in a step 5.!s(x) (the standard case for quiescence), it will provide
this output. In a step 6.7, the tester will first “execute” (i.e. ignore) the 1-step and
postpone the . This happens, because the tester is — due to the blackbox-setting of
our test — not aware of internal steps happening in the IUT (5 can be possible in a test
case, but will not be actively selected by the test trace selection algorithm). So the
only possibility to really observe 4 is an input from the IUT: 4.?s(x). The 5 will be
observable by the occurrence of a timeout. There are three possible solutions w.r.t.
handling this timeout:

Assign Fail: The system does not conform, since it should not produce an output 6.
This is the theoretical solution, which we have chosen in this section. However,
we cannot be sure, that the system will produce a valid output a bit later (cf.

5.1 A Test Execution Framework 99

also Zinovieva-Leroux, 2004). We would base this verdict on some kind of
virtual output, which is actually not even produced by the IUT.

Assign Inconc: The logical consequence of the above would be to assign an Inconc
verdict instead. However, this verdict could be premature (see below).

Search another trace: The system might, however, just be waiting for another input.
In this case, it would be perfectly ioco for so far, so that assigning any verdict
does not make sense anyway here. Testing could then go on, instead of prema-
turely assigning a verdict. This is the variant, practically implemented at the
moment.

Algorithm 5.4 ExecTest’

Require: m, 8, B, M1c
Ensure: verdict € {None, Pass, Inconc, Fail}
if step = no_step then

// see first three cases of Algorithm 5.3

receiveFromIUT(sig(y));

1

s else if step =?s(x) then

4

5 if sig = s A [yl =[xl then

o ExecTest'(m, 8, add(B, step), M);
7 else

s if sig = 6 then

‘ if 5 ¢ in(M;; after B) then

¢ setVerdict(Fail);

1 fi

12 else

3 B’ := add(B,sig(y));

" O = oracle(0, p');

15 qp = Opr (18] px—1y1);

16 if —satisfiable({qg’, T)) then

17 setVerdict(Fail);

3 else

1 (7',0") :== NewPassTrace(B’, |8]px—iy1)» MErg s
20 if (7, 0’) = no_solution then
21 setVerdict(Inconc);

2 else

» ExecTest' (7,0, B/, MI .);
2 fi

25 ﬁ

20 fi

7 fi

» fi

This implemented variant of assigning verdicts to tests has the advantage, that it
avoids Inconc verdicts as much as possible. It does, however, have the disadvan-

100 Chapter 5 Behavior Adaptation in Testing

tage, that searching an alternative trace might never end. This is, for instance, the
case if there is a loop in the CTG which BAIT unsuccessfully tries to unfold without
ever being able to reach a Pass verdict from the current state of the test run and the
IUT. In order to prevent such livelocks in the tester, we have introduced a threshold
in the tool. This threshold can be configured for a test run and defines the maxi-
mum number of tries to find a trace to Pass before giving up. By that, infinite loops
within the tester are avoided, however, setting this threshold too low reintroduces
the problem of false positive Inconc verdicts. Configuring the threshold optimally
thus needs some expertise.

Another issue not yet concerned are timeouts. An IUT might not react for a short
moment, but might proceed further properly after that time. If the tester does not
take such timing behavior into account, it might already be searching for and execut-
ing an alternative test trace and by that violate the test results. In order to avoid this
problem, one can use a timed specification language. Such a language gives the pos-
sibility to test the JUT a timed ioco conformance. Since we are using untimed pCRL
specifications, we solve this problem with a global timeout threshold, which can be
configured on a per-testrun setting as the trace search threshold can. Only if the sys-
tem does not react within this timing setting, BAiT will try to find an alternative test
trace.

At this point, we cannot come to a conclusive decision about the verdict to assign. In
the remainder of this section, we will discuss timed alternatives for ioco instead of
the standard untimed one in order to decide for proper test verdicts. Finally, we will
outline a simplified approach, which we follow in this thesis.

Timed ioco

To overcome the problems, which we have just described, the relations tioco (also
named Cyoco; Brandan Briones and Brinksma, 2005), tioco (sic!; Krichen and Tri-
pakis, 2004, 2006) and rtioco (Larsen et al., 2005) have been developed. The latter
two conformance relations are proven equivalent by Krichen and Tripakis (2006),
while the first relation is different despite its equal name. Instead of an untimed qui-
escence, both tioco by Krichen and Tripakis and rtioco are defined on timed traces,
i.e. on traces whose transitions are not only labeled with actions A € A, but also with
delays t € Ro.

We will now exemplarily describe the relation tioco by Krichen and Tripakis to give
the reader an insight into the material. In the course of the discussion, we will con-
sider only relative time, i.e. delays of actions w.r.t. transitions in a system. We will,
however, not combine these theoretical results into our work on test execution with
BAIT, since any timed variant of ioco requires a timed specification language to be
used. We are using untimed pCRL in this thesis and we will at the end of this section
introduce our practical approach for test execution using a global timer.

Definition 5.8 (Timed Input/Output Labeled Transition System (TIOLTS); Krichen
and Tripakis, 2006). A TIOLTS is a transition system M = (I, A, A, G) with A

5.1 A Test Execution Framework 101

Ain UAoutU{T) the set of action labels and A C L x (AUR) x X the transition relation.
The set of transitions is divided into discrete Ag and timed Ay, s.t. A = Aq U A;. A

transition can be either labeled with an actionA € A (o Moe Ag)oradelayt € Ro
(056 €Ay m

All further definitions in Krichen and Tripakis (2006), however, are defined on Timed
Automata with Inputs and Outputs (TAIOs).

Definition 5.9 (Timed Automaton with Inputs and Outputs; ibid). A TAIO is an au-
tomaton S = (L, C, A, E, linit) with A = Aj U Ayt (no T if observable) the set of action
labels and C a set of clocks. A state in a TAIO is a pair 0 = ({,c,) € L x C. Anedgeis
a tuple ({, ?‘ g,7,d,) with ¢, 1 the source and destination locations of the edge, L€ A
an action, g a guard regarding the timers in the system, r € C the set of timers to be
resetted to 0 and d a deadline, which states whether the action is delayable or not. B
Definition 5.10 (Function out; ibid). The function out : 2L*C — 2AVR ¢ js defined
for a set of states £’ C L x C as:

out(X’) =

U (lala € AweATo e I8 € L:0 ™ jUftit € R gAFo e I8 € L: 0 = 8))
oel’

The set OTT (M) defines the observable timed finite-length real-time traces of M. Based
on these traces, the conformance relation tioco can be defined as follows for a speci-
fication MM and an implementation J:

Definition 5.11 (tioco; ibid).

J tioco M < Y € OTT(M) : out(J after 1) C out(IM after n)

Defining a Timed System for Test Generation and Execution

Timed system specifications, from which test cases can be generated, can in prin-
ciple be defined using Timed pCRL (Groote, 1997). For Timed uCRL there exists a

delay predicate (ibid, Section D.1), which can be used for transitions o L6 ¢ A,
in TIOLTSs. While, in an TIOLTS a timed transition has the meaning of an exact
delay, while delays in Timed pnCRL have an af least semantics. This means, that the
system can actually delay longer than the specified delay. In an TAIO, this issue is
approached by the deadline parameter of an edge, which allows to specify, whether a
timer might or might not be exceeded.

The synchronous product of two automata M, x Myp with M, being derived from a
specification in Timed pCRL should result in a timed test case, in which occurrences
of delay can be interpreted by the test executor as timeout settings. If the timeout is

102 Chapter 5 Behavior Adaptation in Testing

not met by the IUT, test cases then would clearly be assigned Fail. This also, because
a time delay would only occur, if we are waiting for input from the IUT as defined
by the specification. However, at the moment of writing this thesis, it is not possible
to generate a state space from a specification in Timed pCRL with the existing tools.

As a solution to this problem, several extensions to the untimed variant of nCRL
have been proposed. Blom et al. (2003) introduce a distinct action tick in order to ex-
plicate discrete time steps, an approach which has been further extended to pCRL""
by Wijs (2007), also regarding the system-internal communication behavior under
discrete timing. For the practical purpose of computing an allowed delay and timing
out during test, these approaches are only of limited use. Since every single possible
time progress step has to be defined separately, the approach does not scale with the
resolution of discrete time events. For instance, a time delay of 1 second expressed
in a discrete time resolution of milliseconds needs 1,000 tick-steps. Furthermore,
such a delay does not only have to be specified, but also has to be evaluated. For
that, one needs to follow the trace and count the tick-steps. This also shows, that the
approach is suboptimal for our purposes.

In the remainder of this thesis, we will not consider system specifications with ex-
plicit timing information. In order to realize a somewhat timed version of ioco for
practical test execution, the test executor of BAiT, as it will be realized in the follow-
ing section, is based on a general timeout. If this timeout is exceeded, BAiT considers
having received quiescence. Since there is no information given in the system spec-
ification, whether quiescence is allowed at that point of execution, BAIT will not
directly assign any verdict, but it will try to adapt test execution. If this is not possi-
ble, then BAIT will assign the test verdict Inconc to the yet executed part of the test
trace.

5.2 Realization of the Test Execution Framework

In this section, we will discuss the technicalities in the practical realization of the
test execution framework. We will first present our main goals and decisions on a
high level. Then, we will discuss the general architecture of the tool BAIT, followed
by a more detailed description of its components regarding test data selection and
management, test trace selection and test execution.

5.2.1 Goals in the Development of BAIT

The goal for the development of BAiT was the implementation of the test execution
algorithm, which has been presented earlier in this chapter. This algorithm could
not be implemented in a straight-forward way, since several technical issues had to
be considered. In the theoretical algorithm, exchanging action events with the IUT
was formulated at a high level of abstraction. Also providing queries to the test
oracle and solving them using a constraint solver, were formulated abstractly, and
so was trace selection from a set of traces. In the realization of the algorithm, we

§.2_Reali_zation cﬂ\e Test Execution Framework 1_03

had to first decide for a concrete system platform for the tool and the possible IUTs.
Furthermore, we had to technically solve the integration of the test generator TGV
and a constraint solver. Last, we had solve the integration of algorithms for test trace
and test data selection into BAIT.

For the system platform we decided for Java-based systems. Java programs are exe-
cuted based on a virtual machine. This means, that these programs support sophisti-
cated features like the dynamic selection and invocation of methods (reflection API),
which we will make use of in the development of BAIiT. As a further decision, tester
and IUT communicate with each other in a method-based setting, i.e. messages are
exchanged by mutual method invocations. Since our specification language pCRL
does not support actions with return types, we decided to implement a bidirectional
communication between the tester and the IUT, which is based on the Observer Pat-
tern proposed by Gamma et al. (1995).

In order to perform data selection, we had to integrate a constraint solver. We de-
cided to use ECLiPSe Prolog, and more particularly its libraries ic and ic_symbolic
(Brisset et al., 2006) for numerical and enumerative (symbolic) data domains. Hardly
any code directly affected by this choice is, however, implemented in the test execu-
tion framework, but in the generated test oracle itself. This issue has already been
discussed in Chapter 3.

The second tool to integrate was the test case generator TGV. It generates test cases
as CTGs, which must be parsed and examined for traces to respectively Pass and
Inconc verdicts. While examination of LTSs is part of the test execution algorithm,
technicalities regarding the data format of TGV have been implemented in a separate
library, which we do not regard here.

The realization of framework BAIT followed two main lines. The first one was
separation of concerns (divide et impera). It was important to avoid mixing func-
tional code, i.e. the algorithms NewPassTrace and ExecTest themselves, and non-
functional code, i.e. the interaction with basic libraries and the management of data
structures, as much as possible to improve the testability of the framework itself and
to ease debugging. The second line was a focus on extensibility. This means, that cer-
tain parts of the algorithms, for instance trace selection and even more data selection,
can be adapted to a particular test requirement (like coverage criteria and the like)
by providing custom algorithms for these aspects and plugging them into the core of
BAIT. We will discuss this issue in more detail later in this section. Extensibility was
reached by consequently facading all packages with interfaces (Gamma et al., 1995).

In the remainder of this section, we will now give an overview of the architecture of
BAIT and will then discuss the design decisions made for its single components. We
will also, in place, provide a technical discussion against the runtime environment
of TTCN-3. A more general discussion of the differences between BAIT and TTCN-3
will follow in Section 5.3.

104 Chapter 5 Behavior Adaptation in Testing

5.2.2 Test Generation and Test Execution with BAIT

In order to generate and execute a test, several artifacts have to be provided:

System Specification: The system specification defines both data- and control-rela-
ted aspects, which are implemented in the IUT. It is the starting point for the
data-centered test generation and — together with the test purpose — also for
the control-centered generation.

Test Purpose: The test purpose is the specification of a test scenario. It guides the
control-centered test generation by sketching out relevant actions in a particu-
lar order without having to be complete (i.e., naming all actions of a particular
trace).

Proxy Classes: Proxy classes serve as the platform- and system-specific connector
between the generated test cases and the actual IUT.

IUT: The IUT, finally, is the implementation of the software, which is tested.

Test cases are generated from the system specification and the test purpose as has
been discussed in the previous chapter. The test oracle, necessary to parameterize a
test case, is also generated from the system specification. This issue has mainly been
discussed in Chapter 3. Finally, in order to set up a test for execution and to com-
municate with the IUT, we need proxy classes. Those can mainly be automatically
generated from the interfaces of the IUT, but can also be manually extended for the
purpose of customization. A reason to extend these classes would, for instance, be
the setup of a special manner of test logging.

5.2.3 General Architecture of BAIT

BAIT and environment

component>=]

TestRun
Manager
Trace TraceProvider
Execution
component>#x Salver <<component>3¥z | | { .
. . <component>
Constraint O} Behavior IGT
Solver Manager 1
Variable Instantiator
<<component>
DataManager

Figure 5.2: Component structure of BAiT

5_.2 R_ealiz_ation of the Test Execution Framework 105

In Figure 5.2, we can see the structure of components of BAIT. Two of the compo-
nents shown in the diagram form the environment of the tool. Those are on the one
hand the TUT and on the other hand the constraint solver (component Constraint-
Solver). The three components of the test executor itself are the TestRunManager, the
BehaviorManager and the DataManager. When a test is executed, the TestRunManager
creates an instance of the TUT if necessary and then connects to it. After this has
successfully happened, a possible trace is computed for the test run. In order to do
so, the BehaviorManager takes over and searches for an applicable trace in the test
cases. Such a trace is a sequence of actions (steps, which are also part of the behav-
jor and thus of component BehaviorManager) with parameters. Parameters are data
elements, whose management is implemented in the component DataManager.

Then, each such trace is transformed into a query to the constraint solver. The be-
havior manager queries the constraint solver and retrieves a term with the solution
of the query. If there is no such solution, further steps have to be taken by the be-
havior manager in order to find a test trace. If a solution has been found, the term
received from the constraint solver amongst other things contains ranges for action
parameters or already fully instantiated parameters. This information is provided to
the data manager, which subsequently tries to instantiate those parameters, which
have yet only been assigned data ranges. When finally the trace is fully instantiated,
it is executed against the IUT. In case, the IUT’s reactions divert from the originally
computed trace, the behavior manager adapts it automatically in cooperation with
the data manager and the constraint solver. When a trace has been fully executed,
then the test run manager receives the information about the results of the test run
and assigns a test verdict.

5.2.4 Component ConstraintSolver

The Component ConstraintSolver is formed by the constraint solver ECLiPSe Pro-
log. In Chapter 3, we discussed the connection of constraint solving and system
specifications. How we can make use of this connection for testing purposes became
clear in Section 4.4, where we introduced the concept of test oracles for test data se-
lection. In this section, finally, we will discuss the realization of the connection of
the constraint solver ECLiPSe Prolog to the test tool BAIT. First, we address a few
decisions we made, regarding the test oracle, i.e. its underlying CLP, directly w.r.t.
Chapter 3. Then, we discuss the extension of queries to the test oracle for our pur-
poses w.r.t. the design of queries given in Section 4.4. Finally, we will present some
technicalities regarding the implementation of the connection to ECLiPSe Prolog.

A Simple Meta Language
In Sections 3.2 and 3.3, we provided a theory for the transformation of pCRL spec-

ifications to Prolog by means of the simulation of innermost term rewriting. The
principle is to extract parameters of nested terms, simulate rewriting on them and

106 Chapter 5 Behavior Adaptation in Testing

assign the result to a variable, which is used in place of the nested parameter. In
order to evaluate a guard like

and(eq(x,5), gt(y,7))

we have to transform it to the following query according to our theory:

0«
eq(IN(x), IN(5), B(z1)) A\p gt(IN(y),N(7), B(22)) Ap and(B(z1), B(z2), B(z3)) Apzs
. s N\ -
transformed guard evaluation

In order to make the evaluation work, we have to define two rules in our CLP for the
signature of pCRL’s boolean algebra, Bool, with Cgoot, = {Tyu, Fu} with T,, := T and
F.=F

t « T

f « fail

The occurrence of the constant t makes a query hold and thus evaluates it to T, while
f lets it fail and thus evaluates it to L. With these two rules given, ECLiPSe Prolog
can evaluate the examplary shown query above with the variable z3 being used as
a predicate. However, for the practical realization of test oracles, we decided to do
things a bit differently. The Prolog rules for boolean functions should no longer have
an explicit result parameter of type B, but should instead be directly interpreted by
Prolog. This has the big advantage, that the above-shown example can much easier
be encoded in Prolog as:

and(B(eq(IN(x),IN(5)), B(gt(IN(y),N(7)))))

The approach has, w.r.t. our previously presented theory, also two disadvantages:
First of all, boolean functions, which are not used as guards but whose return value
is user data, are affected as well, so that their function results can only be evaluated
but not be used elsewhere as input anymore. A second issue affects the simulation
of term rewriting by the CLP: For boolean functions, not innermost, but outermost,
rewriting is simulated. The reason to implement the interpretation of boolean func-
tions like this must be seen in the context of the history of BAiT: While in the begin-
ning, this variant seemed to be the most obvious one, the further work on the theory
behind it (cf. Section 3.2) showed that there is room for improvement. In the current
version of BAIT, however, we kept the approach as it is, while in future versions, it
will be consolidated with the interpretation of non-boolean functions, which have
an explicit output parameter.

In order to make the approach discussed above possible, we extended the meta lan-
guage by some more rules. In particular, we add a rule to strip off typing information

5.2 Realization of the Test Execution Framework 107

from boolean expressions, redefine and and or locally using the standard Prolog op-
erator and add a number of rules for negated expressions:

bool(x) « x (5.1)

and(x,y) < xy (5.2)

or(x,y) « Xy (5.3)
not_(bool(and(x,y))) « or(bool(not_(x)), bool{not_(y)}},! (5.4)
not_(bool(or(x,y))) « and(bool(not_(x)), bool(not_(y))),!. (6.5)
not_(bool(not_(x})) <« x,. (5.6)
not_(bool(eq(x,y))) < meq(x,y),% (5.7)
not_(bool(gt(x,y))) « ngt{x,y),% (5.8)
not_(bool(ge(x,y))) « mngelx,y),L (5.9
not_(bool(le(x,y))) « mnle(x,y),L (5.10)
not_{bool(lt(x,y})) « nlt{x,y),% (5.11)
not_(bool(x)) « mnot(x},L (5.12)

The negation operator — is implemented as a set of rules not_ for a number of cases.
Rules (5.4) and (5.5) realize De Morgan’s laws (De Morgan, 1860). Rule (5.6) handles
double negation and rule (5.12) hands the standard negation over to Prolog’s nega-
tion operator not. Rules (5.8) to (5.11), finally, realize the negation of comparisons,
like x # y, in an intuitive way, in our example x < y. Therefore, these rules make
use of some rules, which have already been discussed in Section 2.4.1.

A Preamble for the CLP

The tool BAiT can handle data of different kinds of domains, like numerical or enu-
merative data. While the domains for numerical data are inherently defined in Pro-
log, the ones for enumerative data are not. For each enumerative domain, a domain
specification must be added to the CLP. If a variable of an enumerative domain is
unbound, its domain must be declared. For the prior, we have to define domains as
follows:

0 « local domain(<name>(<values>))

For example, the definition of the (also enumerative) datatype BB looks as follows:
[0 « local domain(bool(t, f))

The domain of an enumerative variable x : E is in Prolog defined as x&:IE. In or-
der to be able to define the domains of variables as setdomain(x, E), we define an
additional rule

setdomain(v,d) « v&:d.

Another issue to prepare in the preamble is the aquisition of value ranges for un-
bound numerical and enumerative variables in a query. Structured data will not

108 Chapter 5 Behavior Adaptation in Testing

yet be regarded. ECLiPSe Prolog provides two built-in rules to determine this in-
formation for a given variable: print_solver_var and get_integer_bounds. Both
rules have a different signature. While print_solver_var returns a list of upper
and lower bounds of a possibly nonmonotonous data interval for a given variable,
get_integer_bounds only returns two simple numbers, namely the variable’s lower
and the upper bound. A second complication w.r.t. these rules is the fact, that each
of them can fail. In this case, the respectively other rule must be used. In order to
simplify things for the queries to the test oracle, we introduce in total three rules,
which fagade the above-mentioned two ones:

getboundaries(_n, x, xb) print_solver_var(x, xb)Ap!

-
getboundaries(_n,x,xb} < number(x) Ap get_integer_bounds(x, x1,x2)
Apxb [x]..xZ]/\P!

T

getboundaries(_n,_x,_xb) <«

These rules take three parameters. The first one is an arbitrary number n, which is
to be ignored by the constraint solver (thus the underscore) and is later needed to
identify the variable, whose boundaries have been determined. The second parame-
ter x takes either a constant value or a constrained variable and tries to determine its
boundaries, which are returned with the third parameter xb. The boundaries are in
all cases returned as a list. While in the first case, the result of print_solver_var can
be used directly, we have to actively transform the result of get_integer_bounds
into such a list, which happens using the :-operator of Prolog in the second rule. If
both rules fail, we will leave the boundaries undefined rather than letting a whole
query fail for unretrievable variable boundaries. For this, we define the third rule,
leaving the boundaries undefined.

Queries to the CLP

As we have already discussed in Section 4.4, queries to the test oracle are based on
selected traces from the test cases generated by TGV. During test execution, a trace
from the CTG is selected and transformed into a query to the constraint solver. The
principle of transforming a trace to a query has already been discussed in Section 4.4
and is here extended by the treatment of enumerative datatypes and the acquisition
of variable boundaries.

Let us first introduce a helper rule to represent the initialization of a system with
specification & = (L, Var, A, E, {{ini, Tinit}) in the CLP. This state is represented as a
rule

init(state({ini, Minit)) — T.

Now let us consider the structure of queries to the test oracle. Let 7 be the trace
under consideration. Let E; be arbitrary domains of enumerations and let o, Cinit-
Then this query has the form, which is shown in Figure 5.3. In case, the query holds,
i.e. it finally evaluates to T, the selected trace from the CTG is valid w.r.t. the system

5.2 Realization of the Test Execution Framework 109

/\ setdomain(v, E;) Ainit(go) A /\ s(oj_1, 05, param(x)) A
——

ieN,veE;

N - (2)
~

1) (3)

jell..|ml,s(x):=m[j
~ >

/\ getboundaries(k, w, boundaries(w))
lV(_ Z,keEN

(4)
Figure 5.3: Structure of queries to the constraint solver

specification (it is possible in Hie system). In this case, it can be executed after all
data elements have been instantiated. This conjunction can be divided into four
subformulae, which we will discuss now:

1. In the first subformula, all variables, which appear in the trace and which have
an enumerative data domain, are defined according to this domain. This hap-
pens using the rule setdomain, which has been defined earlier in this section.
The definition of domains as such is tautological, i.e. it never becomes false by
itself and thus does not negatively affect the query.

2. Then, the trace under consideration is initialized. This happens by introducing
a variable oy and matching it to the initial data structure state(Linit, Ninit), which
is provided by init as defined earlier. Initializing a yet uninstantiated variable
with the system’s initial state also always succeeds, assuming that the types of
variables and any provided values properly match.

3. The third part forms a conjunction of summand rule invocations and resembles
the actual trace under consideration. This part of the query has already been

. . Aj . . .
discussed in Section 4.4. Each step 0.1 — 05 with A; := s(x) in this trace
is represented by one rule invocation s(o; 1,05, param(x)). One such rule
invocation holds, if

a) there exists a rule, which syntactically matches the invocation, and
b) the guard g, which is defined in this rule, holds (cf. Section 3.3).

4. The fourth part finally retrieves information about the intervals, to which nu-
merical variables are limited in this trace. This is done by invoking the rule
getboundaries with an index (determining the position of the variable in the
parameter list of the according action), the variable itself and an uninstanti-
ated second variable to store the interval. Retrieving a variable’s boundaries
also always holds (by definition earlier in this section).

The order of subformulae is formed by certain restrictions. The order of the trace
initialization (2) and the trace itself (3) is obvious. The domains of enumerative vari-
ables (1) must be defined before the first constraint tries to match a particular variable

110 Chapter 5 Behavior Adaptation in Testing

of this kind. For this reason, these domains are defined first. The intervals of numer-
ical variables (4), however, must be retrieved last. These intervals are restricted by all
constraints in the trace under consideration, so that the trace must be fully evaluated
before the variable intervals are queried.

Interaction between BAIT and ECLiPSe Prolog

ECLiPSe Prolog provides a Java API for the integration of a constraint solver into an
application as BAiT. This API has been in detail described in Novello et al. (2005),
so that we will only give a short overview on the steps, BAIT has to take in order
to benefit from the constraint solver. A constraint solver as ECLiPSe Prolog is a
resource-intensive component. Therefore, it has to be setup and shutdown carefully
by the embedding application. Both the setup and the shutdown of ECLiPSe Prolog
is handled by the test run manager of BAiT. During test execution itself, however,
communication with ECLiPSe Prolog is fully handled by the trace manager.

The trace manager and ECLiPSe Prolog interact synchronously via the function rpc()
of class com.parctechnologies.eclipse.EclipseConnection. It takes a query to the
constraint solver either as a string or a structure of terms (classes CompoundTerm and
Atom, depending on the structure of the particular term) and synchronously returns
a structure of terms. There are also asynchronous ways to interact with ECLiPSe
Prolog, but we need all test data before the execution of the test trace, so that asyn-
chronous constraint solving is not an option for our case.

In order to let the constraint solver solve the query for a trace, this query is dy-
namically generated by the trace manager as shown in the previous subsection. It
is generated as a string rather than a structure of terms, since in the latter case, the
multiple occurrence of a particular variable within the query cannot be expressed
(Novello et al., 2005). The query is then handed over to ECLiPSe Prolog by calling
rpc() and the result is fetched. This result is then interpreted by the trace manager
and subsequently by the data manager as described in the following sections.

The function rpc() always only returns the first result from a set of results (ibid),
which is in most cases sufficient, in which data of a numerical or enumerative type
must be instantiated. However, in cases, where structured data must be instantiated,
this behavior gets problematic. While for numerical or enumerative data, ranges
are returned by the constraint solver, the solver only returns single solutions for
structured types. In this case, BAIT immediately takes this first solution to work on
further, rather than collecting more solutions from ECLiPSe Prolog. Even though it
is possible to realize such a behavior, it is a tricky undertaking and has not yet been
implemented in this version of BAIT.

5.2.5 Component DataManager

The data manager DataManager is responsible for encoding and decoding data ele-
ments for both the constraint solver and the IUT. Furthermore, the implementa-
tion of test data selection algorithms is located in this component. The component

i2 Realization of the Test Execution Framework 111

DataManager is realized by two components, Variables and Instantiator, as can be
seen in Figure 5.4. Those two components are themselves realized by classes and
interfaces, which are organized in one package per component. In this section, we
will describe these classes and their interfaces.

T

Data Manager Variable
! % <
<component>>"
DataManager |
7 ~—— Instantiator
<realize>> <realize>>
B Instantiator - | Variable
<<component> | ¢ component>>" <
Instantiator Variables

Figure 5.4: Component DataManager

Component Variables

The component Variables is realized by the classes of nl.cwi.sen2.bait.variables,
as it is depicted in Figure 5.5. The classes from this package encode and decode val-
ues between the constraint solver, BAiT’s internal representation and the IUT’s data
representation. Furthermore, they manage data boundaries for test data selection.

nl.cwi.sen2 bait.variables

-exception . Constrained
2numerati " Constrained
. N TypeConversion [
VariableKindType ypException 1" variabletmpl Var:iarl‘)llj:l‘m ol
gleton: r mana.ia
TypeMapping Variablelmpl | { Constrained
Provider Variable

interface
| CustomType
Variable

face

Boundary Variable

Figure 5.5: Package nl.cwi.sen2.bait.variables

Amongst other things, encoding and decoding data between different systems re-
quires a management of datatype mappings. Although the constraint solver is un-
typed, we have to map datatypes between the specification language (in our case

112 Chapter 5 Behavior Adaptation in Testing

HCRL) and the IUT’s target system (Java). A third datatype is formed by the rep-
resentation of data elements within BAiT, which happens by the classes of package
nl.cwi.sen2.bait.variables and classes derived from those.

Let us consider the value 1 € IN as an example: In the representation for the con-
straint solver, this value is encoded as IN(1), i.e. a numerical 1 attributed with its
datatype from the system specification (cf. Section 3.2). For the target system of the
IUT, the same value is encoded as an instance of class java.lang. Integer with a value
of 1. Internally to BAIT, finally, the same data element is encoded as an instance
of class nl.cwi.sen2.bait.variables.ConstrainedVariableImpl with a value of 1, the
(specification) datatype IN, an empty variable name and some more attributes.

This management of datatype mappings is provided by the singleton class TypeMap-
pingProvider. It allows to add a datatype mapping (method addTypeMapping()),
which is then globally used in BAIT, and to retrieve information about datatype
mappings (methods get«Type()) providing the specification datatype or the Java
datatype, resp.

In BAIT, we distinguish four kinds of variables. Those kinds of variables are defined
in the enumeration VariableKindType:

numerical variables, which are handled by class ConstrainedvariableImpl,
enumerative variables, handled by ConstrainedEnumvariableImpl,
lists and

structured variables. For those two kinds of variables, the class CustomTypeVariable
serves as an implementation base for codec functionality.

All variable classes implement at least the interface variable. It provides access to a
variable’s name, datatype, value in the target system and boundaries (implemented
in class Boundary). Furthermore, it provides functionality to check, whether the vari-
able is actually instantiated and whether a particular data value lies within the vari-
able’s boundaries. The interface has been implemented in class VariableImpl, which
serves as a base class for all general and custom variable classes. Custom variable
classes not only inherit from variableImpl, but also have to implement the inter-
face CustomTypevariable. Those custom variable classes realize the representation of
structured datatypes or lists, for which not only a particular value in the sense of the
target system (i.e. the instance of a Java class, for instance) must be provided, but
also access to the variable’s fields in their BAiT-internal representation. The appro-
priate method getFields() consequently returns a hashmap of field names to data
items of type Variable.

Up to now, no data encoding and decoding has been taken place in order to com-
municate with the constraint solver. The accordant functionality is defined by meth-
ods of the interface Constrainedvariable and basically implemented in the classes
ConstrainedVariableImpl and ConstrainedEnumvVariableImpl. The difference of the
latter lies in its ability to handle enumerative datatypes. Constrainedvariable pro-
vides methods for encoding and decoding data for the constraint solver. The en-
coding method getPrologEncoding() returns a Prolog term as a string. This term
can either be a variable name for uninstantiated variables or a value for instantiated

5.2 Realization of the Test Execution Framework 113

ones. For custom variable classes, an implementation of getPrologEncoding() would
consequently return a term functor and the (partially or fully instantiated) fields of
the data structure as arguments of the functor. The method setTerm() gets a Prolog
term as a parameter and interprets it in order to determine the values or boundaries,
which have been computed by the constraint solver for the particular variable.

Comparison to the TCI-CD and TRI of TTCN-3 The TTCN-3 Control Interface,
Coding/Decoding Interface (TCI-CD; ETSI, 2003b) provides functionality to handle
the encoding and decoding of data between the test execution runtime of TTCN-3
and its environment or the IUT, resp. The codices themselves are implemented in the
TTCN-3 Runtime Interface (TRI). We will in the following give a short comparison
of the design of the package nl.cwi.sen2.bait.variables to the accordant TTCN-3
interfaces.

TCI-CD is responsible for the internal handling of data with the TTCN-3 test execu-
tion runtime. It has two base classes: Type handling datatype information and Value
handling data values. This distinction is necessary due to the fact, that in a TTCN-3
test case not only variables, but also datatypes can be defined. Hence, the description
of datatypes must also be instantiable within the TTCN-3 runtime.

Test cases for BAIT do not contain any information about datatypes, but only about
the occurrence of variables of a particular type. For this reason, we do not (have to)
follow a strict distinction of type and value information, and so we chose for the sim-
pler interface variable instead. However, we have instead to handle datatype map-
pings rather than definitions. This happens in the separate class TypeMappingProvider.

[TTCN-3Type | BAIT]
[getDefiningModule() n/a !
— - o
g_etNa&() Variable.getType() - _I
getTypeClass() Variable.getKind() (coarser) ‘
}_HeWIEEci)— TypeMappingProvider.getBoxedTypeInstance()_i
| getTypeEncoding() n/a
getTypeEncodingVariant() n/a — |
getTypeExtension() n/a - -
getTypeForName() (TCI-CD) TypeMappingProvider.getUnboxedType(T 3
L TypeMappingProvider.getBoxedType() _!

Table 5.1: Mapping between TTCN-3 type handling and BAIT

The type information methods from TTCN-3 can be mapped to Variable and TypeMap-
pingProvider as can be seen in Table 5.1. All methods from Type, which are not ap-
plicable in BAIT, refer to datatype definitions in a TTCN-3 module.

The value management methods from TTCN-3 (TCI-CD) can be mapped to Variable
as can be seen in Table 5.2. All methods from Value, which are not applicable in
BAIT, refer to datatype definitions in a TTCN-3 module.

114 Chapter 5 Behavior Adaptation in Testing

| TTCN-3 Type | BAIT j

| getType() Variable.getType()

| notPresent() n/a (no omission of values)

| getValueEncoding() n/a]
getValueEncodingVariant() n/a ‘

" get[Type] () Variable.getValue() !
set[Type]() Variable.setValue() |

Table 5.2: Mapping between TTCN-3 value handling and BAiT

If one compares those methods of Variable, which have a counterpart in TCI-CD,
with the complete interface of Variable, one finds out that there are still some meth-
ods left. Those methods, which have not yet been named here, are necessary for con-
straint solving and data selection. In addition to the methods named here, Variable
also supports variable names of uninstantiated variables for the constraint solver as
well as the management of boundaries, which is essential for test data selection. These
two aspects are not supported by the TCI-CD representation of datatypes and values.

The TRI also defines classes to support data exchange between the TTCN-3 runtime
and an IUT. Such an explicit support is necessary for TTCN-3, since it is designed
to be platform-independent. Such a platform-independence was not a particular
design goal in the development of BAIT. However, since BAIT is extensible for cus-
tom datatypes and communication paradigms, such platform-independence can be
achieved up to a certain point.

TRI defines data mappings between two systems: the TTCN-3 runtime and the plat-
form of the IUT. Here, we already have the first difference to BAiT, where tiree Sys-
tems must be taken into account: Data must be represented internally in the BAIT
runtime, and externally for the constraint solver and for the IUT. The second fun-
damental difference between type mapping by TRI and BAIT is the fact, that TRI
defines methods to control data from within a test case. Data in BAIT, however, is
fully controlled by the constraint solver and not by the test case logic. For these
reasons, datatype mapping as it has been realized in TRI is not applicable for BAiT.

Component Instantiator

A constraint solver cannot always directly assign a particular value to a variable or
a parameter of an action in a test case, but compute a possible range of values only.
In this case, an algorithm which selects a data value from this range, is needed. Such
algorithms are implemented within the package nl.cwi.sen2.bait.instantiators,
whose classes realize the component Instantiator (Figure 5.6).

An instantiator must implement the interface Instantiator, which only contains the
method getvalue(). As a parameter, this method gets an instance of a variable (inter-
face variable from the package discussed above) and it selects and returns a value
to instantiate the variable.

5.2 Realization of the Test Execution Framework) 115

nl.cwi.sen2.bait.instantiators

1

singleton> Rand Interactive :exception=>>
Assignment | an 9m Boundary Instantiator
Provider nstantiator Instantiator Exception
Interactive interface> ngletor
Numerical 1 Instantiator T Instantiator
Instantiator Provider
1
Interactive
CustomString |

Instantiator

Figure 5.6: Package nl.cwi.sen2.bait.instantiators

The underlying data selection algorithm is implemented in the method getvalue().
In the reference implementation of BAIT, we find four different algorithms imple-
mented in the following classes:

InteractiveNumericallnstantiator selects data interactively: The test engineer is
provided a prompt and is asked to manually select a value from within the
boundaries of the variable.

InteractiveCustomStringInstantiator also selects data interactively: The test engi-
neer is provided a prompt and is asked to manually select a value for the vari-
able under instantiation by entering a string. This string has the form of a term
as it is used in the specification of the system for data values of the particular
type of variable.

InteractiveBoundaryInstantiator also selects data interactively: The test engineer
is provided a prompt and is asked to manually select the lower or the upper
bound of the variable’s boundaries.

RandomInstantiator automatically chooses a random value to instantiate the vari-
able.

Data selection algorithms are instantiated dynamically using the singleton class In-
stantiatorProvider. This dynamic instantiation of the algorithms allows to config-
ure data selection at runtime.

Up to this point, data for variables is selected on a per-variable-basis and variables
are only set into relation with each other within the constraint solver. For some data
selection algorithms, it is, however, not sufficient, to only be aware of the value of
a single variable. In order to also set variables into relation on the level of data
selection algorithms, the singleton class AssignmentProvider acts as a scratch pad for
all data which is needed to build up this relationship by holding a hashmap mapping
a variable name to an object, which can hold an arbitrary item of information.

116 Chapter 5 Behavior Adaptation in Testing

There is one limitation according to the instantiation of variables: Since we evaluate
a trace in beforehand using a constraint solver, the analysis of a variable’s limits by
exceeding them is system-inherently not possible. In that case, the considered trace
could not successfully be solved by the constraint solver and would not be executed.

5.2.6 Component BehaviorManager

The component BehaviorManager is responsible for selecting single traces from the
CTG and executing them in parallel to the IUT. The latter task mainly comprises
encoding and decoding of messages for the IUT. The actual implementation of BAiT
only supports a procedure-based communication, but can be extended to other com-
munication paradigms, for instance socket-based communication.

The component is realized by two sub-components, Steps and TraceProviders, as
can be seen in Figure 5.7. As in the previously described component DataManager,
those two components are themselves realized by classes and interfaces, which are
organized in one package per component.

Behavior Manager

Trace TraceProvider
Variable .
Execution
smponent
BehaviorManager
Instantiator A X
realize: realize
Solver Solver '
Variable E i
= xecution . :
L TraceProvider
component: omponent>>T-
Steps | TraceProviders

Instantiator
Trace

Figure 5.7: Component BehaviorManager

Component Steps

The component Steps is realized by the classes of package nl.cwi.sen2.bait.steps
(Figure 5.8). The classes from this package encode and decode complete messages
between the BAIT runtime and the IUT. Furthermore, they encode traces as queries
to the constraint solver in order to find a solution for the set of parameters in the
particular active trace.

Steps Classes representing single steps in a test trace have to implement the in-
terface Step. It contains several methods to generally manage an action step in test

5.2 Realization of the Test Execution Framework 117

nl.cwi.sen2 bait.steps

InputSteplmpl OutputStepimpl
Tracelmpl : ‘*l ‘Ster:lm pl
?I::;:: InitSt;pImpl ExecEttear';i:Step
V:ra*l‘é;?r"y’pe 1 InternalStepimpl { ée{:;e

Figure 5.8: Package nl.cwi.sen2.bait.steps

execution. These methods get or set the name and parameters of the represented
action as well as its place in the trace, which it belongs to. Furthermore, it contains a
method syntacticallyEqual(), which checks, whether a particular step matches the
signature (i.e. action name and parameter types) of another step.

Beyond these methods, a general step implementing Step only supports encoding
and decoding of data for the constraint solver and a method to instantiate the step’s
parameters using an instantiator (see Section 5.2.5). In order to build section (1) of
a query to the constraint solver (cf. Figure 5.3), method getVariableDeclarations()
returns a list of enumerative variables and their datatypes. In order to build section
(3) of the query, getStepRepresentation() transforms the action step into the form
given in Figure 5.3. Finally, getVariableRepresentation() returns a list of rules of
all numerical or enumerative variables, which is necessary to build section (4) of
the query to the constraint solver. A result from the constraint solver is parsed and
processed in method setConstraintSolverResults().

Steps, which only implement the interface Step, are internal steps (class Internal-
StepImpl). These are steps, which do not influence test execution in parallel to the
IUT, but are only needed for bookkeeping while solving a trace with the constraint
solver. Such actions are t-steps, but also the initial step (class InitStepImpl). This
initial step does not represent any action, but sets the state vector of the tested system
to its initial state. The initial state of the IUT as defined in its specification had been
transformed to a rule init/1. The initial step, as the first step in any test trace, only
generates the according section (2) of the query to the constraint solver (Figure 5.3).

118 Chapter 5 Behavior Adaptation in Testing

Steps, which communicate with the IUT, implement the interface ExecutableStep.
It inherits from Step and completes it by a method execute(). In this method, all
the encoding of messages to, and - if applicable for the particular communication
paradigm — decoding of messages from the IUT takes place. In the reference imple-
mentation of BAIT, we find the class StepImpl, which implements ExecutableStep
and provides the general functionality including encoding and decoding the infor-
mation about a step for the constraint solver. From this class, OutputStepImpl and
InputStepImpl are derived. While the first contains the code to access the IUT via
the Java reflection AP, the second class only contains an empty implementation of
execute(), since processing the reactions of the IUT in the procedure-based setting
happens in a different way, as we will see in the next paragraph.

Traces A trace is in principle an ordered set of steps together with a preset test
verdict. Traces, like the reference implementation TraceImpl, implement the inter-
face Trace. It allows to add steps (methods addInitStep() and addActionStep()) and
to execute them step-wise (method executeNextStep()). Reactions from the IUT are
buffered internally. When a test run diverts from the precomputed test trace, the
actual trace is pruned at the last executable step, which matched the test run. Af-
terwards, the internal input buffer is appended to the set of steps of the trace and
finally, the trace is merged with a newly calculated trace. All three operations, prun-
ing, appending pending input and merging of traces, are performed by merge ().

The interface Trace also contains the method solve(), which implements the actual
communication with ECLiPSe Prolog. The method builds a query as given in Fig-
ure 5.3, sends it to the constraint solver, retrieves the result and distributes this result
over the several steps in the trace. Then the steps’ parameters can consecutively be
instantiated. When the whole trace, i.e. all its steps, is instantiated, it can be executed.

During the test, a test verdict is assigned to a trace. A test verdict is a value from
the enumeration VerdictType. Any trace is assigned a potential test verdict before be-
ing executed. This potential test verdict, either Inconc or Pass, had been previously
computed by the test generator TGV and has been assigned in the CTG already.
When the particular trace could be executed sucessfully to its end, this potential ver-
dict turns into an actual verdict. As long as the trace is still under execution, however,
the actual verdict remains None. If the trace could not be executed successfully until
its end, then one of two things could have happened: The first possibility is, that a
failure in the IUT was discovered by the test run, which then ends with verdict Fail.
The second reason can be a problem in the test environment, like a broken connection
to the constraint solver. In such a case, the test run ends with verdict Error. Those
two verdicts, however, are not assigned to a test trace as potential test verdicts.

For a procedure-based test with BAIT, a trace adapter must be derived from TraceImpl
for each test project, which implements an interface of all possible input actions from
the IUT. This interface corresponds to the socket Execution in the component dia-
gram (the equally-named interface represents the output steps). All input actions are
implemented as methods, which only have to log a call from the IUT.

5.2 Realization of the Test Execution Framework 119

Protocolling happens by calling protocolInput() of the class TraceImpl. The method
receives the name of the called action as well as a list of actual parameters handed
in with the method call. The method itself then instantiates a new object of type
InputStepImpl as a representation of an input step, and adds it to an internally-
handled input buffer.

Comparison to the TRI of TTCN-3 The TRI of TTCN-3 consists of two interfaces.
The interface triCommunication provides methods to exchange messages with the
IUT. The interface triPlatform provides timer management, external functions of
the TTCN-3 runtime and the possibility to reset the platform adapter (ETSI, 2003c).

We do not want to regard this latter interface further, since BAIT is neither focused
on platform-independence nor does it provide any external functions. Timers are
supported, but in a rather simplified manner, so that they are not externally control-
lable.

The interface triCommunication provides an abstract level for the exchange of mes-
sages with the IUT on either a message- or a procedure-based level. From that per-
spective, the interface matches the interface ExecutableStep of BAiT. However, since
BAIT does not focus on platform-independence or independence of the communi-
cation paradigm used to exchange information between the tester and the IUT, it is
realized a lot simpler. The most obvious difference between TTCN-3 and BAIT in
this point is, that TTCN-3 does not use a distinct instance of a system adapter per
message sent to or received from the IUT through the interface triCommunication.
BAIT uses one object of type ExecutableStep per step in the test case. The reason for
this is, that in TTCN-3, test cases together with their logic are programmed and are
compiled to Java byte code prior to execution, while in BAIT, the test logic is dynam-
ically developed by interpreting a CTG at runtime. The second difference is, that test
data selection and test case parameterization mainly happens at the beginning of a
test run in TTCN-3, while in BAIT test data is mainly computed during test execu-
tion. Both issues, the dynamic computation of test traces and of test data, require
management overhead, which can more easily be handled with the design as it has
been developed for BAiT.

Component TraceProviders

The component TraceProviders is realized by the classes of nl.cwi.sen2.bait.trace-
providers (Figure 5.9). The classes from this package implement search algorithms
in order to select test traces from the CTG, which lead to Pass or Inconc verdicts.
These traces can afterwards be instantiated and executed in parallel to the IUT.

All trace search algorithms must implement the interface TraceProvider. It offers
methods to initiate a trace search (method generateNewTrace()), to access buffered
traces (see later; methods getPassTraces() and getInconclusiveTraces()), and to de-
termine, whether there are more traces to find in the CTG (method hasMoreTraces()).

120 Chapter 5 Behavior Adaptation in Testing

nl.cwi.sen2 bait.traceproviders

<interface> <exception:
TraceProvider TreeElement<T> TraceProvider
Exception
- - T
<singleton> TraceProvider BreadthFirst BreadthFirstSearch
TraceProvider B b 1 Search w7 | PassWeighted
Provider ase TraceProvider TraceProvider

Figure 5.9: Package nl.cwi.sen2.bait.traceproviders

Finally, the method removeShortTraces() can be used to clean up memory by remov-
ing buffered traces, which are shorter than a given length.

A trace search has the goal to find a trace in the CTG which leads to a particular
verdict. While searching through the CTG, a trace search algorithm can (and in the
reference implementation does) build up a search tree. In this search tree, for in-
stance loops are successively unfolded. The search algorithm stops at the first trace
found, which matches the intended goal. In case of the algorithm, implemented in
class BreadthFirstSearchTraceProvider, this is the first trace, which ends in a Pass
or Inconc verdict. In case of the BreadthFirstSearchPassWeightedTraceProvider, itis
the first trace to a Pass verdict. For this latter algorithm, all traces found, which are
leading to Inconc, are buffered for potential later use.

Since unfolding loops and buffering traces for potential use, memory might get an
issue for these classes. During a test run, a precalculated trace is executed in parallel
to the IUT and the trace provider is only needed in case the IUT diverts from this
trace. The newly found trace must then be longer than the yet executed number
of steps. The method removeShortTraces() helps to free memory by removing all
buffered traces in the trace provider, which are too short to still be interesting. In
doing so, the aforementioned memory problem is restrained.

A custom provider can be easily implemented by inheriting from the base class
TraceProviderBase and implementing custom-made methods hasMoreTraces() and
generateNewTrace(). The singleton class TraceProviderProvider supports the selec-
tion of the trace provider used during a test run.

5.2.7 Component TestRunManager

The component TestRunManager is realized by the abstract class nl.cwi.sen2.bait. -
RunTest, which controls the whole test execution and can be considered the only
active class in the framework. It implements the four-phased test execution process
as it is shown in Figure 5.10.

5.2 Realization of the Test Execution Framework 121

®

. &

Initialization

[!succeededI‘ o

[succeeded])
Y

= Trace Selection

['succeeded]

[succeeded]
X

Data Selection |-

1
['succeeded] [succeeded])

Y

Trace Execution

['succeeded]

[succeeded]
X
{@r

Figure 5.10: The test execution process

The class RunTest is abstract. This means, that for every test project, a custom test
runner class must be inherited from RunTest. This test runner must implement the
methods getIUT() for test object instantiation and getAdapter() for the instantiation
of the test adapter. The procedure has been exemplarily shown in Calamé (2007). In
the following, we will discuss the different phases of the test execution process.

Initialization In the initialization phase, mainly three things happen. The frame-
work sets some basic properties, described in (Calamé, 2007, Section 4.3), which con-
figure the further test run, and also defines the basic datatype mappings (ibid). While
setting the basic properties, an instance of the trace selection algorithm is created.

Afterwards, an instance of the IUT and an instance of the trace adapter are created.
We name this instance of the trace adapter further the trace under execution. This

122 Chapter 5 Behavior Adaptation in Testing

trace under execution is attached to the instance of the IUT. In the beginning of test
execution, this trace only holds a single initialization step. Having set up the test so
far, the first iteration of the trace selection phase is entered. If anything goes wrong
during test intialization, test execution terminates with an Error verdict.

Trace Selection Trace selection is performed as has been described earlier in this
document. When a trace has been found, the selection algorithm first creates an
instance of class TraceImpl as the internal representation of traces in BAiT. Then, the
test run manager tries to merge this trace to the trace under execution. The traces do
not replace each other, since then the link to the IUT as well as any information about
already executed steps would be lost. Merging succeeds, if the new trace starts with
the same sequence of actions as the trace under execution has executed so far. Also
the action parameters must match. The latter requirement already interferes with
the data selection phase.

If a trace was successfully selected, data for yet uninstantiated action parameters is
selected in the next phase. If a trace did not match the trace under execution, trace
selection iteratively goes further until there are no more traces in the test case to
select from. In this case, test execution terminates with the verdict Inconc.

Data Selection In the data selection phase, the yet uninstantiated parameters of
actions in the trace under execution are instantiated. Therefore, the constraint solver
is invoked to determine the intervals of all variables in the trace. Then, the first vari-
able is instantiated by the selected data instantiator and afterwards, the constraint
solver is invoked again, the next variable is instantiated and so on.

Invoking the constraint solver for each of the variables again, helps refining the inter-
vals of remaining variables before their instantiation. In many cases, these intervals
reduce to a single value so that only a few variables have to be instantiated by the
instantiation algorithm. Another approach would be, to invoke the constraint solver
twice, once before and once after having instantiated all variables. This, however,
leads to a less precise variable instantiation and thus to more cases, in which a trace
must be adapted before being executed further. If all parameters could be instan-
tiated, the trace execution phase is entered. Otherwise, the trace selection phase is
re-entered.

Trace Execution When a trace has been successfully merged with the trace under
execution, the actual execution begins. Executing a trace means, that a program
pointer iterates through the ordered set of steps in the trace. Depending of the actual
step under execution, one of the following happens:

e If the actual step is an iuitialization or an internal step, it is ignored and the
program pointer is increased.

o If the actual step is an input step, it is matched against the oldest element from
the input buffer. If the element matches, i.e. the action name and parameter

5.3 Related Frameworks 123

values are expected, the program pointer is increased and execution goes on.
If the input buffer is empty, the system waits for a certain time for input to
match before timing out. If the oldest step does not match or execution times
out, the trace under execution is adapted.

e If the actual trace is an output step, it is first checked whether the input buffer is
empty. If it is empty, the step is executed, otherwise the trace under execution
is adapted.

If the trace under execution was executed successfully to its end, test execution ter-
minates with the verdict, which had been assigned to the trace (Inconc or Pass). If
the trace under execution must be adapted, it is cut at the position of the program
pointer. Then, all input steps from the input buffer are appended to the remaining
stub. Invoking the constraint solver verifies, whether the trace as it has yet been
executed, is valid regarding the system specification. If it is invalid, test execution
terminates with the verdict Fail. If it is a valid trace stub, the trace selection phase is
re-entered.

Before in this re-entrance of the trace selection phase new traces are selected from
the test case, it is checked whether the trace under execution could be executed to
its end using other values for action parameters (data selection). Then, stored traces
to Inconc are checked for applicability and finally, trace selection searches for a new
trace to Pass.

5.3 Related Frameworks

In this section, we want to position our tool towards other, well-known test execution
frameworks.

5.3.1 TTCN-3

TTCN-3 (Grabowski et al., 2003; Willcock et al., 2005) is a system-independent test
description language. It allows the separation of test code and test data to reuse once
written code. TTCN-3 is used for the automatic execution of conformance tests, not
for their generation.

TTCN-3 code is compiled prior to test execution. This is a difference to our approach,
that interprets test cases during execution. The IUT is bound to the TTCN-3 runtime
by platform and system adapters, which have about the function of the proxy object
in our (simpler) framework. In principal it is even possible to connect BAiT to the
TRI/TCI interfaces of TTCN-3. In TTCN-3, test data is either instantiated statically
prior to execution or constructed dynamically during test execution, while in our
approach, data is only constructed dynamically.

Even though binding a constraint-solver to the TTCN-3 runtime is in principal pos-
sible, its sense would be rather limited. Since all the trace and data selection would
happen in a constraint-solver proxy, TTCN-3 would just get a next step for execution

124 Chapter 5 Behavior Adaptation in Testing

and pass it on to the system adapter, receive an event from the IUT and pass that
one on to the constraint-solver proxy. This is exactly, what our test execution tool is
doing without TTCN-3 in between.

However, there would be possibilities to generate TTCN-3 code that is able to adapt
its own execution. Since TTCN-3 is a rich language, all facilities necessary to do
so (like loops and conditional branching) are available. There are two possibilities
to generate TTCN-3. The first one is a generation of TTCN-3 from the TGV test
cases and the test oracle. In the presence of loops in the test cases, this approach
would quite likely not terminate. If those loops are unfolded during test execution,
the TUT terminates mostly within finite time, so that also test execution terminates
(even though this cannot be guaranteed, either). So unfolding these loops seems
to be an option, however, if this happens prior to interaction with the IUT, it will
limit the ability of test cases to adapt to unexpected system behavior induced by a
nondeterministic specification.

Another idea would thus be to generate TTCN-3 code directly from the system spec-
ification, which defines the logical structure of the system. The result would be a
mirrored system, that would serve as the tester of the real system. Since the whole
system and not only parts of it would be mirrored, a limitation of test cases by test
purposes would in this case not be possible anymore.

5.3.2 xUnit

Unit Testing Frameworks (xUnit) (www.xprogramming.com/testfram.htm) exist for a
variety of different system platforms. The “x” in xUnit stands for an arbitrary pre-
fix, depending on the particular framework. A collection of these frameworks has
comparatively been described in Calamé (2003).

xUnit is based on the ideas of agile software development and a test-first approach.
Test-first means, that the specification of a system is given as a set of test cases. For
this reason, Pass and Inconc verdicts are not distinguished.

There is, in most cases, no separation of test code and test data; however, some
frameworks support this, e.g. JXUnit for Java as an extension to the standard JU-
nit. System requirements are stated in assert...() methods. Such a method fails
immediately, if its requirement is not met by the IUT. In this case, the test case fails;
an adaptation of the execution is not possible in this way.

This leads to the conclusion, that if we want to profit from the simplicity of xU-
nit test cases, we cannot provide test case adaptation in contrast to our framework.
Since the basic language of a particular xUnit framework is rich enough to provide
loops and conditional branching, the same holds as for the TTCN-3 test case gener-
ation discussed in the previous subsection. However, using an xUnit framework in
this way would not have any advantages towards just using the framework’s basic
programming language.

5.3 Relat_ed EraLneworks 125

5.3.3 STG

Symbolic Test Generation (STG) is a test generation approach described by Clarke
et al. (2002) and more detailed by Jéron (2004), which is implemented in the equally
named toolset (www.irisa.fr/prive/ployette/stg-doc/stg-web.html) and which con-
sists of a test generator and an execution framework. Like TGV, on whose ideas it
is based, the input to STG are a system specification and a test purpose. Since STG
works on a symbolic rather than an enumerative level, it is not necessary to generate
their state spaces. Both the system specification and the test purpose are thus given
as IOSTSs. The specification language used for STG is a proprietary one, which is
based on the ideas of the specification language IF. A difference to TGV and to our
toolset is, that test purposes may contain guards.

When generating the test case, STG - like TGV - produces the synchronous prod-
uct of both the system specification and the test purpose from which it then selects
test cases. These test cases still contain guards and uninstantiated variables. As its
output, STG generates a tester, which is executed in parallel to the IUT. The tester in-
stantiates the variables on the selected test trace, based on output of the Lucky solver,
taking into account nondeterminism of a system specification. To the best of our
knowledge, test trace selection in STG takes place already before test execution, such
that the adaption to the system’s nondeterminism happens on the level of test data,
but not on that of traces. BAIT, on the other hand, supports adaptation with respect
to both behavior (i.e., trace) and data.

5.3.4 Qtronic

TTCN-3 is supported by several commercial tools, which can execute or generate
test cases. One of these tools is Qtronic (www.conformig. com/qtronic.php). This tool
supports on-the-fly execution of test cases as well as the generation of TTCN-3 code.
The input for Qtronic are UML state charts with their behavior specified in Java (the
combination is named QML Conformiq). Additionally, models can also be specified
in Lisp. There exist interfaces for test adapters to C++ and Java.

The tool examines a model and either immediately executes a test on the IUT or gen-
erates a TTCN-3 test case. On-the-fly testing can either be random or directled by
coverage criteria (condition coverage, branch coverage as well as transition or state
coverage on the level of UML). Testing with Qtronic (both on-the-fly and test case
generation) does not necessarily terminate, but can be guided by use cases. The doc-
umentation of Qtronic leaves open, how test cases can be parameterized with custom
data other than that needed for the aforementioned coverage criteria or boundary
value analysis.

126 Chapter 5 Behavior Adaptation in Testing

Chapter 6
BAIT in Action

Um zu erkennen, ob das Bild wahr
oder falsch ist, miissen wir es mit
der Wirklichkeit vergleichen. [...]
Ein a priori wahres Bild gibt es
nicht.

(Ludwig Wittg_enstein)

n the course of the previous chapters, we had developed a theory for testing reac-

tive systems with data using data abstractions, enumerative test case generation

and constraint solving. Furthermore, we have extended this theory to the execution

of parameterized test cases and have developed a tool, BAiT, which supports our

testing approach. In this chapter, we will evaluate the use of this tool at hand of two
case studies.

The first case study regarded in this chapter is formed by testing an ATM. It is an
academic example, which evaluates the possibility of BAIT to support the selection
of interdependent data and to adapt to unforeseen reactions of the IUT during a
test run. The ATM is initialized with a Personal Identification Number (PIN) and a
certain balance. Then the user selects an amount of money and the ATM hopefully
returns this amount in a certain denomination of bank notes. First of all, the amount
of money chosen, the balance of the bank account and the money emitted by the
ATM depend on each other. This part is thus a show case for data selection in BAIT.
Finally, the denomination chosen by the ATM is specified in a way, that we cannot
clearly foresee the ATM's exact reaction on a certain user input. This issue adds the
behavior adaptation to the first case study.

The second case study shows the use of BAIT in an industrial context, testing a part of
the webbrowser Mozilla Firefox (Calamé and van de Pol, 2008). In this case study, we
test the web page rendering capabilities of a real-life application. In order to do so,
we developed a wrapper around the Firefox rendering component Gecko and spec-
ified a fragment of the CSS box model of the World Wide Web Consortium (W3C).
This wrapper facades Gecko and serves as the IUT during the test with BAIT.

In the remainder of this chapter, we will discuss the two case studies in detail. We
will describe the ATM in Section 6.1 and the Firefox case study in Section 6.2.

6.1 A Behavior-oriented Case Study: ATM

This section serves as a tutorial for the test generation and execution process of BAIT.
As an example, we present a simple ATM. We will first model the system and after-

128 Chapter 6 BAIT in Action

wards discuss in detail the inputs, outputs and general steps to be taken for test
generation and execution.

6.1.1 Automatic Teller Machine

User ATM Card

getPin() initPin()
alt

pinincorrect

cardBlocked

initBajance()

alt getSaldo

retSaldo()

getAmount()

alt

retLowSaldo

retFifty()
retTwenty()
retTen()

emitBankNotes

Figure 6.1: Components of the ATM

The system that we use as our case study consists of several components whose
communication is shown in Figure 6.1. The main component is the ATM itself. It is
a reactive system in an environment, which contains a user of the machine, and the
user’s bank card. While the bank card communicates unidirectional with the ATM,
the user interaction is a bidirectional communication.

The full specification of the ATM is shown in Figure 6.2 as a UML state chart. Inputs
to the system are attributed with a question mark, outputs from the system with an
exclamation mark. When the user inserts his card, the user’s PIN is initialized. The

6.1 A Behavior-oriented Case Study: ATM

129

tries:=3
X

Idle

?initPin(pin)
X

Pininitialized k

?getPin(pin2)

[pin<>pin2 and tries=0]) [pin<>pin2 and tries>0[

[pin=pin2]
tpinincorrect !pinCorrect
- - A
IncorrectPin CorrectPin

?initBalance(bal)

X

Balance

Initialized - IretSaldo(bal)

?getAmount(amt)

Y

PayOutRequest

IcardBlocked \
Y. [balzamt] |
[bal<amt]
IretLowSaldo(bal)

¥ .
- [=
‘4.)‘ lemitBankNotes [amt=0]

?getSaldo

tries:=tries-1;
Ipinincorrect;

ItryAgain
Saldo
Requested
[amt>=f*50]
» tretFifty(f);
PayOut s amt:=amt-f*50
-

[amt>=1*20]
IretTwenty(t);
amt:=amt-t*20
[amt>=t1*10[
retTen(t1);
amt:=amt-t1"10

Figure 6.2: Specification of the ATM

130 Chapter 6 BAIT in Action

user then has to enter the correct PIN. If he succeeds, the ATM sends the message
pinCorrect and the process can go on; otherwise the message pinIncorrect followed
by tryAgain or — after the third mismatch — cardBlocked is sent.

If the user has entered the correct PIN code, his bank account balance is initialized
and the user may choose either to review his saldo or to withdraw a particular
amount of money. When he chooses the latter option, he either gets the message
retLowSaldo, if he asked for more money than was actually on the account, or the
machine starts paying out.

Paying out money is left nondeterministic in this specification: The machine pre-
pares a certain amount of 50€, 20€ and 10€ bank notes for emission and emits
them when they sum up to the requested amount of money. Hereby it is left open in
which order and how many of the single bank notes will be emitted. This decision is
made later during the implementation of the ATM and will serve as the example for
the adaptation of test execution.

6.1.2 Test Generation and Test Execution

In Section 5.2.2, we have already provided a short discussion of the necessary arti-
facts for test generation and execution with BAiT:

e System Specification
e Test Purpose

o Proxy Classes

o IUT

We will now shortly describe these artifacts. For more detail, we refer the reader to
Calamé (2007).

The Test Purpose

In our test, we want to validate that after entering the correct PIN code, we will
eventually get some money (even more precisely: we do receive some 10€ bank
notes). This scenario is formulated as the test purpose in Figure 6.3. It accepts
the occurrence of emitBankNotes after entering a correct PIN code (sequence getPin,
pinCorrect) and retTen, the preparation of 10 € bank notes for emission. The occur-
rence of pinIncorrect in test traces is refused, i.e. it is not in the focus of this test.

A test purpose does not define the complete trace, as it would be executed during
test execution. It rather defines relevant actions in the order, in which they should
appear during the test (in our case: retTen after pinCorrect). Those actions, which
are missing in the test purpose, but are relevant during execution, like getAmount in
our example, are automatically completed during test generation.

6.1 A Behavior-oriented Case Study: ATM 131

pinlngbrrect

Figure 6.3: Test purpose for the automatic teller machine

Generation of Test Cases and the Test Oracle

After having specified the IUT and having set the test purpose, test generation can
start. It is a process, which is mainly — in many cases fully — automated, and which
has already been discussed in depth in Chapter 4 with an exemplary case study in
Section 4.5.

Simultaneously with the generation of test cases, the test oracle is generated. This
generation is based on the theory from Chapter 3 and has been worked out in Sec-
tion 4.4.

Proxy Classes

The last step before test execution is the implementation or generation of two proxy
classes between the generic part of BAIT and the IUT. At this point, we will concen-
trate on the implementation of the ATM case study. Details on the implementation
of the proxy classes are given in Calamé (2007).

Implementation of the IUT The ATM is realized as the (procedure-call-based) Java
classes CATM and CATM_faulty (Figure 6.4, package atmv3), which are based on two in-
terfaces. The interface IATM, which is implemented by CATM and CATM._ faulty, declares
those actions which serve as input to the ATM, while IATMUser declares the output ac-
tions. In order to realize the bidirectional communication between the ATM and its
environment on a procedural level, the ATM has been realized following the Ob-
server Pattern described by Gamma et al. (1995). The number of possible subscribers
to emitted events is in our case limited to one. There are two additional methods
attach() and detach() in IATM to subscribe a component (i.e. the tester) to or unsub-
scribe it from the events emitted by the ATM.

The interface IATMUser must be implemented by the tester, who must also be attached
to the IUT. This leads us to the implementation of the test adapter ATMProxy from

132) Chapter 6 BAIT in Action

testatmv3 nl.cwi.sen2.bait

4 TestCATM + + 9 RunTest

Y

+ - ATMProxy

atmv3

A X

<<interface>> <<interface>>
IATMUser IATM

5

CATM

Figure 6.4: IUT (classes CATM and CATM_faulty) and tester

Figure 6.4. ATMProxy implements the interface IATMUser, i.e. an implementation is
provided for all output actions of the IUT. This implementation does nothing more
than logging the action name and all actual parameters received from the IUT.

With CATM and ATMProxy we have nearly all necessary ingredients to run a test. What
we are still missing is the initialization of the IUT and the creation of a proxy object.
Therefore, we have to implement or generate the class TestCATM, which initializes
both the IUT and its proxy. Furthermore, it may define basic settings for the test, like
a mapping between datatypes in the specification language and in Java.

6.1.3 Test Execution

After having compiled the IUT and the two Java classes on the tester side, we can
now execute the test cases. For this case study, we implemented two mutants of the
ATM. CATM works correctly, returning 50 €, 20 € and 10€ bank notes, such that the
customer not only receives notes of the largest denomination, but also of the smaller
ones. This means, that a request for 100 € will result in one bank note at 50 €, two at
20€ each and one at 10 €. The faulty implementation of the ATM, CATM_faulty, does
not return enough bank notes of the smallest denomination.

When we now execute the test for the correct ATM, we will first be asked to define
the values for some variables:

6.1 A Behavior-oriented Case Study: ATM 133

Pin in {[-Infinity .. Infinityl} => 5
Bal in {[0 .. Infinity]} => 1000
Amt in {[0 .. 1000]} => 100

This happens, since in the default settings test data is instantiated interactively - this
could be automated. After entering the values from above, the test will be executed:

May 25, 2007 3:09:56 PM nl.cwi.sen2.bait.RunTest executeTest

INFO: Trying: [init],initPin(5),getPin(5),pinCorrect, \
initBalance(1000),getAmount(100), [tau],retTen(10),emitBankNotes

May 25, 2007 3:09:56 PM nl.cwi.sen2.bait.RunTest executeTest

INFO: Expected: retTen(10), received: retFifty(1l) -> Trace failed, \
trying alternative.

May 25, 2007 3:09:56 PM nl.cwi.sen2.bait.RunTest executeTest

INFO: Executed so far: [init],initPin(5),getPin(5),pinCorrect, \
initBalance(1000),getAmount(100), [taul,retFifty(1), retTwenty(2), \
retTen(1l),emitBankNotes

May 25, 2007 3:09:56 PM nl.cwi.sen2.bait.RunTest executeTest

INFO: Trying: [init],initPin(5),getPin(5),pinCorrect, \
initBalance(1000),getAmount(100), [tau],retFifty(1), retTwenty(2), \
retTen(1),emitBankNotes

May 25, 2007 3:09:56 PM nl.cwi.sen2.bait.RunTest executeTest

INFO: Test finished; executed: [init],initPin(5),getPin(5), \
pinCorrect,initBalance(1000),getAmount(100), [taul, retFifty(1),
retTwenty(2), retTen(1),emitBankNotes

May 25, 2007 3:09:56 PM nl.cwi.sen2.bait.RunTest executeTest

INFO: The test case ended with verdict PASS.

-~

The first thing to remark is, that both the parameters for initPin and getPin have
been instantiated, even though we only provided one value for them. The reason is,
that the variable instantiator only tries to instantiate variables, which are not yet de-
fined and whose values cannot be derived from other variables. Since the parameter
for getPin could be derived from the parameter for initPin — they have to be equal
for the test to result in a Pass verdict — it is silently instantiated and the test engineer
is not asked again.

The second thing to remark is, that the tool first tries to execute the shortest trace
to Pass in the test case (first INFO line). This fails (second INFO line), since the im-
plementation returns one 50 € bank note as explained earlier, instead of ten 10€
notes. Thus test execution must be adapted. In the third INFO line, one can see the
events sent to and received from the IUT up to now, including the yet unprocessed
actions retTwenty(2), retTen(1) and emitBankNotes. In the next INFO line, the alter-
native trace is shown, which will be executed further. Since it matches exactly with
the results received from the IUT, the test ends with a Pass verdict (last line).

134 Chapter 6 BAIT in Action

Adapting test execution to the output of the IUT does not necessarily lead to a pass-
ing test, as we can see below. Adaptation does not lead to Pass here, since the con-
straint to receive enough money from the ATM is violated in the test of CATM_faulty
and thus the test ends with a Fail verdict.

May 25, 2007 3:06:19 PM nl.cwi.sen2.bait.steps.TraceImpl merge

FINE: Pruning planned test trace.

May 25, 2007 3:06:19 PM nl.cwi.sen2.bait.RunTest findTrace

FINER: Examining: [init],initPin(Pin),getPin{PinUser},pinCorrect, \
initBalance(Bal),getAmount (Amt), [tau], retTen(Twe),emitBankNotes

May 25, 2007 3:06:19 PM nl.cwi.sen2.bait.steps.TraceImpl solve

FINEST: init(Gl),initPin(G1,G2,lparam(nat(Pin))),[...]

[Pin in {[-Infinity .. Infinity]} => 5]

May 25, 2007 3:06:21 PM nl.cwi.sen2.bait.steps.TraceImpl solve

FINEST: init(Gl),initPin(G1,G2,lparam(nat(5))),[...]

[...]

May 25, 2007 3:06:26 PM nl.cwi.sen2.bait.RunTest executeTest

INFO: Trying: [init],initPin(5),getPin(5),pinCorrect, \
initBalance(1000),getAmount(100), [tau], retTen(10),emitBankNotes

May 25, 2007 3:06:26 PM nl.cwi.sen2.bait.RunTest executeTest

FINE: initPin(5) -> OK

[...]

May 25, 2007 3:06:26 PM nl.cwi.sen2.bait.RunTest executeTest

FINE: retTen(10) -> NOT OK

May 25, 2007 3:06:26 PM nl.cwi.sen2.bait.RunTest executeTest

INFO: Expected: retTen(10), received: retFifty(1l) -> Trace failed, \
trying alternative.

May 25, 2007 3:06:26 PM nl.cwi.sen2.bait.RunTest executeTest

INFO: Trace deviated; executed so far: [init],initPin(5),getPin(5), \
pinCorrect,initBalance(10600),getAmount (100}, [tau],retFifty(1),
retTwenty(2),retTen(0),emitBankNotes

May 25, 2007 3:06:26 PM nl.cwi.sen2.bait.steps.TraceImpl merge

FINE: Pruning planned test trace.

May 25, 2007 3:06:26 PM nl.cwi.sen2.bait.steps.TraceImpl merge

FINE: Adding retFifty(1l) to trace stub.

[...1

May 25, 2007 3:06:26 PM nl.cwi.sen2.bait.steps.TraceImpl merge

FINE: Adding emitBankNotes to trace stub.

May 25, 2007 3:06:27 PM nl.cwi.sen2.bait.RunTest executeTest

INFO: Test finished; executed: [init],initPin(5),getPin(5), \
pinCorrect,initBalance(1000),getAmount(100), [tau],retFifty(1), \
retTwenty(2),retTen(0),emitBankNotes

May 25, 2007 3:06:27 PM nl.cwi.sen2.bait.RunTest executeTest

INFO: The test case ended with verdict FAIL.

-~

6.2 A Data-oriented Case Study: Mﬁilla_Gecko 135

6.2 A Data-oriented Case Study: Mozilla Gecko

In this section, we want to apply conformance testing to testing rendering engines of
web browsers. In state-of-the-art web design, content and design are kept separate
from each other. Content is defined in the Hypertext Markup Language (HTML),
while the design is specified in a Cascading Style Sheet (CS5), which we will de-
scribe in Section 6.2.1. When a web page is rendered, the information from the CSS
is used to position elements of content on the rendered page. If a web document has
a complicated structure, rendering algorithms can turn out to be erroneous, leading
to “broken” web pages with mispositioned elements. Rendering a modern web ap-
plication, whose appearance is dynamically changed on the client side using script
languages, like web applications based on Asynclironous JavaScript and XML (AJAX;
Zakas et al., 2006), is even more demanding for rendering engines. Performing a
sufficient conformance test in this context is tedious, so that an automated solution
is preferable. In this paper, we present a feasibility study for automated testing of
rendering engines using the test tool BAiT.

Here, we validate the applicability of BAiT (Calamé, 2007; Calamé et al., 2007a), a
blackbox test execution tool for nondeterministic, data-oriented reactive systems, to
test the rendering engine of a web browser w.r.t. the positioning of boxes in the CS5
box model. Boxes in HTML are entities like for instance a complete HTML document
(body element) or a paragraph (elements p or div), which contain content or other
boxes and which are positioned either absolutely or relatively to each other. The box
model is part of the W3C CSS Specification (W3C, 2007, Section 8).

We present a feasibility study, applying conformance testing using BAIT to the ren-
dering engine Gecko!, which is used by the open source web browser Mozilla Firefox?.
In order to perform the tests, we formalize the CSS specification and design test pur-
poses. Furthermore, we implement a wrapper component between the tester and
Gecko in order to achieve a mapping between an action-oriented specification and
the document-oriented rendering engine. For several setups of web pages, we then
automatically generate parameterizable test cases. Those test cases can be instanti-
ated with varying data settings for the positions of boxes, so that they are reusable
for different page layouts. Then, the test cases are executed automatically against
the test wrapper and the results retrieved from Gecko are interpreted in order to au-
tomatically assign verdicts.

Related Work There exists a number of static test suites for the rendering capabil-
ities of web browsers. Each of those test suites consists of a set of HTML and €SS
documents with different page layouts. The most well-known one is probably the
ACID 2 Test®. Tt tests web browsers for their full compliance to the actual version of
CSS by rendering a web page with a vast amount of CSS features enabled.

1 http://www.mozilla.org/newlayout/
thtp ://www.mozilla.com/en-US/firefox
3http://www.webstandards.org/action/acid2/

136 Chapter 6 BAIT in Action

Another set of test suites for the standard compliance of web browsers are the W3C
Cascading Style Sheets Test Suites*. Here, again, we have a set of static documents,
which test rendering capabilities for distinct features of CSS. Finally, Mozilla Firefox
itself provides a set of static layout regression tests’, which can be run in debug
builds of the software.

Most of the named test suites are, however, not automated. In fact, the files in the
test suites, i.e. the test cases, have to be loaded into the browser and then the result
of rendering the page has to be visually assessed. This process is not automatic at all,
neither on the level of test case generation, nor on that of test execution. This means,
that a certain amount of test cases has to be designed and executed manually and
the results have to be visually evaluated. This process is time-consuming compared
to an automated test process, where test cases — or at least test data — is generated for
a number of standard and critical cases. In this case, the number of test cases to be
generated and executed can be optimized in order to reduce the absolute number of
test cases. The regression tests of Mozilla Firefox are at least automated on the level
of test execution, however, they are still founded on a static set of test cases.

The approach, which we propose in this section, provides not only an automated
test execution and evaluation of rendering results for a fragment of the CSS features,
the box model, but also an automatic generation and variation of tested web page
layouts. We chose this fragment, because rendering results, i.e. the position of a box,
can be objectively measured (in pixels) rather than having to be visually assessed.
The approach of a fully automatic test case generation and execution has the advan-
tage regarding the other named approaches, that the executed test cases can cover
more variation w.r.t. data parameters (i.e. the position of boxes), but also regarding
the structure of the rendered web pages. The first issue enables us to reuse equally
structured test cases (i.e. web pages) and by that to reduce the number of generated
test cases. The latter allows us to test rendering web pages with a different interrela-
tion of elements and by that cover a larger variety of possible failures in the IUT.

We are aware of several case study reports of model-based testing, concerning topics
like the Conference Protocol (Belinfante et al., 1999), the Storm Surge Barrier in the
Netherlands (Geurts et al., 1998), smart card applications (Clarke et al., 2001), the
telecommunication sector (Born et al., 2004) or — vertical to our work - the generation
of test purposes for the Session Initiation Protocol (Aichernig et al., 2007). To the best
of our knowledge, however, this is the first application of model-based automatic test
generation and testing techniques to document-centered applications, esp. to HTML
rendering engines.

6.2.1 The Test Environment

The test environment for our case study consists of two main components, which we
will introduce in this section. On the one hand, we have the tester, which controls

*http://www.w3.org/Style/CSS/Test/
qhttp ://www.mozilla.org/newlayout/doc/regression_tests.html

6.2 A Data-oriented Case Study: Mozilla Gecko 137

the run of the experiment. On the other hand, we have the IUT. This is the object
under consideration, which we will actually be testing throughout the case study.
Finally, we will give an introduction to the CSS box model.

Firefox and Cascading Style Sheets

Firefox Mozilla Firefox is a stand-alone web browser, which has its roots in the
Netscape Communicator from the 1990s. Most of its code was put under an open-
source license in 1998 and founded the basis for the Mozilla Suite, from which Firefox
arose as a stand-alone browser in 2004.

A web browser reads and interprets HTML structured data to display web pages.
The task of actually displaying is carried out by a rendering component. While
loading a web page, this component incrementally builds up a Document Object
Model (DOM) tree of the HTML document to be displayed together with declarative
layout information. Mozilla Firefox uses the renderer Mozilla Gecko, whose version
1.8.1 we consider in this section as the IUT.

Cascading Style Sheets In the 1990s, a declarative stylesheet language was devel-
oped for structured documents in order to properly divide the content of a web page
from its design. Currently, the de-facto standard for CSS is in version 2.1 (W3C,
2007). This version is currently not fully supported by all web browsers, including
Mozilla Firefox. This issue, however, does not affect our case study.

The CSS design definition for a web page can be provided in three different ways:
as an external CSS file, which is linked to the HTML file of the web page, inline the
HTML web page and inline a particular element of the web page. In the first two
cases, a stylesheet is a collection of blocks of the following form:

element.class#id {property_1: value_1; ...; property n: value_n; }

The literal element denotes one of the possible elements of HTML (W3C, 2002), like
— for simple boxes — div or span. The literal class denotes a user-defined specializa-
tion of an HTML element, while id denotes a user-specific identifier for a particular
occurrence of this element in an HTML document. For each of these elements, we
can now define pairs of properties and values.

Figure 6.5 shows a small example: Boxes of class warning are rendered with a red
border and red text. The one warning box, with the identifier warningl, additionally
has the text in italic. Since this box is a warning box, too, it also takes over all proper-
ties from the warning boxes (red border and red text). As a result, the shown HTML
code fragment is rendered as two red boxes, embedded into each other, of which the
inner box has italic text.

If a CSS design definition is provided in a separate file, it is linked to the web page
by using the 1ink element of HTML in the following way:

138 Chapter 6 BAIT in Action

Web page content (HTML): Web page layout (CSS):
. div.warning {
<div class="warning"> border-style: solid;
e border-color: red;
<div class="warning" color:red;
id="warningl">...</div> }
v div.warning#warningl {
</div> font-style: italic;
}

Figure 6.5: Two differently formatted boxes

<link rel="stylesheet" type="text/css" href="mycss.css" />

CSS information can also be provided inline the HTML document by nesting it in
a style element. Inline CSS on HTML element level omits the block structure from
Figure 6.5. The definition of the outer box from the figure using CSS inline the ele-
ment itself, as we will study it here, looks as follows:

<div style="border-style:solid;border-color:red;color:red;"></div>

The CSS Box Model

In our case study, we will regard the positioning of div-boxes by the Gecko rendering
engine. Therefore, we have to regard both the dimensions of a box as well as other
parameters, which determine the box’s position or its distance to other elements on a
web page. The interrelation of boxes on a web page is defined by the CSS box model
{W3C, 2007, Section 8), which we will briefly introduce here.

The dimensions of a div-box are essentially determined by two CSS properties: width
and height. Furthermore, a minimum width and height can be defined as well as
their maximum counterparts.

In addition to its width and height, a box also has a number of distances to con-
tained or surrounding content. Those settings are displayed in Figure 6.6. On the
one hand, this is the distance to surrounding content (CSS properties margin or
left-/top-/right-/bottom-margin, resp.). Furthermore, the distance of the box’s bor-
der to any contained content can be defined (properties padding or left-/top-/right-
/bottom-padding, resp.). Finally, the width of a box’s border is defined by the prop-
erties border or left-/top-/right-/bottom-border, resp. We will later come back to
these settings.

Boxes can be positioned in a variety of possibilities. The positioning mode is set in
the CSS property position, which can have one of the four values static, absolute,
fixed and relative. The default setting is static, which does not affect the stan-
dard element flow (top to bottom on the web page). Boxes can furthermore be po-

6.2 A Data-oriented Case Study: Mozilla Gecko 139

lop

Margin

Border
Padding

n Content tight

bottom

Figure 6.6: CSS Box Model (W3C, 2007); box dimensions

sitioned absolutely to either the HTML document under consideration (absolute) or
the viewport, i.e. the browser window or a page in print (fixed). Finally, boxes can
be positioned relative to each other, using the setting relative.

An absolutely positioned box is provided with up to four additional parameters de-
termining its position: a left, right, top and bottom offset. A box, which is posi-
tioned w.r.t. the upper left corner of the HTML document can, for instance, be deter-
mined by a left and a top offset in addition to its width and height. A box with the
lower right corner as its fix point would accordingly be defined using the bottom and
right offset parameters and leaving the other ones undefined. For boxes, which are
overdefined, e.g. by defining a left and a right offset as well as a width, the W3C
documents define the correct handling.

While the position of an absolutely positioned box is only determined by the given
offsets, the position of a relatively positioned box must be computed regarding the
other boxes on the same web page. One issue which determines the position of a
relatively positioned div-box w.r.t. another one is its position in the DOM-tree of the
HTML document. If a box A appears before another box B in the tree, then A is
rendered above or left of B. If A appears after B, then it is rendered either right of B
or below B. Furthermore, A can enclose B, if B is a child node of A in the DOM tree.

The absolute position of the box is then computed as the summation of the other
boxes’ measurements. Assume, the box under consideration is anchored to the up-
per left corner of the web page. Then, its top offset is the sum of all top and bottom
margins, widths of the top and bottom borders and the heights of all boxes above the
one under consideration. The box’s left offset is computed as the sum of all left and
right margins, widths of the left and right borders and the widths of all boxes left
the one under consideration. The right and bottom offsets are left undefined. The
padding of the one box, which surrounds all the mentioned boxes, is taken into ac-
count by assuming, that the top margin of the top-most box and the left margin of
the left-most box is at least as wide as the padding of the surrounding box.

140 Chapter 6 BAIT in Action

6.2.2 Objective of the Case Study

The objective of our case study is to apply BAIT to testing the implementation of
the Gecko rendering engine. BAIT has originally been designed as a tool for the test
of data-oriented reactive systems in general. In this section, we report on a feasibil-
ity study to validate the applicability of BAIT to HTML rendering engines. These
systems (or system components, resp.) are not reactive systems in the original sense.

Reactive systems are based on events being sent forth and back between several
systems. These events can be parameterized with data. A rendering engine works
differently: It is document-centered, i.e. it receives a document and renders it. While
sending the document to the rendering engine is still comparable to the reactive
systems described above, rendering this document is not. It is no reaction in the
original sense, since no evaluable events are sent back from the IUT. The only event
sent back from the renderer states, that rendering is finished, but it does not contain
the actual result of rendering. In many cases, the result of rendering must even be
evaluated visually, while for some aspects, the relevant information can be retrieved
from the rendering engine and can be computer-processed.

Such an aspect are the positions of div-boxes to which we will restrict the test. Rules
for positioning such boxes are defined in the CSS Box Model. We will, however, not
consider the full box model, but restrict to a fragment of it.

First of all, we concentrate on the settings absolute and relative with a binding to
the top left corner of the web page for the possible positioning of boxes. Secondly, we
consider empty boxes of an explicitly defined width and height only in order to keep
the results of rendering predictable by the test oracle. Boxes filled with content may
lead to overflowing content which results in a correction by the rendering engine
based on information about the viewport dimensions and the used font dimensions.
Treating those details in this feasibility study would not be purposeful and further-
more would have required arithmetic division operations, which would complicate
the specification in pCRL. For this reason, we do not regard (overflowing) content
in this case study.

Thirdly, we limit the possible scales used in the design definition of a div-box. Nor-
mally, the position and size of a div-box is determined by distances, which can be
defined in a variety of scales. Some of those some are absolute (pixels, didot points,
pico points, inches, millimeters and centimeters) and other are relative to either the
actual font setting (scales em and ex) or the rest of the page layout (percentages or
the auto setting). In this case study, we only consider absolute lengths of scale px
{(pixel) in order to avoid scale conversions.

Finally, we use a “flat” model in our case study rather than one, which resembles
the whole nested structure of a web page. This means, that we regard only a distinct
box testbox and its absolute position on the web page. When we add another box to
the web page, then we recompute the position of testbox as it has changed due to the
newly added other box. This means for instance, that, if we add another box above
the regarded testbox, the top offset of testbox is recomputed as the summation of the
previous top offset, the top and bottom margins of the new box, the top and bottom

6.2 A Data-oriented Case Study: Mozilla Gecko 141

Tester

J 1

Gecko Wrapper

Gecko

Figure 6.7: Test environment

border width of the new box and the new box’s height. By doing so, we can easily
keep track of the position of the regarded testbox without having to keep the whole
HTML document structure in our model.

Apart from the applicability of BAiT to HTML rendering engines in particular, we
also aim at two other targets with this case study. On the one hand, we want to
test the adaptability of BAIT to nondeterministic behavior of the IUT further by in-
troducing some artificial nondeterminism w.rt. to the system’s feedback about the
rendered boxes. On the other hand, we want to regard the feasibility of uCRL as a
language for the design of test purposes.

6.2.3 Realizing the Test Environment

In order to test Gecko, we first had to create a test environment. This environment,
as schematically depicted in Figure 6.7, consists of a tester and an IUT. In our case,
the tester is the tool BAiT. The IUT is a component named Gecko Wrapper, which
wraps Gecko internally. Both the tester and the IUT are Java components which
communicate with each other using bidirectional procedure-based communication.

In order to generate and run the tests, we also need a system specification of the
CSS box model for Gecko and a test purpose to sketch out the later test cases. While
the design of the tests and hence also that of the test purposes will be the topic of
Section 6.2.5, we will in the remainder of this section discuss the specification of the
boxmodel. Furthermore, we will give some details on the Gecko Wrapper.

6.2.4 Modelling CSS in uCRL

We modeled a fragment of the CSS box model with the limitations from Section 6.2.2
in pCRL. The modeled fragment of CSS allows to position boxes relative to each
other or absolutely. In our model, recursive structures of boxes are flattened by
regarding only one distinct box and its position, rather than a structure of boxes.
Whenever a box is added, only the consequences on the position of the regarded box
are computed and applied.

142 Chapter 6 BAIT in Action

| Action | Functionality]
' Input actions: |
resetBoxes Wipes all boxes and starts again with a fresh document.

setupTestbox Defines the distinctly regarded test box.

putBoxRelative | Puts a box relative to the other boxes yet defined in the actual
HTML document. It can be defined, whether this box appears
left of, right of, above, beneath or around all yet defined boxes.
[Finally, the measurements can be defined. [
putBoxAbsolute | Puts a box with an absolute position.

render Renders the actually defined document and starts returning
results (offsets, see below).

: Output actions:

offsetLeft Returns absolute left offset of test box.
offsetRight Returns absolute right offset of test box.
offsetTop Returns absolute top offset of test box.

| offsetBottom Returns absolute bottom offset of test box.

Table 6.1: Actions for the CSS box model

While rendering a web page is in principle a document-centered task, our specifica-
tion of the box model is behavior-oriented. Hence, we defined a set of input actions,
which allow us to put boxes into a box structure. Furthermore, we defined some
output actions, which provide information about the current offset of the regarded
box to the tester. The actions are defined in Table 6.1.

The system behavior for the CSS box model is specified as follows: As a first step,
a testbox must be set up (setupTestbox). The action setupTestbox accepts parame-
ters, which determine the box’s width and height. Other boxes can be put in the
vicinity of this testbox using the actions putBoxRelative and putBoxAbsolute in any
order. The action putBoxRelative accepts 15 parameters: The first one determines,
whether the box appears above, below, left, right or around the other boxes, which
have yet been inserted into the web page. This parameter is named “position”, but
is actually not related to the position-property of CSS. The next two parameters
determine the box’s width and height. The last 12 parameters, finally, define the
width of the box’s padding, border and margin as depicted in Figure 6.6. The ac-
tion putBoxAbsolute only accepts seven parameters. The first three are identical with
those from putBoxRelative, while the remaining four parameters define the box’s
absolute position on the page w.r.t. the four margins of the web page.

Any of these three actions can be followed by an action resetBoxes in order to delete
all boxes and start from scratch, or by an action render. In this case, the IUT renders
the defined structure of div-boxes. Afterwards, the different actual values for the
offsets of the testbox (left, right, top, bottom offset) are returned by the IUT in an
arbitrary order.

6.2 A Data-oriented Case Study: Mozilla Gecko 143

As we described in Sect. 6.2.2, we only regard a distinct box testbox in the model,
whose position we recompute each time another box is added to the HTML test doc-
ument. The actions putBoxAbsolute and putBoxRelative change this position in the
described way. In Figure 6.8, we give the pCRL code, which relates to the behavior
of putBoxRelative.

The fragment of our specification shows the definition of the action putBoxRelative
within a process PrepareRendering. When putBoxRelative has been invoked, the sys-
tem enters another process, PositionBoxRelative. After a T-step, the system leaves
PositionBoxRelative and goes back to PrepareRendering. While doing so, the new
position of the test box is computed depending on the value of the variable pposition
of the newly positioned box. This leads to a case distinction depending on the posi-
tion of the new box.

Wrapping Mozilla Gecko

Mozilla Gecko can be embedded into custom applications as a component, which
can be programmed using its XPCOM interfaces. The Cross Platform Component
Object Model (XPCOM) is an unmanaged component framework, which is used for
the Mozilla software products (Turner and Oeschger, 2003). Gecko can be embedded
into Java applications. In order to do so, one can either instantiate it directly via its
XPCOM interfaces or embed it indirectly via the Browser component of the Standard
Widget Toolkit (SWT)°.

We implemented a wrapper for Gecko in Java using SWT. The wrapper receives all
actions which place boxes and builds up an internal structure for a test web page.
On action render, the wrapper generates actual HTML and CSS code and sends this
code to the renderer. A window is opened in which rendering takes place.

When rendering is finished, the renderer is queried for the offsets. For this proce-
dure, we followed an existing code example’. In order to query an offset, a short
piece of JavaScript code is generated and executed within the web browsing compo-
nent. This piece of code internally queries for the respective offsets and writes the
result to an (invisible) status bar. When this has happened, the wrapper can read
the value from this status bar in order to store it, and the next piece of JavaScript is
generated and executed (one execution per one of the four offset parameters). Af-
ter all offsets have been queried, the tester is informed by the actions offsetlLeft,
offsetRight, of fsetTop and of fsetBottom in a random order. We chose for a random
order in order to test the adaptation of BAIT to nondeterministic behavior of the IUT,
as we have described in Section 6.2.2.

Uhttp://wew.eclipse.org/swt
'http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/0rg.eclipse.swt.snippets/src/org/eclipse/
swt/snippets/Snippetl60.java

144 Chapter 6 BAIT in Action

PrepareRendering(position : PositionType, relation : RelationType,
width : Nat, height : Nat, offsetLeft : Nat, offsetRight : Nat,
offsetTop : Nat, offsetBottom : Nat) =

LYy oy

prosition: PositionType pwidth:Nat pheight:Nat
putBoxRelative(pposition, pwidth, pheight, pmarginleft,
pmarginright, pmargintop, pmarginbottom, pborderleft,...).
PositionBoxRelative(position, relation, width, height,...)...

PositionBoxRelative(position : PositionType, relation : RelationType,
width : Nat, height : Nat,...)
T.PrepareRendering(...,offsetLeft + pmarginLeft + pborderLeft+
ppaddingleft + pwidth + ppaddingRight + pborderRight+
pmarginRight, ...
<and(eq(relation, relative), eq(pposition, left)) o &
+ T.PrepareRendering(...,offsetLeft, 0, offsetTop, offsetBottom)
<dand(eq(relation, relative), eq(pposition, right)) - &
+ T.PrepareRendering(. .., offsetTop + pmarginTop + pborderTop+
ppaddingTop + pheight + ppaddingBottom+
pborderBottom + pmarginBottom, offsetBottom)
<and(eq(relation, relative), eq(pposition, top)) & &
+ T.PrepareRenderingl..., offsetLeft, offsetRight, offsetTop,0)
<and(eq(relation, relative), eq(pposition, bottom)) & &

Figure 6.8: Excerpt from the CSS box model fragment in CRL

6.2 A Data-o_riented Case Study: Mozilla Gecko 145

6.2.5 Running the Tests
Design of the Test Cases

In the BAIT approach, test generation is based on enumerative test case generation,
so we applied data abstraction on the specification of the system, in order to avoid
space explosion induced by the many unrestricted numerical parameters of the input
actions setupTestbox, putBoxAbsolute and putBoxRelative.

The second step was to design test purposes. We designed two test purposes, of
which one traditionally directly as an LTS, while the second one was specified in
LCRL as was the system itself. According to the first test purpose, we set up a test-
box, put at least one more (relatively positioned) box in its vicinity and render the re-
sulting HTML document. Having done so, we expect the system to return atleast the
top offset of the testbox. The second test purpose is designed a bit differently, since
we still wanted to experiment more with BAiT’s capability of behavior-adaptation
during a test run. For this purpose, the test purpose was designed to expect at least
the left offset of the testbox and to refuse an action offsetBottom following directly
on the render action. This refusal in combination with the absolutely random order
of of fset-events from the IUT leads to more situations in which BAIT will be led into
a trace to an Inconc verdict, from which it will try to find an alternative trace to a
Pass verdict. It will, however, never find such a trace and it will have to give up,
terminating with verdict Inconc. Since the generated test cases can contain loops,
BAIT might search for a trace to Pass without ever terminating. This issue has been
solved by introducing a configuration option for BAIT, which defines the maximum
amount of traces to search for before giving up and assigning Inconc. This second
test purpose is shown in Figure 6.9 as a pCRL specification and an LTS.

In a third step, we generated CTGs with TGV. The abstracted system specification
as input to TGV was quite manageable with its 17 states and 57 transitions, so that
the generation process took place within negligible time. For the first test purpose,
generation resulted in a CTG with 25 states and 70 transitions. The second test pur-
pose put more restrictions on the behavior of the IUT during the test, so the number
of transitions in the resulting CTG was reduced to 59; the number of states increased
slightly to 28. In general, these numbers are relatively low, a circumstance which
does not astonish if one keeps in mind, that we regard only the behavior of a highly
data-intensive system after data abstraction. The main work, as we had already re-
marked earlier, is the data selection during test execution.

Test Execution

Based on the generated CTGs, we ran some tests with BAIT and the Gecko wrap-
per. We used the default trace search algorithm of BAIT in order to select test traces
through the CTGs. This algorithm searches only for traces to Pass, using a breadth-
first search. Having automatically selected a trace to Pass, we then selected data
for the different parameters of the box positioning actions and executed the trace.

146 Chapter 6 BAIT in Action

Test purpose in uCRL:

proc PASS = ACCEPT.PASS
FAIL REFUSE.FAIL
PutBox render + putBoxRelative.PutBox
TP = setupTestbox.putBoxRelative.PutBox.
(offsetLeft.PASS + offsetBottom.FAIL)

i

init TP

Resulting test purpose as LTS before adding placeholders for action parameters:

Figure 6.9: A test purpose both in nCRL and as an LTS

During the different test runs, we found a few failures. However, those failures were
induced by faults in the used model rather than by the IUT itself. After having elim-
inated the faults, we did not find any more failures in the IUT.

As expected, the test runs based on the first CTG always ended in a Pass verdict,
after we had corrected the model. The test runs based on the second CTG, randomly
went to a Pass or an Inconc verdict. This behavior was dependent on whether
the wrapper returned an offsetBottom event before (Inconc) or after (Pass) the
offsetleft event (cf. the description of the second test purpose). Since the order
of events was implemented in the wrapper to be random, the assignment of verdicts
was also as expected a priori.

Chapter 7

Bug Hunting with False Negatives

Sometimes you're the windshield,
sometimes you're the bug.

(Dire Straits)

e had discussed the application of testing to software quality assurance in the

previous chapters. While model-based conformance testing is a rigorous and

well-established approach to find faults in a software system, it has, however, one

major deficiency: It tests whether an implementation of a model conforms to this
model, no matter, whether the model itself is correct.

A correct software specification or model accurately resembles the requirements one
has with respect to the modeled software product. In order to verify this, the tech-
nique of model checking (Clarke et al., 1999; Bérard et al., 2001) has been developed.
Model checking takes as input a formal model, like a transition system, and a logi-
cal formula, which defines the requirement under consideration. Then, the model is
checked whether it satisfies the requirement, and the model checker returns a coun-
terexample, if this is not the case. At the hand of this trace, the responsible bug can
be traced back.

Model Checking and Abstractions

As we could already see from the previous chapters, abstractions are widely used to
reduce the state space of complex, distributed, data-oriented and thus large systems
for verification purposes. The application of abstraction techniques to such systems
also has a great impact on the applicability of model-checking techniques on them.
In this chapter, we want to develop an approach for the verification of data-oriented
systems using temporal logic to express the verified requirements.

In our approach, we focus on abstractions that are used to check satisfaction rather
than the violation of properties. These abstractions are constructed in such a way
that we can transfer positive verification results from the abstract to the concrete
model, but not the negative ones. Since we discuss in this chapter, how to show
the correctness of a system, a positive result means that the system is correct, while
a negative result means that it is not. Positive and negative have thus the exactly
reversed meaning than in the previous, testing-related, chapters. The advantage of
our approach is, that we do not exclude possible bugs from the very beginning of
system validation.

However, counterexamples found on the abstract system may have no counterpart
in the concrete system. This problem had already been discussed in Chapter 4 in the

148 Chapter 7 Bug Hunting with False Negatives

context of software test generation. We will further refer to this kind of counterex-
amples as false negatives. Usually, as has been discussed by Lakhnech et al. (2001) Das
and Dill (2002) and Clarke et al. (2003), false negatives are used to refine the abstrac-
tion and iteratively call the model checking algorithm on the refined abstraction.

In this chapter, we consider false negatives in the context of data abstractions. As
an illustrating example, we use the timer abstraction from Dams and Gerth (1999).
In the course of this abstraction, a certain value k is defined, below which all timer
values are left unchanged, while all values greater than k are mapped to an abstract
value k*. In doing so, the deterministic time progress operation tick (decreasing
the values of active timers by one), becomes nondeterministic in the abstract model,
as can be seen in Figure 7.1. The advantage of this abstraction is, however, that we
only have to regard the k smallest values and the constant k* in order to prove that
a property holds for any value n.

Example7.1. Consider a system, where for some constant value 11, every timer setting
set(n) is followed by n tick-steps before the timer is set again. Being set to a value
n > k, the abstract timer can do an arbitrary number of tick-steps, before it reaches
the value k — 1. Only from there it decreases until it expires at 0.

We now use this timer abstraction to verify an action-based LTL property ((a —
Ob) and obtain the following trace as a counterexample for the abstract system:
a.set(k*).tick?.b.(a.set(k").tick?.d)*.

The timer abstraction has obviously affected the parameter of the set action, so that
the number of tick-steps following set(k*) is not fixed anymore. As a result, this
trace is a false negative, since it does not reflect any possible trace of the original
system (remember the constant n).

tick

. tick [T\ tick tick O
é K} » k-1 > . » 0
__/

Figure 7.1: Abstracted timer

Assuming that the trace a.set(n).tick™.b.(a.set(n).tick™.d)* exists in the original
system, the false negative still contains a clue for finding this concrete counterexam-
ple. We can relax the found abstract counterexample by using the information that
the operations on timers are influenced by the timer abstraction and check whether
the concrete system contains a trace matching the pattern a.any*.b.(a.any*.d)*,
where any represents any action on timers. We call such a pattern a violation pattern.
Note that any trace matching the violation pattern violates our property of interest.
The pattern contains a cyclic part, and it is more restrictive than the negation of the
property. Therefore, when enumerative model checking is concerned, it is easier to
find a trace of the concrete system satisfying the pattern than one that violates the
property.

7.1 Linear Temporal Logic 149

Figure 7.2: Violation pattern approach

In this chapter, we propose a framework developed in Calamé et al. (2007b) that sup-
ports the bug hunting process described in the above example. In this framework,
we apply a combination of abstraction, refinement and constraint solving techniques
to process algebraic specifications. The framework is illustrated in Figure 7.2 where
M denotes the concrete system, 9> stands for an abstraction of 9, ¢ is the property
in question and ¢* is its abstraction. When checking whether the abstract system
satisfies the abstract property, we may obtain a counterexample having no counter-
part in the concrete system (the set (I*\M) N —¢). Given the counterexample, we
relax actions influenced by the data abstraction and construct a violation pattern that
represents a set of traces violating the property and resembling the counterexample.
For this to work, we need an accurate analysis of contracting and precise abstrac-
tions as developed by Kesten and Pnueli (2000). In short, contracting abstractions
abstract a system property in a way, that less traces fulfill this property, while precise
abstractions do not affect fulfilling traces.

To check whether there is a concrete trace matching the violation pattern, we trans-
form the violation pattern and the specification of the concrete system into a con-
straint logic program. Subsequently, a constraint solver is used to find a concrete
trace matching the violation pattern, if such a trace exists.

The rest of the chapter is organized as follows: In Section 7.1, we give a brief overview
on LTL. In Section 7.2, we define a next-free action-based LTL and extend it by data.
In Section 7.3, we work out abstractions of LTSs and of eALTL properties. In Sec-
tion 7.4, we present a taxonomy of counterexamples, of which we select the false
negatives to build up a bug hunting framework and discuss its correctness in Sec-
tion 7.5. In Section 7.6, we give an example for the implementation of this frame-
work. Finally, we discuss related work in Section 7.7.

7.1 Linear Temporal Logic

Requirements to a system, also named system properties, are formally noted as logi-
cal formulae in a temporal logic. A temporal logic extends static logic (“It is raining.”

- {T, L} by the dimension of time, so that the status of the described objects can
change over time. Such a temporal formula, like “The sun is shining, but at some

point in future, it will be raining.” can be evaluated to a static value from the range

150 Chapter 7 Bug Hunting with False Negatives

{T, L}, i.e. even though the status of the described objects changed dynamically, the
value of the formula does not.

There exist several theories for temporal logic, of which the one discussed in this
thesis is the Linear Temporal Logic (LTL) as it has, for instance, been described in
Clarke et al. (1999). In LTL, formulae over traces in a system can be formulated,
which state requirements from states of the system. Besides the standard operators
for first-order logic, LTL also provides operators which describe the development
of a requirement on the temporal dimension of the trace under consideration. In
particular, those operators allow to formulate

e what is the requirement for the next state,

e what is the requirement for a state sometime in the future,
e what should always hold on a trace, and

o what should hold until something else holds.

The latter operator even exists in a stronger and a weaker form, either requiring the
second statement to hold at some point in future, or not. While in other theories,
temporal statements can be made about sets of traces within a system, LTL formulae
can only be formulated for all traces. Finally, there also exists a subtheory LTL x,
which defines an LTL without the next-operator, the first item in our list. In the
remainder of this chapter, we will address a next-free theory.

7.2 Action-based LTL and Data

The classical temporal logics like Linear Temporal Logic (LTL) are state-based. This
means that they consider the states of a system as the objects under consideration,
not the transitions between these states. This perception is not always optimal, and
so Giannakopoulou (1999) developed an action-based variant, Action-based Linear
Temporal Logic (ALTL), which considers transitions rather than states. In this chap-
ter, we propose a data extension for ALTL, eALTL. This logic specifies system prop-
erties in terms of events parameterized with data. Here, we first define action formu-
lae, their satisfaction, and then define e ALTL.

With an action formula, statements can be made on the level of single action labels
in an LTS using the standard boolean operations for T, negation, conjunction, and
disjunction. Furthermore, the statement can be made, whether an action satisfies
requirements regarding the action’s name and its parameters. The latter is expressed
as the membership in a particular set.

Definition 7.2 (Action Formulae). Let x be a variable from Var, expr be a boolean
expression from Exprs and a be an event from Events. The syntax of an action
formula (is defined as follows:

Cax=T Halx) | expr(x)} | =C| LA LI LV T

7.2 Action-based LTL and Data 151

We will use a(x) as an abbreviation for {a{x) | T} and a(d) as an abbreviation for
{a(x) | x = d}. We do not impose any limitations on the set of boolean expressions.

Definition 7.3 (Interpretation of an action formula). Let A € A and ¢ be an action
formula. The satisfaction of ¢ on A is defined as follows:

AE T always

A E {a(x)|expr(x)} if there exists some d € D s.t.
A =a(d) and [exprlixma =T

A E —C ifnotA = ¢

AE GAQG ifAEGand A E G

AE GVQ ifA=CGiorAkE (2

The next two definitions extend the scope of action formulae to traces. In order to
do so, we introduce the notion of eALTL formulae, which allow, besides action for-
mulae and the standard boolean operations, to express the temporal dimension of
a requirement to a system. In particular, we introduce the operators [J for require-
ments on every action of a trace, ¢ for requirements on an action somewhere in the
future of the current trace, and the two operators U (until) and R (release). The latter
two operators regard two properties of which one holds until the second one holds.
With U, the second property must hold at some point, with R, this second property
holds optionally.

Definition 7.4 (eALTL Formulae). Let { be an action formula. The syntax of eALTL
formulae is defined by the following grammar:

Gu=Cl=¢ |0 [00| dAD GV | dUD | dRO

Remark 7.5. As we will see later in this section, the theory would also work without
[J, O and R being explicitly defined. However, we define them here for reasons of
convenience.

Definition 7.6 (Semantics of eALTL). Let 7 be an infinite trace, ¢, be eALTL formu-
lae and ¢ be an action formula. Then:

C ifn(ll = ¢

- ifnotntE &

Od ifvie N\{0}: ' = o

Od ifdie N\{0}: ' =

O¢AY ifnEdandrn P

VY ifnEdornEY

$UY if there exists k € IN \ {0} such that
forall0<i<k:7m' = ¢pand 7* =P

n E Ry ifif (sic!) forany i € N\ {0}« $ 1, thennt' = ¢

A3 33 33-A
T T T TTTT

152 Chapter 7 Bug Hunting with False Negatives

Let M = (I, A, A, Ginit) be an LTS. We say that M = ¢ if and only if © = ¢ for all
traces 7t of M starting at oini. We can identify the following equivalences:

L -T; (7.1)

0 = TUY; (7.2)
o = —0—d; (7.3)
b=V = —dVy; (7.4)
ORY = —(=pU—p). (7.5)

eALTL is suitable to express a broad range of property patterns like occurrence,
bounded response or absence {Dwyer et al., 1999).

7.3 Abstracting eALTL

In this section, we present an abstraction mechanism based on homomorphisms as in
Clarke et al. (1994) and Kesten and Pnueli (2000), and adapted to an action-based set-
ting. Abstracting a system leads to a smaller state space, which can thus be examined
easier. However, model checking an abstracted system also requires the abstraction
of the properties that have to be checked. We will first present the abstraction of
systems and then the abstraction of eALTL properties.

7.3.1 Abstraction of a system

The basis for the abstraction is a homomorphism « = (h, h,) defining two abstrac-
tion functions which regard states and actions of an LTS (Van de Pol and Valero
Espada, 2004; Clarke et al., 1994). The function hy : I — I maps the states of a
concrete system I to abstract states. The function h, : A — A% does the same
with the action labels of 9. Abstracting a system using homomorphisms has been
introduced in Section 2.5.

Definition 7.7 (Abstraction Homomorphism). Let abstraction o« ‘hg, hy) for au-
tomaton M = (X, A, A, oinie) be given. We define «() to be (Z%, A%, A% hy(Ginit)),
where 6 X 6% € A% if and only if o Mo e A, for some o, ¢ and A such that
hs(o) = 0%, h(6) = 6%, and hy(A) = A%, []

Now, we have to consider trace inclusion again. In order to preserve all behavior
of the original system in the abstract system, we have to make sure, that there are
abstract counterparts for all traces of the original system.

Definition 7.8 (Trace Inclusion w.r.t. «). Let « = (hy,hg) be a homomorphism. As-
suming a trace 7t € [M]races, we define * = hy(7t) with hq(7)[i] = hy(n[i]) for all
ie N\ {0}

We say that M C, M* if and only if for every trace m of M there exists a trace
a(7) € Efmaxtraccw 0]

7.3 Abstracting eALTL 153

Figure 7.3: Abstraction requirement for LTSs

It is well known that homomorphic abstractions lead to overapproximations. In par-
ticular, the abstract system covers at least the traces of the concrete system.

Lenuma 7.9. Let 9t be an LTS with homomorphism a. Then 9t C, o(9N). []

Proof. Assume an LTS 9t = (I, A, A, 0init) and an arbitrary trace € [99] taces With
TN [i+1]

its state projection 7t,. This means that Vi € IN : 7, [i] = mgli+ 1] € A

Let us now define an automaton o(9MM) = (£*, A%, A% 6%,) and an abstract trace

™ = o(7t) following Definition 7.8. We now have to prove, that 7™ € [ot(90)]races:

1. In a first step, we have to prove, that 3 = h,(oinit). Traces always start in
the initial state of their LTS, so we can safely claim that 71, [0] = jsi. We have
defined nt* so, that Vi € IN : 1% = hy(n4[i]). For i = 0, this automatically means
that 75 [0] = hs(74[0]) = hs(Oinit)-

TN [i+-1

2. For an arbitrary i € IN, we have 7,i] —— mg[i+ 1] € A. By Definition 7.7,

hy(ma[i+1])
S —

we have h,(m[i]) hg(7e[i + 1]} € A%. So for any i € N, we have

X3 I
i) P a4 1] € A%
From the above, we may conclude, that for an arbitrary trace 7w € [9M]aces there
exists a trace o(7) € [ot(9M)]iraces and that thus M C, «(9N). O

It is often more convenient to apply abstractions directly on a system specification
S than on its transition system 1. Such an abstraction on the level of & is well-
developed within the Abstract Interpretation framework (Cousot and Cousot, 1977;
Dams, 1996; Dams et al., 1997). Abstract Interpretation imposes a requirement on the
relation between the concrete specification & and its abstract interpretation G*. This
takes the form of a safety requirement on the relation between data and operations of
the concrete system and their abstract counterparts (we skip the details). Each value
of the concrete domain I is related by a data abstraction function hy to a value
from the abstract domain D*. For every operation (function) f on the concrete data
domain, an abstract function f* is defined, which overapproximates f. For reasons
of simplicity, we assume f to be a unary operation. Furthermore, we apply only data
abstraction. This means that the names of actions in a system are not affected by the

154 Chapter 7 Bug Hunting with False Negatives

abstraction, i.e. hq(a(d)) = a(ha(d)), so that two actions a(x) and b(y) cannot be
mapped to the same abstract action.

However, applying abstractions directly on a system’s specification & rather than
on its LTS leads to a loss of precision. Let G* be the abstract interpretation of &,
and let M* and 9 be their underlying LTSs. It is well known that 9 is only an
overapproximation of «(91), with a(9) denoting the abstraction of 9t on the level
of LTSs here (cf. Clarke et al., 1994). In particular, we will still have trace inclusion
up to o: M Co (W) T M*.

7.3.2 Abstraction of eALTL formulae

The abstraction of eALTL formulae is based on the notions of contracting and precise
abstractions as introduced by Kesten and Pnueli {2000). In a contracting abstraction,
a property ¢* holds for a trace * if and only if the property ¢ holds for all concrete
traces 7t with m* = a(7). Note that for soundness of abstract model checking, we
need contracting abstractions. This does, however, not imply that all properties that
hold for the original system, must also hold in the abstract system (see Figure 7.4,
ellipse vs. the hatched square). In precise abstractions, this cannot happen.

Definition 7.10 (Contracting and Precise Abstraction). Let ¢ be a property over an
alphabet A. Its abstraction ¢ is

contracting if and only if: ¥t € A* : a(7) = ¢ = = .

precise if and only if: Yt € A* : (7)) = ¢* & = .
- |

In the following, we will define an abstraction of eALTL formulae that is guaranteed
to be contracting. We will first consider action formulae. For the standard boolean
operations, as well as for T and L, abstractions are straight forward. The difficult
part are those formulae, where statements are made whether an action label belongs
to a particular set of labels or not. We abstract those as follows: In the positive case,
we preserve the name of the action under consideration, since we only abstract data
here. For parameters, we check whether all concrete data values for the abstract one
fulfill the original data property expr(x). For the abstraction of the negation of such
a set formula, we require either the action name to be different or none of the con-
crete data values for the abstracted parameters to fulfill the expression. This is not
exactly the inverse of the abstracted positive set formula, but we want to achieve
a contracting abstraction as shown in Figure 7.4. Doing so is safer w.r.t. counterex-
amples found for the abstract system, since the abstract system does not fulfill more
properties than the original one.

Definition 7.11 (Abstraction of Action Formulae). Action formulae as defined in Def-
inition 7.2 are abstracted as follows:

7.3 Abstracting eALTL 155

af(T) = T (7.6)

a(l) = 1 (7.7)

af{a(x) [expr(x)}) = {a(x*)]|Vx:hqg(x)=x" — expr(x))} (7.8)

al~{a(x) [expr(x)}) = \/{b(x™)}

b#a

V{a(x™) | Vx: hgq(x) =x* — —expr(x)} (7.9

a(GiNG) = alti) A\ a(l2) (7.10)

(GG V) = all)Vali) (7.11)

[|

Remark 7.12. It will be silently assumed that, due to the laws of De Morgan (1860),
the definition of & can be extended as follows:

a(~(Gi1AC)) =al—~GV-0)= af~6)Val—() (7.12)
(—~(G1V@)) =a—G A—EC) oG) N a(—C2) (7.13)
]

Now, we define the abstraction of e ALTL formulae for traces. The basic principle is to
inductively trace the abstraction of eALTL formulae back to that of action formulae.
For negated eALTL formulae, however, this is not possible, since the abstraction
would then not be contracting anymore. As can be seen in Figure 7.4, the abstraction
of a negated formula «(—¢) is not equal to the negation of an abstracted formula
~oc(). In order to preserve the contraction of our abstraction, we have to transform
negated formulae first into a form, where the negation operator is as innermost as
possible, before we abstract any further. The transformation itself is mainly based on
the equivalences stated in Section 7.2 (and here especially equations (7.3) and (7.5))
as well as the laws of De Morgan from the previous remark.

Definition 7.13 (Abstraction of eALTL Formulae). eALTL formulae as defined in Def-
inition 7.4 are abstracted as follows:

o(Ud) = Ua(d) (7.14)
af(=0Od) = Oal—d) (7.15)
x(Od) Qo) (7.16)
o(=0d) Oo(—d) (7.17)
o(h A1) o) A a(P) (7.18)
(b V) () V a(P) (7.19)
a(pUY) a(b)Ua(P) (7.20)
a(~(pUy)) o(—~¢)Ra(—) (7.21)
o(GRY) o(Pp)Rax(p) (7.22)
—(¢RY)) o=)Uax () (7.23)

156 Chapter 7 Bug Hunting with False Negatives

Remark 7.14. 1t will be silently assumed, that Remark 7.12 is also applicable to the
abstraction of eALTL formulae.]

Figure 7.4: Contracting abstraction

Lemnina 7.15. The abstraction of action formulae defined in Definition 7.11 is a con-
tracting abstraction. m

Proof. We prove that Vp(q) € A: «(p(q)) = ¢* = p(q) = (for an arbitrary property
(. We prove this by induction on the struture of (for an arbitrary single action p(q)
for some p € A and q € D. We consider four cases for the basic step and two
(Cases 5 and 6) for the inductive step. The enumeration of cases is geared to the
order of abstraction rules in Definition 7.11.

ad (7.6) «(p(q)) = T = p(q) E T: In this case, the right side trivially holds.
ad (7.7) a(p(q)) E L = p(q) & L: In this case, the left side trivially fails.
ad (7.8) a(p(q)) = alfalx) | expr(x)}) = p(q) E {a(x) | expr(x)}:

Assume: x(p(q)) = a({a(x) | expr(x)})

We say that the abstraction of p(q) holds under the abstraction of if and only
if the abstraction of p(q) is an element of the set, which is spanned by the
abstraction of {:

a(p(q)) € {a(x®) | Vx : hg(x) = x* — expr(x)}

On the level of specifications, the abstraction of p(q) is defined as x(p(q))
p(ha(q)), since we are using data abstraction:

plha(g)) € {a(x™) | Vx: hq(x) = x* — expr(x)}

At this point, we have to reflect, when p(hq4(q)) can actually be an element of
the given set. This is the case, if and only if a = p and

Vx : ha(x) = halq) — expr(x)

7.3 Abstracting eALTL 157

So the expression expr(x) must hold for all possible x for which hg(x) = hq4(q),
thus it also holds for x = q. From that, we can conclude:
pla) € {a(x) | expr(x)}

From this, we can derive following Definition 7.3, that for a = p and x = q:
p(a) = {a(x) | expr(x)}

ad (7.9) «(p(q)) = a{—~{a(x) | expr(x)}) = p(q) = ~{alx) | expr(x)}:
Assume: x(p(q)) = «(—{a(x) | expr(x)})
We say that the abstraction of p(q) holds under the abstraction of —(if and

only if the abstraction of p(q) is an element of the set, which is spanned by the
abstraction of —(:

alpla)) € | Jla(b(x)) b # alUfa(x™) | ¥x: ha(x) = x* — —expr(x)}
bix)

This means, that «(p(q)) must be in one of the two sets. The distinction is made
by checking, whether the action name p matches a from the property or not.
Since p(q) is either in the first or in the second of the two sets, it holds that that

p(q) € [Jb(x) b +#alUla(x) | —expr(x)}
bix
This is the complementary set of {a(x) | expr(x)}, so that we can conclude:
pla) = ~{alx) | expr(x}}
We will regard the two resulting cases separately:

a) p # a: Obviously
pla) e (J{b(x) | b #a}

b(x
and so
pla) & ~{alx) [expr(x)}.
b) p = a: In this case, we regard the second set:
p(halq)) € {a(x¥) [Vx:ha(x) = x% — —expr(x)}

Analogously to Case 2, this is achieved in case p(hq(q)) a(x®), ie.
a =pand
Vx : hq(x) = halq) — —expr(x).

If the expression expr(x) does not hold for all values of x, it will surely
also not hold for x = ¢ so that we can conclude:

plq) €{alx) | —expr(x)},

so that
pla) = —~{alx) | expr(x)}.

158 Chapter 7 Bug Hunting with False Negatives

ad (7.11) «(p(q)) = (G V&) =pla) =G Vi
This is the second inductive step. Assume, that «(p(q)) = «(C; V (3). Then,
according to the definition, x(p(q)) = «((1)V «(C2) holds, from which we can
derive, that a(p(q)) = «(¢y) or a(p(q)) E «(C;). By the induction hypothesis,
we can conclude that then p(q) E ¢; or p(q) = (2 and thus p(q) = ¢ V ;.

ad (7.12) a(p(q)) = x(CG1 A C) = pld) E G A G
This is the inductive step. Assume, that x(p(q)) = «(1 A(2). Then, according
to the definition, a(p{q)) E «(C1) A «({2) holds, from which we can derive,

that a(p{q)) E (1) and «(p(q)) & «(C2). By the induction hypothesis, we
can conclude that then p(q) & ¢; and p(q) = {; and thus p(q) E {1 A ;.

O

Lemma 7.16. The abstraction of eALTL formulae defined in Definition 7.13 is con-
tracting. O

Proof. We prove that Vi € A* : «(n) = ¢* = 7 = ¢ for an arbitrary property ¢.
We do this by induction on the structure of ¢. We consider traces of one or more
steps. Thus, we consider inductive steps as an extension of the previous proof. The
enumeration of the cases is geared to the order of abstraction rules in Definition 7.13.
Action formulae. ¢ is an action formula. This case has been proven in Lemma 7.15.
ad (7.14) «({n) E «(0O¢) = 7= Od:
Assume that «(7t) = «(O¢). Then, by definition, «(7) = Oa(¢). This means,
that Vi € IN\ {0} : «{m)! = a{¢). By induction hypothesis, we can then claim,
that also Vi € IN\ {0} : ' = ¢ and thus 7t = (.
ad (7.15) o(7) = «(—0¢) = = —~Od:
As it has been stated earlier in this chapter, (Jp = —O—¢. From this, we can
immediately derive, that ~O¢ = ——0—¢ = O—¢. This means, that x(—[IPp)
a(O—¢). As defined in Definition 7.13, this is equivalent to an abstraction
Oal—).
Now assume, that «(7) E a(—0¢) < a(n) = Oa(—¢). As we will prove
in Case 4, then 1 = 0—¢. Due to the derivation earlier in this case, this is
equivalent to 7t = —[ld.
ad (7.16) «(7) = «(Od) = k= O¢:
Assume that a(7t) = o O). This is equivalent to a(7) = «(TUd). This can be
abstracted as follows: a(7) = « T)Ux(¢) and further to o(71) = TUwx(¢$) and
finally a(7t) &= Qo).
As will be proven later, it holds that o(7) F (T)Ux(¢$) = 7= TUd. Remem-
bering that TU¢ is equivalent to (¢, we can conclude, that t = 0.
ad (7.17) «(n) & a(—0¢) = n = —~Od:

As it has been stated earlier in this chapter, ~0—¢ = O¢. From this, we can
immediately derive, that ~0¢ = =~0——¢ = [J—~¢. This means, that a(—O)

7.3 Abstracting eALTL 159

a((0—¢). As defined in Definition 7.13, this is equivalent to an abstraction
Oo(—d).
Now assume, that «(7t) = «(—0¢) < aln) = Oa(—¢). As we have proven
in Case 2, then m = [0—-¢. Due to the derivation earlier in this case, this is
equivalent to 7t = =Od.

ad (7.18) a(n1) = a(bAY) = 71E dAY:
Assume, that x(n) &= a«(d APp). Then, according to the definition, «(mn) =
a(¢d) A () holds, from which we can derive, that x(7) = a(¢) and () =
(). By the induction hypothesis, we can conclude that then 7w = ¢ and 7 =
and thus 7t = ¢ A.

ad (7.19) a(n) Fa(d V)= nE PV
Assume, that () = a(d V). Then, according to the definition, «(m)
a(d) V «(1p) holds, from which we can derive, that x(n) = «(¢) or «(n) =
(). By the induction hypothesis, we can conclude that then 7t = ¢ or 7w = ¥
and thust = ¢ V.

ad (7.20) «(7) = a(¢pU) = = ¢U:
Assume, that «(7t) = «($Up). Then, following Definition 7.13,
a(7) = a($p)Ux(). This means, that there exists a k € IN \ {0} such that for all
0<i<k:a(n)tE ald)and a(m)* = a(h).
The abstraction of traces as defined in Definition 7.8 does not affect the indices
of steps in a trace. This means, that when we follow the induction hypothesis,
we can assume, that a(m)[i] = a(7[i]) for some i € N\ {0} and thus «(m)! =
a(7tt). Hence, forall 0 < i < k: ©* = ¢ and n* & . From that, we can
immediately derive that 7t = ¢U.

ad (7.21) «(7n) F a(~{pU)) = 7t = ~(dUp):
Assume, that «(71) = a(—(pUp)). Then it logically holds that

() E a(~=(~dR))) & «(7) = a(~pRp).
By induction hypothesis, we derive that then also
T PR~ & ~~(~oR~)) & 1= ~(dUp).

ad (7.22) o(n) = a(dRY) = 1= dRY:
Assume, that «(7) = a(dpRp). Then, following Definition 7.13,
a(m) E a(d)Raf(). This means, that either Vi € IN \ {0} : «(1) or there exists a
k € IN\ {0} such that forall 0 < i < k: a(7)! = a{1p) and &(7)* = ().
The abstraction of traces as defined in Definition 7.8 does not affect the indices
of steps in a trace. This means, that when we follow the induction hypothesis,
we can assume, that «(7)[i] = «(nli]) for some i € IN \ {0} and thus «(7m)}
a(7'). Hence, Vi € IN\ {0} : t* = 1 or there exists a k € IN \ {0} such that for
all0 < i< k: 7' = ¢ and ¢ = ¢. From that, we can immediately derive that
7= dRY.

160 Chapter 7 Bug Hunting with False Negatives

ad (7.23) «{n) = «(—~(pRYP)) = 7= ~(PRYp):
Assume, that o(n) = a(—($pRap)). Then it logically holds that

x(71) = o[~ (—pU—)) & afn) = a(~pUb).

By induction hypothesis, we derive that then also
nE —pU~) & ks ~(~pU) & ml= ~(dR).
a

In order to have precise abstractions, we need a restriction on the homomorphism
o = (hs,hg). We define that o is consistent with ¢, if and only if for all action formu-
lae ¢ occuring in ¢, {hq(act)lact & ¢} N [~«(C)] = O, i.e. the hatched square and the
ellipse in Figure 7.4 coincide.

Lemma 7.17. 1f a is consistent with ¢, then «(¢) is precise. [|

Proof. We prove by induction on the structure of the eALTL formula ¢ that

(Ve e b halpl@) | pla) F QN I~adQ)] = 0) = (Ve A" :n® = a(¢) &k ¢)

v v
consistency precision

Action Formulae. We begin with the case that ¢ is an action formula ¢ and that
71 = p(q). We assume, that « is consistent with ¢, i.e. with {. We have to show
that a{p(q)) = (% < p(q) k= (. We distinguish two cases:

a) a{p(q)) = ¢* = plq) = ¢ This case follows directly from Lemma 7.15.

b) a(p(q)) = % < p(q) E C Let us assume, that p(q) = CA alp(q)) # C*.
In this case, due to the first conjunct hq(p(q)) € {ha(p(q)) | pla) &)
and due to the second one hq(p(q)) € [—a(l})]. The intersection of both
sets is thus not equal, what contradicts our assumption and proves the
hypothesis correct.

ad (7.14) o(n) & «(O¢p) < w = Oo:

Assume that 7t = (J¢. This means, that Vi € IN\ {0} : ' = ¢. By induction

hypothesis, we can then claim, that also Vi € IN \ {0} : «()t = «(¢) and thus
o(7t) = ().

ad (7.15) o(7) E «(—0¢) <= n = —Od:

As it has been stated earlier in this chapter, O¢ = —0—d¢. From this, we can
immediately derive, that ~O¢ = ——0—¢ = O0—¢. This means, that ()
a{O—d). As defined in Definition 7.13, this is equivalent to Qx(—¢).

Now assume, that 7t = —=(¢. According to the above, this means that 7 = {—d.

As we will prove in Case 4, then «(n) = «(0—¢). Due to the derivation earlier

in this case, this is equivalent to «(7) = a(—0d).

7.3 Abstracting eALTL 161

ad (7.16) «(7t) E o(Qd) <« = Ob:
Assume that 7t = O¢d. This means that there exists an i € IN \ {0}, such that
m = ¢. The abstraction of traces according to Definition 7.8 does not affect
the indices of steps in a trace. By induction hypothesis, we receive thus i €
N\ {0} : «(m)! = «(¢). This, however, leads directly to x(7) = Ox(¢) and
according to Definition 7.13 to &(7) = «(Od).

ad (7.17) «(7) E «(—0¢d) < = ~O:
As it has been stated earlier in this chapter, ~0—¢ = O¢. From this, we can
immediately derive, that ~0¢ = —~0——¢ = [J~d¢. This means, that a(—~0¢) =
o([J~d). As defined in Definition 7.13, this is equivalent to Co(—d).
Now assume, that 1 = —O0¢. As we have proven in Case 2, then a(n) =
Oee(—¢). Due to the derivation earlier in this case, this is equivalent to () =
o ~0d).

ad (7.18) a(n) E a(dAP) <= b AY:
Assume that 7 = ¢ A1. This means, that 7t = ¢ as well as 7t = 1 hold. Follow-
ing the induction hypothesis, we can claim that a(7) = «(¢) and «(7) = «()
and thus a(7) = «(¢ A1) holds.

ad (7.19) a(m)E a(d V) <=nkE= bV
Assume that 7t = ¢ V 1. This means, that 7t &= ¢ or 7t &= 1 holds. Following

the induction hypothesis, we can claim that «(7t) = «(¢) or «(7) = (1) and
thus a(7) = a{¢ V1) holds.

ad (7.20) o(n) E a(dpUp) <« = dU:
Assume that m = ¢Uip. This means, that dk € IN \ {0} such that ¥i,0 < i <
k: 7 = ¢ and * = ¥ hold. Following the induction hypothesis and since
vi € N\ {0} : oc(7t)[_i] = o(7i]), we can claim that 3k € IN \ {0} such that
Vi,0 < i < k: a(m)' = a(¢) and a(n)* = «() and thus «(7t) = o(HpUW)
holds.

ad (7.21) «(7) F «(—(dUY)) < 7= —(pU):
Assume that © = —(¢Up). This means, that 1 = ——({—~¢dR—) and thus
7t = ~¢R— hold. Following the induction hypothesis we can claim that then
also a(m) & o(—¢dR—p) and resulting from that «(7n) = «(——(—~pR—))) and
a(7t) = a(—(pU)) holds.

ad (7.22) «(7) = a(dRYP) < 7w = pRY:
Assume that = ¢pR1. This means, that for all k € IN \ {0} holds that if for all
i€ IN\ {0} with i < k we have if ! }£ ¢, then 7' = 1.

The abstraction of traces according to Definition 7.8 does not affect the indices
of steps in a trace. This means, that when we follow the induction hypothesis,
we can assume, that «(7t[i]) = «(m)[i] for some i € IN \ {0} and thus «(n') =
a(m)l. Hence, Yk € IN \ {0} we have that if Vi € IN\ {0}.i < k : a(m)! E
o)V ()t B a(d) A7)t = o{1])). From that, we can immediately derive
that «(71) &= «(DRY).

162 Chapter 7 Bug Hunting with False Negatives

ad (7.23) «a(n) = a{—(dRp)) <= 7 = ~(pRY):
Assume that m = —(pRyY). This means, that 1 E —(—¢pU—) and thus
7t = ~dpU—Y hold. Following the induction hypothesis we can claim that then
also a(m) & a(—pU—p) and resulting from that a(m) = o(—~({~pU—P)) and
o{n) = o(—{dRY)) holds.

O

7.4 Classes of Counterexamples

We can now explain model checking by abstraction for eALTL formulae. Let a spec-
ification & (with an underlying LTS 91) and an eALTL property ¢ be given. Let us
investigate whether a contracting abstraction « suffices for our needs. We compute
o(P) and &%, generate its underlying LTS M1* and use a model checking algorithm
to check M* &= ¢=. If this holds, we can derive by our previous results, that also
M = ¢, without ever generating M. If it does not hold, we obtain a counterexample.
Here we provide a classification of abstract counterexamples, and demonstrate their
relationship with contracting and precise abstractions of eALTL formulae.

Figure 7.5: Classification of counterexamples

Given a concrete system 9, its abstraction 9%, a property ¢ and its abstraction ¢,
we differentiate between three classes of abstract counterexamples (see Figure 7.5).
Given a counterexample x*, we refer to a concrete trace X € [MMraces such that
X = alx) as a concrete counterpart of x*. The first class (see counterexample 1 in
Figure 7.5) consists of the counterexamples having 1o concrete counterparts in the
concrete system. These counterexamples are referred to as false negatives.

The second class (see counterexample 2 in Figure 7.5) consists of counterexamples
having (at least) one concrete counterpart satisfying the original property. We further
refer to this class as spurious counterexamples.

The third class (see counterexample 3 in Figure 7.5) consists of the counterexamples
having at least one counterpart in the concrete system; moreover all concrete coun-
terparts violate the concrete property. Counterexamples from this class are referred
to as ideal counterexamples.

7.4 Classes of Counterexamples 163

Definition 7.18. Let x* be a counterexample obtained by verifying an abstraction ¢*
of a property ¢ on the abstraction 9 of a system 9 w.r.t. the homomorphism h.
We distinguish the following three cases:

1. We call x* a false negative, if there is no X € [MJiraces such that x* = a(x).

2. We call x* a spurious counterexample if there exists X € [9Miraces such that

X* =«a(x) and x = ¢.
3. Otherwise, we call x* an ideal counterexample.
|

Contracting abstractions may lead to spurious counterexamples, as illustrated below.

® ®

¥ Y

0 0
?in(x) 2in(x)

Y A

1 1

Y X

[x=a or x=b or x=c] [x=c or x=d]
lout(0) lout(x)

~@F (@

> S0
O o

[x<2]lout(0) [x>=2]!out(x)

Figure 7.6: Concrete and abstracted specifications from Example 7.19

Example 7.19. Let & in Figure 7.6 be the specification of a concrete system. We ab-
stract Z into Z* {a,b,c,d}, where a stands for the integers from | — oo, -3[; b
stands for the integers from [—3, 0]; ¢ stands for the integers from |0, 3; and d stands
for the integers from]3, +ool. By applying this abstraction to & we obtain G (see
Figure 7.6).

Consider the property ¢ = O({out(x) | (x > 2}}). We compute the contracting
abstraction of ¢ as follows:

¢ Olfout(x) [(x = 2)})
¢* = O({out(x*)|Vx:hg(x) =x% — (x > 2)})
= Q(out(d))

Verifying $* on &% we may obtain the trace in(c).out(c) as a counterexample, be-
cause it is a trace in &%, but it does not satisfy ¢. However, the concrete traces

164 Chapter 7 Bug Hunting with False Negatives

in(2).out(2) and in(3).out(3) corresponding to the abstract counterexample satisfy
Olout(x) A (x = 2)). Hence, ~¢* is not precise enough.

Such spurious counterexamples are problematic for tracking real bugs. Therefore,
we will use precise abstractions, in order to avoid spurious counterexamples. A con-
tracting abstraction can be made precise, by fitting the abstraction to the predicates
in the specification and the formula:

0 0
2in(x) 2in(x)
X Y
1 1

[x=a or x=b or x=c] [x=d]lout(x)
lout(0)

‘@ @

a

[x<2]lout(0) [x>=2]'out(x)

i

S

Figure 7.7: Concrete and abstracted specifications from Example 7.20

Example 7.20. Let & in Figure 7.7 be the specification of a concrete system. We ab-
stract Z into Z* = {a, b, ¢, d} where the interpretation of a and b remains the same
as in Example 7.19 while c represents the integers from the interval]0, 2[and d rep-
resents those from [2,+oco[. By applying this abstraction to & we obtain &% (see
Figure 7.7).

Consider again the property ¢ = O({out(x) | (x = 2)}) and its abstraction $%
Olout(d)). Verifying ¢* on &* we may obtain the following counterexamples:
in(a).out(b), in(b).out(b), and in(c).out(b). In this example it is straightforward
to see that any concretization of these traces is a counterexample for ¢. So in this
case, the abstraction is precise.

7.5 Constructing a Violation Pattern

Counterexamples that are false negatives still have a value for detecting bugs in spec-
ifications. By relaxing them, i.e. making them even more abstract, false negatives
cover a larger part of the system, which can contain bugs. In this manner, they can
serve as a starting point for bug hunting.

7.5 Constructing a Violation Pattern 165

In this section, we provide an overview of our framework for bug hunting with false
negatives. This process comprises the following steps:

1. Specify a requirement as a formula ¢ of eALTL.

2. Choose and apply a data abstraction, which is consistent with ¢, to the specifi-
cation of the concrete system and to the concrete property.

3. Abstract counterexamples for the property are (automatically) determined us-
ing model checking.

4. If a false negative is found, generalize it further by relaxing actions that are not
directly relevant for our search. This results in a violation pattern. The relax-
ing process itself is automatic, only the counterexample and the set of directly
relevant actions have to be given as input to the algorithm (see Algorithm 7.1).

5. The concrete counterexamples are automatically computed by finding the in-
tersection of the original system and the violation pattern.

Since the first three steps of the framework can be handled by existing data abstrac-
tion and model checking techniques, our contribution concerns the steps 4 and 5 of
the framework.

7.5.1 Constructing a Violation Pattern

A counterexample that we obtain in case the property is violated on our abstract
model is an infinite trace of the form m,m%", where 7, is a finite prefix and 7" is a
cyclic suffix with a finite cycle base 7s.

Although the counterexample x* may have no counterpart in the concrete system, it
can contain a clue about a counterexample present in the concrete system. Therefore
we transform a counterexample x* into a violation pattern 0, considering only infinite
counterexamples.

A violation pattern is an LTS that accepts only traces hitting a distinguished cyclic
state infinitely often. The violation pattern accepts only traces which are similar to
the counterexample and violate the abstract property. The actions mentioned in the
property are essential for the property violation. Therefore, we keep at least this
information in the violation pattern. In order to support this kind of properties,
we also keep this information in the violation pattern. For actions influenced by
abstraction, the order and the number of actions in a similar trace may differ from
those in the counterexample. We will first illustrate the idea of similarity on a simple
example and then generalize it.

Example 7.21. Let us come back to the example from the introduction. Assume that
we model-check the property (J(a — Ob) and obtain the abstract counterexample
a.set(k*).tick?.b.(a.set(k").tick?.d)® (see Figure 7.8). The k" is in this case an
abstraction of a timer: The original value of the timer is preserved up to k; any value
above k is abstracted to the constant value k*. To guarantee that the property is
violated by any trace accepted by the pattern, we keep at least the actions a and
b, because they are mentioned in the property. Since we are searching for similar

166 Chapter 7 Bug Hunting with False Negatives

traces with an infinite cyclic suffix s, we may also decide to keep information about
some actions of this cycle. Here we also preserve the action step d in the cycle (see
Figure 7.9). The actions tick and set(k*') are not mentioned in the property, and
are definitely influenced by the timer abstraction. Therefore, we relax these actions,
meaning, we allow these actions to occur an arbitrary number of times in an arbitrary
order; however, at least one of these actions has to appear once (see states 1 and 5
of the violation pattern in Figure 7.9 and then states 2 and 7 for the self-loops). In
order to prevent self-loops in the cyclic state (state 4), we insert a T-step between
respectively states 3 or 7 and the cyclic state. In states 3 and 7, self-loops are in
principle allowed, but this is not applicable to this example. As we will see later,
this step is necessary for the validity of our theory. At this point, it should also be
remarked, that T & Ageep.

Figure 7.8: A concrete counterexample

.. set(k’) tick « set(k®) tick
set(k*) set(k’)
OO L‘—H O OO
A
tick tick

T : d
Figure 7.9: The violation pattern for the counterexample

We refer to the set of action labels that we do not want to relax by Aycep. This set
includes at least all the labels mentioned in the abstract (and also the concrete) prop-
erty. In the violation pattern, we distinguish a cyclic state that corresponds to the first
state in the cyclic suffix. The last action in the cycle base of an infinite counterexam-
ple leads to this cyclic state.

In principle, we would like to relax more actions influenced by data abstraction.
These actions can be found by applying static analysis techniques. The more ac-
tions we keep, the more concrete the counterexample is and the faster we can check
whether there is a concrete trace matching the pattern. By keeping too many actions,
however, we might end up with a violation pattern that specifies traces having no
counterparts in the concrete system.

7.5_Constructing a Violation Pattern 167

Definition 7.22 (Non-relaxed Actions). Given a set A of actions appearing in a prop-
erty ¢p*. We define that some set Akeep of non-relaxed actions in a violation pattern
is consistent with ¢* if and only if Ayeep 2 A. [|
Ayeep can optionally contain additional actions, like the last action of a cyclic suffix,
or actions not influenced by the data abstraction, to make the violation pattern more
specific.

Definition 7.23 (Violation Pattern). Given an abstract counterexample x* = 7,7y’
and a set Ayeep Of non-relaxed actions, a violation pattern is an extended LTS U =
(Z,A, A, Tinits Ocyclic) constructed by Algorithm 7.1, where 0y.iic is the cyclic state.
The set of traces visiting the cyclic state infinitely often, is further referred to as the
set [Vliraces Of accepted traces. [|

Algorithm 7.1 Build Violation Pattern
Require: x® = 77", Aeep
Ensure: U = (I, A, A, Ginit, Ocylic)

// trace, actions to keep
// violation pattern

v Oinit o= 0; L := {Ginit}; // initialization

2 0= Oinit; // current state of ‘U

 foralli=1.|m,7s| do // for all steps of T, 7s

N if X*[i] & Axeep then

5 if 0 = Oinit V X*[L — 1] € Ageep then // prev. action in Ayeep: add loop state

o 0:=0+1;

7 r:=ru{ek

8 fi

0 A= AU{(o,x*[],8), (8, x>, 6)} // add a relaxed step
w else // if step to be kept

i G:=0+1; // next state is arbitrary
12 Y.=Xu{o}; // add the new state
13 A= AU{{o,x*[i],0)} // add the step to the next state
14 ﬁ

15 o:=0; // proceed with the next state of U
16 if i = |mp| 4+ 1 then // assignment of Ocyclic
17 Ocyclic *= g+ 1;

1 A= AU{(8,T,0cclic)}; // add the internal step to the cyclic state
19 0 = Ocyclicr

20 fi

2 od

2 A:=AU{(0,T, Ocyclic)}; // add the internal step to the cyclic state

Given a counterexample x* = 7,7 and a set Ayeep 0f actions to keep, Algorithm 7.1
constructs the violation pattern 2. The algorithm starts with creating the initial state
Oinit := 0 of U and goes through 7, 7. When the algorithm encounters an action
to relax, it adds a single transition labeled with this action from the previous to the
current state, followed by an equally-labeled self-loop transition in the current state

168 Chapter 7 Bug Hunting with False Negatives

of U. When it encounters an action to keep, it adds a transition from the current state
to the (new) next state labeled with this action. When the algorithm has reached the
end of the cycle base, a T-step leads back to the cyclic state. The first state of 7 is
assigned to Ocyiic.

Next, we show that all traces obtained from the traces of [Ulaces Violate the property
$*. Therefore, we first introduce a function that projects traces on Ayep, and then
prove the according relations between traces and properties. By trace projection, a
trace 7t is transformed into a second trace | 7| A,,,,, which preserves all non-relaxed
actions and for each sequence of relaxed actions the first action of this sequence. A
trace m = a.b.b.a.c.b.a with b ¢ Akecp and a, ¢ € Ayeep is, for instance, transformed
to a trace [7t[,,, = a.T.a.c.t.a. It is obvious that the actions from Ayeep must be
kept. The reason to keep some of the relaxed actions can be shown with the property
¢ = O(aVc), which prohibits the occurrence of b. The action b is officially a relaxed
action, since it does not occur in ¢. However, completely removing it from || Aveep
would violate the soundness of our approach, since then 7 |~ ¢ while |7/ Ay F ©-

Definition 7.24 (Projection of Traces on Axeep). Let M = (L, A, A, Oinit) be an LTS and
7 € [Miraces be an arbitrary trace. |7 Awep 18 this trace projected on Ayeep by a pro-
jection function p, : IN\{0} — IN\{0}, such that

] <~ i=0
VIEN:p(i+T1) =< pali) = 1> 0N (i + 1] & Axeep AT & Ageep)
P(1)+1 <= i>0A(nli+1]€ Areep V 7li] € Axeep)

We furthermore define that Vp, (i) € IN\{0}

il = mli) € Ageep

7] Ay [P (1)) ={ T = 7l ¢ Ageep

witht ¢ A. []

The function p is surjective, i.e. every element of the result set of p, has at least one
preimage. Since this would not be given for traces 7, whose steps from some point
on are only outside of Axeep, We assume, that in this case infinitely many t-steps are
added to |7|,,,, in order to preserve the surjectivity of p,. In some cases, where
it is clear which trace is projected by p., we will leave out the subscript in order to
improve readability.

In the following, we have to define two invariances of properties, regarding a trace
7 and its projected counterpart 7|4, . The first invariance states, that a property
is invariant if either both traces 7 and 7| A,,,, satisfy it, or both traces do not. The
second invariance definition follows in Definition 7.28.

Definition 7.25 (Invariance of Properties (1)). A property ¢ is invariant under the
projection p of 7 to Ayeep, if and only if = ¢ < [7] A = ¢. [}

Lenma 7.26. Any eALTL property ¢ is invariant under projection p.. of trace 7 to
Aiecp, provided that Ayeep is consistent with ¢p*. |

7.5 Co_nstructing a Violation Pattern 169

Proof. We prove by induction on the structure of the property ¢ thattt = ¢ &
|7 f\':m = ¢. We have to distinguish the base case, namely considering properties

on actions, and ten inductive cases on ¢. The base case of the proof on ¢ itself

is divided into for base cases for T, L, inclusion and exclusion of actions w.r.t. a

particular set of actions, and two inductive cases for the conjunction and disjunction

of action formulae.

Base Case: Assume, |7/, [i] = |7, [P(i)] forany i € N \ {0}. There are six
subcases to be considered. The cases a) to d) are base cases, while e) and f) are
inductive cases on (.

Base Cases:
a) 7li] E T & |7 Ay, [P(1)] | T is trivially true, no matter whether
7] Ay [P (1)) = 7] € Aeep OF [7] A P()], W] & Akeep-
b) The same holds trivially for n[i] = L < |7t|a,,, [P()] & L.

¢) To prove nfi] = {a(x)lexpr(x)} & Ln],\m_p[p(i)] E= {a(x)lexpr(x])}, we
have to distinguish the two cases, whether 7t[i] € Ageep OF 7] & Axeep-
If t[i] € Ageep, then ad Areep [p(i)] = nli] and the above trivially holds.
If 7t[i] & Axeep, then ad Atecp [p(i)] = T & Axeep- In this case, i) ¥
{a(x)|expr(x)} and nor does |7t a,,,, [p(i)].

d) To prove 7li] = —{a(x)expr(x)} < Ln],\mp[p(i)] = —{a(x)lexpr(x)},
we again have to distinguish the two cases, whether 7[i] € Ayeep OF
7] & Ageep- If T[] € Akeep, then L70] Atep [p(i)] = =li] and the above
trivially holds. If 7(i] & Aeep, then [7C] Ageey [p(1)] = T & Akeep- In this
case, tautologically 7[i] {a(x)lexpr(x)} & 7li] = —{a(x)lexpr(x}}
and, thus |7] A, p(1)] = ~{a(x)lexpr(x)}

Inductive steps:
e) This case is an inductive step.
nfil = G A G2
enlil E G Al F G

By induction hypothesis:
e A PO E & Alm A O] G
ST A, P E G AG
f) This case is also an inductive step.

nllE G VG
srllE GVl E G

By induction hypothesis:

|7 A PN GV [T A PO 2
& (M)A PMIEG VO

170

Chapter 7 Bug Hunting with False Negatives

Inductive step for (Ja) Assume, that 7 = O¢. Then for alli € N\ {0} : #li] =
¢. By induction hypothesis, then also for all i € N\ {0} : | x| Ay PN E &
and thus |7, = Oo.

Inductive step for (1b) Assume, that 7t~ O¢. Then there exists ani € IN \ {0}
such that nfi] i~ ¢. By induction hypothesis, then also || Ay PIL)] &
and thus |7, # Od.

Inductive step for () a) Assume, that 7w |= O¢. Then there exists ani € IN \ {0}
such that [i] = ¢. By induction hypothesis, then also |7 APV = &
and thus [7| A, F O¢.

Inductive step for O b) Assume, that 7t % ¢¢. Then forall i € IN \ {0} : nli] =
¢. By induction hypothesis, then also for all i € N\ {0} : |7 Avep PV = &
and thus [7t| A, ¥ 0.

Inductive step for /A\: Assume, that 7t = ¢ A . Then:

T E O AY
entEdAT

By induction hypothesis:

Slriae, F AR F v
@Ln_lp(i) EdAD

Akm-p
Inductive step for V: Assume, that 7t = ¢ V 1. Then:

mE OV
en E oV

By induction hypothesis:

elnil oV nilY Fp

A keep

elni Eove

A keep

Inductive step for U a) Assume, that w = pUp. This means, that there exists
ak € IN\{0}such that forall0 < i < k: 7! = ¢ and 7* | 1.
By induction hypothesis, for all 0 < j < p(k) : | 7] i,\mp E ¢and |7t f’\:ip F
. From this, we immediately derive that also |71 A, = $UY.
Inductive step for Ub) Assume, that 7t j¢ pUrp. This means, that either there
exists a k € IN \ {0} such that there exists an i, 0 < i < k, such that 7! }£ ¢

and * | ¢, or forall k € IN\ {0} : ©* & . By induction hypothesis
and due to the surjectivity of p,., we derive that there thus also exists an

7.5 Constructing a Violation Pattern 171

pali), 0 < Pali) < Palk), such that |73t ¢ and || 1) = b, or

ep
for all p(k) € N\ {0} : [m] ‘/’\(kg = . From this, we can derive that also
I.nJ Akewp bé ¢Ulb

Inductive step for R a) Assume, that 7 = dR1p. This means, that for all k €
N \ {0} holds that if for all i € IN \ {0} with i < k we have if * | ¢, then
=1,
By induction hypothesis, for all k € IN\{0}and forall i € N\ {0} withi <k
we have if |7t '}\mp ¥ ¢, then |7t i,\mp = 1. From this, we immediately
derive that also |7t] A,,,, = $Rap.

Inductive step for R b) Assume, that r ¥ $R. This means, that there exists
ak € IN\ {0} with 7% £ ¢ A 7* B .
By induction hypothesis and due to the surjectivity of p,, we derive that
there thus also exists an p(i), such that 7] p,\(k‘jp ¥ ¢ and |7| ‘/’\(k:? ¥).
From this, we can derive that also |7t|A,,,, # ¢RU.

O

The next definition introduces a projection relation, which defines two traces as being
equivalent, if they only differ in their irrelevant parts, i.e. in the relaxed actions. In
this case, their projections to Ayeep are equal.

Definition 7.27 (Projection Relation). Two traces 7y, 73 are equivalent under projec-
tion relation 7ty ~p 712, if and only if [71 | A, = [72] Av- |

This definition forms the second invariance definition for properties. Properties are
considered to be invariant, if two traces are in a projection relation with each other,
either both traces satisfy the property or they both do not.

Definition 7.28 (Invariance of Properties (2)). A property ¢ is invariant under projec-
tion relation ~; if and only if the following holds: V71,7, @ 711 ~p 2 = (T Eéd <

= §). [
Lemma 7.29. Any eALTL property is invariant for an arbitrary pair of traces 71, 7
with 71y ~, 72.]

Proof. As defined in Definition 7.27, 711 ~p 72 & |71 | Ay = (2] Arp- AS i has been
proven in Lemma 7.26, any eALTL property is invariant under projection pr from n
to |_7'[J Ateep

By Lemma 7.26, 11 = & < [T1] A, E ¢. Since |71]A,,, = 1702 | Aypr WE derive
that also |71 | A, E o [M2]Aw E ¢. By Lemma 7.26, this also means that
72 Ay = ¢ < 75 = ¢. From this, we conclude, that also 7t Ed e mEd. O

Lemma 7.30. For any pair of traces 71,7 € [Dliraces we have: 1y ~p 7. []

Proof. Having in mind the construction of the violation pattern U, it is trivial to prove

this lemma. Every trace 7 € [races consists of steps according to transitions ¢ LR

172 Chapter 7 Bug Hunting with False Negatives

¢ € A with 6 # & or those accordant to self loops o >+ & € A. Infinite self loops
in the cyclic state are not possible by construction. Furthermore, by construction of

the violation pattern, any self loop in U is preceded by a step N8, 0 # 6, with
A & Ayeep- This means, for any trace 7t € [Uliraces, holds:

o Vi€ N\ {0} 7ili] & AweepIp(i) € N\ {0} : 'lp(i)] = 7
o Vi€ N\ {0}, 7fi] € AweepTp(j) € N\ {0} : '[p(j)] = mi[j]

In applying this projection, the trace 7’ is the shortest trace through 0 skipping all
self loops. Modulo actions A € A\Ayeep, by construction there is only one such trace
in Y. For this reason, any trace m € [Diaces Will be projected on ' and thus the
lemma holds. O

Leinma 7.31. Let Akeep be consistent with ¢, let x* be a counterexample for ¢*, and
U be a violation pattern generated from x* and Akeep- Every trace m* € [Diaces
satisfies: m* £ ¢*. []

Proof. It trivially holds that x* |~ ¢. As we have shown in Lemma 7.26, any eALTL
property is invariant under the projection p, of trace 7 to trace |7 Awep- As has
been shown in Lemma 7.30, for any two traces 7t;,7; € [Viraces holds: 7 ~p T2.
Furthermore, we have shown in Lemma 7.29, that any eALTL property is invariant
under the equivalence 7, ~p 72. From this, we can derive that every trace n* €
[Dliraces satisfies: 7 = ¢, O

7.5.2 Looking for a concrete counterexample

After we have constructed the violation pattern U, we check whether there is a con-
crete counterexample x = X Xx3’, such that the corresponding abstract counterexam-
Ple x> € ﬂm]]traces-

For infinite counterexamples we need to check that some state of X corresponds
to Ocyaic. We employ constraint solving (Marriott and Stuckey, 1998) to find a con-
crete counterexample, which allows us to check this condition for infinite (but cyclic)
traces, and also for certain infinite and parameterized systems.

To find a concrete trace matching the violation pattern U, we transform the specifi-
cation of the concrete system and the violation pattern into a CLP, and formulate a
query to find such a trace. This transformation is similar to the one described in Sec-
tion 3.3. Note that for a concrete system with an infinite state space, it is possible that
the constraint solver will not terminate. Moreover, it is possible that the only traces
that match the violation pattern are spiral traces, not cyclic ones (i.e. we do have a
loop with respect to control locations, but some variable is infinitely growing) and
we will not be able to find them.

Transformation of the edges of the violation pattern U = (L, A, A, Ojnt, Ocyclic) into
the rules of the CLP By is defined in Table 7.1. Here, we abbreviate ({, Var) by %
and ({,Var) by X’. Intuitively, given a step of U, a rule of Py checks whether the

7.5 Constructing a Violation Pattern 173

Ig ?s
o 1s(v) 6Vo s{v) 6\/0-L o U;é Ucyclic a# 0'cyclic

o(state(x),C, [s(y) | 71]) « s(state(x), state(X'), param(y))A
v = a(y) A 8(state(%'), C, i)

Vil-a

58 o # Ocyclic 6= Ocyclic
o(state(x),C,7) « &(state(x), C,7)

VII-b

le ?s - —
cri(—vl»@Vcr L")»ﬁVUlﬁ 0=0cqdic X€C

o(state(x),C,[) « x€ C

VIl-¢

| ? X C
e sve 2 gve S 0= Oycic X ¢ C

o(state(%),C, [s(y) | 7i]) — s(state(X), state(X'), param(y))A
v = a(y) A 8(state(X'), X | C],)

VIi-d

Table 7.1: From violation pattern 2 to CLP Py

concrete system may make this step. The rules also take into account the information
about the cyclic state and the data abstraction.

The rules in Table 7.1 transform the steps of a violation pattern into rules of the
form: p — & A go AV. pis a user-defined constraint of the form o(state(x), C, @)
specifying the source state state(X) of the concrete system, and a set C of states,
which are possibly on a cycle. This set is accumulatively constructed, and it contains
concrete candidate cyclic states that match Oyciic in the violation pattern. The third
parameter, 7', contains the trace that is visited while examining U starting from)
and the action visited in the actual step.

£ is a user-defined constraint of the form s(state(x), state(X’), param(y)) as defined
above. It represents a step on which the concrete system and the violation pattern
can potentially synchronize.

The guard g, checks whether the data parameters of the concrete action are a con-
cretization of the data parameters of the abstract action.

Finally, v determines whether and how the violation pattern has to be examined
further. We will explain this in more detail shortly. Simplified, v stops the further
examination of %, if we have reached the cyclic state of U. Otherwise, it decides that
the next step in U will be taken and sets the parameters accordingly.

We will now describe the rules in more detail. Rule VII-a of Table 7.1 transforms steps
of the violation pattern whose actual state o and target state ¢ are not the beginning
of the cycle base. The step specified by a constraint s(state(X), state(X'), param(y})
changes the state to 6 in the violation pattern and to state(X’) in the concrete system.
That is captured by the constraint G(state(X’), C, @) in p. The constraint is satisfied
only if both the violation pattern and the concrete system can make the specified

174 Chapter 7 Bug Hunting with False Negatives

step, and the action labeling the step of the concrete system satisfies the constraint
v = «(y). When doing the next examination step, C is left unchanged. 7 is an output
parameter, which contains the trace stub visited from 6 to the cycle in the trace under
examination. When the recursion ascends after termination of constraint solving,
the actual event s together with a concretization y of its parameter v, is added to the
examination trace 7.

Rule VII-b transforms the T-steps ending in the cyclic state Ocyclic t0 an empty step
from ¢ to 6. The rule does not refer to any action steps from &, since this T-step only
appears in the violation pattern; the system under investigation stays completely
silent.

Rule VII-c transforms those steps of the violation pattern that start from a state cor-
responding to the beginning of the cycle. If the actual corresponding state in the
system is found in C, the state is cyclic and has been visited already earlier during
the examination. In this case, examination ends successfully. If the state is not yet
in C, it is potentially cyclic and treated by Rule VII-d. In this case, the step is treated
like in Rule VII-a, just that the actual state of the system is added to C. Logging po-
tentially cyclic states and examining the violation pattern further allows us not only
to detect obvious cycles, i.e. cycles in the system which are also immediately visible
in the violation pattern, but also detect those cycles, where the system spirals before
entering a real cycle. In this case, the system first runs through a cycle with respect to
the location, but differing in the data part of the system state, before finally returning
to a previously visited state. In such a case, the cyclic state of the violation pattern is
visited more than once.

The CLP Pq, together with the CLP P, forms the constraint program. In order to
check whether we can find a concrete counterexample matching the violation pat-
tern, we transform the pair of the initial state of the violation pattern and the initial
state of the concrete system into the query Qinit *= Oinit{ state{Xin;t), [], B) (initial state
without any potentially cyclic states and with a yet uninstantiated variable B for the
counterexample trace) and ask a constraint solver, whether it finds a solution in the
constraint program formed by Bs and Py. If yes, it provides us a counterexam-
ple as a list of actions and violation pattern states, which has been collected over
the examination of U. If constraint solving does not find a solution, we cannot give
a conclusive answer and have to use e.g. abstraction refinement techniques to find
out, whether the property holds on the concrete system.

Lenima 7.32. For all Z € C holds that, if o(state(x), C,n) is invoked, then Z — X. W

Proof. We will prove the lemma by induction over the deduction steps for the query
to the CLP.

Base case: This case is given by the initial invocation of Ginj 1= Ginit(state(Xinit), [, B).
In this case, C = §}, such that the hypothesis trivially holds for the first step.

Inductive step: For the inductive step, we assume, that Z € CAZ — X. We now have
to distinguish four cases according to the rules from Table 7.1:

7.5 Constructing a Violation Pattern 175

Case 1: By induction hypothesis, we have a trace Z — X with Z € C. A suc-

. . . . L osly)
cessful invocation of Rule VII-a induces, that there is also a step X BALLN-
since the invocation of s(state(X),state(x’),param(y)) succeeds. From
this, we can derive that Z — X — X’ and thus Z — x!.

Case 2: This case trivially holds due to our induction hypothesis.

Case 3: This case also trivially holds due to our induction hypothesis with a
looping trace Z — Z.

Case 4: By induction hypothesis, we have a trace 7 —» X. For this case, we have
to consider two subcases, namely Z € Cand Z ¢ CAZ € {Z} U C. For
the first subcase, the same holds as for Case 1 of the inductive step in this

proof with X # z. For the second subcase, we have a step Z SILIN X' with

7z € () U C and construct the further trace by induction.

O

[traces, a(m) € ﬂmﬁtmces and m = 7tp7t;~u-]

Lenuma 7.33. If the query gini¢ to the CLP Py holds for some trace m, then m €

Proof. We prove the lemma inductively over the derivative steps of the constraint
solver on the CLP . We have to show that:

T TTe
m m . P s
0¢yelic € I T, € [Miraces © Oinit = Teyedic — Teyclic

Furthermore, we have to show that the abstraction of this trace 7 is in (DT races-

Base case: Assume, the query o(state(¥Xnit), [,) terminates with trace m = 71, 7.
Then, we have at the end of recursion: X € C. From that, we can derive that

(Rule VII-¢ from Table 7.1):
c
—_—

o(state(x),[...,%,...J,0 / 1
X

L
0g—0 0 = Oc¢yclic

End of recursion—— —

)
eC

In this case, we have, as has been proven for Lemma 7.32, a trace X — X with

oM — % Since the complete trace 7,7, starts in the initial state oy (by the
cyclic ¥ y

T Ty . ..
query), we thus have oinit — Olyic — g Since the remaining empty trace

does not contain any steps, it trivially holds, that its abstraction is in [U]races-

Inductive step: For the inductive step, we have to consider two possible variants of
steps, namely those starting in a potentially cyclic step and those starting in an
arbitrary non-cyclic state (Rules VII-a and VII-d from Table 7.1):

176 Chapter 7 Bug Hunting with False Negatives

o(state(x”),C,[URl) o’ Hd o' £ Ocydlic

state(x"), state(X’'), param(y)) Av = a(y) A o(%, C, 71)

Var. 1 -
gAv=a(y)Aa(X,C,7)
o(state(¥”),C,[Ual) o’ “SHo o = Ocyclic
Var 2 t(state(x"), state(X'), param(y)) Av = a(y) A o(¥’, [X"|C],)
ar.

gAv=«(y)Ado(@, [x"C],7)

In case of the 1-step prior to the cyclic state Ocyclic in the violation pattern, an
invocation to Rule VII-b of the CLP appears. This invocation does not affect
the validity of a found solution trace 7t for the violation pattern.

In case of an arbitrary step t, assume, the algorithm successfully terminates
for a trace . Then, the algorithm will also successfully terminate for trace
7' = [U7] with either Variant 1 or Variant 2 holding.

By induction hypothesis, @* € [Viraces. The event t has the abstract parameter
v = «(y), which is an abstraction of an appropriate concrete action parameter
y. For this reason, also &'* € [V]races.

7.5.3 Correctness of the Framework

In this section, we argue the correctness of the framework, which has been worked
out in the previous two subsections.

Theorem 7.34. Let o« = (hg, hg) be an abstraction consistent with eALTL-property
¢. Let LTSs Mt and 9M™ be given, such that M C, M. Furthermore, assume that
the counterexample x® € [M%]ace« and x* ¥ ¢*. Let U be a violation pattern
built from x* and a consistent Akeep by Algorithm 7.1. Let 7 be a trace for which
dinit holds, according to the constraint solving procedure defined in Subsection 7.5.2.
Then 7 is a counterexample: 7t € [M]iraces and 7 H .

Proof. By Lemma 7.33, T € [M]iraces and &(71) € [V iraces- By Lemma 7.31, «(71) £ <.
By Lemma 7.17, as « is a precise abstraction, we have 7 [~ ¢. a

7.6 A Case Study: PAR

To check the applicability of our framework, we performed a number of verification
experiments with pCRL specifications. For our experiments, we took a mutant of
the Positive Acknowledgement Retransmission Protocol (PAR; Tanenbaum, 1981) as
a case study. The usual scenario for PAR includes a sender, a receiver, a message
channel and an acknowledgment channel as can be seen in Figure 7.10.

7.6 ACase Study: PAR 177

-Mmsgy - MessageChannel | msgy
Y
msg,—+ Sender Reveiver t+—msg,——~
x
Acknowledgment | :
ack- l Channel) ack

Figure 7.10: Collaboration in PAR

The sender receives a frame from the upper layer, i.e. from its environment, sends it
to the receiver via the message channel, the receiver delivers the frame to the upper
layer and sends a positive acknowledgment via the acknowledgment channel to the
sender. PAR depends on timers. The channels in the system delay the delivery of
messages and can, moreover, lose or corrupt messages. In the mutant we used for
our experiments, we have chosen too short timers, in order to provoke a bug in the
system.

When the receiver has delivered the message to the upper layer, it sends an acknowl-
edgment to the sender. After the positive acknowledgment has been received, the
sender becomes ready to send a subsequent message. The sender handles lost frames
by timing out. If the sender times out, it re-sends the message.

We tried to verify that for any setting of the sender timer exceeding some value k, all
messages sent by the upper layer to the sender are eventually received by the upper
layer from the receiver. To prove that the property holds for any setting of the sender
timer exceeding k, we applied the timer abstraction described in the introduction
of this chapter to the sender timer. The property was not satisfied on the abstract
system (the chosen k was less than the sum of the channel delays) and we obtained
a counterexample.

Figure 7.11 illustrates the idea of this well-known erroneous scenario for PAR. The
sender times out while the acknowledgment is still on the way. The sender sends a
duplicate, then receives the acknowledgment and believes that this is the acknowl-
edgment for the duplicate. The sender sends the next message, which gets lost.
However, the sender receives the acknowledgment for the duplicate, which it be-
lieves to be the acknowledgment for the last message. Thus the sender does not
retransmit the lost message and the protocol fails. To avoid this erroneous behavior,
the timeout interval must be long enough to prevent a premature timeout, which
means that the timeout interval should be larger than the sum of delays on the mes-
sage channel, the acknowledgment channel and the receiver (Tanenbaum, 1981).

The abstract counterexample was not reproducible on the concrete system, since the
number of tick steps from a setting of the sender timer till its expiration varied along
the trace, due to the use of the abstraction. We transformed the counterexample into
the violation pattern from Figure 7.12, by relaxing the actions on the sender timer as
influenced by the abstraction. The violation pattern basically says that after losing

178 Chapter 7 Bug Hunting with False Negatives

Message Acknowledgment .
Sender Channel Channel Receiver
| — |
msgl | ! l :
— ! . i
) msg1 | | |
i El 1]
| | msg1
i 0 :
! 1 | msg1
1]]
1 1] >
: msg1 ,) ack
— S
1))
I 1 ack | 1
[1
msg2 | i msg1
— 2 — i 2
msg ' 1 ack !
—_ N
| ,F }
1 | msg2)
i 0 |
| , ack i
< T]
1 1]
1

Figure 7.11: Counterexample for the mutant of PAR

message msg2, the receiver will reject delivery of message msg3. Further the system
gets into the loop where again and again message msg3 is delivered first with the
sequence bit T and then with the sequence bit F. Thus, the message msg2 has never
been delivered.

The specification of the system was transformed from pCRL into a Prolog CLP, while
the violation pattern was immediately formulated as a set of Prolog rules according
to our theory (Definitions 7.22, 7.23 and Figure 7.9). The constraint solver was then
able to find a concrete counterexample for our property.

In the realization of the CLP for our experiment, we do not keep track of cyclic states
by building up a set C, but by dynamically adding rules to the CLP using the Prolog
directive assert/1. Therefore, we introduce a new dynamic rule cyclic_state/1. In
the rule for the cyclic state of the violation pattern, we insert instances of this rule
using assert(cyclic_state(state(X))), to mark the cyclic state before following the
transition from that state. For the final state of 7,75, we add two rules: The first rule
checks, whether a state in C was reached by invoking cyclic_state(state(X)). If this
rule holds, the state was reached, the trace 7 is printed out and constraint solving
terminates. If this rule fails, the second rule invokes the rule for the cyclic state.

7.7 Related work

First, we compare our method with the CEGAR approach (Counter-Example-Guided
Abstraction Refinement) by Clarke et al. (2003) and Lakhnech et al. (2001), which has
recently been extended to state- and event-based software by the ComFoRT frame-

7.7 Related work 179
set(k

) ‘) S
C in{msg1) a ﬁoul(msgﬂ C] ° in{msg2) . é in{msg3) °
A

tick tick tick tick

set(k’ set(k’) set(k’) set(k’) 4
. ack_in e oul(msg3) ‘ e in(msg3) é out(msgS) '

tick tick tick tick tick

set(k set(k set(k*)

set(k’)

Figure 7.12: Violation pattern for PAR

work (Chaki et al., 2005). In both methods, abstractions preserve properties in one
direction only: if the abstract system satisfies the property, so does the concrete sys-
tem; a counterexample may however be a real one or a false negative. In the CEGAR
method, the abstraction is refined based on abstract counterexamples, and model
checking is iteratively applied to the refined abstractions of the system. Our method
is to generalize false negatives and then to find violations in the concrete specifi-
cation, which are similar to the original false negative. Note that in principle both
methods can be combined: given a false negative, one could search for a concrete
violation using our method. If it is found, the CEGAR loop can be terminated early.
If no concrete counterexample is found, one can proceed by refining the abstraction
as in the CEGAR approach and iterate the verification process.

For counterexamples that have been produced when model checking the abstract
model, it has to be determined whether they represent real system defects. The prob-
lem of automating this analysis has been addressed by Pasareanu et al. (2001). For
this purpose, the authors propose two techniques: model checking on choice-free
paths and abstract counterexample guided concrete simulation. An approach based
on test generation is proposed by Pace et al. (2004) for searching for concrete in-
stances of abstract counterexamples. Only counterexamples for safety properties are
addressed by those approaches, i.e. it works only for finite counterexamples, while
we deal with infinite traces. Unlike these approaches, we look for a concrete trace
that does not match a counterexample itself, but a violation pattern that has been
generated from it.

The approaches of Grumberg et al. (2005) and Pasdreanu et al. (2005) are orthogonal
to ours, because there model checking methods are proposed that rely on a refine-
ment of an underapproximation of the system behavior. These methods are aimed at
the falsification of a desired property and apply a refinement when no counterex-
ample is found. In contrast, we aim at proving the property and, in case we do not
succeed, try to find a concrete counterexample.

In SLAM (Ball et al., 2004), C programs with a set of predicates are abstracted into

180 Chapter 7 Bug Hunting with False Negatives

a boolean program. If the Boolean program contains an error path and this path is
a feasible execution path in the original C, then the process has found a potential
error. If this path is not feasible in the C program, the boolean program is refined to
eliminate this false negative. Again as with Pasareanu et al. (2001), one searches for
an exact matching between an abstract and a concrete counterexample.

A general abstraction-refinement approach has been presented by Clarke et al. (2003).
There, the abstraction is refined if the used one is not fine enough to find an abstract
counterexample having an exact concrete counterpart. The algorithm presented by
Clarke et al. allows the calculation of a concrete set of paths from a set of abstract
ones. If the result is empty, then abstract counterexamples clearly have no counter-
part in the concrete system. The method is dependent on the computability of the
inverse of the used abstraction function, and also on the decidability of whether the
set of traces is empty or not.

Chapter 8

Conclusion

Den Anfang des allgemeinen
Hellerwerdens draufen vor dem
Fenster erlebte er noch. Dann sank
sein Kopf ohne seinen Willen
géanzlich nieder, und aus seinen
Niistern stromte sein letzter Atem
schwach hervor.

(Franz Kafka)
It is the task of software quality assurance to find and avoid software faults, but
this is a cumbersome, expensive and also erroneous undertaking. For this reason,
research has been done over the last years in order to automate this task as much as
possible. In this thesis, the connection of constraint solving techniques with formal
methods is investigated with the goal to find faults in models and implementations
of reactive systems with data. In this chapter, we will discuss the achievements of
this thesis and give some outlook for future research directions, but also for concrete
improvements regarding the tooling of the theories.

Testing with Data Abstraction

Results: In Chapter 4, we proposed an approach to generate test cases combining
data abstraction, enumerative test generation and constraint-solving. Given the con-
crete specification of an open system, the presented data abstraction allows to derive
the appropriate abstract system that is finite with respect to data exchanged with
its environment and thus suitable for the automatic generation of abstract test cases
with enumerative tools. In order to execute the test cases, we have to instantiate them
with concrete data. For data selection we make use of constraint-solving techniques:
a CLP is derived from the system specification and then solved by a constraint solver.
The derivation of the CLP is based on the theory from Chapter 3. Based on the solu-
tion of the CLP, the test cases can be parameterized and executed. We have proven
the correctness of our approach. To corroborate the applicability of our approach, we
applied it to the CEPS case study (Jiirjens and Wimmel, 2001; CEPSCO, 1999, 2000).

Outlook: An interesting and necessary aspect, especially from a practical viewpoint,
is the generation of test cases directly from UML specifications, as it has been pro-
posed, for instance, by Offutt and Abdurazik (1999) as well as Briand and Labiche
(2001). In Calamé et al. (2006b), we proposed a method for the generation of test
cases in TTCN-3 from a subset of UML. This approach combines well with the re-
search presented in Chapter 4 because it generates a uCRL specification from a UML
model and then proceeds further with the presented data abstraction, test case and

182 Chapter 8 Conclusion

test oracle generation. The generation of test code targeting TTCN-3 also embeds this
approach into a TTCN-3-based framework of testing methodologies and tools, as it
has been developed within the TT-Medal project. Existing TTCN-3 execution frame-
works allow a static parameterization of test cases with test data, which has been
selected prior to the test run itself. In this context it would interesting to combine
TTCN-3 and constraint solving techniques to automate test parametrization using
constraint solvers or even to allow a dynamic test case parameterization during the
test run. The latter approach would be comparable to test execution with BAIT.

Behavior Adaptation in Testing

Results: With BAIT, we developed in Chapter 5 a toolset for the generation and exe-
cution of conformance test cases of systems with data. It can be seen as an extension
of automatic test case generation by TGV (Jard and Jéron, 2005) or STG (Clarke et al.,
2002). Embedded into the test generation and execution process proposed in the
same chapter, it can provide a nearly fully automatic test of a system.

Automation starts at specification level. The whole process covers data abstraction,
test generation with TGV (both as presented in Chapter 4) and the generation of a
test oracle. After the reintroduction of variable names in the generated test cases and
the generation of the proxies to the IUT, the test can be run automatically. While
executing a test, BAiT adapts to unforeseen behavior of the IUT in order to prevent
false positive Inconc verdicts. The toolset is extensible and allows, for instance, the
introduction of new trace-search strategies based on ideas like game theory, as they
have, for instance, been worked out by Nachmanson et al. (2004). It also allows the
introduction of data selection algorithms like pattern-based data selection as it is
supported by the tool TOBIAS (Ledru et al., 2001).

Outlook: However, we are still capable to further improve the tool BAiT. One issue
here is to improve system-independency of the framework. Even though its architec-
ture should allow a relatively easy adaptation of the framework to other platforms
than Java in a procedure-based setting, its viability w.r.t. this issue is still to be tested
with other communication paradigms and other platforms. The test execution unit
of TTCN-3 is quite advanced here, however, paying the price of an increased com-
plexity of the approach.

Another issue is the handling of non-trivial, i.e. non-numerical and non-enumerative
datatypes. BAIT does in this point suffer from the fact, that ECLiPSe Prolog provides
data ranges for data selection only for numerical and enumerative datatypes. For all
other kinds of data, it only returns the first possible solution. This problem can only
be solved by improving the generated test oracles using the Prolog predicate findall
(Novello et al., 2005, Section 8.4.3) and adapting the generation of queries as well as
the interpretation of constraint solving results on the side of the BAiT runtime.

The third issue is a system-inherent one: Even though BAIT is a blackbox test frame-
work, it allows the definition and “execution” of IUT-internal actions (t-steps). In
order to do so, BAIT tries to predict the internal behavior of the IUT during the

183

test. If now the specification of the IUT allows logic within these internal actions
(branches or loops), this prediction can get out of sync with the actual internal be-
havior of the IUT. For this reason, BAIT can only reduce the number of false positive
Fail verdicts for such systems, but not completely avoid them.

Case Studies for Testing with BAIT

In Chapter 6, BAIT has first successfully been evaluated with an academic case, the
ATM case study. An ATM as an action-based system with nondeterministic behavior,
such as the expenditure of money, and data is the ideal target for testing with BAIT.

In a second case study, we evaluated BAIT on an SUT, which is not oriented to pro-
cesses, but to documents: the Mozilla Gecko HTML rendering engine. This is a
new application for BAIT (and also for automated conformance testing in general),
since the toolset was originally designed to treat nondeterministic reactive, and thus
action-based, systems with data. We modeled a fragment of the CSS box model in
uCRL, implemented a wrapper for Mozilla Gecko in order to be able to apply BAIiT
for test execution, and designed some test cases following the BAIT approach. In a
controlled experiment, we validated the applicability of BAIT to document-centered
HTML rendering.

Our experiences with the design of test purposes were twofold. On the one hand the
behavior-oriented part of the design was very easy. On the other hand, this means
that most of the test design is induced by data and thus actually happens during the
test run itself and can be computed automatically. Hereby, we encountered, that the
data parameters in this case study were mainly independent of each other, so that
BAIT could not show all its capabilities. Also, BAiT’s behavior adaptation could eas-
ily lead to test runs, which did not terminate. In such a case, a careful configuration
of the search threshold of BAIT is necessary to prevent infinite test runs while at the
same time avoiding superfluous Inconc verdicts.

The feasibility study described in this thesis was successful and forms an important
step towards a fully automated model-based test approach for HTML rendering en-
gines using BAIT. Compared to static test suites, which serve the document-centered
HTML rendering process, our behavior-oriented approach has the advantage of a
higher flexibility w.r.t. data parameters and the tested document structure. It also
better suits dynamic web page construction as it is nowadays practiced using tech-
niques as AJAX. With a wrapper for Gecko and a behavior-oriented approach to
test the TUT, it is far easier to generate a variety of different HTML test documents,
which cover different aspects of the IUT. A direction for future on this topic is surely
the extension of our chosen fragment of the CSS box model to the full model by the
W3C (2007). However, since the model of the W3C (2007) is given in natural lan-
guage rather than a formal notation, it might quite likely be incomplete, ambiguous
and may contain semantic variation points. On the technical level, an extension of
the case study should include such interesting issues like the treatment of excep-
tional situations in rendering a web page, like an overflowing layout. Furthermore,
floating point datatypes should be supported by the model at least to the extent, the

184 Chapter 8 Conclusion

ECLiPSe Prolog constraint solver supports them. This task is not really simple, since
it includes amongst other things the treatment of data, which is not exact but suffers
from rounding errors. In order to properly treat this kind of data, we have to con-
sider data ranges rather than exact values when interpreting the reaction of the IUT
on input during test execution.

Bug Hunting with False Negatives

For bug hunting with false negatives, we proposed in Chapter 7 a novel framework
for interpreting negative verification results obtained with the help of data abstrac-
tions. Existing approaches to handling abstract counterexamples try to find an exact
counterpart of the counterexample (e.g. Pdsdreanu et al., 2001). When no concrete
counterpart can be found, data abstraction is considered to be not fine enough and
abstraction refinement is applied (e.g. Clarke et al., 2003; Briickner et al., 2007).

Results: In our framework we look for useful information in false negatives, com-
bining the two formal methods model checking and constraint solving. Given a
specification of a system and a property (formulated as an eALTL formula), we first
choose and apply data abstraction to both of them and then verify the abstract prop-
erty on the abstract system. If the verification results in a violation of the abstract
property and the obtained counterexample has no counterpart in the concrete sys-
tem, we transform the counterexample into a violation pattern, which is further used
to guide the search for concrete counterexamples.

The framework allows to handle counterexamples obtained when verifying safety
properties, but also counterexamples for liveness properties. Moreover, the frame-
work can be applied for searching concrete counterexamples in parameterized and
infinite state systems. Success is not always guaranteed — the violation pattern can
be too strict, concrete counterexamples can have a spiral form (i.e. a loop in the spec-
ification, that does not lead back to a state fully identical to its starting state), or there
could be no counterexample at all since the property just holds on the concrete sys-
tem. Still, our approach can help in finding counterexamples in those cases when a
data abstraction influences the order and the number of some actions, e.g. as timer
and counter abstractions do. Even though we defined the framework for homomor-
phistic abstractions in this thesis, it seems to be possible to generalize abstraction
and refinement on the basis of Galois-connections and so define a framework for
bughunting with false negatives based on abstract interpretation.

Outlook: The approach to the generation of a violation pattern leaves a certain free-
dom in the sense that the set of actions to relax can be more/less restrictive. Tuning
the violation pattern or using the expertise of system developers to pick an appro-
priate set of actions to relax can be potentially less costly than repeating the abstrac-
tion/refinement cycle immediately. As an alternative to such a manual approach, we
propose an automatic approach for the selection of relaxed and kept actions. Such
an approach would be based on a data dependency analysis with heuristics for an
optimized selection of relaxed actions. The development of adequate heuristics is
still due to future research.

Appendix A

Excerpts from the Specification for CEPS

In this appendix, we give some excerpts from the nCRL specification of the Common
Electronic Purse Specifications (CEPS).

Exemplary Abstraction of Summands

% Exemplary definition of sort CommandType. Bool and Nat are standard
func commandData:CommandCodeType#Nat#TxTypeType#Nat#Nat#Nat#Nat#Bool#
Bool#Bool#CompletionCode#Bool#Nat#Nat#Nat->CommandType

% Exemplary declarations of operations on elements of sort CommandType.

% Rewrite rules are skipped.

map getCommand:CommandType->CommandCodeType
getCurrency:CommandType->Nat
getTxType:CommandType->TxTypeType
getDateTime:CommandType->Nat
getAcqlD:CommandType->Nat
getLdvID:CommandType->Nat
getlLoadAmt : CommandType->Nat
getReturnRcep:CommandType->Bool
getUpdateSlot:CommandType->Bool
getUpdateOthr:CommandType->Bool
getCompCode: CommandType->CompletionCode
getMacPresent:CommandType->Bool
getMac_52:CommandType->Nat
getR_LSAM: CommandType->Nat
getNewBalMax:CommandType->Nat

updateCommand : CommandType#CommandCodeType->CommandType
updateCurrency:CommandType#Nat ->CommandType
updateTxType:CommandType#TxTypeType->CommandType
updateDateTime: CommandType#Nat->CommandType
updateAcqID:CommandType#Nat->CommandType
updatelLdvID:CommandType#Nat->CommandType
updatelLoadAmt : CommandType#Nat ->CommandType
updateReturnRcep: CommandType#Bool ->CommandType

186 Appendix A Excerpts from the Specification for CEPS

updateUpdateSlot:CommandType#Bool ->CommandType
updateUpdateOthr:CommandType#Bool->CommandType
updateCompCode: CommandType#CompletionCode->CommandType
updateMacPresent:CommandType#Bool->CommandType
updateMac_S2:CommandType#Nat ->CommandType
updateR_LSAM: CommandType#Nat ->CommandType
updateNewBalMax: CommandType#Nat->CommandType

eq: CommandType#CommandType->Bool

% Process and exemplary summand, not abstracted

proc X(s0:State,pSlotCount:Nat,pRefCurCount:Nat,pLogSize:Nat,pNT Limit:Nat,
vIssId:Nat,vCardId:Nat,vDateExp:Nat,vSlots:ArraySlotTypel6,
slotsReported:ArraySlotsReportedTypel$6,
vRefCur:ArrayReferenceCurrencyType3,vTxLog_plLogSize:Nat,
vTxLog_InUse:Nat,vTxLog NextInsert:Nat,vTxLogEntry:LogArrayType,
vNT:Nat,vDeactivated:Bool,vLocked:Bool, vLoadAmount :Nat,
vSlotIndex:Nat,vCurrencySought:Nat,vSlotsAvailable:Nat,
vSlotsReported:Nat,vLastAvailSlot:Nat,vLogIngActive:Bool,
vLogIndex:Nat,vLastIngType:TxTypeType,
vNewBalMax:Nat, reportSize:Nat, report:ReportArrayType,
mPowerValue:PowerType,mAID:AidType,mInquiry:CommandType,
mSlotInfo:ReplyType,mFCI:FCIType,mTxLogInfo:ReplyType,
mInitlLoadResp:ReplyType,mCredLoadResp:ReplyType,mIssID:Nat,
mCardID:Nat,mDateExp:Nat,mRefCurIndex:Nat,mRefCurrCurrency:Nat,
mRefCurBalMax:Nat) =

sum(mInquiry2:CommandType, CepCommand (mInquiry2).
X(x2p0{x2pl(x2p0B(one))),pSlotCount,pRefCurCount,pLogSize,pNT_Limit,
vIssId,vCardId,vDateExp,vSlots,slotsReported, vRefCur,vTxLog_pLogSize,
vTxLog.InUse,vTxLog NextInsert,vIxLogEntry, vNT,vDeactivated,vLocked,
vLoadAmount, vSlotIndex,vCurrencySought,vSlotsAvailable,
vSlotsReported,vLastAvailSlot,vLogIngActive, vLogIndex,vLastIngType,
vNewBalMax, reportSize, report,mPowerValue,mAID,mInquiry2,mSlotInfo,
mFCI, mTxLogInfo,mInitLoadResp,mCredLoadResp,mIssID, mCardID, mDateExp,
mRefCurIndex,mRefCurrCurrency,mRefCurBalMax)
<|and(eq(s0,x2p0(x2pl(x2pl(x2pB(one))))),
and(and(and(eq(getCommand(mInquiry2), LOADINIT),
ge(vNT,pNT_Limit)),not(vDeactivated)),
not(vLocked))) |>delta)+

% Sort for abstracted CommandType
sort CommandType_abstr

187

func TT_CommandType: ->CommandType._abstr
known: CommandType->CommandType_abstr

map getCommand:CommandType_abstr->CommandC0deType_abstr
getCurrency:CommandType_abstr->Nat_abstr
getTxType:CommandType_abstr->TxTypeType_abstr
getDateTime:CommandType_abstr->Nat_abstr
getAcqID:CommandType_abstr->Nat_abstr
getlLdvID:CommandType_abstr->Nat_abstr
getLoadAmt : CommandType_abstr->Nat_abstr
getReturnRcep: CommandType_abstr->Bool_abstr
getUpdateSlot:CommandType_abstr->Bool_abstr
getUpdateQthr:CommandType_abstr->Bool_abstr
getCompCode:CommandType_abstr->Comp1etionCode
getMacPresent:CommandType_abstr->Bool_abstr
getMac_S2:CommandType_abstr->Nat abstr
getR_LSAM: CommandType_abstr->Nat_abstr
getNewBalMax:CommandType_abstr->Nat_abstr

updateCommand:CommandType_abstr#CommandCodeType_abstr
->CommandType_abstr
updateCurrency:CommandType_abstr#Nat_abstr->CommandType_abstr
updateTxType:CommandType_abstr#TxTypeType_abstr->CommandType abstr
updateDateTime:CommandType_abstr#Natmabstr->CommandType_abstr
updateAchD:CommandType_abstr#Nat_abstr->CommandType,abstr
updateLdvID:CommandType_abstr#Nat_abstr->CommandType_abstr
updateLoadAmt:CommandType,abstr#Nat_abstr->CommandTypemabstr
updateReturchep:CommandType_abstr#Bool_abstr->CommandType_abstr
updateUpdateSlot:CommandType_abstr#Bool_abstr->CommandType_abstr
updateUpdate0thr:CommandType_abstr#Bool abstr->CommandType_abstr
updateCompCode:CommandType_abstr#CompletionCode->CommandTypenabstr
updateMacPresent:CommandType"abstr#Bool_abstr->CommandType_abstr
updateMac.52:CommandType_abstr#Nat‘abstr->CommandType_abstr
updateR_LSAM:CommandType_abstr#Nat.abstr->CommandType_abstr
updateNewBalMax:CommandType_abstr#Nat_abstr->CommandType_abstr
eq: CommandType_abstr#CommandType_abstr->Bool_abstr

% Exemplary rewrite rule for abstracted equality operation

rew eq(TT_CommandType,TT_CommandType) = TT. Bool
eq(TT_CommandType, known (x)) = TT_Bool
eq(known(x),TT_CommandType) = TT_Bool

eq(known(x), known(y)) known(eq{x,y))

% Process and exemplary summand, not abstracted

188 Appendix A Excerpts from the Specification for CEPS

proc X(sO:State_abstr,pSlotCount:Nat abstr,pRefCurCount:Nat_abstr,
plogSize:Nat_abstr,pNT_Limit:Nat_abstr,vIssId:Nat_abstr,
vCardId:Nat_abstr,vDateExp:Nat_abstr,vSlots:ArraySlotTypel6_abstr,
slotsReported:ArraySlotsReportedTypel6_abstr,
vRefCur:ArrayReferenceCurrencyType3_abstr,vTxLog_plLogSize:Nat_abstr,
vTxLog_InUse:Nat_abstr,vTxLog_NextInsert:Nat abstr,
vIxLogEntry:LogArrayType_abstr,vNT:Nat_abstr,
vDeactivated:Bool_abstr,vLocked:Bool_abstr,vLoadAmount:Nat_abstr,
vSlotIndex:Nat_abstr,vCurrencySought:Nat_abstr,
vSlotsAvailable:Nat_abstr,vSlotsReported:Nat_abstr,
vLastAvailSlot:Nat_abstr,vLogIngActive:Bool_abstr,
vLogIndex:Nat_abstr,vLastInqType:TxTypeType_abstr,
vNewBalMax:Nat_abstr, reportSize:Nat_abstr,
report:ReportArrayType_abstr,
mPowerValue:PowerType_abstr,mAID:AidType_abstr,
mInquiry:CommandType_abstr,mSlotInfo:ReplyType_abstr,
mFCI:FCIType_abstr,mTxLogInfo:ReplyType_abstr,
mInitLoadResp:ReplyType_abstr,mCredLoadResp:ReplyType_abstr,
mIssID:Nat_abstr,mCardID:Nat_abstr,mDateExp:Nat_abstr,
mRefCurIndex:Nat_abstr,mRefCurrCurrency:Nat_abstr,
mRefCurBalMax:Nat) =

CepCommand (TT_CommandType) .

X(x2p0(x2pl(x2p0(known(one)))),pSlotCount,pRefCurCount, plogSize,
PNT_Limit,vIssId,vCardId,vDateExp,vSlots,slotsReported,vRefCur,
vTxLog_pLogSize,vTxLog._InUse,vTxLog_NextInsert,vTxLogEntry, vNT,
vDeactivated,vLocked, vLoadAmount,vSlotIndex, vCurrencySought,
vSlotsAvailable,vSlotsReported,vLastAvailSlot,vLogIngActive,
vLogIndex,vLastInqType, vNewBalMax, reportSize, report,mPowerValue,
mAID,TT_CommandType,mSlotInfo,mFCI,mTxLogInfo,mInitLoadResp,
mCredLoadResp,mIssID,mCardID, mDateExp,mRefCurIndex,mRefCurrCurrency,
mRefCurBalMax)

<|may (and(eq(s0,x2p0(x2pl(x2pl(x2pd(known(one)))))),

and(and(and(eq(getCommand (TT_CommandType), known (LOADINIT)),
ge(vNT,pNT_Limit)),not(vDeactivated)),
not(vlLocked)))) |>delta+

Exemplary CLP for CEPS

This section shows a part of the CLP for the specification of CEPS from the previous
section. Due to the simplification described in Section 5.2.4, operations with a return
type B are realized as rules with no return value but direct evaluation.

189

% Some operations on data of type CommandType
updateNewBalMax(commandType(commandData(commandCodeType(VO),nat(Vl),
thypeType(VZ),nat(V3),nat(V4),nat(VS),nat(V6),bool(V7),bool(V8),
bool(V9),completionCode(VlO),bool(Vll),nat(V12),nat(V13),nat(V14))),
nat(V15),commandData(commandCodeType(VO),nat(Vl),thypeType(VZ),
nat(V3),nat(V4),nat(VS),nat(VG),bool(V7),bool(VB),bool(VQ),
completionCode(VlO),bool(Vll),nat(VlZ),nat(V13),nat(V15))).
updateR_LSAM(commandType(commandData(commandCodeType(VO),nat(Vl),
thypeType(VZ),nat(V3),nat(V4),nat(V5),nat(V6),bool(V7),b001(V8),
bool(V9),completionCode(VlQ),bool(Vll),nat(V12),nat(V13),nat(V14))),
nat(VlS),commandData(commandCodeType(VO),nat(Vl),thypeType(VZ),
nat(V3),nat(V4),nat(V5),nat(VB),bool(V7),bool(V8),b001(V9),
completionCode(VlO),bool(Vll),nat(V12),nat(V15),nat(V14))).
updateMac,SZ(commandType(commandData(commandCodeType(VO),nat(Vl),
thypeType(VZ),nat(V3),nat(V4),nat(VS),nat(VG),bool(V7),bool(V8),
bool(V9),completionCode(VlO),bool(Vll),nat(VlZ),nat(V13),nat(V14))),
nat(V15),commandData(commandCodeType(VO),nat(Vl),thypeType(VZ),
nat(V3),nat(V4),nat(V5),nat(V6),bool(V7),bool(V8), bool(V9),
completionCode(VlO),bool(Vll),nat(VlS),nat(V13),nat(V14))).
updateMacPresent(commandType(commandData(commandCodeType(VO),nat(Vl),
thypeType(VZ),nat(V3),nat(V4),nat(VS),nat(VG),bool(V7),bool(VB),
bool(V9),completionCode(VlO),bool(Vll),nat(V12),nat(V13),nat(V14))),
bool(VlS),commandData(commandCodeType(V@),nat(Vl),thypeType(VZ),
nat(V3),nat(V4),nat(VS),nat(VB),bool(V7),bool(V8),b001(V9),
completionCode(VlO),bool(VlS),nat(VlZ),nat(V13),nat(V14))).
updateUpdateOthr(commandType(commandData(commandCodeType(VO),nat(Vl),
thypeType(VZ),nat(V3),nat(V4),nat(VS),nat(V6),bool(V7),bool(V8),
bool(V9),completionCode(VlO),bool(Vll),nat(V12),nat(V13),nat(V14))),
bool(VlS),commandData(commandCodeType(VO),nat(Vl),thypeType(VZ),
nat(V3),nat(V4),nat(V5),nat(VG),bool(V7),bool(V8),bool(VlS),
completionCode(VlO),bool(Vll),nat(VlZ),nat(V13),nat(V14))).
updateUpdateSlot(commandType(commandData(commandCodeType(VG),nat(Vl),
thypeType(VZ),nat(V3),nat(V4),nat(V5),nat(VG),bool(V7),bool(V8),
bool(V9),completionCode(Vl@),bool(Vll),nat(V12),nat(V13),nat(V14))),
bool(VlS),commandData(commandCodeType(VO),nat(Vl),thypeType(VZ),
nat(V3),nat(v4),nat(V5),nat(V6),bool(V7),bool(V15),bool(V9),
completionCode(VlO),bool(Vll),nat(VlZ),nat(V13),nat(V14))).
updateReturchep(commandType(commandData(commandCodeType(VO),nat(Vl),
thypeType(VZ),nat(V3),nat(V4),nat(VS),nat(VG),bool(V7),bool(V8),
bool(V9),completionCode(VlG),bool(Vll),nat(V12),nat(V13),nat(V14))),
bool(VlS),commandData(commandCodeType(V@),nat(Vl),thypeType(VZ),
nat(V3),nat(V4),nat(VS),nat(VB),bool(VlS),bool(VB),bool(V9),
completionCode(Vl@),bool(Vll),nat(VlZ),nat(V13),nat(V14))).
updateLoadAmt(commandType(commandData(commandCodeType(VO),nat(Vl),

190 Appendix A Excerpts from the Specification for CEPS

txTypeType(V2),nat(V3),nat(V4),nat(V5),nat(V6),bool (V7),bool(V8),
bool(V9),completionCode(V10),bool(V1l),nat{V12),nat(V13),nat(V14))),
nat(V15), commandData(commandCodeType(V0),nat(V1),txTypeType(V2),
nat(V3),nat(v4),nat(V5),nat(V15),bool(V7),bool(V8),bool{Va),
completionCode(V10),bool(V1l),nat(V12),nat(V13),nat(Vid))).
updatelLdvID{commandType (commandData(commandCodeType(V0),nat(V1),
txTypeType(V2),nat(V3),nat(V4),nat{V5),nat(V6),bool(V7),bool(V8),
bool(V9),completionCode(VlO),bool(Vll),nat(V12),nat(V13),nat(V14))),
nat(VlS),commandData(commandCodeType(V0),nat(Vl),thypeType(VZ),
nat(V3),nat(V4),nat(VlS),nat(VG),bool(V7),bool(V8),bool(V9),
completionCode(V10),bool(V11),nat(V12),nat(V13),nat(Vi4))).
updateAchD(commandType(commandData(commandCodeType(VO),nat(Vl),
txTypeType(V2),nat(V3),nat(V4),nat(V5),nat(V6),bool(V7),bool(V8),
bool(V9),completionCode(VlO),booI(Vll),nat(VlZ),nat(V13),nat(V14))),
nat(V15),commandData(commandCodeType(VO),nat(Vl),thypeType(VZ),
nat(V3),nat(V15),nat(VS),nat(V6),bool(V7),bool(V8),bool(V9),
completionCode(V10),bool(V1l),nat(V12),nat(V13),nat(Vi4))).
updateDateTime (commandType (commandData{commandCodeType (VO),nat(V1),
txTypeType(V2),nat(V3),nat(V4),nat(V5),nat(V6),bool(V7),bool(V8),
bool(V9),completionCode(VlO),bool(Vll),nat(V12),nat(V13),nat(V14))),
nat(V15),commandData(commandCodeType(VO),nat(Vl),thypeType(VZ),
nat(VlS),nat(V4),nat(VS),nat(VG),bool(V7),bool(V8),bool(V9),
completionCode(V10),bool(V11),nat(V12),nat(V13),nat(Vi4))).
updateTxType(commandType(commandData(commandCodeType(VO),nat(Vl),
txTypeType(V2),nat(V3),nat(V4),nat(V5),nat(V6),bool(V7),bool(V8}),
bool(V9),completionCode(Vle),bool(Vll),nat(V12),nat(V13),nat(V14))),
txTypeType(V15), commandData(commandCodeType(V@),nat(Vl),
txTypeType(V15),nat(V3),nat(V4),nat(V5),nat(V6),bool(V7),bool (V8),
bool(V9),completionCode(VlG),bool(Vll),nat(V12),nat(V13),nat(V14))).
updateCommand(commandType (commandData (commandCodeType (VO), nat (V1) ,
thypeType(VZ),nat(V3),nat(V4),nat(VS),nat(VG),bool(V7),bool(V8),
bool(V9),completionCode(Vl@),bool(Vll),nat(V12),nat(V13),nat(V14))),
commandCodeType (V15) , commandData (commandCodeType(V15),nat(V1),
txTypeType(V2),nat(V3),nat(v4),nat(V5),nat(V6),bool(V7),bool(V8),
bool(V9),completionCode(VlO),bool(Vll),nat(VlZ),nat(V13),nat(V14))).
getNewBalMax (commandType (commandData (commandCodeType(V0),nat(V1),
txTypeType(V2),nat(V3),nat(V4),nat(V5),nat(V6),bool(V7),bool(V8),
bool(V9),completionCode(VlO),bool(Vll),nat(V12),nat(V13),nat(V14))),
nat(vi4)).
getR_LSAM(commandType (commandData(commandCodeType(V0),nat(V1),
txTypeType(V2),nat(V3),nat(V4),nat(V5),nat(V6),bool (V7),bool (V8),
bool(V9),completionCode(VlO),bool(Vll),nat(V12),nat(V13),nat(V14))),
nat(v13)).
getMac_S2(commandType (commandData(commandCodeType(V0),nat(V1),

191

txTypeType(V2),nat(V3),nat(V4),nat(V5),nat(V6),bool(V7), bool(V8),
bool(V9),completionCode(V10),bool(V1l),nat(V12),nat(V13),nat(V14})),
nat(v12)).

getMacPresent (commandType(commandData(commandCodeType(V0),nat(V1),
txTypeType(V2),nat(V3),nat(V4),nat(V5),nat(V6),bool(V7),bool(V8),
bool(V9),completionCode(V10),bool(V1l),nat(V12),nat(V13),nat(V14))))
:-bool(V1l).

getUpdateOthr(commandType (commandData(commandCodeType(V0),nat(Vl1),
txTypeType(V2),nat(V3),nat(V4),nat(V5),nat(Vv6),bool(V7),bool(V8),
bool(V9),completionCode(V10),bool(V1l),nat(V12),nat(V13),nat(vi4))))
:-bool(V9).

getUpdateSlot (commandType(commandData(commandCodeType(V@),nat(Vl),
txTypeType(V2),nat(V3),nat(V4),nat(V5),nat(V6e),bool(V7),bool(V8),
bool(V9),completionCode(V10),bool(V1l),nat(V12),nat(V13),nat(Vl4))))
:-bool(V8).

getReturnRcep(commandType(commandData(commandCodeType(V@),nat(V1),
txTypeType(V2),nat(V3),nat(V4),nat(V5),nat(V6),bool(V7),bool(V8),
bool(V9),completionCode(V10),bool(V1l),nat(V12),nat(V13),nat(V14))))
:-bool (V7).

getLoadAmt (commandType (commandData(commandCodeType(V0),nat(Vl),
txTypeType(V2),nat(V3),nat(V4),nat(V5),nat(V6),bool (V7),bool(V8),
bool(V9),completionCode(V10),bool(V1l),nat(V12),nat(V13),nat(vid))),
nat(v6)).

getLdvID(commandType(commandData(commandCodeType(V0),nat(Vl1),
txTypeType(V2),nat(V3),nat(v4),nat(Vv5),nat(V6),bool(V7),bool(V8),
bool(V9),completionCode(V10),bool(V11l),nat(V12),nat(V13),nat(vid))),
nat(Vv5)).

getAcqID(commandType (commandData(commandCodeType(V0),nat(Vl),
txTypeType(V2),nat(V3),nat(V4),nat(Vv5),nat(V6),bool(V7),bool(V8),
bool(V9),completionCode(V10),bool(V1l),nat(V12),nat(V13),nat(V14))),
nat(v4)).

getDateTime (commandType (commandData(commandCodeType(V0),nat(V1},
txTypeType(V2),nat(V3),nat(v4),nat(V5),nat(Vv6),bool(V7),bool(V8),
bool(V9),completionCode(V10),bool(V1l),nat(V12),nat(V13),nat(Vi4))),
nat(v3)).

getxType(commandType (commandData(commandCodeType(V0),nat(Vl),
txTypeType(V2),nat(V3),nat(v4),nat(V5),nat(V6),bool(V7),bool(V8),
bool(V9),completionCode(V10),bool(V1l),nat(V12),nat(V13),nat(V14))),
txTypeType(V2)).

getCommand (commandType (commandData(commandCodeType(V0),nat(Vl),
txTypeType(V2),nat(V3),nat(v4),nat(V5),nat(Vv6),bool(V7),bool(V8),
bool(V9),completionCode(V10),bool(V11),nat(V12),nat(V13),nat(Vi4))),
commandType(V0)).

192 Appendix A Excerpts from the Specification for CEPS

% The rule for the shown summand from Section A.A

cepCommand(global(state(Vs®),nat(VpSlotCount),nat(VpRefCurCount),
nat(VpLogSize),nat(VpNT_Limit),nat(VvIssId),nat(VvCardld),nat(VvDateExp),
arraySlotTypel6(VvSlots),arraySlotsReportedTypel6(VslotsReported),
arrayReferenceCurrencyType3(VvRefCur),nat(VvTxLog_pLogSize),
nat(VvTxLog_InUse),nat(VvTxLog_NextInsert),logArrayType(VvTxLogEntry),
nat (VvNT),bool(VvDeactivated),bool(VvLocked), nat(VvLoadAmount),
nat (VvSlotIndex),nat(VvCurrencySought),nat(VvSlotsAvailable),
nat (VvSlotsReported),nat(VvLastAvailSlot),bool(VvLogIngActive),
nat(VvLogIndex), txTypeType(VvLastInqType),nat(VvNewBalMax),
nat(VreportSize), reportArrayType(Vreport),powerType(VmPowerValue),
aidType(VmAID), commandType(VmInquiry), replyType(VmSlotInfo),
fCIType(VmFCI), replyType(VmTxLogInfo), replyType(VmInitLoadResp),
replyType(VmCredLoadResp),nat(VmIssID),nat(VmCardID),nat(VmDateExp),
nat (VmRefCurIndex),nat(VmRefCurrCurrency),nat(VmRefCurBalMax)),
global(state(x2pO(state(x2pl(state(x2p@(state(one))))))),
nat (VpSlotCount),nat(VpRefCurCount),nat(VpLogSize),nat(VpNT Limit),
nat(VvIssld),nat(VvCardId),nat(VvDateExp),arraySlotTypel6(VvSlots),
arraySlotsReportedTypel6(VslotsReported),
arrayReferenceCurrencyType3(VvRefCur),nat(VvTxLog_pLogSize),
nat(VvTxLog_InUse),nat(VvTxLog_NextInsert),logArrayType(VvTxLogEntry),
nat(VvNT),bool (VvDeactivated),bool(VvLocked),nat(VvLoadAmount),
nat(VvSlotIndex),nat(VvCurrencySought),nat(VvSlotsAvailable),
nat(VvSlotsReported),nat(VvLastAvailSlot),bool(VvLogIngActive),
nat (VvLogIndex), txTypeType(VvLastInqType), nat(VvNewBalMax),
nat(VreportSize),reportArrayType(Vreport),powerType(VmPowerValue),
aidType(VmAID), commandType(VmInquiry2), replyType(VmSlotInfo),
fCIType(VmFCI), replyType(VmTxLogInfo), replyType(VmInitLoadResp),
replyType(VmCredLoadResp),nat(VmIssID),nat(VmCardID),nat(VmDateExp),
nat(VmRefCurIndex),nat{VmRefCurrCurrency),nat(VmRefCurBalMax)),
param(commandType (VmInquiry2))) :-

and(bool (eq(state(Vs0),
state(x2p0(state(x2pl(state(x2pl(state(x2pd(state(one))))))))))),
bool(and(bool(and(bool(and(bool(eq({commandCodeType(
getCommand (commandType (VmInquiry2))),commandCodeType (10ADINIT))),
bool(ge(nat(VvNT),nat(VpNT_Limit))))),
bool(not(bool(VvDeactivated))))),bool(not(bool(VvLocked)))))).

Appendix B
Proofs for Lemma 3.22

Lemma B.1. Given a system of equations & and a corresponding CLP Paqy, it holds
that
s =>Tgs, t & transformTerm(s) =Lp transformTerm(t)

with transformTerm(s) =p transformTerm(t) including substitution steps after
the actual resolution of transformTerm(s).]

Proof. We have to prove that rewriting a term in a TRS can be simulated by the LP.
Therefore, we have to prove, that for an arbitrary rewrite step in any of the two
systems, the relation below holds:

s — transformTerm(s)
TRS 1 l Lp
' | sus
t — transformTerm(t)

We will argument using a proof by induction over the depth of the redex in terms
for constructors and functions (cf. Definition 3.21).

s =7gs, t = transformTerm(s) =p transformTerm(t)

Base Cases: The base cases are formed by those simulation cases, where a term s
in the TRS can immediately be rewritten to another term t by an equations =t € .

Casel. Letf € M, c € C, f(s1,...,5n) = ¢(t1,...,tm) € € and x,X be fresh vari-
ables. Then there exists a rule p € P with

f(]D1 (51)) .o ,]Dn(sn),]D(X)) — X =p C(]DI] (t1)) .. v]D:-n,(tm))
such that t; = s?. Now assume, that f(s1,...,5n) =1rs; c(t1,...,tm), which
is already given by the fact that f(s1,...,sn) = c(t1,...,tm) € €. The actual
rewriting takes place as f(s1,...,sn) appears as a term in the TRS. By Defini-
tion 3.15,
transformTerm(f(sy,...,sn)) == f(D1(s1),...,Dnl(sn), D(x)).

The term, within which it is rewritten, results in a query to the CLP as follows:

194 Appendix B Proofs for Lemma 3.22

O f(Di(s1),...,Dnlsn), DR} Ap ...
O«—X=p C(ID'](t]),...,]D’m(tm))/\p

—LP

The Prolog representation of f(sy,..., sy} is resolved to
X =p c(Dj(t1),..., D} (tm)),
which is transformTerm(c(ty, ..., t,n)). For this, we have

transformTerm(f(sy,...,sn)) =1p transformTerm(c(ty, ..., t;m)).

Case2. Let f,g € M, f(sy,...,5n) = g(t1,...,tm) € & and x, X be fresh variables.
Then there exists a rule p € 8 with

f(D1(s1),...,Dnlsn),D(x1)) « x1 =p x2 Ap g(Dj(t1),..., D (tm), D(x2))

such that t; = sJ. Now assume, that f(s1,...,sn) =1rs, g(t1,...,tm), which
is already given by the fact that f(sy,...,sn) = g{t1,...,tm) € €. The actual
rewriting takes place as f(s1,...,s,) appears as a term in the TRS. By Defini-
tion 3.15,

transformTerm(f(s1,...,sq)) := f(Di(s1),...,Dn(sn), D(x)).

The term, within which it is rewritten, results in a query to the CLP as follows:

O f(Di(s1),...,Dn(sn),D(X)) Ap ...

0% =p A e
g(D)(t1),..., D, (tm), D(R")) A ...
0% =p Ay SUB[®/ /%]
g(Dj(t1),..., D} (tm),D(R)) Ap ...
O g(Dj(t1),..., D (tm), DR} Ap . ..
The Prolog representation of f(sy,..., s,) is resolved to
g(]D,] (tl)1 e ,]Dlm.(tm),]D()/E)),
which is transformTerm(g(ty,..., t;n)). For this, we have
transformTerm(f(sy,...,sn)) =rp transformTerm(g(ty,...,tm}).

Inductive Cases: Now assume that
s =>Tgs, t = transformTerm(s) = p transformTerm/(t).

Let f(...,s,...) = f(...,t,...) € & such that s =1rg, t while f(...,s,...) =1gs,

195

Case 3. Lets:=g(sy,...,sn)and g € M, t:=h(t,...,tm) and h € M and x,y,%,§
be fresh variables. By Definition 3.15,

transformTerm(f(...,g(s1,...,5n),...)) ==
NAp 9(D1(81),...,Dn(8n), Ds(x))A
A (L, Ds(x), ..., Dly)

with transformTerm(g(s1,...,5n)) := g(D1(51),...,Dn(8n), Ds(x)) and §; =
transformTerm(s;).
By construction, there exists a rule p € P with

g(Di(81),...,Dn(8n), Ds(x1)) «x1 =p x2/\p
h(D)(t1), ..., Dy (tm), De(x2))

such that t; = 8. The simulation of term rewriting takes place in a query. This
query has, by induction, the following resolution steps (we skip the leading

dots here, since resolution takes place for the first resolvent only):

O« g(Di(81),...,Dn(80), Ds(X)) Ap ... Ap
f(...,D(X),.... DA
DI——Q—[[))/E'/\P
hD,(t1), ., D (Bn) D (R) Ap - Ap
f(L DG(R), .., DG) Ay -

“LP

O % =p %A — SUBIR’/X
h(IDI (h) ID/ (tm))]Ds(Q))/\p- /\p
f(...,Ds (X) ., D(Y)) Np -
D«'—h(]D’](?]),.. m(tm),]Ds(?c))/\P.../\P
flo..,Ds(R),...., D)) Ap ..
The Prolog representation of g(s1,...,sn) is resolved to
(D) (1), ..., Dl (Em), Ds (%)),
which is transformTerm(h(ty, ..., tm)). The Prolog representation of

flo..,0(81,...,8n)y..-)
is by that resolved to
h(D) (1), ..., Do (Tm), Ds(R) Ap ... Ap fl..., Dy(%), ..., D(G)),
which is transformTerm(f(...,h(t1,...,tm),...)). For this, we have
transformTerm(s) =p transformTerm(t)

while transformTerm(f(...,s,...)) =p transformTerm(g(...,t,...)).

196 Appendix B Proofs for Lemma 3.22

Case 4. Let s := g(sy,...,sn)and g € M, t :=¢(ty,...,tm)and c € C and x,y,%, {
be fresh variables. By Definition 3.15,

transformTerm(f(...,9(s1,...,8n),...)) :=
/\p g(lDl(/S\l))---y]Dn(/S\n)»le(x))/\p
A L Ds(x) .., DY)
with
transformTerm(g(sq,...,sn)) = g{D1(871),...,Dn(5n), Ds(x))

and §; = transformTerm(s;).
By construction, there exists a rule p € P with

g(]Dl (/5\1))' .. y]Dn(/S\n)leS(x)) — X =D, h’(]D’] (/‘El)1 oo)lDlm,(/t\m))

such that t; = §7. The simulation of term rewriting takes place in a query. This
query has, by induction, the following resolution steps (we skip the leading
dots here, since resolution takes place for the first resolvent only):

D‘“‘Q(]D](/S\]), --n]Dn(/S\n) (X)) --/\p
fl.. ., Dg(X),..., DG A
- ; —Lp
O« % =p, h(]D,(t),. .,le(tm))/\p.../\p
f(...,Ds(R),...,D(G) Ap...
The Prolog representation of g(s1,...,sy) is resolved to

% =p, WD} (t1), ..., Dy (Em)),
which is transformTerm(h(ty,...,tn)). The Prolog representation of
fl...,g(s1,...,50),...)
is by that resolved to
X =p, h(Dj(t1),... . Diy(tm)) Ap o Ap £ Ds(R), ..., D(D)),
which is transformTerm(f(...,h(ty,...,t),...)). For this, we have
transformTerm(s) =p transformTerm(t)

while transformTerm/(f(...,s,...)) =Lp transformTerm(g(....t,...)).

Case 5. Let s := c(sy,...,8i,...,sp)and ¢ € C, s; := f(ty,...,t) and f € M and
X, Y, X, §J be fresh variables.

197

By Definition 3.15,
transformTerm(c(s1,...,f(t1,...,tm),- -y 8n)) ==
A F(Dy, (B1), .., D, (Bm), De(y)A
-'/\px:]DC(IDSI(/S\l))"'yIDf(y))' n(n))

By that, the simulation of term rewriting takes place in the following query:

E]<—.../\pf(IDt]($E1) D (Em), De(§)) Ap ... Ap
R =D C(IDS (]Df(g . -y]Dsn(/S\n))

O «— f(Dy, (T1), - lDtm(tm), De(§)) Ap . A

X =p ¢(Ds, (1), ..., De(G), ... s,.(Sn)

(s

O« .../\PQ—_—]D C(]Dsl(/s\l))-'-xIDf(ﬁ)v"
with {j instantiated

inductively
P
)

—LP

Sn))

vsn

By Definition 3.19, there exists a rule in Paqt, such that rewriting f(t1,...,tm)
can be simulated according to the other cases of this proof. In doing so, s is
rewritten inductively.

Case 6. This case is an inductive one, too, with s := ¢1(s1,...,8{,...,5n) and s; :=
calo.., f{t1,...,tm),...), c1,¢2 € Cand f € M. The term s is rewritten as in

the previous case, leaving c;(...) in place and tearing apart function f as has
been shown in Case 5.

s =gs, t < transformTerm(s) =p transformTerm(t)

Base Cases:

Casel. Let f € M, ¢ € C and x,X be fresh variables. Assume further, we have a
resolution step as follows:

) O« f(Dq(s1),. .., Dnlsn), D(X)) A
O—2-pcD(t1),..., Din(tm)) Aponr

The Prolog representation of f(s1,...,s,) is resolved to
X =p c(Dj(t1),..., Dy (tm)),

which is transformTerm(c(ty,..., tm)). For this, we have

transformTerm(f(sy,...,sn)) =rp transformTerm(c(ty,...,tm)).

This step is only possible, if there exists a rule p € B with

f(D1(s1),...,Dn(sn),D(x)) « x =p c(D(t1),..., D (tim))

198 Appendix B Proofs for Lemma 3.22

such that t; = s7. By Definition 3.19, this rule exists in the CLP, if we have
f(s1,...,8n) =c{tq,...,tm) € £. Hence, we can derive that also

fs1,...,8n) =1Rs, C(t1,. .. tm).

Case 2. Let f,g € M and x, % be fresh variables. Assume further, we have a resolu-
tion step as follows:

O« (Di(s1),..., Dn(sn), D(R)) A, ...

O R =p 2'Ap o
9(ID(t1),..., Dy (t), DR') Ap ..

03 —p Q/\F PSUBIx’/%
9(ID) (t1),..., D'y (tm), D(R)) Ap ...

O g(D)(t1),..., Dl (tm), D(X)) Ap ...

The Prolog representation of f(s1,...,s,) is resolved to
g(]DI] (tl)y e, »IDin(tm)»]D()A(])»
which is transformTerm(g(t;,...,ty)). For this, we have

transformTerm(f(sy,...,sn)) =rp transformTerm(c(ty,...,tm)).

This step is only possible, if there exists a rule p € P with
f(Dy(s1),...,Dnlsn),D(x1)) & x1 =p x2 Ap g(D)(t1),..., D} (tm),D(x2))

such that t; = s{. By Definition 3.19, this rule exists in the CLP, if we have
f(s1,...,8n) = gl(t1,...,tm) € & Hence, we can derive that also

f(S].. . -|Sn] =TRS; g(tl v -vtm)~

Inductive Cases:

Case 3. Let f,g,h € M and x,y, X, {j be fresh variables. Assume further, we have a
resolution step as follows:

f(...,IDs(Q),...,ID(ﬁl))/\

199

The Prolog representation of g(s1,...,sn) is resolved to

~

h(D](t

~

1), Din(tm), Ds (%)),
which is transformTerm(h(t;,...,tm)). The Prolog representation of
f(...,9(s81,...,8n),-..)
is by that resolved to
h(D)(t1),..., D) (tm), Ds(R)) Np - N flo,Dg(R), ..., DY),
which is transformTerm(f(...,h(ty,...,tm),...)). For this, we have
transformTerm(s) = p transformTerm(t)

while transformTerm(f(...,s,...)) =Lp transformTerm(g(...,t,...)).
This step is only possible, if there exists a rule p € B with

~ ~

g(D1(81),...,Dn(80),Ds(x1)) < x1 =p x2 Ap h(D}(t1), ..., D (tin), Ds(x2))

such that t; = 87. By Definition 3.19, this rule exists in the CLP, if we have
al(s1,...,sn) = h{t1,...,tn) € & Hence, we can derive that also

g(s1,...,Sn) =Trs, R(t1,...,tm)

while f(...,g(s1,...,5n),...) =TRS f(...,h{ty, ..., tm),...).

Case 4. Let f,g,h € M and x,y, X, {j be fresh variables. Assume further, we have a
resolution step as follows:

O« (]Dl(sl) Dy (s n),]Ds(Q))/\p---/\p
(..., Dg(x) LDU)) A
m T -)LP
LJ‘—‘X'—]Ds h(]D](t) --vIDm(tm)) P"'/\P
fl...,Dg(X),..., DU} A
The Prolog representation of g(sy,...,sn) is resolved to

% =p, h(Dj(t1),..., D (Em)),
which is transformTerm(h(ty, ..., tm)). The Prolog representation of
f(...,9(s1,--.,Sn)y...)
is by that resolved to

~

% =p, A(D} (1), .., D (Bm)) Ap .- Ap £, D(R), ..., D(G)),

200 Appendix B Proofs for Lemma 3.22

which is transformTerm(f{..., h{ts,...,tn),...)). For this, we have
transformTerm(s) =p transformTerm(t)

while transformTerm(f(...,s,...)) =Lp transformTerm(g(...,t,...)).
This step is only possible, if there exists a rule p € 9 with

g(D1(81),...,Dn(84),D(x)) < x =p, h(D}(t1),..., D} (tm), D(x))

such that t; = §7. By Definition 3.19, this rule exists in the CLP, if we have
g(st,...,5n) = h{ty,...,tm) € & Hence, we can derive that also

9(51o~--y5n) =>TRSi h(tl)-'-vtln)

whilef(...,g(sl....,sn)):>TRS f(.. (t], I S

Case 5. Letc e C,f € Mand x,y,X, {j be fresh varlables. Assume further, we have a
resolution step as follows:

O .. Ap f(ﬂ)l,(?l).. IDt,,‘(tm),]Df(A))/\p Np
X =p ¢(Ds, (81),...,D¢(F),...,Ds, (5n)) . .
— — inductively
O —1(Dy, (t1),. Dt.,.(tm)lef())/\ Np
X =p C(Ds,(sl)» -, De(8), ... s“(gn])
= > Py ~ -Lp
Ue . \pX=p C(le,(Sl),---‘lDf(y),- yDs, (8n))

with {j instantiated

This step is only possible, if there exists a rule in Pagqe, such that rewriting

f{t1,...,tm) can be simulated according to the other cases of this proof. This
rule exists by Definition 3.19. Hence, we can derive thatalsoc(...,si,...) =1rs
c(...,s},...) while s; =gg, s} and s; := f(t1,...,tm).

O

As a second proof, we have to show, that also multi-step term rewritings are treated
correctly.

Proof. We will argument using a proof by induction over the number of single rewrit-
ing steps necessary to do the complete rewriting of a term.

Base Case: Assume, we have a rewrite step s —1gg, s’ with s := f(ty,...,tm), f € M,
and s’ := c(t},...,t},), ¢ € C. Then, rewriting takes place as shown in the
previous proof, Case 1.

Inductive Case: Assume, we have a number of rewriting steps s —trs, s’ —Trs,

.. —TRs, 8" —1Rs, 8", Then, a step-wise rewriting process subsequently takes
place to rewrite s =gs, s” according to the Cases 2-6 of the previous proof.
The last rewrite step s” —1gs, s” is the one from the base case of this proof.

g

Acronyms

ADT
AJAX
ALTL
API
ATC
ATM
BAIT
BRICKS
CADP
CASE
CEPS
CHR
CLP
CSS
CTG
DOM
eALTL
EFSM
FSM
HTML
IOLTS
IOSTS
ITEA
IUT
LPE
LP
LTL
LTS
uCRL
MSC
OMG

Abstract Datatype

Asynchronous JavaScript and XML
Action-based Linear Temporal Logic
Application Programming Interface

Abstract Test Case

Automatic Teller Machine
Behavior-Adaptation in Testing

Basic Research in Informatics for Creating the Knowledge Society
Construction and Analysis of Distributed Processes
Computer-Aided Software Engineering
Common Electronic Purse Specifications
Constraint Handling Rules

Constraint Logic Program

Cascading Style Sheet

Complete Test Graph

Document Object Model

Extended Action-based Linear Temporal Logic
Extended Finite State Machine

Finite State Machine

Hypertext Markup Language

Input/Output Labeled Transition System
Input/Output Symbolic Transition System
Information Technology for European Advancement
Implementation under Test

Linear Process Equation

Logic Program

Linear Temporal Logic

Labeled Transition System

micro Common Representation Language
Message Sequence Chart

Object Management Group

202 Appendix B Proofs for Lemma 3.22

PAR Positive Acknowledgement Retransmission Protocol
PIN Personal Identification Number

SDL Specification and Description Language

STG Symbolic Test Generation

STS Symbolic Transition System

SUT System under Test

SWT Standard Widget Toolkit

TAIO Timed Automaton with Inputs and Outputs
TCI-CD TTCN-3 Control Interface, Coding/Decoding Interface

TGV Test Generation with Verification Techniques
TIOLTS Timed Input/Output Labeled Transition System
TRI TTCN-3 Runtime Interface

TRS Term Rewriting System

TTCN-3 Testing and Test Control Notation, version 3

TT-Medal Tests & Testing Methodologies for Advanced Languages
UML Unified Modeling Language

W3C World Wide Web Consortium

XPCOM Cross Platform Component Object Model

xUnit Unit Testing Frameworks

Symbols

Miscellaneous

B Boolean; B = {T, L}.

N Natural numbers; N = {njn > 0}.

Z Integers (positive and negative numibers).

D Arbitrary datatype/variable domain.

D Set of arbitrary datatype/variable domains.
28 Power set of an arbitrary set S.

S* Words from an arbitrary set S.

p, &, v Rules in a CLP.

s, t Terms.

v, X, Y,z Variables.

Specifications and Automata

G A specification; here: a Symbolic Transition System. pp- 14; 25
Var Set of variables in the STS. p- 14
L Set of locations in the STS. p- 14
Val Set of valuations in the STS. p-14
A Set of actions in the STS. p- 14
E Set of edges in the STS. p. 14
€, Linit (Initial) location in the STS. p- 14
T, Minit (Initial) valuation in a state of the STS. p- 14
5 Single edge in an STS, labeled with action t. p- 15
grxe, Assignment of e to x under condition (guard) g. p-15
oisle), Output of event s with parameter e under condition g. p. 15
LIlLIN Input of event s with parameter x under condition g. p-15
M A Labeled Transition System. p- 16
r Set of states in the LTS. p.- 16
A Set of labels in the LTS. p.- 16
A Set of transitions in the LTS. p-16
% Single transition labeled with A € A. p- 16
O, Cinit (Initial) state in the LTS. p- 16
T Internal action (t-step). p- 16
5 Deadlock. p- 58
4 Trace. p- 17
| Length of a finite trace 7. p-17
[races Set of traces of M. p-17

204 Appendix B Proofs for Lemma 3.22
5 A sort in a pCRL specification. pp- 25; 22
E Set of equations in a pCRL specification. p-25
) Set of sorts in a WCRL specification. pp- 25; 26
= Set of constructors C and functions M in a uCRL spec- pp. 25; 26
CuM o
ification.

A Set of actions in a uCRL specification. p-25

¢ Set of communication definitions in a pCRL specifica- p. 25
tion.

P Set of processes in a pCRL specification. p-25

uCRL and Constraint Solving

3 Signature of an algebra. pp. 25; 22

S Set of sorts. pp- 25; 22

F Set of operation symbols. pp- 25; 22

o Signatures of operations. pp- 25; 22

T(F,X) Set of terms T over operations F and variables X. p- 22

A An algebra. p.-22

A Carrier set of algebra 2. p-22

‘B An algebra for booleans. p- 23

n An algebra for natural numbers. p- 24

S Successor symbol for natural numbers. p.- 24

° An assignment of elements from A to variables. p-22

15 Interpretation function for algebra 2l und assignment p. 22
function 9.

B A Constraint Logic Program. p- 36

¢ A constraint. p. 37

d, Jinit (Initial) query to the constraint solver. p- 36

=Lp A resolution relation between two queries. p-37

T A logical theory. p- 38

D A constraint domain. p. 38

) A solution. p- 38
Testing with Data Abstraction
Lace Set of accepting states of a test purpose. p- 60
Zref Set of refusing states of a test purpose. p- 60
9 1clatrace Set of accepted traces of test case Mrc. p- 63
97t 1c] rirace Set of refused traces of test case Mrc. p. 63
9t 1c] pass Set of traces of test case M, which lead to the verdict p. 64
Pass.

99t incone Set of traces of test case M1, which lead to the verdict p. 64
Inconc.

[rclEain Set of traces of test case Myc, which lead to the verdict p. 64

Fail.

205

p
16]p

O
7(0)

Chaotic abstraction of LTS 901.

The T-abstraction of sort 5.

The constant Chaos for the sort 3.

Lifting constructor to lift data instances from an origi-
nal sort to an abstracted one.

May function to map conditions from three-valued
logic back to two-valued logic.

Simulation relation between automata 9t; and 91,.

Already executed subtrace.

That part of 6, which is relevant for subtrace 3; partial
Valuation.

Oracle for a trace 7.

Trace 7t under solution 6.

Bug Hunting with False Negatives

¢

¢, P
Od
Ud
dUY
dRY

X

Ocyclic

Pr

LT Apep
VeS| ~p T2

Action formula.

LTL properties (path formulae).
¢ holds in future.

¢ always holds.

¢ holds until P holds.

¢ releases V.

General abstraction by an abstraction homomorphism
with a state mapping h; and an action mapping h,.
Abstraction of LTS 9 (in general and explicitly).
Abstraction data domain for concrete domain D.

A data mapping for abstractions on a symbolic level.
k' abstraction for timers with max. concrete value k.

Set of non-relaxed actions for a violation pattern.
Violation pattern.

Trace in U with stub mr;, and (infinite) loop 7.
Concrete counterexample trace.

The first state in the cyclic suffix of 9.

Trace projection function on Ayeep-

Projection of trace 7 on Ayeep

Projection relation between 7y and m,.

o9

T BTV T

TVVWVVTV VT TVVTY

151
151
151
151
151
151

152

152
153
153
148

167
167
167
167
167
168
168
171

206 Appendix B Proofs for Lemma 3.22

Bibliography

Author References

Stefan C. C. Blom, Jens R. Calamé, Bert Lisser, Simona Orzan, Jun Pang, Jaco van de
Pol, Mohammed Torabi Dashti, and Anton J. Wijs. Distributed Analysis with
uCRL: A Compendium of Case Studies. In Orna Grumberg and Michael Huth,
editors, Proc. of the 13th Intl. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2007), volume 4424 of LNCS, pages 683-689. Springer,
2007. doi:10.1007 /978-3-540-71209-1_53.

Jens R. Calamé. Considerations on Object Oriented Software Testing. Preprint
4/2003, Universitiat Potsdam, Institut fiir Informatik, 2003.

Jens R. Calamé. Adaptive Test Case Execution in Practice. Technical Report SEN-
R0703, Centrum voor Wiskunde en Informatica, 2007.

Jens R. Calamé and Jaco van de Pol. Applying Model-based Testing to HTML Ren-
dering Engines — A Case Study. In Kenji Suzuki, Teruo Higashino, Andreas Ulrich,
and Toru Hasegawa, editors, Proc. of the 20th IFIP TC6/WG6.1 Intl. Conf. on Testing
of Communicating Systems (TestCom 2008), 7th Intl. Workshop on Formal Approaches
to Testing of Software (FATES 2008), volume 5047 of LNCS, pages 250-265. Springer,
2008. doi:10.1007/978-3-540-68524-1_18.

Jens R. Calamé, Natalia Ioustinova, Jaco van de Pol, and Natalia Sidorova. Data Ab-
straction and Constraint Solving for Conformance Testing. In Danielle C. Martin,
editor, Proc. of the 12th Asia-Pacific Software Engineering Conf. (APSEC 2005), pages
541-548. IEEE Press, 2005. d0i:10.1109/ APSEC.2005.57.

Jens R. Calamé, Nicolae Goga, Natalia Ioustinova, and Jaco van de Pol. TTCN-3 Test-
ing of Hoorn-Keersenboogerd Railway Interlocking. In Proc. of the 2006 Canadian
Conf. on Electrical and Computer Engineering (CCECE 2006), pages 620-623. IEEE
Press, 2006a. doi:10.1109/CCECE.2006.277762.

Jens R. Calamé, Natalia loustinova, and Jaco van de Pol. Automatisierte Erzeugung
von TTCN-3 Testfillen aus UML-Modellen. In Christian Hochberger and Riidiger
Liskowsky, editors, Informatik 2006, Lecture Notes in Informatics, pages 257-261.
Gesellschaft fiir Informatik, October 2006b.

Jens R. Calamé, Natalia Ioustinova, and Jaco van de Pol. Automatic Model-Based
Generation of Parameterized Test Cases Using Data Abstraction. In Judi Romijn,
Graeme Smith, and Jaco van de Pol, editors, Proc. of the Doctoral Symp. affili-
ated with the 5th Intl. Conf. on Integrated Formal Methods (IFM 2005), volume 191

208 Bibliography

of Electronic Notes in Theoretical Computer Science, pages 25-48. Elsevier, 2007a.
doi:10.1016/j.entcs.2007.06.019.

Jens R. Calamé, Natalia Ioustinova, Jaco van de Pol, and Natalia Sidorova. Bug
Hunting with False Negatives. In Jim Davies and Jeremy Gibbons, editors, Proc.
of the 6th Intl. Conf. on Integrated Formal Methods (IFM 2007), volume 4591 of LNCS,
pages 98-117. Springer, 2007b. doi:10.1007 /978-3-540-73210-5_6.

Other References

Bernhard K. Aichernig, Bernhard Peischl, Martin Weiglhofer, and Franz Wotawa.
Test Purpose Generation in an Industrial Application. In Proc. of the 3rd Intl.
Workshop on Advances in Model-based Testing, pages 115-125. ACM Press, 2007.
doi:10.1145/1291535.1291547.

Krzysztof R. Apt and Mark Wallace. Constraint Logic Programming Using Eclipse.
Cambridge University Press, 2007.

Paul Baker, Zhen Ru Dai, Jens Grabowski, @ystein Haugen, Ina Schieferdecker, and
Clay Williams. Model-Driven Testing — Using the UML Testing Profile. Springer, 2008.

Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K. Rajamani. SLAM and
Static Driver Verifier: Technology Transfer of Formal Methods inside Microsoft.
In Eerke A. Boiten, John Derrick, and Graeme Smith, editors, Proc. of Hie 4th Intl.
Conf. on Integrated Formal Methods (IFM 2004), volume 2999 of LNCS, pages 1-20.
Springer, 2004. doi:10.1007 /b96106.

Kent Beck. Extremie Programming Explained. Addison-Wesley, 1999.

Bert van Beek, Ka L. Man, Michel A. Reniers, Koos E. Rooda, and Ramon R. H. Schif-
felers. Syntax and Consistent Equation Semantics of Hybrid Chi. Journal of Logic
and Algebraic Programming, 68(1-2):129-210, 2006. doi:10.1016/j.jlap.2005.10.005.

Axel Belinfante, Jan Feenstra, René de Vries, Jan Tretmans, Nicolae Goga, Loe Feijs,
Sjouke Mauw, and Lex Heerink. Formal Test Automation: A Simple Experiment.
In Gyula Csopaki, Sarolta Dibuz, and Katalin Tarnay, editors, 12th Iitl. Workshop
on Testing of Connmunicating Systems, pages 179-196. Kluwer Academic Publishers,
1999.

Béatrice Bérard, Michel Bidoit, Alain Finkel, Francois Laroussinie, Antoine Petit,
Laure Petrucci, Philippe Schnoebelen, and Pierre McKenzie. Systems and Software
Verification. Springer, 2001.

Jan A. Bergstra, Jan W. Klop, and Aart Middeldorp. Termherschrijfsystemen. Kluwer
Bedrijfswetenschappen, 1989.

Jan A. Bergstra, Alban Ponse, and Scott A. Smolka, editors. Handbook of Process Alge-
bra. Elsevier, 2001.

Bibliography 209

Stefan C. C. Blom, Natalia Ioustinova, and Natalia Sidorova. Timed Verification with
uCRL. In Manfred Broy and Alexandre V. Zamulin, editors, Proc. of the 5th Intl.
Conf. on Perspectives of System Informatics (PSI 2003), volume 2890 of LNCS, pages
178-192. Springer, 2003. doi:10.1007/b94823.

Barry W. Boehm. Guidelines for Verifying and Validating Software Requirements
and Design Specifications. In Proc. of the Euro IFIP 1979, pages 711-719, 1979.

Marc Born, Hans-Gerard Gross, Pedro Santos, and Ina Schieferdecker. Model-driven
Development and Testing — A Case Study. In Marten J. van Sinderen and Luis Fer-
reira Pires, editors, 1st European Workshop on Model Driven Architecture with Em-
phasis on Industrial Application, number TR-CTIT-04-12 in CTIT Technical Report,
pages 97-104, Enschede, 2004.

Wiet Bouma. Algebraische Specificaties. Kluwer Programmatuurkunde, 1991.

Laura Brandan Briones. Theories for Model-Based Testing: Real-time and Coverage. PhD
thesis, Universiteit Twente, 2007. URL http://doc.utwente.nl/578168/.

Laura Brandan Briones and Ed Brinksma. A Test Generation Framework for qui-
escent Real-Time Systems. In Jens Grabowski and Brian Nielsen, editors, Proc. of
the 4t Intl. Workshop on Formal Approaches to Testing (FATES 2004), volume 3395 of
LNCS, pages 64-78. Springer, 2005. doi:10.1007 /b106767.

Lionel C. Briand and Yvan Labiche. A UML-Based Approach to System Testing. In
Martin Gogolla and Cris Kobryn, editors, Proc. of the 4th Intl. Conf. on The Unified
Modeling Language, Modeling Languages, Concepts, and Tools (UML 2001), volume
2185 of LNCS, pages 194-208. Springer, 2001. ISBN 3-540-42667-1. do0i:10.1007/3-
540-45441-1_15.

BRICKS. Basic Research in Informatics for Creating the Knowledge Society. URL
http://www.bsik-bricks.nl.

Pascal Brisset et al. ECLiPSe Constraint Library Manual, version 5.9 edition, 2006.

Manfred Broy. Compositional Refinement of Interactive Systems Modelled by Re-
lations. In Willem-Paul de Roever, Hans Langmaack, and Amir Pnueli, editors,
Compositionality: The Significant Difference (COMPOS 1997), volume 1536 of LNCS,
pages 130-149. Springer, 1998. do0i:10.1007/3-540-49213-5_6.

Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and Alexander
Pretschner, editors. Model-Based Testing of Reactive Systetns, volume 3472 of LNCS.
Springer, 2005. doi:10.1007/b137241.

Ingo Briickner, Klaus Driger, Bernd Finkbeiner, and Heike Wehrheim. Slicing Ab-
stractions. In Farhad Arbab and Marjan Sirjani, editors, Proc. of the Intl. Symp.
on Fundamentals of Software Engincering (FSEN 2007), volume 4767 of LNCS, pages
17-32. Springer, 2007. doi:10.1007/978-3-540-75698-9_2.

210 Bibliography

CEPSCO. Cominon Electronic Purse Specifications, Functional Requirements. CEPSCO,
1999. Version 6.3.

CEPSCO. Common Electronic Purse Specifications, Technical Specification. CEPSCO,
2000. Version 2.2.

Sagar Chaki, Edmund Clarke, Orna Grumberg, Joél Ouaknine, Natasha Sharygina,
Tayssir Touili, and Helmut Veith. State/Event Software Verification for Branching-
Time Specifications. In Judi Romijn, Graeme Smith, and Jaco van de Pol, editors,
Proc. of the 5th Intl. Conf. on Integrated Formal Methods (IFM 2005), volume 3771 of
LNCS, pages 53-69. Springer, 2005. doi:10.1007/11589976_5.

Kwang Ting Cheng and A. S. Krishnakumar. Automatic Functional Test Generation
Using the Extended Finite State Machine Model. In Proc. of the 30th Intl. Conf.
on Design Automation (DAC 1993), pages 86-91. ACM, 1993. ISBN 0-89791-577-1.
doi:10.1145/157485.164585.

Duncan Clarke, Thierry Jéron, Vlad Rusu, and Elena Zinovieva. Automated Test and
Oracle Generation for Smart-Card Applications. In Isabelle Attali and Thomas
Jensen, editors, Proc. of the Intl. Conf. on Research in Smart Cards (e-Smart 2001),
volume 2140 of LNCS, pages 58-70. Springer, 2001. doi:10.1007/3-540-45418-7_6.

Duncan Clarke, Thierry Jéron, Vlad Rusu, and Elena Zinovieva. STG: A Sym-
bolic Test Generation Tool. In Joost-Pieter Katoen und Perdita Stevens, editor,
Proc. of the 8th Intl. Conf. on Tools and Algorithms for the Construction aud Analysis
of Systems (TACAS 2002), volume 2280 of LNCS, pages 470-475. Springer, 2002.
doi:10.1007 / 3-540-46002-0_34.

Edmund M. Clarke, Orna Grumberg, and David E. Long. Model Checking and Ab-
straction. ACM Transactions on Programming Languages and Systems, 16(5):1512—
1542, 1994. doi:10.1145/186025.186051.

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT
Press, 1999.

Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided Abstraction Refinement for Symbolic Model Checking.
Journ. of the ACM, 50(5):752-794, 2003. doi:10.1145/876638.876643.

William F. Clocksin and Christopher S. Mellish. Programming in Prolog. Springer,
fourth edition, 1994.

Conformiq. Conformiq Qtronic — Quick Start, Installation, Use, Reference.

Camille Constant, Thierry Jéron, Hervé Marchand, and Vlad Rusu. Integrating For-
mal Verification and Conformance Testing for Reactive Systems. IEEE Transactions
on Software Engincering, 33(8):558-574, 2007. doi:10.1109/TSE.2007.70707.

Bibliography 211

Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Proc. of the 4th ACM SIGACT-SIGPLAN Symp. on Principles of progranuming languages
(POPL 1977), pages 238-252. ACM Press, 1977. doi:10.1145/512950.512973.

Dennis Dams. Abstract Interpretation and Partition Refinement for Model Checking. PhD
thesis, Technische Universiteit Eindhoven, 1996.

Dennis Dams and Rob Gerth. The Bounded Retransmission Protocol Revisited. In
Faron Moller, editor, Proc. of the 2nd Intl. Workshop on Verification of Infinite State
Systems (Infinity 1997), volume 9 of Electronic Notes in Theoretical Computer Science,
page 26. Elsevier, 1999. d0i:10.1016/51571-0661(05)80425-6.

Dennis Dams, Rob Gerth, and Orna Grumberg. Abstract Interpretation of Reactive
Systems. ACM Transactions ont Programming Languages and Systems, 19(2):253-291,
1997. d0i:10.1145/244795.244800.

Satyaki Das and David L. Dill. Counter-Example Based Predicate Discovery in Pred-
icate Abstraction. In Mark D. Aagaard and John W. O’Leary, editors, Proc. of the
4th Intl. Conf. on Formal Methods in Computer-Aided Design (FMCAD 2002), volume
2517 of LNCS, pages 19-32. Springer, 2002. doi:10.1007/3-540-36126-X_2.

Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in
Property Specifications for Finite-state Verification. In Proc. of the 21st Intl.
Conf. on Software Engineering (ICSE 1999), pages 411-420. IEEE Press, 1999.
doi:10.1109/ICSE.1999.841031.

Marcel Erné, Jiirgen Koslowski, Austin Melton, and George E. Strecker. A primer on
galois connections. Annals of the New York Academy of Sciences, 704:103-125, 1993.

ETSL ETSI ES 201 873-1 V2.2.1: Methods for Testing and Specification (MTS); The
Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language. ETSI
Standard, 2003a.

ETSIL. ETSI ES 201 873-6 V1.1.1: Methods for Testing and Specification (MTS); The
Testing and Test Control Notation version 3; Part 6: TTCN-3 Control Interface
(TCI). ETSI Standard, 2003b.

ETSI. ETSI ES 201 873-5 V1.1.1: Methods for Testing and Specification (MTS); The

Testing and Test Control Notation version 3; Part 5: TTCN-3 Runtime Interface
(TRI). ETSI Standard, 2003c.

Wan Fokkink. Introduction to Process Algebra. EATCS. Springer, 2000.

Lars Frantzen, Jan Tretmans, and Tim A. C. Willemse. Test Generation Based on
Symbolic Specifications. In Jens Grabowski and Brian Nielsen, editors, FATES
2004, volume 3395 of LNCS, pages 1-15. Springer, 2005. doi:10.1007/b106767.

212 Bibliography

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995. ISBN 0-201-
63361-2.

Hubert Garavel and Frédéric Lang. NTIF: A General Symbolic Model for Communi-
cating Sequential Processes with Data. In Doron A. Peled and Moshe Y. Vardi, ed-
itors, Proc. of the 22nd IFIP WG 6.1 Intl. Conf. on Formal Techniques for Networked and
Distributed Systems (FORTE 2002), volume 2529 of LNCS, pages 276-291. Springer,
2002. doi:10.1007/3-540-36135-9_18.

Angelo Gargantini. Conformance Testing. In Broy et al. (2005).
doi:10.1007/11498490_5.

David Gelperin and Bill Hetzel. The Growth of Software Testing. Communications of
the ACM, 31(6):687—695, 1988. doi:10.1145/62959.62965.

Wouter Geurts, Klaas Wijbrans, and Jan Tretmans. Testing and Formal Methods -
Bos Project Case Study. In Proc. of the 6th European Intl. Conf. on Software Testing,
Analysis & Review (EuroSTAR 1998), pages 215-229, 1998. URL http://eprints.
eemcs.utwente.nl/6495/.

Dimitra Giannakopoulou. Model Checking for Concurrent Software Architectures. PhD
thesis, University of London, 1999.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed Au-
tomated Random Testing. In Proc. of the 2005 ACM SIGPLAN Conf.
on Programming Language Design and Implementation (PLDI'05), pages
213-223, New York, NY, USA, 2005. ACM Press. ISBN 1-59593-056-6.
doi:http://doi.acm.org/10.1145/1065010.1065036.

Jens Grabowski, Dieter Hogrefe, Gyorgy Réthy, Ina Schieferdecker, Anthony Wiles,
and Colin Willcock. An Introduction to the Testing and Test Control Nota-
tion (TTCN-3). Computer Networks, 42(3):375-403, 2003. doi:10.1016/51389-
1286(03)00249-4.

Jan Friso Groote. The Syntax and Semantics of Timed nCRL. Technical Report SEN-
R9709, Centrum voor Wiskunde en Informatica, 1997.

Jan Friso Groote and Alban Ponse. The Syntax and Semantics of uCRL. In Alban
Ponse, Chris Verhoef, and Bas van Vlijmen, editors, Algebra of Communicating Pro-
cesses, Workshops in Computing, pages 26-62. Springer, 1994.

Orna Grumberg, Flavio Lerda, Ofer Strichman, and Michael Theobald. Proof-guided
Underapproximation-Widening for Multi-Process Systems. In Proc. of the 32nd
ACM SIGACT-SIGPLAN Symp. on Principles of programming languages (POPL 2005),
pages 122-131. ACM Press, 2005. doi:10.1145/1040305.1040316.

Bibliography 213

Hans W. Guesgen. Constraints. In Giinther Gorz, Claus-Rainer Rollinger, and Josef
Schneeberger, editors, Handbuch der Kiinstlichen Intelligenz, chapter 8, pages 267-
287. Oldenbourg, third edition, 2000.

David Harel. Statecharts: A Visual Formalism for Complex Systems. Sciernce of Com-
puter Programming, 8(3):231-274, 1987. doi:10.1016/0167-6423(87)90035-9.

Rob Hendriks, Erik van Veenendaal, and Robert van Vonderen. Measuring Software
Quality. In Veenendaal (2002), chapter 6, pages 91-102.

Robert M. Hierons. Applying Adaptive Test Cases to Nondeterministic Implemen-
tations. Information Processing Letters, 98:56-60, 2006. doi:10.1016/j.ipl.2005.12.001.

David Hoyle. ISO 9000 Quality Systems Handbook. Butterworth-Heinemann, fifth
edition, 2005.

Thomas lhringer. Allgeimeine Algebra. B. G. Teubner, second edition, 1993.

Natalia loustinova. Abstractions and Static Analysis for Verifying Reactive Systems. PhD
thesis, Vrije Universiteit Amsterdam, 2004. URL http://hdl.handle.net/1871/
9061.

Natalia Ioustinova, Natalia Sidorova, and Martin Steffen. Abstraction and Flow
Analysis for Model Checking Open Asynchronous Systems. In Proc. of Hie 9th
Asia-Pacific Software Engineering Conf. (APSEC 2002), pages 227-235. IEEE Press,
2002a. doi:10.1109/ APSEC.2002.1182992.

Natalia loustinova, Natalia Sidorova, and Martin Steffen. Closing Open SDL-
Systems for Model Checking with DTSpin. In Lars-Henrik Eriksson and Pe-
ter Alexander Lindsay, editors, Formal Methods - Getting IT Right, Proc. of the Intl.
Symp. of Formal Methods Europe (FME 2002), volume 2391 of LNCS, pages 157-177.
Springer, 2002b. doi:10.1007/3-540-45614-7_30.

Natalia Ioustinova, Natalia Sidorova, and Martin Steffen. Synchronous Closing and
Flow Abstraction for Model Checking Timed Systems. In Frank S. de Boer, Mar-
cello M. Bonsangue, Susanne Graf, and Willem-Paul de Roever, editors, Proc. of the
2nd Intl. Symp. on Formal Methods for Components and Objects (FMCO’03), volume
3188 of LNCS, pages 292-313. Springer, 2004. doi:10.1007/b100112.

ISTQB. Standard Glossary of Terms Used in Software Testing, June 2006. URL http:
//www.istgb.org/downloads/glossary-1.2.pdf. Version 1.2 final.

ITU-T. Recommendation X.290-I1SO/IEC 9646-1, Information Technology — Open
Systems Interconnection — Conformance Testing Methodology and Framework —
Part 1: General Concepts, 1996. URL http://www.itu.int/rec/T-REC-X.290/en.

ITU-T. Recommendation Z.120, Message Sequence Chart, 2005. URL http://www.
itu.int/rec/T-REC-Z.120/en.

214 Bibliography

Claude Jard and Thierry Jéron. TGV: Theory, Principles and Algorithms. Intl. Journ.
on Software Tools for Technology Transfer, 7(4):297-315, 2005. doi:10.1007/s10009-
004-0153-x.

Bertrand Jeannet, Thierry Jéron, Vlad Rusu, and Elena Zinovieva. Symbolic Test
Selection based on Approximate Analysis. In Nicolas Halbwachs and Lenore D.
Zuck, editors, Proc. of the 11th Intl. Conf. on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS 2005), number 3440 in LNCS, pages 349-364.
Springer, 2005. doi:10.1007 /b107194.

Thierry Jéron. Contribution a la génération automatique des tests pour les systemes réactifs.
Habilitation thesis, L'Université de Rennes 1, 2004.

Jan Jiirjens. Secure Systems Development with UML. Springer, Berlin, Heidelberg, 2005.

Jan Jiirjens and Guido Wimmel. Security Modelling for Electronic Commerce: The
Common Electronic Purse Specifications. In Beat Schmid, Katarina Stanoevska-
Slabeva, and Volker Tschammer, editors, Towards the E-Society. Proc. of the 1st IFIP
Intl. Conf. on E-Commerce, E-Business and E-Government, pages 489 — 506. Kluwer
Academic Publishers, 2001.

Stephen H. Kan. Metrics and Models in Software Quality Engineering. Addison-Wesley,
second edition, 2003.

Yonit Kesten and Amir Pnueli. Control and Data Abstraction: The Cornerstones of
Practical Formal Verification. Intl. Journ. on Software Tools for Technology Transfer, 2
(4):328-342, 2000. doi:10.1007/s100090050040.

Moez Krichen and Stavros Tripakis. Black-Box Conformance Testing for Real-Time
Systems. In Susanne Graf and Laurent Mounier, editors, Proc. of the 11th Intl.
SPIN Workshop (ICTAC 2006), volume 2989 of LNCS, pages 109-126. Springer, 2004.
doi:10.1007 /b96721.

Moez Krichen and Stavros Tripakis. Interesting Properties of the Real-Time Con-
formance Relation tioco. In Kamel Barkaoui, Ana Cavalcanti, and Antonio
Cerone, editors, Proc. of the 3rd Intl. Colloquium on Theoretical Aspects of Com-
puting (ICTAC 2006), volume 4281 of LNCS, pages 317-331. Springer, 2006.
doi:10.1007/11921240_22.

Philippe Kruchten. The Rational Unified Process: An Introduction. Addison-Wesley,
third edition, 2003.

Yassine Lakhnech, Saddek Bensalem, Sergey Berezin, and Sam Owre. Incremental
Verification by Abstraction. In Tiziana Margaria and Wang Yi, editors, Proc. of the
7th Intl. Conf. on Tools and Algorithms for the Construction and Analysis of Systents
(TACAS 2001), volume 2031 of LNCS, pages 98-112. Springer, 2001. doi:10.1007/3-
540-45319-9_8.

Bibliography 215

Kim G. Larsen and Bent Thomsen. A Modal Process Logic. In Proc. of the Third
Annual Symp. on Logic in Computer Science (LICS 1988), pages 203-210. IEEE Press,
1988. doi:10.1109/LICS.1988.5119.

Kim G. Larsen, Marius Mikucionis, and Brian Nielsen. Online Testing of Real-time
Systems Using Uppaal. In Jens Grabowski and Brian Nielsen, editors, Proc. of the
4th Intl. Workshop on Formal Approaches to Software Testing (FATES 2004), volume
3395 of LNCS, pages 79-94. Springer, 2005. doi:10.1007/b106767.

Yves Ledru, Pierre Bontron, Lydie du Bousquet, Olivier Maury, and Catherine Oriat.
TOBIAS : un outil de test combinatoire pour le test de conformité. In Acte de con-
férence de Ia quatorzieme édition des Journées Internationales "Génie Logiciel & Ingénierie
de Systemes et leurs Applications” (ICSSEA 2001), 2001.

Claire Loiseaux, Susanne Graf, Joseph Sifakis, Ahmed Bouajjani, and Saddek Ben-
salem. Property Preserving Abstractions for the Verification of Concurrent Sys-
tems. Formal Methods in System Design, 6(1):11-44, 1995. doi:10.1007/BF01384313.

Heiko Lotzbeyer and Alexander Pretschner. AutoFocus on Constraint Logic Pro-
gramming. In Proc. of the (Constraint) Logic Programming and Software Engineering
(LPSE 2000), 2000.

Nancy A. Lynch and Mark R. Tuttle. Hierarchical Correctness Proofs for Distributed
Algorithms. In Proc. of the 6th Annual ACM Symp. on Principles of Distributed Com-
puting (PODC 1987), pages 137-151. ACM Press, 1987. doi:10.1145/41840.41852.

Steve Maguire. Nie wieder Bugs. Fachbibliothek Programmierung. Microsoft Press,
1998.

Kim Marriott and Peter J. Stuckey. Programming with Constraints — An Introduction.
MIT Press, 1998.

Augustus de Morgan. Syllabus of a Proposed System of Logic. Walton and Maberly,
1860.

Glenford J. Myers. The Art of Software Testing. Wiley, 1979.

Lev Nachmanson, Margus Veanes, Wolfram Schulte, Nikolai Tillmann, and Wolf-
gang Grieskamp. Optimal Strategies for Testing Nondeterministic Systems. In
Proc. of the 2004 ACM SIGSOFT Intl. Symp. on Software Testing and Analysis (ISSTA
2004), pages 55-64. ACM Press, 2004. doi:10.1145/1007512.1007520.

Peter Naur and Brian Randell, editors. Software Engineering — Report on a Conference
sponsored by the NATO SCIENCE COMMITTEE, 1969. NATO.

Rocco de Nicola and Matthew Hennessy. Testing Equivalence for Processes. In Josep
Diaz, editor, Proc. of the 10th Colloquium on Automata, Languages and Programming,
volume 154 of LNCS, pages 548-560. Springer, 1983. do0i:10.1007 /BFb0036936.

216 Bibliography

Sidney Nogueira, Augusto Sampaio, and Alexandre Mota. Guided Test Generation
from CSP Models. Technical report, Centro de Informaética, Universidade Federal
de Pernambuco, Brazil, 2007.

Stefano Novello, Joachim Schimpf, Kish Shen, and Josh Singer. ECLiPSe Embedding
and Interfacing Manual, version 5.8 edition, 2005.

Jeff Offutt and Aynur Abdurazik. Generating Tests from UML Specifications. In
Robert France and Bernhard Rumpe, editors, Proc. of the 2nd Intl. Conf. on The Uni-
fied Modeling Language, Modeling Languages, Concepts, and Tools (UML 1999), volume
1723 of LNCS, pages 416-429. Springer, 1999. doi:10.1007 /3-540-46852-8_30.

OMG. UML 2.0 Testing Profile Specification, 2003.
OMG. UML 2.0 Superstructure Specification, 2005.

Gordon Pace, Nicolas Halbwachs, and Pascal Raymond. Counter-example Genera-
tion in Symbolic Abstract Model-Checking. Intl. Journ. on Software Tools for Technol-
ogy Transfer, 5(2):158-164, 2004. ISSN 1433-2779. doi:10.1007 /s10009-003-0127-4.

David Park. Concurrency and Automata on Infinite Sequences. In G. Goos and
J. Hartmanis, editors, Proc. of the 5th GI Conf., volume 104 of LNCS, pages 167-183.
Springer, 1981. doi:10.1007 /BFb0017309.

Carl A. Petri. Kommunikation mit Automaten. PhD thesis, Universitit Bonn, 1962.

Jaco van de Pol and Miguel A. Valero Espada. Modal Abstractions in uCRL. In
Charles Rattray, Savitri Maharaj, and Carron Shankland, editors, Proc. of the 10th
Intl. Conf. on Algebraic Methodology and Software Technology (AMAST 2004), volume
3116 of LNCS, pages 409-425. Springer, 2004. doi:10.1007/b98770.

Alexander Pretschner, Heiko Lotzbeyer, and Jan Philipps. Model-based Testing in
Incremental System Development. Jouri. of Systems and Software, 70(3):315-329,
2004a. ISSN 0164-1212. doi:10.1016/50164-1212(03)00076-1.

Alexander Pretschner, Oscar Slotosch, E. Aiglstorfer, and Stefan Kriebel. Model-
based Testing for Real. Intl. Journ. on Software Tools for Technology Transfer, 5(2-3):
140-157, 2004b. doi:10.1007 /s10009-003-0128-3.

Corina S. Pasareanu, Matthew B. Dwyer, and Willem Visser. Finding Feasible
Counter-examples when Model Checking Abstracted Java Programs. In Tiziana
Margaria and Wang Yi, editors, Proc. of the 7th Intl. Conf. on Tools and Algoritluns for
the Construction and Analysis of Systems (TACAS 2001), volume 2031 of LNCS, pages
284-298. Springer, 2001. doi:10.1007 /3-540-45319-9_20.

Corina S. Pasdreanu, Radek Pelanek, and Willem Visser. Concrete Model Checking
with Abstract Matching and Refinement. In Kousha Etessami und Sriram K. Raja-
mani, editor, Proc. of the 17th Intl. Conf. on Computer-Aided Verification (CAV 2005),
volume 3576 of LNCS, pages 52-66. Springer, 2005. doi:10.1007/11513988_7.

Bibliography 217

J. Alan Robinson. A Machine-Oriented Logic Based on the Resolution Principle.
Journ. of the ACM, 12(1):23-41, 1965. doi:10.1145/321250.321253.

Vlad Rusu, Lydie du Bousquet, and Thierry Jéron. An Approach to Symbolic Test
Generation. In Wolfgang Grieskamp, Thomas Santen, and Bill Stoddart, editors,
Proc. of the 2nd Intl. Conf. on Integrated Formal Methods (IFM 2000), volume 1945 of
LNCS, pages 338-357. Springer, 2000. doi:10.1007 /3-540-40911-4_20.

Roberto Segala. Quiescence, Fairness, Testing, and the Notion of Implementation. In
Eike Best, editor, Proc. of the 4t Intl. Conf. on Concurrency Theory (CONCUR 1993),
volume 715 of LNCS, pages 324-338. Springer, 1993. doi:10.1007 /3-540-57208-2_23.

Natalia Sidorova and Martin Steffen. Verifying Large SDL-Specifications Using
Model Checking. In Rick Reed and Jeanne Reed, editors, Proc. of the 10t Intl.
SDL Forum (SDL 2001), volume 2078 of LNCS, pages 403—420. Springer, 2001a.
doi:10.1007 /3-540-48213-X_25.

Natalia Sidorova and Martin Steffen. Embedding Chaos. In Patrick Cousot, editor,
Proc. of the 8tli Intl. Static Analysis Symp. (SAS 2001), volume 2126 of LNCS, pages
319-334. Springer, 2001b. doi:10.1007 /3-540-47764-0_18.

Andrew 5. Tanenbaum. Computer Networks. Prentice Hall, 1981.

Jan Tretmans. Test Generation with Inputs, Qutputs, and Repetitive Quiescence.
Software — Concepts & Tools, 17(3):103-120, 1996.

Jan Tretmans and Ed Brinksma. TorX: Automated Model-based Testing. In Alan
Hartman and Klaudia Dussa-Ziegler, editors, Proc. of the 1st European Conf. on
Model-Driven Software Enginecring, 2003.

TT-Medal. Tests & Testing Methodologies for Advanced Languages. online: http:
//www.tt-medal.org.

Doug Turner and Ian Oeschger. Creating XPCOM Components, 2003. online.

Yaroslav S. Usenko. Linearization in uCRL. PhD thesis, Technische Universiteit Eind-
hoven, 2002.

Frits W. Vaandrager. On the Relationship Between Process Algebra and In-
put/Output Automata. In Proc. of the 6t Annual Symp. on Logic in Computer Science
(LICS 1991), pages 387-398. IEEE Press, 1991. Extended abstract.

Erik van Veenendaal, editor. The Testing Practitioner. Uitgeverij Tutein Nolthenius,
2002.

W3C. XHTML 1.0 The Extensible HyperText Markup Language (Second Edition),
2002. URL http://www.w3.0rg/TR/2002/REC- xhtml1-20020801. Recommendation.

W3C. Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification, 2007. URL
http://www.w3.0rg/TR/2007/CR-(S521-20070719. Candidate Recommendation.

218 Bibliography

Anton]. Wijs. Achieving Discrete Relative Timing with Untimed Process Algebra. In
Proc. of the 12th IEEE Intl. Conf. on Engineering Complex Computer Systems (ICECCS
2007), pages 35—46. IEEE Press, 2007. doi:10.1109/ICECCS.2007.13.

Colin Willcock, Thomas Deif8, Stephan Tobies, Stefan Keil, Frederico Engler, and
Stephan Schulz. An Introduction to TTCN-3. Wiley, 2005.

Nicholas C. Zakas, Jeremy McPeak, and Joe Fawcett. Professional AJAX. Wrox Press,
2006.

Eléna Zinovieva-Leroux. Méthodes symboliques pour la génération de tests de systémes
reactifs comportant des données. PhD thesis, Université de Rennes, 2004.

Index

abstract datatype............ see ADT
abstract interpretation 65,153
abstraction........... 4,147,152 - 162
chaotic....... see data abstraction
consistent.................... 160
contracting 154
homomorphism 152
precise........... ..ol 154
trace inclusion............... 152
ADT .. 22,41
algebra..............ol 22
boolean 23,35
carrierset........cocovveenn... 23
interpretation function........ 23
natural numbers........... 24, 35
signature..................... 22
ATM ... 127
BAIT.....ooiiii 91, 102
bisimulation
strong ...l 83
blackboxtest...................... 55
internalstep.................. 95
bug..........oi 3
CEPS. . 81
CLP .o 33, 38,52
conformance testing............... 56
constraint 37
constraintnet...................... 37
consistent..................... 38
constraintsolver................... 33
CSS e 135
boxmodel................... 138
CTG o 145

data abstraction
chaotic................... 65-72

may semantics................ 66
simulation relation............ 68
timer abstraction......... 148,177
equation................. ... 26
transformation................ 44

fact. ..o 36
failure.............. ... 3
fault......... ... 3
GeckOo. oo 135
guard ...l 34
HTML ... 135
T T o S0 58, 98
after 17
quiescence 58, 98
ioconf............ ...l 58, 98
IOLTS ... 72
after ..., 17
deterministic.................. 16
trace.........cciiiiiiii, 17
instantiated................. 74

IOSTS ... 14
edge........o.ooiiiiii, 15
semantics..................... 16
IUT .. 56
MCRL ... 25
linearization.................. 25
PrOCesS ..ooviiiiiiiiii 27
sort......... i 25
summand..................... 28
timed................... ... 101
metricsS...oovvi i 1
model checking 4,147

abstracted specification 8

220 Index
ALTL......ooooiiiiiaet 150 SUT .o 56
counterexample 148, 162 ff.

CONCIete . oo, 172 TAIO. .. 101
ideal .. 162 term.......cooeiiiiiiiii 22
SPULIOUS ... 'veeveennnnne. 162 closedooiiiiilt 22
@ALTL ..o 150 constructor 26
false negative 9, 148, 162, 164 function................o.LL 26
LTL ..o 150 SUCCESSOL . v vveeeeaenennnn. 48
PIOPETtY . ..vevienianennnn. 148 transformation................ 42
action formula. 150 valueo.ooiiiiiiiiiit 26
eALTL formula............ 151 termrewriting..................... 47
violation pattern 9, 148, 164 - 176 test case
complete test graph 62,93
nondeterministic system 8,91 controllable................... 64
generation 83,104

PAR. ..ot 176 parameterizable 73

partial valuation................... 75 parameterization.......... 72,84

Prolog.......ccoovviveiiinnn. 34-37 testdata.....................lL 57
fact......cooiiiiii 36 testexecution 132
QUELY .ot 36 testoracle.................... 73f., 84
rule.......... 36, 53 test proxy ...l 131

test purpose 56, 130

Qtronic.........coiiii 125 *loop ... 61

quality ... 1 input complete................ 60

QUETY « oot iiiieieeiiaennanes 36, 86 trapstate................ ... 60

qUIESCENCE ..o 58 test verdict............. ... 63, 93
failure trace................... 59 sound ..., 64
quiescent trace................ 59 TGV...oooiio ... 57,60 — 65, 93, 145
suspension trace.............. 59 timeoutol 98

tioco ... 100
resolutionoooiin... 36 TIOLTS......coviiiiit, 100 £

ol (0 o JU At 100 Bace . oot 17,52

rule ... 36 instantiated................... 52

transition.............l 15

signature ...l 22f. TICN-3. .o 5,123

softwaremodel................ ... 4

software test UML ... 18-21
execution................... 8,91 .
formal methods.....ovovnnn. .. 3 xUnit........oooooiiiii 124
objective.....................L 2
test generation.............. 7,55

solution...............ooooiiiil, 38

stackl 41

state space explosion.......... 4,7,65

STG. o 125

Summary

Software faults are a well-known phenomenon. In most cases, they are just annoying
— if the computer game does not work as expected — or expensive — if once again a
space project fails due to some faulty data conversion. In critical systems, however,
faults can have life-threatening consequences. It is the task of software quality assur-
ance to avoid such faults, but this is a cumbersome, expensive and also erroneous
undertaking. For this reason, research has been done over the last years in order to
automate this task as much as possible.

In this thesis, the connection of constraint solving techniques with formal methods
is investigated. We have the goal to find faults in the models and implementations
of reactive systems with data, such as automatic teller machines (ATMs). In order to
do so, we first develop a translation of formal specifications in the process algebra
uCRL to a constraint logic program (CLP). In the course of this translation, we pay
special attention on the fact that the CLP together with the constraint solver correctly
simulates the underlying term rewriting system.

One way to validate a system is the test whether this system conforms its specifica-
tion. In this thesis, we develop a test process to automatically generate and execute
test cases for the conformance test of data-oriented systems. The applicability of this
process to process-oriented software systems is demonstrated in a case study with an
ATM as the system under test. The applicability of the process to document-centered
applications is shown by means of the open source web browser Mozilla Firefox.

The test process is partially based on the tool TGV, which is an enumerative test case
generator. It generates test cases from a system specification and a test purpose. An
enumerative approach to the analysis of system specifications always tries to enu-
merate all possible combinations of values for the system’s data elements, i.e. the
system’s states. The states of those systems, which we regard here, are influenced
by data of possibly infinite domains. Hence, the state space of such systems grows
beyond all limits, it explodes, and cannot be handled anymore by enumerative algo-
rithms. For this reason, the state space is limited prior to test case generation by a
data abstraction. We use a cliaotic abstraction here with all possible input data from
a system’s environment being replaced by a single constant.

In parallel, we generate a CLP from the system specification. With this CLP, we
reintroduce the actual data at the time of test execution. This approach does not only
limit the state space of the system, but also leads to a separation of system behavior
and data. This allows to reuse test cases by only varying their data parameters.

In the developed process, tests are executed by the tool BAiT. This tool has also been
created in the course of this thesis. Some systems do not always show an identical
behavior under the same circumstances. This phenomenon is known as nondeter-
minism. There are many reasons for nondeterminism. In most cases, input from

222 Summary

a system’s environment is asynchronously processed by several components of the
system, which do not always terminate in the same order. BAiT works as follows:
The tool chooses a trace through the system behavior from the set of traces in the
generated test cases. Then, it parameterizes this trace with data and tries to execute
it. When the nondeterministic system digresses from the selected trace, BAIT tries
to appropriately adapt it. If this can be done according to the system specification,
the test can be executed further and a possibly false positive test verdict has been
successfully avoided.

The test of an implementation significantly reduces the numbers of faults in a sys-
tem. However, the system is only tested against its specification. In many cases, this
specification already does not completely fulfill a customer’s expectations. In order
to reduce the risk for faults further, the models of the system themselves also have
to be verified. This happens during model checking prior to testing the software.
Again, the explosion of the state space of the system must be avoided by a suitable
abstraction of the models.

A consequence of model abstractions in the context of model checking are so-called
false negatives. Those traces are counterexamples which point out a fault in the ab-
stracted model, but who do not exist in the concrete one. Usually, these false nega-
tives are ignored. In this thesis, we also develop a methodology to reuse the knowl-
edge of potential faults by abstracting the counterexamples further and deriving a
violation pattern from it. Afterwards, we search for a concrete counterexample utiliz-
ing a constraint solver.

Samenvatting

Testen van reactieve systemen met gegevens
Opsommende methoden en constraint solving

Fouten in software zijn een welbekend fenomeen. Meestal alleen maar lastig —als het
computerspelletje het niet goed doet — of duur — als er weer een ambitieus ruimte-
vaartproject zijn abrupt einde vindt in een foute dataconversie —, kunnen zij in kri-
tieke systemen ook levensbedreigende gevolgen hebben. Het is de taak van de soft-
warekwaliteitsbewaking om deze fouten te voorkomen, maar dit is dikwijls een ti-
jdrovende, dure en zelf ook weer foutgevoelige onderneming. Daarom werd er in
de laatste jaren van verschillende kanten onderzoek verricht, om deze taak zo ver
mogelijk te automatiseren.

In dit proefschrift wordt de verbinding van constraint solving technieken met formele
methoden behandeld, met het doel, fouten in de modellen en de implementatie van
reactieve systemen met gegevens, zoals bv. geldautomaten, op te sporen. Hiervoor
wordt een vertaling van een formele specificatie in de procesalgebra nCRL naar een
constraint programma (CLP) ontwikkeld. In het kader van deze vertaling wordt er
met name op gelet, dat de verwerking van het CLP door de constraint solver een
correcte simulatie van het termherschrijfsysteem is, waarop dit CLP gebaseerd is.

Een manier van systeemvalidatie is het testen op de conformiteit van een systeem
ten opzichte van zijn specificatie. In dit proefschrift wordt onder meer een testpro-
ces ontworpen, om testgevallen voor de conformiteitstest van de bovengenoemde
datageoriéntieerde systemen geautomatiseerd te kunnen genereren en uitvoeren. De
toepasselijkheid van dit proces voor procesgeoriénteerde softwaresystemen wordt
met een casestudy, met als te testen systeem een geldautomaat, getoond. Zijn toepas-
selijkheid voor documentgeoriénteerde systemen wordt aan de hand van de open-
source webbrowser Mozilla Firefox geverifieerd.

Het testproces is gedeeltelijk gebaseerd op het tool TGV, een optellende generator
voor testgevallen vanuit de systeemspecificatie en een testdoel, de zogenoemde fest
purpose. Een optellende aanpak voor de analyse van systeemspecificaties probeert
altijd alle mogelijke combinaties van waarden van data-elementen in het systeem,
diens toestanden dus, op te tellen. De toestanden van de systemen, welke wij hier
bestuderen, zijn beinvloed door gegevens van mogelijk onbeperkte domeinen. Di-
entengevolge groeit de toestandsruimte van een dergelijk systeem over alle grenzen,
zodat een optellende aanpak niet geschikt is. Om die reden wordt de toestand-
sruimte voorafgaand aan de testgeneratie door een data-abstractie beperkt. Hier-
voor gebruiken wij een chaotische abstractie, waarbij alle mogelijke invoergegevens
van buiten het systeem door een enkele constante worden vervangen.

Tegelijk wordt een CLP van de specificatie gegenereerd, met wiens hulp de eigenli-

224 Samenvatting

jke gegevens tijdens de testuitvoering weer ingevoerd worden. Deze aanpak beperkt
niet alleen de toestandsruimte van het systeem tijdens de testgeneratie, maar stelt
ook een scheiding van het systeemgedrag en zijn gegevens voor. Dit maakt het mo-
gelijk, een testgeval meerdere keren te hergebruiken door alleen zijn parameters an-
ders te bepalen.

De tests worden volgens dit proces door het tool BAIT uitgevoerd, dat in het kader
van dit proefschrift ontstaan is. Sommige systemen tonen niet altijd hetzelfde gedra g
onder dezelfde omstandigheden, een fenomeen dat als nondeterminisme bekend staat.
De redenen daarvoor zijn veelvoudig; zo kan een systeem bijvoorbeeld meerdere
componenten bevatten, die een invoer uit hun omgeving gelijkertijd bewerken en er
niet altijd in dezelfde volgorde mee Klaar zijn. BAIiT werkt als volgt: Het tool kiest
een pad door het systeemgedrag uit een verzameling van paden in de gegenereerde
testgevallen, bepaalt zijn parameters en probeert hem draaien. Zodra het nondeter-
ministische systeem van dit pad afwijkt, probeert BAIT de testuitvoering geschikt
aan te passen. Als dit volgens de systeemspecificatie mogelijk is, kan de test door-
gaan en is een mogelijk foutief oordeel vermeden.

De test van een implementatie vermindert de kans op fouten aanzienlijk; het sys-
teem wordt niettemin alleen ten opzichte van zijn specificatie gecontrolleerd. In veel
gevallen voldoet deze specificatie al niet volledig aan de eisen van de opdrachtgever.
Om het risico op fouten nog verder terug te dringen, moeten dus de modellen van de
software zelf ook geverifieerd worden. Dit gebeurt tijdens een modelverificatiefase,
die in het software-ontwikkelingsproces nog voor het testen plaats vindt. Ook hier
moet weer de explosie van de toestandsruimte worden voorkomen door het model
te abstraheren.

Een gevolg van modelabstracties in het kader van de modelverficatie zijn zoge-
noemde false negatives, aangetoonde tegenvoorbeelden met fouten in het geabstra-
heerde model, die in het originele model niet teruggevonden kunnen worden. Nor-
maliter worden deze false negatives genegeerd, maar in dit proefschrift wordt een
methode ontwikkeld om ook van deze bevindingen gebruik te kunnen maken. Daar-
voor wordt het tegenvoorbeeld verder geabstraheerd en een schendingspatroon af-
geleid. Met behulp van een constraint solver wordt dan een écht tegenvoorbeeld in
het systeem gezocht.

Zusammenfassung

Test reaktiver Systeme mit Daten
Aufzahlende Methoden und Constraint-Solving

Softwarefehler sind ein wohlbekanntes Phinomen. Zumeist lediglich lastig — wenn
etwa ein Computerspiel nicht richtig funktioniert — oder teuer — wenn wieder einmal
ein Raumfahrtprojekt sein jahes Ende in einer fehlerhaften Datenkonvertierung fin-
det —, konnen sie bei kritischen Systemen durchaus lebensbedrohliche Konsequen-
zen haben. Es ist die Aufgabe der Softwarequalitatssicherung, diese Fehler zu ver-
meiden, jedoch ist dies héufig ein zeitraubendes, teures und auch selbst fehlertréach-
tiges Unterfangen. Darum wurde in den vergangenen Jahren von verschiedenen Sei-
ten daran geforscht, diese Aufgabe soweit moglich zu automatisieren.

In dieser Dissertation wird die Verbindung von Constraint-Solving-Techniken mit
Formalen Methoden unter der Zielsetzung behandelt, Fehler in den Modellen und
der Implementation von reaktiven Systemen mit Daten, wie z.B. Geldautomaten,
aufzuspiiren. Hierfiir wird zunéchst eine Ubersetzung einer formalen Spezifikati-
on in der Prozessalgebra pCRL in ein Constraint-Programm (CLP) entwickelt. Im
Rahmen dieser Ubersetzung wird insbesondere darauf geachtet, dass die Bearbei-
tung des CLP durch einen Constraint-Solver eine korrekte Simulation des Term-
Rewriting-Systems ist, auf dem das CLP basiert.

Eine Art der Systemvalidierung ist der Test auf Konformitat eines Systems hinsicht-
lich seiner Spezifikation. In dieser Dissertation wird unter anderem ein Testprozess
entworfen, mit dem Testfille fiir den Konformitétstest der oben genannten datenori-
entierten Systeme automatisiert generiert und ausgefiihrt werden konnen. Die An-
wendbarkeit dieses Prozesses fiir prozessorientierte Softwaresysteme wird mit einer
Fallstudie mit einem Geldautomaten als zu testendem System nachgewiesen. Seine
Anwendbarkeit auf dokumentenorientierte Systeme wird anhand des quelloffenen
Webbrowsers Mozilla Firefox verifiziert.

Der Testprozess basiert teilweise auf dem Werkzeug TGV, einem enumerativen Ge-
nerator fiir Testfille aus einer Systemspezifikation und einem Testziel, einem soge-
nannten Test Purpose. Eine enumerative Herangehensweise fiir die Analyse von Sys-
temspezifikationen probiert immer, alle moglichen Wertekombinationen von Daten-
elementen im System, seine Zustanden also, aufzuzahlen. Die Zustande jener Syste-
me, die wir hier betrachten, werden durch Daten moglicherweise unendlicher Wer-
tebereiche beeinflusst. Demzufolge wichst auch der Zustandsraum derartiger Sys-
teme iiber alle Grenzen, sodass er von enumerativen Algorithmen nicht mehr zu er-
fassen ist. Aus diesem Grunde wird der Zustandsraum vor der Testfallgenerierung
durch eine Datenabstraktion beschrankt. Hierfiir verwenden wir eine claotisclie Ab-
straktion, wobei alle moglichen Eingabedaten von auBerhalb des Systems durch eine

226 Zusammenfassung

einzelne Konstante ersetzt werden.

Zugleich wird aus der Spezifikation des Systems ein CLP generiert, mit dessen Hilfe
die eigentlichen Daten zum Zeitpunkt der Testausfiihrung wieder eingefiihrt wer-
den. Diese Herangehensweise beschrinkt nicht nur den Zustandsraum des Systems,
sondern stellt auch eine Trennung zwischen Systemverhalten und -daten dar. Dies
ermoglicht eine Wiederverwendung von Testfillen durch variierende Parametrisie-
rung.

Im entwickelten Prozess werden Tests durch das Werkzeug BAIT ausgefiihrt, das
ebenfalls im Rahmen dieser Dissertation entstanden ist. Manche Systeme zeigen
nicht immer dasselbe Verhalten unter denselben Umstinden, ein Phinomen das als
Nichtdeterminismus bekannt ist. Die Griinde dafiir sind vielfaltig, so kann ein Sys-
tem beispielsweise aus mehreren Komponenten bestehen, die eine Eingabe aus der
Systemumgebung gleichzeitig verarbeiten, diese Verarbeitung jedoch nicht immer
in derselben Reihenfolge abschlieBen. BAIT funktioniert wie folgt: Das Werkzeug
wihlt einen Pfad durch das Systemverhalten aus einer Menge von Pfaden in den ge-
nerierten Testfallen aus, parametrisiert diesen und probiert, ihn auszufiihren. Sobald
das nichtdeterministische System von diesem Pfad abweicht, probiert BAiT, diesen
geeignet anzupassen. Sofern dies mit der Systemspezifikation vereinbar ist, kann der
Test weiter ausgefiihrt werden und ein méglicherweise filschliches Testurteil wird
somit vermieden.

Der Test einer Implementation verringert die Fehlerquote wesentlich, das System
wird nichtsdestotrotz nur hinsichtlich seiner Spezifikation iiberpriift. In vielen Fil-
len geniigt bereits diese Spezifikation den Anforderungen des Auftraggebers nicht
oder nicht vollstindig. Um das Fehlerrisiko weiter zu reduzieren, miissen also auch
die Modelle der Software selbst verifiziert werden. Dies geschieht in einer Modellve-
rifikationsphase, die im Softwareentwicklungsprozess noch vor dem Testen stattfin-
det. Auch hier muss wieder die Explosion des Zustandsraumes durch eine geeignete
Modellabstraktion verhindert werden.

Eine Folge von Modellabstraktionen im Zusammenhang mit der Modellverifikati-
on sind sogenannte False Negatives, Gegenbeispiele, die einen Fehler im abstrahier-
ten Modell anzeigen, jedoch im originalen Modell nicht nachzuvollziehen sind. Ge-
wohnlich werden diese False Negatives ignoriert, allerdings wird in dieser Disserta-
tion auch eine Methode entwickelt, die dieses Wissen um mogliche Fehler nutzbar
macht. Dafiir wird das gewonnene Gegenbeispiel weiter abstrahiert und von ihm
ein Fehlermuster abgeleitet. Mit Hilfe eines Constraint-Solvers wird dann nach ei-
nem tatsdchlichen Gegenbeispiel im System gesucht.

Curriculum Vitee

Jens R. Calamé was born on June 21st, 1979 in Hamburg, Germany. In 1999, he grad-
uated from the Johann-Rist-Gymnasium in Wedel, Germany, and started studying
at the Institute for Computer Science at the University of Potsdam, Germany, in Oc-
tober that year. In 2004, he received his university diploma (Diplom-Informatiker)
with a thesis on the test of software agents and inter-agent-connectors under the
supervision of Prof. Dr. E. Horn and Prof. Dr. I. Schieferdecker.

In July 2004, Calamé started his PhD study in the Software Engineering Group 2
(Specification and Analysis of Embedded Systems) at the Centrum Wiskunde & In-
formatica in Amsterdam, The Netherlands. Under the supervision of Prof. Dr. Jaco
van de Pol and Prof. Dr. Wan Fokkink, he worked on the improvement of software
test generation and execution techniques for reactive systems with data, as well as on
the improvement of debugging techniques for model checking. His work was car-
ried out under the auspices of the TT-Medal project (Tests & Testing Methodologies
for Advanced Languages) and the BSIK/BRICKS project (Basic Research in Infor-
matics for Creating the Knowledge Society). The present thesis contains the results
of this work.

Titles in the IPA Dissertation Series since 2002

M.C. van Wezel. Neural Networks for In-
telligent Data Analysis: theoretical and ex-
perinental aspects. Faculty of Mathemat-
ics and Natural Sciences, UL. 2002-01

V. Bos and J.J.T. Kleijn. Formal Specifi-
cation and Analysis of Industrial Systems.
Faculty of Mathematics and Computer
Science and Faculty of Mechanical En-
gineering, TU/e. 2002-02

T. Kuipers. Techniques for Understanding
Legacy Software Systems. Faculty of Nat-
ural Sciences, Mathematics and Com-
puter Science, UvA. 2002-03

S.P. Luttik. Choice Quantification in Pro-
cess Algebra. Faculty of Natural Sci-
ences, Mathematics, and Computer Sci-
ence, UvA. 2002-04

R.J. Willemen. School Timetable Con-
struction: Algorithms and Complexity.
Faculty of Mathematics and Computer
Science, TU/e. 2002-05

M.LA. Stoelinga. Alea Jacta Est: Ver-
ification of Probabilistic, Real-time and
Parametric Systems. Faculty of Science,
Mathematics and Computer Science,
KUN. 2002-06

N. van Vugt. Models of Molecular Com-
puting. Faculty of Mathematics and
Natural Sciences, UL. 2002-07

A. Fehnker. Citius, Vilius, Melius: Guid-
ing and Cost-Optimality in Model Check-
ing of Timed and Hybrid Systems. Faculty
of Science, Mathematics and Computer
Science, KUN. 2002-08

R. van Stee. Ou-line Scheduling and Bin
Packing. Faculty of Mathematics and
Natural Sciences, UL. 2002-09

D. Tauritz. Adaptive Information Filter-
ing: Concepts and Algorithms. Faculty of
Mathematics and Natural Sciences, UL.
2002-10

M.B. van der Zwaag. Modcls and Logics
for Process Algebra. Faculty of Natural
Sciences, Mathematics, and Computer
Science, UvA. 2002-11

J.I. den Hartog. Probabilistic Exten-
sions of Semantical Models. Faculty of

Sciences, Division of Mathematics and
Computer Science, VUA. 2002-12

L. Moonen. Exploring Software Systems.
Faculty of Natural Sciences, Mathemat-
ics, and Computer Science, UvA. 2002-
13

J.I. van Hemert. Applying Evolution-
ary Computation to Constraint Satisfaction
and Data Mining. Faculty of Mathemat-
ics and Natural Sciences, UL. 2002-14

S. Andova. Probabilistic Process Algebra.
Faculty of Mathematics and Computer
Science, TU/e. 2002-15

Y.S. Usenko. Linearization in nCRL. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2002-16

J.J.D. Aerts. Random Redundant Storage
for Video on Demand. Faculty of Math-
ematics and Computer Science, TU/e.
2003-01

M. de Jonge. To Reuse or To Be Reused:
Techniques for component composition and
construction. Faculty of Natural Sci-
ences, Mathematics, and Computer Sci-
ence, UvA. 2003-02

J.M.W. Visser. Generic Traversal over
Typed Source Code Representations. Fac-
ulty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2003-03

S.M. Bohte. Spiking Neural Networks.
Faculty of Mathematics and Natural
Sciences, UL. 2003-04

T.A.C. Willemse. Semantics and Verifi-
cation in Process Algebras with Data and
Timing. Faculty of Mathematics and
Computer Science, TU/e. 2003-05

S.V. Nedea. Analysis and Simulations
of Catalytic Reactions. Faculty of Math-
ematics and Computer Science, TU/e.
2003-06

M.E.M. Lijding. Real-time Scheduling
of Tertiary Storage. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2003-07

H.P. Benz. Casual Multimedia Process
Annotation — CoMPAs. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2003-08

D. Distefano. On Modelchecking the Dy-
namics of Object-based Software: a Foun-
dational Approach. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2003-09

M.H. ter Beek. Teamn Automata — A For-
mal Approach to the Modeling of Collabora-
tion Between System Components. Faculty
of Mathematics and Natural Sciences,
UL. 2003-10

D.J.P. Leijen. The A Abroad — A Func-
tional Approach to Software Components.
Faculty of Mathematics and Computer
Science, UU. 2003-11

W.P.A.]. Michiels. Performance Ratios
for the Differenciug Method. Faculty

of Mathematics and Computer Science,
TU/e. 2004-01

G.L Jojgov. Incomplete Proofs and Terms
and Their Use in Interactive Theorem Prov-
ing. Faculty of Mathematics and Com-
puter Science, TU/e. 2004-02

P. Frisco. Theory of Molecular Computing
— Splicing and Membrane systems. Faculty
of Mathematics and Natural Sciences,
UL. 2004-03

S. Maneth. Models of Tree Translation.
Faculty of Mathematics and Natural
Sciences, UL. 2004-04

Y. Qian. Data Synchronization and Brows-
ing for Home Environments. Faculty
of Mathematics and Computer Science
and Faculty of Industrial Design, TU/e.
2004-05

F. Bartels. On Generalised Coinduc-
tion and Probabilistic Specification For-
mats. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2004-06

L. Cruz-Filipe. Constructive Real Anal-
ysis: a Type-Theoretical Formalization and
Applications. Faculty of Science, Math-
ematics and Computer Science, KUN.
2004-07

E.H. Gerding. Autonomous Agents in
Bargaining Games: An Evolutionary Inves-
tigation of Fundamentals, Strategies, and
Business Applications. Faculty of Tech-
nology Management, TU/e. 2004-08

N. Goga. Control and Selection Teclmiques
for the Automated Testing of Reactive Sys-
tems. Faculty of Mathematics and Com-
puter Science, TU/e. 2004-09

M. Niqui. Formalising Exact Arithmetic:
Representations, Algorithms and Proofs.

Faculty of Science, Mathematics and
Computer Science, RU. 2004-10

A. Loh. Exploring Generic Haskell. Fac-
ulty of Mathematics and Computer Sci-
ence, UU. 2004-11

LC.M. Flinsenberg. Route Planning Al-
gorithms for Car Navigation. Faculty
of Mathematics and Computer Science,
TU/e. 2004-12

R.J. Bril. Real-time Scheduling for Me-
dia Processing Using Conditionally Guar-
anteed Budgets. Faculty of Mathematics
and Computer Science, TU/e. 2004-13

J. Pang. Formal Verification of Distributed
Systems. Faculty of Sciences, Division

of Mathematics and Computer Science,
VUA. 2004-14

E Alkemade. Evolutionary Agent-Based
Economics. Faculty of Technology Man-
agement, TU/e. 2004-15

E.O. Dijk. Indoor Ultrasonic Position Es-
timation Using a Single Base Station. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2004-16

S.M. Orzan. On Distributed Verifica-
tion and Verified Distribution. Faculty of
Sciences, Division of Mathematics and
Computer Science, VUA. 2004-17

M.M. Schrage. Proxima - A Presentation-
oriented Editor for Structured Documents.
Faculty of Mathematics and Computer
Science, UU. 2004-18

E. Eskenazi and A. Fyukov. Quanti-
tative Prediction of Quality Attributes for
Component-Based Software Architectures.
Faculty of Mathematics and Computer
Science, TU/e. 2004-19

PJ.L. Cuijpers. Hybrid Process Algebra.
Faculty of Mathematics and Computer
Science, TU/e. 2004-20

N.J.M. van den Nieuwelaar. Su-
pervisory Machine Control by Predictive-
Reactive Scheduling. Faculty of Mechani-
cal Engineering, TU/e. 2004-21

E. Abrahdm. An Assertional Proof Systen

for Multithreaded Java -Theory and Tool
Support- . Faculty of Mathematics and
Natural Sciences, UL. 2005-01

R. Ruimerman. Modeling and Remiodel-
ing in Bone Tissue. Faculty of Biomedical
Engineering, TU/e. 2005-02

C.N. Chong. Experiments in Rights Con-
trol - Expression and Enforcement. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2005-03

H. Gao. Design and Verification of Lock-
free Parallel Algoritlms. Faculty of Math-
ematics and Computing Sciences, RUG.
2005-04

H.M.A. van Beek. Specification and
Analysis of Internet Applications. Faculty
of Mathematics and Computer Science,
TU/e. 2005-05

M.T. Ionita. Scenario-Based System Ar-
chitecting - A Systematic Approach to
Developing Future-Proof System Architec-
tures. Faculty of Mathematics and Com-
puting Sciences, TU/e. 2005-06

G. Lenzini. Integration of Analysis Tech-
niques in Security and Fault-Tolerance.
Faculty of Electrical Engineering, Math-
ematics & Computer Science, UT. 2005-
07

I. Kurtev. Adaptability of Model Transfor-
mations. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2005-08

T. Wolle. Computational Aspects of
Trecwidth - Lower Bounds and Network Re-
liability. Faculty of Science, UU. 2005-09

O. Tveretina. Decision Procedures for
Equality Logic with Uninterpreted Func-
tions. Faculty of Mathematics and Com-
puter Science, TU/e. 2005-10

A.M.L. Liekens. Evolution of Finite Pop-
ulations in Dynamic Environments. Fac-
ulty of Biomedical Engineering, TU/e.
2005-11

J. Eggermont. Data Mining using Genetic
Programming: Classification and Symbolic
Regression. Faculty of Mathematics and
Natural Sciences, UL. 2005-12

B.J. Heeren. Top Quality Type Error Mes-
sages. Faculty of Science, UU. 2005-13

G.E Frehse. Compositional Verification
of Hybrid Systems using Simulation Rela-
tions. Faculty of Science, Mathematics
and Computer Science, RU. 2005-14

M.R. Mousavi. Structuring Structural
Operational Semantics. Faculty of Math-
ematics and Computer Science, TU/e.
2005-15

A. Sokolova. Coalgebraic Analysis of
Probabilistic Systems. Faculty of Math-
ematics and Computer Science, TU/e.
2005-16

T. Gelsema. Effective Models for the
Structure of pi-Calculus Processes with

Replication. Faculty of Mathematics and
Natural Sciences, UL. 2005-17

P. Zoeteweij. Composing Constraint
Solvers. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2005-18

J.J. Vinju. Analysis and Transformation
of Source Code by Parsing and Rewriting.
Faculty of Natural Sciences, Mathemat-
ics, and Computer Science, UvA. 2005-
19

M. Valero Espada. Modal Abstraction and
Replication of Processes with Data. Fac-
ulty of Sciences, Division of Mathemat-
ics and Computer Science, VUA. 2005-
20

A. Dijkstra. Stepping through Haskell.
Faculty of Science, UU. 2005-21

Y.W. Law. Key management and link-
layer security of wireless sensor networks:
energy-efficient attack and defense. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2005-22

E. Dolstra. The Purely Functional Soft-
ware Deployment Model. Faculty of Sci-
ence, UU. 2006-01

R.]. Corin. Analysis Models for Security
Protocols. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2006-02

P.R.A. Verbaan. The Computational Com-
plexity of Evolving Systems. Faculty of
Science, UU. 2006-03

K.L. Man and R.R.H. Schiffelers. For-
mal Specification and Analysis of Hybrid
Systems. Faculty of Mathematics and
Computer Science and Faculty of Me-
chanical Engineering, TU/e. 2006-04

M. Kyas. Verifying OCL Specifications of
UML Models: Tool Support and Conpo-
sitionality. Faculty of Mathematics and
Natural Sciences, UL. 2006-05

M. Hendriks. Model Chiecking Timed Au-
tomata - Techniques and Applications. Fac-

ulty of Science, Mathematics and Com-
puter Science, RU. 2006-06

J. Ketema. Bohni-Like Trees for Rewriting.
Faculty of Sciences, VUA. 2006-07

C.-B. Breunesse. On JML: topics in tool-
assisted verification of JML programs. Fac-
ulty of Science, Mathematics and Com-
puter Science, RU. 2006-08

B. Markvoort. Towards Hybrid Molecular
Simulations. Faculty of Biomedical En-
gineering, TU/e. 2006-09

S.G.R. Nijssen. Mining Structured Data.
Faculty of Mathematics and Natural
Sciences, UL. 2006-10

G. Russello. Separation and Adaptation of
Concerns in a Shared Data Space. Faculty
of Mathematics and Computer Science,
TU/e. 2006-11

L. Cheung. Reconciling Noundeterministic
and Probabilistic Choices. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2006-12

B. Badban. Verification techuiques for
Extensions of Equality Logic. Faculty of
Sciences, Division of Mathematics and
Computer Science, VUA. 2006-13

A.J. Mooij. Constructive formal meth-
ods and protocol standardization. Faculty
of Mathematics and Computer Science,
TU/e. 2006-14

T. Krilavicius. Hybrid Techniques for Hy-
brid Systems. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2006-15

M.E. Warnier. Language Based Secu-
rity for Java and JML. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2006-16

V. Sundramoorthy. At Home Inn Service
Discovery. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2006-17

B. Gebremichael. Expressivity of Timed
Automata Models. Faculty of Science,
Mathematics and Computer Science,
RU. 2006-18

L.C.M. van Gool. Formalising Interface
Specifications. Faculty of Mathematics
and Computer Science, TU/e. 2006-19

C.J.E. Cremers. Scyther - Semantics and
Verification of Security Protocols. Faculty
of Mathematics and Computer Science,
TU/e. 2006-20

J.V. Guillen Scholten. Mobile Channels
for Exogenous Coordination of Distributed
Systems: Sewmantics, Implementation and
Composition. Faculty of Mathematics
and Natural Sciences, UL. 2006-21

H.A. de Jong. Flexible Heterogeneous
Software Systems. Faculty of Natural Sci-
ences, Mathematics, and Computer Sci-
ence, UvA. 2007-01

N.K. Kavaldjiev. A run-time reconfig-
urable Network-on-Chip for streaming DSP
applications. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2007-02

M. van Veelen. Considerations on Model-
ing for Early Detection of Abnormalities in
Locally Autonomous Distributed Systems.
Faculty of Mathematics and Computing
Sciences, RUG. 2007-03

T.D. Vu. Semantics and Applications of
Process and Program Algebra. Faculty
of Natural Sciences, Mathematics, and
Computer Science, UvA. 2007-04

L. Brandéan Briones. Theorics for Model-
based Testing: Real-time and Coverage.

Faculty of Electrical Engineering, Math-
ematics & Computer Science, UT. 2007-
05

I. Loeb. Natural Deduction: Sharing by
Presentation. Faculty of Science, Math-
ematics and Computer Science, RU.
2007-06

M.W.A. Streppel. Multifunctional Geo-
metric Data Structures. Faculty of Math-
ematics and Computer Science, TU/e.
2007-07

N. Tréka. Silent Steps in Transition
Systems and Markov Chains. Faculty
of Mathematics and Computer Science,
TU/e. 2007-08

R. Brinkman. Searching in encrypted
data. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2007-09

A. van Weelden. Putting types to good
use. Faculty of Science, Mathematics
and Computer Science, RU. 2007-10

J.A.R. Noppen. Imperfect Information in
Software Development Processes. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2007-11

R. Boumen. Integration and Test plans
for Complex Manufacturing Systems. Fac-
ulty of Mechanical Engineering, TU/e.
2007-12

AlJ. Wijs. Wihat to do Next?: Analysing
and Optimising Systen Behaviour in Time.
Faculty of Sciences, Division of Math-

ematics and Computer Science, VUA.
2007-13

C.E]. Lange. Assessing aud Improving the
Quality of Modeling: A Series of Empirical

Studies about the UML. Faculty of Math-
ematics and Computer Science, TU/e.
2007-14

T. van der Storm. Comnponent-based Con-
figuration, Integration and Delivery. Fac-
ulty of Natural Sciences, Mathematics,
and Computer Science,UvA. 2007-15

B.S. Graaf. Model-Driven Evolution of
Software Architectures. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2007-16

A.H.J. Mathijssen. Logical Calculi for
Reasoning with Binding. Faculty of Math-
ematics and Computer Science, TU/e.
2007-17

D. Jarnikov. QoS framework for Video
Streaming in Home Networks. Faculty
of Mathematics and Computer Science,
TU/e. 2007-18

M. A. Abam. New Data Structures
and Algorithms for Mobile Data. Faculty
of Mathematics and Computer Science,
TU/e. 2007-19

W. Pieters. La Volonté Machinale: Un-
derstanding the Electronic Voting Contro-
versy. Faculty of Science, Mathematics
and Computer Science, RU. 2008-01

A.L. de Groot. Practical Automaton
Proofs in PVS. Faculty of Science, Math-
ematics and Computer Science, RU.
2008-02

M. Bruntink. Renovation of Idiomatic
Crosscutting Concerns in Embedded Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2008-03

AM. Marin. An Iutegrated System to
Manage Crosscutting Concerns in Source

Code. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2008-04

N.C.W.M. Braspenning. Model-based
Integration and Testing of High-tech Multi-
disciplinary Systems. Faculty of Mechan-
ical Engineering, TU/e. 2008-05

M. Bravenboer. Excrcises in Free Syntax:
Syntax Definition, Parsing, and Assimila-
tion of Language Conglomerates. Faculty
of Science, UU. 2008-06

M. Torabi Dashti. Keeping Fairness
Alive: Design and Formal Verification of
Optimistic Fair Exchange Protocols. Fac-
ulty of Sciences, Division of Mathemat-
ics and Computer Science, VUA. 2008-
07

LS.M. de Jong. Integration and Test
Strategics for Complex Manufacturing Ma-
chines. Faculty of Mechanical Engineer-
ing, TU/e. 2008-08

I. Hasuo. Tracing Anonymity with Coal-
gebras. Faculty of Science, Mathematics
and Computer Science, RU. 2008-09

L.G.W.A. Cleophas. Tree Algorithms:
Two Taxonomies and a Toolkit. Faculty
of Mathematics and Computer Science,
TU/e. 2008-10

LS. Zapreev. Model Checking Markov
Chains: Techniques and Tools. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2008-11 .

M. Farshi. A Tleoretical and Experimen-
tal Study of Geometric Networks. Faculty

of Mathematics and Computer Science,
TU/e. 2008-12

G. Gulesir. Evolvable Belavior Specifica-
tions Using Context-Sensitive Wildcards.
Faculty of Electrical Engineering, Math-
ematics & Computer Science, UT. 2008-
13

ED. Garcia. Formal and Computational
Cryptography: Protocols, Hashes and Com-
mitments. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2008-14

P. E. A. Diirr. Resource-based Verification
for Robust Composition of Aspects. Fac-
ulty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2008-
15

E.M. Bortnik. Formal Methods in Support
of SMC Design. Faculty of Mechanical
Engineering, TU/e. 2008-16

R.H. Mak. Design and Performance Anal-
ysis of Data-Independent Stream Process-
ing Systems. Faculty of Mathematics
and Computer Science, TU/e. 2008-17

M. van der Horst. Scalable Block Process-
ing Algorithms. Faculty of Mathematics
and Computer Science, TU/e. 2008-18

C.M. Gray. Algorithms for Fat Objects:
Decompositions and Applications. Faculty
of Mathematics and Computer Science,
TU/e. 2008-19

J.R. Calamé. Testing Reactive Systems
with Data - Emumerative Methods and
Constraint Solving. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2008-20

