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Preface

Many disciplines, such as physics, the natural and biological sciences, engineer-
ing, economics and the financial sciences frequently give rise to problems that
need mathematical modelling for their solutions. Examples vary in scale from
the behavior of cells in biology, to the behavior of electrical circuits, to flows
and combustion processes in a jet engine, to the formation and development of
galaxies. Standard practice is that the solution of the mathematical models are
not known in closed, analytic form, and hence must be computed approximately
by means of algorithms and software from numerical mathematics and scientific
computing. Numerical mathematics and scientific computing therefore are of
great relevance in modern applied sciences and are the crucial tools for their
qualitative and quantitative analysis.

This thesis records the numerical mathematics research I conducted between
February 2004 and February 2008 in the Modeling, Analysis and Simulation
(MAS) department of the Centrum voor Wiskunde en Informatica (CWI) in
Amsterdam. It deals with the development of multirate time stepping tech-
niques for systems of ordinary differential equations. Multirate methods allow
one to use large time steps for slowly varying components, and small steps for
rapidly varying ones. Numerical experiments confirm that the efficiency of time
integration methods can be significantly improved by using multirate methods.

The thesis consists of five chapters preceded by an introduction and followed
by a summary. The chapters are based on published and submitted papers.
Details are listed below:

1. Chapter 1 is based on the paper by V. Savcenco, W. Hundsdorfer and
J.G. Verwer, entitled A multirate time stepping strategy for stiff ordinary
differential equations, published in BIT 47, pages 137-155, 2007.

2. Chapter 2 is based on the paper by W. Hundsdorfer and V. Savcenco,
entitled Analysis of a multirate theta-method for stiff ordinary differential
equations, accepted for publication in Applied Numerical Mathematics.

3. Chapter 3 is based on the paper by V. Savcenco, entitled Comparison of
the asymptotic stability properties for two multirate strategies, accepted
for publication in Journal of Computational and Applied Mathematics.

4. Chapter 4 is based on the paper, entitled Construction of high-order multi-
rate Rosenbrock methods for stiff ODEs, by V. Savcenco, to be submitted.

5. Chapter 5 is entitled Analysis of explicit multirate and partitioned Runge-
Kutta schemes for conservation laws, a joint work with W. Hundsdorfer
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and A. Mozartova, to be submitted.

The introductory chapter is meant to help unspecialized readers to understand
the motivation and the subject, as well as to outline the content of the whole
thesis. The summary will summarize the conclusions that we have pointed out
in the thesis.

Valeriu Savcenco

Amsterdam, October 2007



Introduction

Numerous phenomena from different areas of science and technology are mo-
delled by systems of ordinary differential equations (ODEs). ODEs describe
the motion of a body by its position and velocity; the evolution of the current
in an electrical circuit; the change of the temperature of an object in a given
environment; and even the dynamics of the price of a stock. In addition, some
methods in numerical partial differential equations (PDEs) convert the partial
differential equation into an ordinary differential equation system, which then
must be solved. Most ODEs cannot be solved analytically, in which case an
approximation to the solution is found by applying numerical integration meth-
ods.

For the numerical solution of systems of ODEs there are many methods avail-
able; see for example the text books of Butcher [7], Hairer et al. [18, 19], Lam-
bert [32]. These methods use time steps that are varying in time, but are
constant over the components. However, there are many problems of practical
interest, where the temporal variations have different time scales for different
sets of the components. For example, cellular phones consist of coupled digital
and analogue sub-circuits, which operate in nano- and micro-seconds, respec-
tively. The motion of the particles around a star, which attracts mass from a
secondary star, in astrophysics is described by a large system of ordinary differ-
ential equations. In this system the components, that correspond to the particles
near the center, are much faster than those corresponding to the distant ones.
To exploit these local time scale variations, one needs multirate methods that
use different, local time steps over the components. In these methods big time
steps are used for the slow components and small time steps are used for the
fast ones.

Also the components can have more levels of activity. For example, there can
be slow, intermediate and fast components.

tn−1

tn

In the above figure we present a time slab (with components horizontally and
time vertically) of size ∆tn = tn − tn−1, in which an approximation to the
solution at time tn is computed. In this example, time steps of size 1

4∆tn, 1
2∆tn

and ∆tn are used depending on the activity of the components. The activity
of the components can also change in time, the slow components can become
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active and the active components can become slow.

The major aim of this thesis is to design, analyze and test multirate methods
for the numerical solution of ODEs. Different local time steps require care since
coupled components then may need information at different time levels. These
values can be obtained by interpolation, extrapolation or dense output. The
choice of interpolant is crucial, because it has direct influence on the stability
and the order of convergence of the multirate method.

The thesis consists of five chapters, preceded by this introduction, and ends
with a summary.

Chapter 1. In the first chapter, we introduce a self-adjusting multirate time
stepping strategy for the numerical solution of ODEs. The step size for a par-
ticular system component is determined by the local temporal variation of the
solution, in contrast to the use of a single step size for the whole set of com-
ponents as in the traditional (single-rate) methods. For a given global time
step ∆tn = tn − tn−1, a tentative approximation at the time level tn for all
components is computed first. The components, for which an error estimator
indicates that smaller steps are needed, are computed again with halved step
size 1

2∆tn. The refinement is recursively continued until an error estimator is
below a prescribed tolerance for all components. The size of the time slabs ∆tn
is determined automatically, while advancing in time, in a way which gives min-
imal amount of work per time unit without loosing accuracy. The performance
of the strategy is demonstrated on the basis of three numerical examples. A
second-order Rosenbrock method with an embedded first-order method is used
as basic time stepping method. Numerical experiments confirm that the effi-
ciency of time integration can be significantly improved by the use of multirate
methods.

Chapter 2. The second chapter contains a study of a simple multirate scheme,
consisting of the θ-method with one level of temporal local refinement. This
scheme is studied in order to obtain a better understanding of more general
multirate schemes. Issues of interest are local accuracy, propagation of interpo-
lation errors and stability. Cases θ = 0 (forward Euler), θ = 1 (backward Euler),
for which the θ-method is of first order, and θ = 1

2 , for which the θ-method is
of second order, are often used in practice. Missing component values, required
during the refinement step, are computed using linear or quadratic interpola-
tion. Analysis of the scheme together with numerical experiments shows that
the use of linear interpolation can lead to an order reduction for stiff problems.

Chapter 3. In the third chapter, we compare the asymptotic stability prop-
erties of two multirate strategies: recursive refinement strategy and compound
step strategy. For simplicity, only one level of refinement is considered.

In the recursive refinement strategy, a tentative macro-step of size ∆tn is per-
formed first. For those components, where the solution is not accurate enough,
the computation is redone with two micro-steps of size 1

2∆tn. This strategy
allows for automatic partitioning based on the error estimators. For example,
the multirate time stepping strategy presented in Chapter 1 can be used.
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In the compound step strategy [2, 55], the macro-step and the first micro-
step are computed simultaneously. The integration is continued with the second
micro-step. The values at the macro-step time level for the active components
are calculated twice in the recursive refinement strategy: the first time during
the global step and the second time during the refinement step. The compound
step strategy avoids this extra work. However, the partitioning in slow and
fast components has to be done for this strategy in advance, before solving the
system.

The scalar Dahlquist test equation cannot be used for the stability analy-
sis of multirate methods, since multirate methods are used for systems, which
have at least one slow and one fast components. Instead, we consider a linear
2 × 2 system. For each strategy we present the asymptotic stability regions
and compare the results. The considered multirate schemes use second-order
Rosenbrock type methods as the main time integration method. The results are
given for linear- and quadratic interpolation at the refinement interface. It is
also shown that the results, obtained for the simple 2×2 case, give a good indi-
cation for stability properties of more general systems, such as the semi-discrete
systems obtained from the spatial discretization of the heat equation and the
advection equation.

Chapter 4. Numerous multirate methods were developed for solving stiff sys-
tems with different time scales, e.g. [3, 16, 44, 47, 55]. All these schemes are
of order two at most. In Chapter 4 we aim to develop multirate methods of
higher order. We address the main difficulties which arise in the construction
of higher-order multirate methods. Special attention is paid to the treatment
of the temporal refinement interface. We construct a multirate method which
is based on the fourth-order Rosenbrock method RODAS of Hairer and Wan-
ner [19]. In the numerical experiments the constructed method is compared
with the multirate version of the second-order Rosenbrock method ROS2 from
Chapter 1. From experiments it is seen that the multirate RODAS shows good
results and is more robust than the multirate ROS2. Use of Rosenbrock meth-
ods for problems with stiff source terms can lead to order reduction. We present
a strategy, which helps us to recover the order of consistency for stiff problems,
and which does not affect the order of consistency for non-stiff problems.

Chapter 5. Conservation laws give rise to mildly stiff ODE systems, upon space
discretization, for which explicit time stepping methods can be used. Multirate
schemes for semi-discrete conservation laws that have appeared in the literature
all seem to have one of the following defects: either local inconsistency or lack of
the mass conservation. In this chapter these two defects are discussed for one-
dimensional conservation laws. Particular attention is given to monotonicity
properties of the multirate schemes, such as maximum principles and the total
variation diminishing (TVD) property. The study of these properties is done
within the framework of partitioned Runge-Kutta methods. A detailed analysis
of two multirate forward Euler schemes, proposed by Osher & Sanders [37] and
Tang & Warnecke [54], is presented. Multirate schemes based on a standard
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second-order two-stage Runge-Kutta method are also considered.



Chapter 1

A multirate time stepping

strategy for stiff ordinary

differential equations

To solve ODE systems with different time scales which are localized over the
components, multirate time stepping is examined. In this chapter we introduce
a self-adjusting multirate time stepping strategy, in which the step size for a
particular component is determined by its own local temporal variation, instead
of using a single step size for the whole system. We primarily consider implicit
time stepping methods, suitable for stiff or mildly stiff ODEs. Numerical results
with our multirate strategy are presented for several test problems. Compar-
isons with the corresponding single-rate schemes show that substantial gains in
computational work and CPU times can be obtained.

1.1 Introduction

Standard single-rate time integration methods for ODEs work with time steps
that are varying in time but constant over the components. There are, however,
many problems of practical interest where the temporal variations have different
time scales for different sets of the components. To exploit these local time scale
variations, one needs multirate methods that use different, local time steps over
the components.

In this chapter we will consider a simple multirate approach for system of
ODEs

w′(t) = F (t, w(t)) , w(0) = w0 , (1.1)

with given initial value in w0 ∈ R
m. The approximations at the global time

levels tn will be denoted by wn.
Our multirate approach is based on local temporal error estimation. Given

a global time step ∆tn = tn − tn−1, we compute a first, tentative approximation
at the new time level for all components. For those components for which the
error estimator indicates that smaller steps are needed, the computation is re-
done with 1

2∆tn. This refinement stage may require values at the intermediate
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tn−1

tn

Figure 1.1: Multirate time stepping for a time slab [tn−1, tn].

time level of components that are not refined. These values can be obtained by
interpolation or by a ‘dense output’ formula. The refinement is continued with
local steps 2−l∆tn, until the error estimator is below a prescribed tolerance for
all components. Schematically, with components horizontally and time verti-
cally, the multirate time stepping is displayed in Figure 1.1. Small time steps
will be used for the more active components and larger ones for the less active
components.

The intervals [tn−1, tn] are called time slabs. After each completed time slab
the solutions are synchronized. In our approach, these time slabs are automat-
ically generated, similar as in the single-rate approach, but without imposing
temporal accuracy constraints on all components of (1.1).

An important issue in our strategy will be to determine the size of the time
slabs. These could be taken large with many levels of refinements, or small with
few refinements. A decision will be made based on an estimate of the number of
components at which the solution needs to be calculated, including the overhead
due to repeated computations in refined sets.

The problems (1.1) in this chapter are assumed to be stiff or mildly stiff.
As basic integration method we will use a simple one-step Rosenbrock method.
The presented strategy can be used with other methods as well, but for mul-
tistep methods additional interpolations of past values will be required in the
refinement steps.

The chapter is organized as follows. In Section 1.2 we will briefly discuss
related work on multirate schemes and introduce the Rosenbrock method that
will be used as our basic numerical integration method. In Section 1.3 the mul-
tirate time stepping is described in detail, together with the time slab strategies.
The performance of the schemes is discussed in Section 1.4 by means of several
numerical experiments. Finally, Section 1.5 contains the conclusions and an
outlook on further work.

1.2 Background material and preliminaries

1.2.1 Related work

The first descriptions of automatic multirate schemes were given by Gear and
Wells [14] for linear multistep methods. As noted before, with multistep meth-
ods interpolations of past values will be needed in general in the temporal
refinement stages.
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In Günther, Kværnø and Rentrop [16] a multirate scheme was introduced
which is based on partitioned Runge-Kutta methods with coupling between ac-
tive and latent components performed by interpolation and extrapolation of
state variables. In particular, they introduced the notion of a compound step
in which the macro-step (for latent components) and the first micro-step (for
the active components) are computed simultaneously. The partitioning into
slow (latent) and fast (active) components is done in advance before solving the
problem, based on knowledge of the ODE system to be solved (in their appli-
cations these where electrical circuits). A related scheme, based on Rosenbrock
or ROW methods, was studied by Bartel and Günther [3]; this will be further
discussed in Section 1.4.3. Some stability results for simplified versions of these
schemes, applied to systems of two linear equations, with one fast and one slow
component, have been presented in Kværnø [31].

An algorithm based on finite elements was proposed by Logg [34, 35]. In
a single-rate approach such schemes are computationally akin to fully implicit
Runge-Kutta methods. In the multirate approach this leads to very compli-
cated implicit relations, which are difficult to solve. Additional remarks on the
strategy used for this scheme can be found in Section 1.3.3.

Finally we mention that multirate schemes for explicit methods and non-stiff
problems have been examined by Engstler and Lubich [10, 11]. In the first paper
extrapolation is used, and in their strategy the partitioning into different levels
of slow to fast components is obtained automatically during the extrapolation
process. This approach looks quite promising, but for stiff problems and implicit
methods the necessary asymptotic expansions seem difficult to obtain.

1.2.2 The Rosenbrock ROS2 method

Our multirate strategy is designed for one-step methods. In this chapter we
will use the two-stage second-order Rosenbrock ROS2 method [27] as our basic
numerical integration method. To proceed from tn−1 to a new time level tn =
tn−1 + τ , the method calculates

wn = wn−1 + 3
2 k̄1 + 1

2 k̄2 ,

(
I − γτJ

)
k̄1 = τF (tn−1, wn−1) + γτ2Ft(tn−1, wn−1) ,

(
I − γτJ

)
k̄2 = τF (tn, wn−1 + k̄1) − γτ2Ft(tn−1, wn−1) − 2k̄1 ,

(1.2)

where J ≈ Fw(tn−1, wn−1). The method is linearly implicit: to compute the
internal vectors k̄1 and k̄2, a system of linear algebraic equations is to be solved.
Method (1.2) is of order two for any choice of the parameter γ and for any choice
of the matrix J . Furthermore, the method is A-stable for γ ≥ 1

4 and it is L-

stable if γ = 1 ± 1
2

√
2. In this chapter we use L-stability with γ = 1 − 1

2

√
2,

since this gives smaller error coefficients in the local truncation error than the
value γ = 1 + 1

2

√
2. For the local error estimation within the variable step size
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control we use the embedded first-order formula

wn = wn−1 + k̄1 . (1.3)

We note that with our multirate approach, during the refinement step com-
ponent values may be needed that are not included in this refinement. For
example, components of w(t) that are not refined may only be known in tn−1

and tn; missing components will then be found by interpolation, and the Ft

term in (1.2) will be approximated by

F̃t(tn−1, wn−1) =
1
τ

(
F (tn, wn−1) − F (tn−1, wn−1)

)
. (1.4)

This will not affect the order of the method. In all examples the exact Jacobian
matrix J = Fw(tn−1, wn−1) will be used. For large practical problems a suitable
approximation can be more efficient if that leads to more simple linear algebra
systems.

The advantage of a Rosenbrock method is that only linear systems need to
be solved. Implicit Runge-Kutta methods could also be used in our multirate
approach, but then special attention should be given to the stopping criteria
in Newton iterations. Making a large global time step with these methods
might require many Newton iterations to get an iteration error smaller than a
prescribed tolerance for the active components. But an accurate approximation
is not needed there, because the numerical solution will be computed in the
refinement steps. Therefore weighted norms should be used in the stopping
criteria.

1.2.3 Variable step size control

Let us consider an attempted step from time tn−1 to tn = tn−1 + τn with step
size τn. Suppose this is done with two methods of order p and p − 1, giving
the numerical solutions wn and wn, respectively. By comparing wn with wn we
obtain an estimate for the local error,

En = ‖wn − wn‖∞ . (1.5)

Here the maximum norm is used because we aim at errors below the tolerance
for all components.

Having the estimate En and a tolerance Tol specified by the user, two cases
can occur: En > Tol or En ≤ Tol . In the first case we decide to reject this time
step and to redo it with a smaller step size τnew, where we aim at Enew = Tol .
In the second case we decide to accept the step and to continue the integration
from tn to tn+1. In both cases we continue with a time step of size

τnew = ϑ τn
p
√

Tol/En , (1.6)

where the safety factor ϑ < 1 serves to make the estimate conservative so as to
avoid repeated rejections.
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This form of variable step size selection is standard; see for example [19],
[51]. We will use it in two ways in our multirate approach: to select the time
slabs and to determine the components for which smaller step sizes are to be
taken.

1.3 Multirate time stepping strategy

The time integration interval [0, T ] will be partitioned into synchronized time
levels 0 = t0 < t1 < . . . < tN = T . The length of the time slab [tn−1, tn] will be
denoted by ∆tn.

1.3.1 Strategy I : uniform treatment within time slabs

Processing of one time slab

Consider a single time slab [tn−1, tn], as illustrated in Figure 1.1. Suppose that
the approximation wn−1 at time tn−1 is known, and that we want to obtain an
approximation wn at the new time level. First we perform a single step with step
size ∆tn and using an error estimator we determine the components for which
the computation of the solution should be refined, that is, performed with a
smaller time step. We refine for those components for which the estimated local
error is larger than the prescribed tolerance Tol . This set of components is
denoted as J1.

Refinement is done by doubling of the number of time steps for the selected
set of components. So for all components in J1 we recalculate the solution
using two steps of size 1

2∆tn. After this refinement phase we have the numerical
solution for the set of components J1 at time levels tn−1/2 and tn. We then
define J2 as the subset of components from J1 in which the estimated local error
is still larger than the tolerance at either tn−1/2 or tn, and for all components

from J2 we recalculate the solution using four time steps of size 1
4∆tn. This

is repeated until the error estimator indicates that there is no need of smaller
steps anymore. The processing of a time slab is then finished.

The interface, at the transition between the solutions obtained using different
time step sizes, should be treated properly. For some components from the
refinement set we will need solution values of components where we do not
refine.

For example, in a first refinement step the solution is advanced for a part of
the components using the halved time step 1

2∆tn. For the Rosenbrock method
(1.2) this will require the values of the components at the time levels tn−1,
tn and tn−1/2. At time level tn−1 and tn these values are available from the
solution that has been computed with the coarse step ∆tn. At the intermediate
time level tn−1/2 we use interpolation based on the information available at
tn−1 and tn; this information consists of approximate solution values wk and
approximate derivative values w′

k = F (tk, wk) for k = n− 1, n.
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In our tests, with the second-order method (1.2), we have examined linear
interpolation based on wn−1 and wn, and quadratic interpolation based on
wn−1, w

′
n−1 and wn. For the numerical experiments presented in Section 1.4

both interpolations gave nearly identical results.
In general, the order of the interpolation should be related to the order of

the time stepping method. With a basic integration method of order p, the
error in one step will be ∼ ∆tp+1

n . Interpolation with a q-th order polynomial
will introduce an interpolation error ∼ ∆tq+1

n at the components in which we
interpolate. Since we are interested in the errors in the maximum norm, the
choice q = p is natural. On the other hand, it was observed, also for higher-
order methods, that taking q = p− 1 often produces an order of accuracy equal
to p for the whole scheme, due to damping and cancellation effects. A proper
analysis for these effects is lacking at present.

Choosing the size of the time slabs

The size of the time slabs will be determined automatically while advancing in
time. When we are done with the processing of the n-th time slab of size ∆tn,
the size of the next time slab is taken as

∆tn+1 = 2sn+1τ∗n+1 , (1.7)

where sn+1 is the estimated (desired) number of levels of refinement for the
(n+1)-st time slab, and τ∗n+1 is the optimal step size which would give us an
estimated error smaller than the given tolerance if we were to use a single-rate
approach for the next time step from tn to tn+τ∗n+1. Both sn+1 and τ∗n+1 will be
estimated using information from the last time slab. In general, sn+1 may not
coincide with the actual number of levels of refinement that will be taken; we will
usually refine until the estimated error is smaller than the imposed tolerance.
The estimations for sn+1 and τ∗n+1 will be discussed in the next subsections.

For the first time slab we use s1 = 0, meaning that we would like to make a
single time step with an estimated error less than the prescribed tolerance Tol
at all components. The size of the first time slab ∆t1 is estimated using a small
prescribed test step size τ0 together with the step size control formula

∆t1 = ϑ τ0
p
√

Tol/E0 , (1.8)

where the safety factor ϑ, the tolerance Tol and the order p of the method are
as in (1.6), and E0 is the maximum norm of the estimated local error for the
test step from 0 to τ0. In the numerical experiments presented in this chapter
we use the ROS2 method (p = 2) with ϑ = 0.9 and τ0 = 10−4.

If the time integration is near an output point or the endpoint T , it should
be verified whether tn + ∆tn+1 > T , and in that case we reset ∆tn+1 = T − tn.

In our implementation an additional check of the new time slab size ∆tn+1

is made. This is to cover a situation where shortly after the last accepted time
level tn the solution suddenly becomes active. When after the global time step
of size ∆tn+1 has been performed it turns out that refinement is needed for each
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component, then the size of the time slab is deemed too large. In that case
a smaller size ∆tnew will be selected by making a new estimate τ∗new based on
the newly available information and we also set snew = max(0, sn+1 − 1). Such
rejections will only occur in exceptional situations, with the sudden appearance
of new active terms in the equations.

Estimation of τ∗n+1

Using the information available from the n-th time slab we can estimate the
value of τ∗n+1 for the next time slab. This is done using the standard step
size control technique; the only difference is that for each component we use
the information from the last available local time steps from the last time slab
[tn−1, tn]. For example, in the time slab depicted in Figure 1.2, in order to
estimate τ∗n+1, we will use the information from the hatched areas where the
last local time steps before tn have been taken.

tn−1

tn

Figure 1.2: Time steps used for the estimation of τ∗n+1.

After each level of refinement we know which components we already have
refined (recall that for the k-th level of refinement this set of components is
denoted by Jk) and which components we ought to refine in the next level of
refinement. Therefore, after the k-th level of refinement, for all components in
Jk \ Jk+1, we estimate

τ
(k)
n+1 = ϑ 2−k

∆tn
p
√

Tol/Ek (1.9)

based on the local step sizes 2−k∆tn in the k-th level of refinement and on Ek,
which is the maximum norm of the estimated error for the last time step at this
level of refinement. The estimate in (1.9) represents the step size which would
give us a local error smaller than the tolerance for all components from Jk\Jk+1

if all is going well. The safety factor ϑ makes the estimate conservative.
After having finished with all levels of refinement we determine τ∗n+1 by

τ∗n+1 = min
(
τ

(0)
n+1, τ

(1)
n+1, τ

(2)
n+1, . . .

)
. (1.10)

Expression (1.10) gives us an estimate of a step size with which we expect a
local error smaller than the tolerance for all the components.

Estimation of sn+1

The estimation of sn+1 will be based on the anticipated amount of work needed
to cover a unit of time. The multirate approach will introduce component-time
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points where the solution is computed several times, and this should be taken
into account of course.

We suppose that the amount of work required for advancing one time step in
m components is proportional to mr with r ≥ 1. In the experiments presented
in this chapter we use the two-stage Rosenbrock method (1.2) as our time inte-
gration method. At each stage of this method one vector-function evaluation is
done and one system of linear algebraic equations with a band matrix is solved.
Therefore, in this chapter we can consider r = 1.

Suppose the n-th time slab has been processed using sn levels of refinement,
and that in the k-th level of refinement mk components were refined, where
m0 = m. Since 2k time steps were taken at this level of refinement to cover
the time slab, the amount of work involved with the k-th level of refinement is
2kmr

k. The amount of work per time unit for the processing of the entire time
slab is therefore considered to be

C =
1

∆tn

(
mr

0 + 2mr
1 + · · · + 2snmr

sn

)
. (1.11)

In order to estimate the optimal amount of work per time unit we also study
two hypothetical (virtual) computations for this last time slab. In the first case
we consider what would have happened if we had taken the size of the time slab
2l times smaller than ∆tn, and in the second case what would have happened if
we had taken the size twice as large as ∆tn. In both cases we can estimate the
amount of work per unit time, and this can be compared to the actual amount
C. This information will then be used for the next time slab.

For the first hypothetical case, let us assume we go back to the n-th time
slab and redo it with ∆t′n = 1

2l ∆tn, that is, 2l times smaller than the actual ∆tn.
Then we would start with a time step of size ∆t′n on the whole spatial domain
(m0 = m points). The number of components involved in the first refinement,
with two steps of size 1

2∆t′n = 1
2l+1 ∆tn, can be estimated to be ml+1, because

that was the number of components used in the actual computation with this
time step. In the same way we can estimate that in the k-th level of refinement
we would refine in ml+k components and that sn − l levels of refinement would
be used. Hence, the amount of work per time unit for this hypothetical case
would be approximately

C ′ =
1

∆t′n

(
mr

0 + 2mr
l+1 + · · · + 2sn−lmr

sn

)
. (1.12)

If C ′ < C, we estimate that this hypothetical step would have given an im-
provement in the amount of work, compared to the actual computation that
has been done.

Lemma 1.3.1 Let ρ = (1
2 )1/r. The value of C ′ in (1.12) attains its mini-

mum for

l∗ = max{ l : ml > ρm} . (1.13)
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Proof. Denote the right-hand side of (1.12), with ∆t′n = 2−l∆tn, by C ′
l . Then

it is easily seen that

C ′
l−1 < C ′

l (resp. C ′
l−1 > C ′

l) ⇐⇒ ml < ρm (resp. ml > ρm) .
(1.14)

For the value l∗ in (1.13) we have

m = m0 ≥ m1 ≥ · · · ≥ ml∗ > ρm ≥ ml∗+1 ≥ · · · ≥ msn
.

It thus follows from (1.14) that

C ′
0 > C ′

1 > · · · > C ′
l∗ and C ′

l∗ ≤ C ′
l∗+1 ≤ · · · ≤ C ′

sn
,

which provides the proof of the lemma. �

If l∗ > 0, then an improvement in amount of work per unit step could have
been obtained if the n-th time slab had been done with fewer levels of refinement
and a smaller size of the time slab. Therefore, for the (n+1)-st time slab we
try to improve the performance by taking

sn+1 = sn − l∗ . (1.15)

If l∗ = 0, there was apparently no need to decrease the number of levels of
refinement. But then more efficiency might be possible with a time slab of larger
size (with more levels of refinement) than in the actual computation. This leads
us to the second hypothetical case.

If the size of the n-th time slab had been two times larger than ∆tn, that
is ∆t′′n = 2∆tn, then one time step of size ∆t′′n for all the components (m0 = m
points) would have been performed, followed by refinement steps. Suppose that
the first level of refinement would have involved m∗ components. The second
level of refinement then would take four time steps of size 1

4∆t′′n = 1
2∆tn. In

the processing of the original time slab of size ∆tn we needed time steps of
this size in m1 components. Therefore, it can be assumed that for the second
level of refinement in the virtual step, refinement would also take place on m1

components. Similarly, the k-th level of refinement can be assumed to involve
mk−1 components. In total we would have sn + 1 levels of refinement. The
amount of work per time unit for this case would thus be approximately

C ′′ =
1

∆t′′n

(
mr

0 + 2mr
∗ + 22mr

1 + · · · + 2sn+1mr
sn

)
. (1.16)

In this case, taking the size of the time slab two times larger than ∆tn, would
give us an expected improvement in work per time unit if C > C ′′, that is,

m∗ < ρm , ρ =
(1
2

)1/r
. (1.17)

We still need an estimate for m∗. Let v = wn− w̄n be the difference between
one step in the embedded Rosenbrock method (1.2), (1.3) computed in the n-th
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time slab with step size ∆tn, and let En = ‖v‖∞ be the norm of this estimated
local error. Then En ∼ (∆tn)

p
, with order p = 2 for the present Rosenbrock

combination. In the first stage of our hypothetical step, starting from tn−1 with
time step 2∆tn, we would expect an estimated local error of size 2pEn. Consider
the index set

I1 = { i : |vi| > 2−pTol} , (1.18)

where vi is the i-th component of the vector v. Then m∗ will be approximately
equal to the number of elements |I1| in this set. This estimate of m∗ can be
determined during the actual processing of the time slab without significant
extra work. If

|I1| < ρm , (1.19)

then it is expected that a larger time slab with more refinement levels would
have been more efficient. For the next time slab we then take sn+1 = sn+1. We
note that a larger increase of refinement levels could be considered in a similar
way, but it seems better to be conservative about this, because sn+1 = sn + 1
will already lead (approximately) to a doubling of the size of the time slab (if
τ∗n+1 ≈ τ∗n).

Summarizing, after having completed the n-th time slab with sn levels of
refinement, we choose for the next time slab

sn+1 =





sn + 1 if (1.19) is satisfied ,

sn − l∗ if (1.19) is not satisfied ,
(1.20)

where l∗ ≥ 0 is defined by (1.13). Together with (1.7) and (1.10) this determines
the size ∆tn+1 of the new time slab. The actual number of levels of refinements
will be determined by the error estimations. The sn+1 in (1.20) is merely an
indication for this. In our experiments the sn+1 was usually equal to the number
of levels of refinements, but sometimes it was one more or one less.

1.3.2 Strategy II : recursive two-level approach

The time slab processing strategy presented in the above generally works very
well, but in some cases a modification is desirable.

It may happen that the strategy takes very large time slabs with a large
number of refinement levels. Then the smallest time steps are used throughout
the entire time slab. Although this is only for a subset of components, it can
be inefficient if the local temporal variation changes drastically inside this large
time slab. Then the small time steps may be needed only in some part of
the time slab [tn−1, tn]. In such a situation our strategy can be improved by
applying the refinements not on the whole time slab but just for the required,
smaller time intervals.

Let us consider a time slab [tn−1, tn] with known approximation wn−1. As
before, we start with a single step ∆tn = tn − tn−1, and use the error estimator
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to determine the components where we should refine in time. For those compo-
nents the time slab is divided into two smaller sub-slabs with size 1

2∆tn. Next,
each of these sub-slabs is processed separately, in a similar way as the initial
‘global’ time slab. This is a recursive processing strategy, which stops when the
error estimator indicates that there is no need of further subslabs. A simple
illustration for two levels of refinement is given in Figure 1.3.

tn−1

tn

Figure 1.3: Example of a time slab created by the original strategy I (left)
and the modified strategy II (right).

This modified time slab size processing strategy is considered in combination
with a slightly modified time slab estimation. In the modified version the time
slabs have a different structure; they are no longer uniform over the whole time
slab. Therefore, not all the rationale from the previous time slab size estimation
strategy can be used directly for the modified version.

The size of a time slab can still be determined using the same formula

∆tn+1 = 2sn+1τ∗n+1. (1.21)

The value for τ∗n+1 can be determined using exactly the same procedure as
in our original multirate strategy. The desired number of the levels of refine-
ment sn+1 was determined on the basis of values of the number of components
m0,m1, . . . ,msn

in the levels of refinement for the n-th time slab. For the mod-
ified strategy these numbers of components are not constant anymore over the
time slab. Still, for the new time slab we have as a first guess that the refine-
ment will proceed uniformly as in the last local steps before tn. Therefore, the
estimations of the amount of work is done in the same way as before, but now
with values of ml based on the last available local steps before tn. Using these
values ml we can determine the desired number of levels of refinement following
the same procedure and rationale as in our original strategy. The size of the
time slab obtained in this way is the optimal size which can be obtained based
on the last information from the previous time slab.

1.3.3 Comparison to existing time slab strategies

Another time slab strategy has been presented by Jansson and Logg [28] for
the multi-adaptive Galerkin time-stepping algorithm of Logg [34, 35]. In their
strategy a time slab is created by first computing a desired time step for all
components. The size of the time slab is then taken as ∆t = θτmax with τmax

the maximum over the desired time steps and θ ∈ (0, 1) a fixed parameter.
The components are then partitioned into two sets. The components in the
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group with large time steps are integrated with time step θ∆t. The remaining
components are processed by a recursive application of the same procedure.

In this multi-adaptive Galerkin approach, the resulting implicit systems for
all refinements are solved simultaneously. This is the main difference with our
approach. We first solve the coarse step, and then, successively, the refined
steps. This leads to some overhead because in the refined regions the solution
is computed repeatedly. On the other hand, with our approach the implicit
systems are all relatively simple; basically the same as in a single-rate approach
for (1.1) but with fewer points mk in the refined steps. The dimension of the
implicit systems in the approach of Logg will be very much larger than m, the
number of components in (1.1), so these systems will be very hard to solve. For
this reason a damped functional (fixed point) iteration is used in [28], but that
can easily lead to a very large number of iterations per time slab.

In our case the size of a time slab is computed from the minimum time step
over the components and an expected number of levels of refinement. In our
strategy the sizes of the time slabs and the numbers of levels of refinement are
automatically adjusted to get an optimal amount of work per time unit.

1.4 Numerical experiments

In this section we will present numerical results for several test problems. We
consider the behavior of both our strategies: Multirate I (with uniform treat-
ment within time slabs) and Multirate II (with the recursive two-level approach).
The results are compared to the single-rate approach, also using the Rosenbrock
pair (1.2) and (1.3).

As measure for the amount of work we consider primarily the number of
components for which the solution is computed during the whole integration,
where the fact that with our multirate approach some solution components will
be computed several times at certain time levels is taken into account. For
practical purposes the CPU time is more relevant, but this depends strongly on
the programming language and environment. Some resulting computing times
for a C-program will be discussed.

As mentioned before, the amount of work per step for m components in
these experiments is estimated as mr with r = 1. Tests with r = 2, which is
obviously a wrong value here, produced quite similar results. In general, the
choice of r will depend on the problem and linear algebra solver. The tests with
r = 2 indicate that an optimal estimate for r is not critical for the performance
of our multirate schemes.

One of the test problems is an ODE system from circuit analysis, the other
two are obtained from partial differential equations (PDEs) by standard second-
order central discretization of the spatial derivatives on fixed uniform grids
(fourth-order central differences were also tried and the results were very sim-
ilar). The resulting semi-discrete systems are simply considered as ODE test
problems in these numerical experiments.
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For the results reported here we used quadratic interpolation to obtain miss-
ing component values. Linear and cubic interpolation were also tried and the
results were nearly identical; this simply indicates that the interpolation errors
are not significant in these tests. Linear interpolation could potentially lower the
order of accuracy, which is two for the ROS2 method, and therefore quadratic
interpolation is our preferred interpolation here. As mentioned before, with a
higher order basic time stepping method, also the order of interpolation should
be increased. For a number of Runge-Kutta and Rosenbrock methods dense
output formulas are available [19] which can also be considered.

The errors presented in the tables below are the maximum errors over the
components at the output times T , with respect to a time-accurate ODE refer-
ence solution. The reference solutions have been computed by using very small
tolerance values.

1.4.1 An ODE system obtained from semi-discretization:

a reaction-diffusion problem with traveling wave so-

lution

For our first test problem we consider the semi-discrete system obtained from
the reaction-diffusion equation

ut = ǫuxx + γu2(1 − u), (1.22)

for 0 < x < L, 0 < t ≤ T . The initial- and boundary conditions are given by

ux(0, t) = ux(L, t) = 0 , u(x, 0) =
(
1 + eλ(x−1)

)−1
, (1.23)

where λ = 1
2

√
2γ/ǫ. If the spatial domain had been the whole real line, then

the initial profile would have given the traveling wave solution u(x, t) = u(x −
αt, 0) with velocity α = 1

2

√
2γǫ. In our problem, with homogeneous Neumann

boundary conditions, the solution will still be very close to this traveling wave
provided the end time is sufficiently small so that the wave front does not come
close to the boundaries. The parameters are taken as γ = 1/ǫ = 100 and L = 5,
T = 3. In space we used a uniform grid of m = 1000 points and standard
second-order differences, leading to an ODE system in R

m. An illustration of
the semi-discrete solution at various times is given in Figure 1.4 with (spatial)
components horizontally.

0 1 2 3 4 5

0

1

t=0
t=1

t=2

t=3

Figure 1.4: Traveling wave solution for problem (1.22)–(1.23) at various times.
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In Table 1.1 the errors (in the maximum norm with respect to the reference
ODE solution at time T ) and the amount of work (number of space-time points
for the integration interval [0, T ]) are presented for different tolerances. From
these results it is seen that a substantial improvement in amount of work is
obtained for this problem. For the single-rate scheme, the number of space-time
points where the solution is computed is almost seven times larger. Moreover,
the error behavior of the multirate scheme is very good. We have roughly a
proportionality of the errors and tolerances, and the errors of the multirate
scheme are approximately the same as for the single-rate scheme.

Measurements of CPU times (for a C-program) showed that for this problem
the single-rate scheme was approximately four times more expensive than the
multirate schemes. This factor four is less than the factor seven in space-time
points; this is due to overhead with the multirate schemes for determining the
time slabs and refinement regions.

The multirate strategy II (recursive two-level approach) works somewhat
better for this problem than strategy I, in particular for the larger tolerances.
In Figure 1.5 the space-time grid is shown on which the solution was calculated
for strategy I with tolerance value Tol = 2 ·10−2. (With this large tolerance the
structure of the grid is better visible than with small tolerances.) One nicely
sees that the refinements move along with the steep gradient in the solution.
From the more detailed picture (enlargement on part of the domain), it is seen
that there is some redundancy in the fine level computations: in each time
slab the fine level domains form a rectangle, and this is the reason why the
strategy II is more efficient for this problem. Figure 1.6 shows the space-time
grid for strategy II, again with Tol = 2 · 10−2.

Table 1.1: Errors and work amount for (semi-discrete) problem (1.22)–(1.23).

Single-rate Multirate I Multirate II

Tol error work error work error work

10−3 3.2 · 10−3 818818 3.4 · 10−3 188138 2.1 · 10−3 124356

5 · 10−4 1.9 · 10−3 1128127 1.9 · 10−3 246962 2.2 · 10−3 149763

10−4 4.8 · 10−4 2431429 5.1 · 10−4 411466 5.4 · 10−4 308685

5 · 10−5 2.5 · 10−4 3408405 2.7 · 10−4 550723 2.7 · 10−4 428549

10−5 5.3 · 10−5 7528521 5.5 · 10−5 1153759 5.7 · 10−5 1064115
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Figure 1.5: Space-time grid for problem (1.22)–(1.23) with strategy I. The
right picture gives an enlargement for a part of the domain.
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Figure 1.6: Space-time grid for problem (1.22)–(1.23) with strategy II. The
right picture gives an enlargement for a part of the domain.

1.4.2 An ODE system obtained from semi-discretization:

the Allen-Cahn equation

The second test consists of a semi-discrete version of the Allen-Cahn equation

ut = ǫuxx + u(1 − u2) , (1.24)

for t > 0, −1 < x < 2, with initial- and boundary conditions

ux(−1, t) = 0 , ux(2, t) = 0 , u(x, 0) = u0(x) . (1.25)

We take ǫ = 9 · 10−4 and initial profile

u0(x) =





tanh((x+ 0.9)/(2
√
ǫ)) for − 1 < x < −0.7 ,

tanh((0.2 − x)/(2
√
ǫ)) for − 0.7 ≤ x < 0.28 ,

tanh((x− 0.36)/(2
√
ǫ)) for 0.28 ≤ x < 0.4865 ,

tanh((0.613 − x)/(2
√
ǫ)) for 0.4865 ≤ x < 0.7065 ,

tanh((x− 0.8)/(2
√
ǫ)) for 0.7065 ≤ x < 2 .

(1.26)
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This problem is an extended version version of the bistable problem considered
in [12].

0
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−1 −0.5 0 0.5 1 1.5 2

−1

0

1

Figure 1.7: Evolution of the solution for problem (1.24)–(1.26).

For this problem we used a uniform space grid of 400 points with second-
order central differences. Figure 1.7 shows a time-accurate numerical solution.
The nonlinear reaction term in (1.24) has u = 1 and u = −1 as stable equilib-
rium states, whereas the zero solution is an unstable equilibrium. The solution
of (1.24)–(1.26) starts with three ‘wells’, see Figure 1.7. The first well, on the
left, persists during the integration interval. The second well is somewhat thin-
ner than the others and it collapses at time t ≈ 41, whereas the third well
collapses at t ≈ 141.

Table 1.2: Errors and work amount for (semi-discrete) problem (1.24)–(1.26).

Single-rate Multirate I Multirate II

Tol error work error work error work

5 · 10−4 3.8 · 10−3 102255 3.0 · 10−3 48342 3.6 · 10−3 36811

10−4 2.2 · 10−3 217743 1.5 · 10−3 85241 1.1 · 10−3 66360

5 · 10−5 1.2 · 10−3 303958 1.0 · 10−3 107920 1.3 · 10−3 75653

10−5 2.8 · 10−4 664858 2.5 · 10−4 257473 2.6 · 10−4 227554

5 · 10−6 1.3 · 10−4 935533 1.1 · 10−4 355627 1.2 · 10−4 324501

To test the performance of the schemes, the output was considered for
T = 142. At this output point, the solution is still changing in the third well;
for larger times the solution becomes steady-state and then all errors vanish. In
Table 1.2 the errors (measured in the maximum norm with respect to the refer-
ence ODE solution) and the amount of work (number of space-time points) for
different tolerances are presented. For this problem there is again a significant
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improvement in work with the multirate schemes compared to the single-rate
scheme.

Strategy II again behaves slightly better for this problem than strategy I.
The error behavior of both multirate schemes is excellent: the errors are close
to –or even smaller than– the errors of the single-rate scheme. As in the other
tests, this shows that our multirate strategies behave very robustly.

In CPU times the factor gained with the multirate schemes, compared to
the single-rate scheme, was a factor two approximately. As for the previous
problem this is somewhat less than the factors for the number of space-time
points due to overhead.

1.4.3 An Inverter Chain Problem

An inverter is an electrical sub-circuit which transforms a logical input signal
to its negation. The inverter chain is a concatenation of several inverters, where
the output of an inverter serves as input for the succeeding one. An inverter
chain with an even number of inverters will delay a given input signal and will
also provide some smoothing of the signal.

A detailed description of a mathematical model for an inverter chain is given
in [2]. The model for m inverters consists of the equations





w′
1(t) = Uop − w1(t) − Υg

(
uin(t), w1(t)

)
,

w′
j(t) = Uop − wj(t) − Υg

(
wj−1(t), wj(t)

)
, j = 2, . . . ,m ,

(1.27)

where

g(u, v) =
(
max(u− Uthres, 0)

)2 −
(
max(u− v − Uthres, 0)

)2
. (1.28)

The coefficient Υ serves as stiffness parameter. Following [2, 3], we solve the
problem for a chain of m = 500 inverters with Υ = 100, Uthres = 1 and Uop = 5.
The initial condition is

wj(0) = 6.247 · 10−3 for j even, wj(0) = 5 for j odd. (1.29)

The input signal is given by

uin(t) =





t− 5 for 5 ≤ t ≤ 10 ,

5 for 10 ≤ t ≤ 15 ,
5
2 (17 − t) for 15 ≤ t ≤ 17 ,

0 otherwise.

(1.30)

An illustration of the solution for some of the even components is given in
Figure 1.8.

In Table 1.3 the errors at output time T = 130 (measured in the maximum
norm with respect to an accurate reference solution) together with the amount
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Figure 1.8: Solution components wj(t), j = 2, 126, 250, 374, 498, for problem
(1.27)–(1.30).

of work and CPU times (in seconds) are presented for several tolerances for
the single-rate scheme and the multirate strategy II. Similar as for the previous
examples, the amount of work is taken as the number of components at which
solutions are computed over the integration interval [0, T ]; this is proportional
to the number of scalar function evaluations (1.28).

It is seen from the table that for the prescribed tolerances we get roughly
a factor 10 of improvement in work and a factor 6 improvement in CPU time
with the multirate scheme, whereas for each given tolerance the errors of the
multirate scheme are somewhat smaller than with the single-rate scheme.

In Figure 1.9 the component-time grid is shown on which the solution was
calculated with tolerance value tol = 5 · 10−2. For this large tolerance the
structure of the grid is better visible than for smaller tolerances, but still only
every tenth global step is displayed in the left picture to make it more clear.
Again it is seen that the refinements are properly adjusted to the steep gradients
in the various components of the solution.

The same problem served as a numerical test for a multirate W-method in
[3], where for each time slab a partitioning of the components in two classes,
slow (latent) and fast (active), was used; the partitioning was based on a mon-
itor function suited for this particular problem. Inside a time slab, all fast

Table 1.3: Errors and work amount for problem (1.27)–(1.29).

Single-rate Multirate II

tol error work CPU error work CPU

5 · 10−4 1.74 · 10−1 28938500 19.75 1.12 · 10−1 3314690 3.74

1 · 10−4 3.91 · 10−2 62379000 42.64 2.41 · 10−2 4795878 6.36

5 · 10−5 2.10 · 10−2 87384000 59.72 1.88 · 10−2 6456558 8.81

1 · 10−5 6.07 · 10−3 193494000 132.32 3.84 · 10−3 17358472 21.65
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Figure 1.9: Component-time grid for problem (1.27)–(1.29) with strategy II.
The right picture gives an enlargement for a part of the components and time
interval.

components were then solved with the same small step sizes (micro-steps). In
this way a factor 3.7 of improvement in work was obtained compared to the
single-rate scheme. With our strategy this factor is much higher. This seems
mainly due to the dynamic partitioning into several classes, together with the
choices for the size of the time slabs and local time steps found by estimating
the total amount of work.

Apart from the partitioning, the most important difference between [3] and
our approach is the use of a ‘compound step’ in [3], whereby the slow compo-
nents and the first (micro-) step for the fast components are solved simulta-
neously. Here extrapolation (from fast to slow components) and interpolation
(from slow to fast components) is incorporated. In this way some of the over-
head in our approach is avoided, because there are no coarse step values that
are later overwritten, but such compound steps will become very complicated
if the components are partitioned into more than two classes.

1.5 Conclusions

In this chapter we presented self-adjusting multirate time stepping strategies
for stiff ODEs. The step size for a particular system component is determined
by the local temporal variation of the solution, in contrast to the use of a
single step size for the whole set of components as in the traditional (single-
rate) methods. Numerical experiments confirmed that the efficiency of time
integration methods can be significantly improved by using large time steps for
inactive components, without sacrificing accuracy.

Although our two strategies produced results not too far apart, we do have
a slight preference for the recursive two-level approach (strategy II) over the
uniform treatment within time slabs (strategy I). Cases can be constructed
with very large time slabs where strategy II will be much more efficient than
strategy I.

Compared to the approaches in [3, 16] and [34, 35], our multirate approach
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avoids the use of compound steps or very large implicit systems. On the other
hand, there is some overhead with our approach, because in the refined compo-
nent sets the solution is computed repeatedly. We do think, however, that for
many problems simplicity will be preferable. Since the structure of the problems
with the refined steps is the same as for the original problems, only on smaller
component sets, linear algebra solvers suitable for the single-rate scheme can
still be used.

As basic time stepping method, we used in this chapter a second-order
Rosenbrock method with an embedded first-order method. Except for the
interpolation, the multirate approach can be applied without adjustments to
higher-order methods. Preliminary experiments with fourth-order Rosenbrock
schemes are promising.
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Chapter 2

Analysis of a multirate

theta-method for stiff ODEs

This chapter contains a study of a simple multirate scheme, consisting of the
θ-method with one level of temporal local refinement. Issues of interest are
local accuracy, propagation of interpolation errors and stability. The theoretical
results are illustrated by numerical experiments, including results for more levels
of refinement with automatic partitioning.

2.1 Introduction

For large, stiff systems of ordinary differential equations (ODEs), some compo-
nents may show a more active behavior than others. To solve such problems
multirate time stepping schemes can be efficient. With such schemes different
solution components can be integrated with different time steps. A multirate
procedure with automatic partitioning and step size control was introduced and
tested in Chapter 1. In the present chapter some theoretical issues are studied
for a simplified situation. For this purpose we will consider the θ-method with
one level of temporal refinement.

The systems of ODEs with given initial values in R
m are written as

w′(t) = F (t, w(t)) , w(0) = w0 . (2.1)

The numerical approximations to the exact ODE solution at the global time
levels tn = nτ will be denoted by wn. For the step from tn−1 to tn, we first
compute a tentative approximation at the new time level. For those components
for which an error estimator indicates that smaller steps would be needed, the
computation is redone with halved step size 1

2τ . The result with the coarser
time step will furnish data for this refined step by interpolation at the interme-
diate time level tn−1/2 = 1

2 (tn−1 + tn). This procedure then can be continued
recursively with further refinements, but for the analysis here only the most
simple case with one level of refinement will be considered.

We study this case to obtain a better understanding of more general multi-
rate schemes. Particular attention will be given to the build-up of local errors
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which will be composed of discretization errors of the θ-method and interpola-
tion errors. For simplicity we consider the θ-method with a fixed global time
step τ . The component set where the (halved) local time steps are taken is given
by a diagonal projection J , with diagonal entries zero or one, where an entry
one indicates that the component will be refined. Such J could be determined
by some error estimator as in Chapter 1; it then will vary from step to step, so
in general J = Jn.

Summarizing, the scheme reads as follows: first we take the tentative global
step

wn = wn−1 + (1 − θ)τF (tn−1, wn−1) + θτF (tn, wn) , (2.2a)

from which we also obtain an approximation wn−1/2 at the intermediate time
level tn−1/2 by interpolation. Then we compute the local updates

wn− 1
2

= Jn

(
wn−1 + 1

2 (1 − θ)τF (tn−1, wn−1) + 1
2θτF (tn− 1

2
, wn− 1

2
)
)

+ (I − Jn)wn− 1
2
,

(2.2b)

wn = Jn

(
wn− 1

2
+ 1

2 (1 − θ)τF (tn− 1
2
, wn− 1

2
) + 1

2θτF (tn, wn)
)

+ (I − Jn)wn .
(2.2c)

The θ-method is considered here as basic method since it represents the
most simple Runge-Kutta method (and also linear multistep method). For stiff
systems the cases θ = 1

2 (trapezoidal rule) and θ = 1 (backward Euler) are
of practical interest; for non-stiff systems we can also consider θ = 0 (forward
Euler). It is assumed in the following that 0 ≤ θ ≤ 1. For the interpolation we
shall primarily consider linear interpolation

(I − Jn)wn− 1
2

= (I − Jn)
(1

2
wn−1 +

1

2
wn

)
. (2.3)

However, we will see that this may affect the accuracy in case θ = 1
2 , and

therefore the quadratic interpolation formula

(I − Jn)wn− 1
2

= (I − Jn)
(3

4
wn−1 +

1

4
wn +

1

4
τF (tn−1, wn−1)

)
(2.4)

will be considered as well.
For this simple multirate scheme a detailed description of the error propa-

gations will be derived for linear systems that may be stiff. Compared to the
non-stiff case, it is not only stability that needs careful consideration, but also
local discretization errors can be affected by stiffness. For example, it will be
seen that for stiff systems the linear interpolation may give an O(τ2) contri-
bution to the local error, whereas this contribution will always be O(τ3) for
non-stiff systems.

Even though the multirate scheme considered in this chapter is quite simple,
the stability analysis will turn out to be complicated. Some pertinent properties
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for general linear systems can be derived, but to obtain detailed results we will
also have to study linear test problems in R

2.

Related stability results can be found in [16, 31, 50] for multirate schemes
with a so-called compound step, where approximations (I −J)wn and Jwn−1/2

are computed simultaneously. The above multirate approach (but then with
more levels of refinement and with a two-stage Rosenbrock method as basic
integrator) was considered in [47]. In this approach there is some overhead,
because Jwn will not be directly used anymore. However, by computing the
whole approximation wn, the structure of the implicit relations remains the same
as for the corresponding single-rate scheme. Moreover, by using an embedded
method, it is then relatively easy to make an automatic partitioning Jn based
on local error estimations. For a detailed discussion and implementation issues
we refer to [47]; some additional test results are presented in Section 2.5 of the
present chapter.

The contents of this chapter is as follows. In Section 2.2 error recursions
are derived that show how the global discretization errors for the multirate
scheme are build up. Bounds for the local discretization errors are obtained in
Section 2.3. Stability and contractivity properties of the multirate scheme are
discussed in Section 2.4. In Section 2.5 some numerical test results are presented,
both for the dual-rate scheme (2.2) used for the theoretical investigation and for
an automatic multirate scheme, based on the trapezoidal rule, with local error
estimation and variable time steps. Finally, Section 2.6 contains conclusions.

2.2 Error propagations

2.2.1 Preliminaries

For the analysis it will be assumed that the problem (2.1) is linear with constant
coefficients,

w′(t) = Aw(t) + g(t) (2.5)

with an m×m matrix A = (aij). In fact, to study the local truncation errors,
the restriction to the linear constant-coefficient case is not necessary, but it gives
a convenient compact notation. On the other hand, to obtain stability results
we will also consider even more simple problems where m = 2.

For multirate schemes the aim is to have errors in active components of the
same size as in components with larger timescales and less activity. Therefore
the maximum norm is a natural norm to consider for analysis purposes. Stability
of the multirate scheme will be considered under the assumption

aii +
∑

j 6=i

|aij | ≤ 0 for i = 1, . . . ,m . (2.6)

In terms of logarithmic matrix norms this means µ∞(A) ≤ 0. It is well known,
see [18, 27] for instance, that we then have ‖ exp(tA)‖∞ ≤ 1 for all t ≥ 0,
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showing that initial perturbations are not amplified in the ODE system (2.5)
itself.

Let in the following Z = τA. Furthermore, we denote the stability function
of the θ-method by R(z) = (1 + (1 − θ)z)/(1 − θz). The corresponding matrix
function is given by

R(Z) = (I − θZ)−1(I + (1 − θ)Z) (2.7)

where I is the identity matrix.

Let en = w(tn) − wn be the global discretization error at time tn. These
global errors will satisfy a recursion of the form

en = Snen−1 + dn . (2.8)

This error recursion describes the amplification of existing errors, through Sn,
and the appearance of new errors dn during the step from tn−1 to tn. These
dn are called the local discretization errors. The scheme is called consistent of
order p if ‖dn‖ ≤ Cτp+1. To have convergence of order p, that is, ‖en‖ ≤ Cτp

for all n, we will also need suitable bounds on the norms of (products of) the
matrices Sn.

2.2.2 Error recursions

In this section recursions are derived for the global discretization errors en.
The errors of the intermediate approximations are denoted in the same way as
en = w(tn) − wn and en+1/2 = w(tn+1/2) − wn+1/2. The linear and quadratic
interpolation formulas are covered by

(I − Jn)wn− 1
2

= (I − Jn)
(

1
2wn−1 + 1

2wn + 1
4γ
(
wn−1 − wn + τF (tn−1, wn−1)

))

with γ = 0 for linear interpolation and γ = 1 for the quadratic case.

Inserting exact solution values into the scheme (2.2) gives residual errors in
the various stages of the scheme, which are easily found by Taylor expansion.
Subtraction of (2.2) then leads to the following error relations

en = en−1 + (1 − θ)Zen−1 + θZen + ρ0,n ,

en− 1
2

= Jn

(
en−1 +

1

2
(1 − θ)Zen−1 +

1

2
θZen− 1

2
+ ρ1,n

)

+ (I − Jn)
(1

2
en−1 +

1

2
en +

1

4
γ(en−1 − en + Zen−1) + σn

)
,

en = Jn

(
en− 1

2
+

1

2
(1 − θ)Zen− 1

2
+

1

2
θZen + ρ2,n

)
+ (I − Jn)en ,
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where the ρj,n are local, residual errors caused by the underlying θ-method,

ρ0,n =
(1

2
− θ
)
τ2w′′(tn− 1

2
) − 1

12
τ3w′′′(tn− 1

2
) + O(τ4) , (2.10a)

ρ1,n =
1

4

(1

2
− θ
)
τ2w′′(tn− 1

2
) − 1

16

(2

3
− θ
)
τ3w′′′(tn− 1

2
) + O(τ4) ,

ρ2,n =
1

4

(1

2
− θ
)
τ2w′′(tn− 1

2
) +

1

16

(1

3
− θ
)
τ3w′′′(tn− 1

2
) + O(τ4) ,

and

σn =
1

8
(γ − 1)τ2w′′(tn− 1

2
) − 1

48
γτ3w′′′(tn− 1

2
) + O(τ4) (2.11)

is a residual error due to interpolation.
In the first stage of the scheme, with global step size τ , we thus obtain

en = R(Z)en−1 + (I − θZ)−1ρ0,n . (2.12)

At the first refined time level it follows that

en− 1
2

= (I − 1
2θJnZ)−1

(
Jn(I + 1

2 (1 − θ)Z) + (I − Jn)Q
)
en−1

+ (I − 1
2θJnZ)−1

(
Jnρ1,n + (I − Jn)

(
σn + (1

2 − 1
4γ)(I − θZ)−1ρ0,n

)) (2.13)

with interpolation matrix

Q =
1

2
I +

1

2
R(Z) +

1

4
γ
(
I + Z −R(Z)

)
. (2.14)

For the global discretization errors of the total scheme this finally leads to the
error recursion (2.8) with amplification matrix

Sn = (I − 1
2θJnZ)−1

(
JnR( 1

2JnZ)Jn(I + 1
2 (1 − θ)Z)

+JnR( 1
2JnZ)(I − Jn)Q+ (I − Jn)R(Z)

)
,

(2.15)

and local discretization error

dn = (I − 1
2θJnZ)−1

(
JnR( 1

2JnZ)
(
Jnρ1,n + (I − Jn)σn

)
+ Jnρ2,n

+
(
I + (1

2 − 1
4γ)JnR( 1

2JnZ)
)
(I − Jn)(I − θZ)−1ρ0,n

)
.

(2.16)

2.3 Local discretization errors

It is clear from (2.10), (2.11) that σn = O(τ3) if γ = 1 and ρj,n = O(τ3)
if θ = 1

2 . In other cases we only have O(τ2) bounds. Here the constants
in the O(τ q) estimates are not affected by stiffness; they only depend on the
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smoothness of the solution. To derive similar bounds for the local discretization
errors it will be assumed that

‖R(τA)‖∞ ≤ C , ‖(I − 1

2
τθJnA)−1‖∞ ≤ C , (2.17)

with C ≥ 1 a fixed constant. These assumptions are taken such that both cases
θ = 0 and θ > 0 are covered. In fact, if θ > 0 then (2.17) will be a consequence
of (2.6), with C independent of τ , but for θ = 0 it will impose a restriction on
the step size.

Theorem 2.3.1 Let 0 ≤ θ ≤ 1 and assume (2.17) holds. If θ = 1
2 and γ = 1,

then ‖dn‖∞ = O(τ3). Otherwise, we have ‖dn‖∞ = O(τ2).

Proof. For θ > 0 assumption (2.17) implies

‖R( 1
2JnZ)‖∞ ≤ θ−1(1 − θ) + θ−1‖(I − 1

2θJnZ)−1‖∞ ≤ θ−1(1 − θ + C) ,

‖(I − θZ)−1‖∞ = ‖(1 − θ)I + θR(Z)‖∞ ≤ 1 − θ + θC ,

whereas for θ = 0, that is, R(z) = 1 + z, we will have

‖R(
1

2
JnZ)‖∞ = ‖(I − 1

2
Jn) +

1

2
Jn(I + Z)‖∞ ≤ 1 +

1

2
C .

Since ‖ρj,n‖∞ = |θ− 1
2 |O(τ2) +O(τ3) and ‖σn‖∞ = |γ − 1|O(τ2) +O(τ3), the

required bounds thus follow from the local error expression (2.16). �

If θ 6= 1
2 this result cannot be improved in general, since the θ-method itself

is then first-order consistent. The interesting question is whether we can have
consistency of order two for θ = 1

2 with linear interpolation (γ = 0). The next
result shows that will be valid if the coupling from the slow towards the more
active components is bounded,

‖JnA(I − Jn)‖∞ ≤ K (2.18)

with a moderate constant K. This will hold in particular for non-stiff problems.

Theorem 2.3.2 Let θ = 1
2 , γ = 0, and suppose that (2.17), (2.18) hold. Then

we have the local error bound ‖dn‖∞ = O(τ3).

Proof. Since

JnR(
1

2
JnZ)(I − Jn) = Jn

(
I + (I − 1

2
θJnZ)−1 1

2
JnZ

)
(I − Jn) ,

it follows that

‖JnR(
1

2
JnZ)(I − Jn)‖∞ ≤ 1

2
‖Jn(I − 1

2
θJnZ)−1‖∞‖JnZ(I − Jn)‖∞ ≤ 1

2
CKτ .
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Expression (2.16) thus leads directly to the proof. �

In case θ = 1
2 and γ = 0, but (2.18) is not satisfied with a moderate constant

K, then the order of consistency will be less than two in general. For stiff
systems, the order of convergence can be larger than the order of consistency,
due to damping and cancellation effects (similar to [27, Lemma I.2.3] for Runge-
Kutta methods), but we will see in Section 2.5 that for a simple example (semi-
discrete heat equation) the scheme will not converge with order two.

2.4 Stability and contractivity

2.4.1 Contractivity with linear interpolation

Consider one step of (2.2) with Jn = diag(Jii). We denote by I1 = {i : Jii = 0}
the index set where the step is not refined, and likewise I2 = {i : Jii = 1}
stands for the index set where we do refine the step. For the multirate scheme
we consider the time step restrictions

{
|(1 − θ)τaii| ≤ 1 for i ∈ I1 ,

|(1 − θ)τaii| ≤ 2 for i ∈ I2 .
(2.19)

Theorem 2.4.1 Consider (2.15) with 0 ≤ θ ≤ 1 and γ = 0. Assume (2.6) and
(2.19) are valid. Then ‖Sn‖∞ ≤ 1.

Proof. From assumption (2.6) and the unconditional contractivity of the back-
ward Euler method, see [19, 27] for instance, it follows that

‖(I − θZ)−1‖∞ ≤ 1 , ‖(I − 1

2
θJnZ)−1‖∞ ≤ 1 . (2.20)

Moreover, the time step restriction (2.19) implies

‖(I − Jn)(I + (1 − θ)Z)‖∞ ≤ 1 , ‖Jn(I +
1

2
(1 − θ)Z)‖∞ ≤ 1 .

We can write Sn as

Sn = (I − 1
2θJnZ)−1

(
Jn(I + 1

2 (1 − θ)Z)Tn + (I − Jn)R(Z)
)
,

Tn = (I − 1
2θJnZ)−1

(
Jn(I + 1

2 (1 − θ)Z) + (I − Jn)Q
)
,

where Q = 1
2 (I +R(Z)) for linear interpolation, see (2.13)–(2.15).

First consider the term

(I − Jn)R(Z) = (I − Jn)(I − θZ)−1(I + (1 − θ)Z) .

Because (I − θZ)−1 and (I + (1 − θ)Z) commute we have

‖(I − Jn)R(Z)‖∞ ≤ ‖(I − Jn)(I + (1 − θ)Z)‖∞ ‖(I − θZ)−1‖∞ ≤ 1 ,
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and consequently also

‖(I − Jn)Q‖∞ ≤ 1 .

Using the fact that ‖JnU + (I − Jn)V ‖∞ ≤ 1 for any two matrices U, V ∈
R

m×m with ‖U‖∞ ≤ 1, ‖V ‖∞ ≤ 1, it now easily follows that ‖Tn‖∞ ≤ 1 and
subsequently ‖Sn‖∞ ≤ 1. �

The above conditions (2.19) for having ‖Sn‖∞ ≤ 1 are sharp, as is seen from
the following simple 3 × 3 example.

Example 2.4.1 Consider

A =




−2 −2 0

0 −1 −1

0 0 0


 , J =




1 0 0

0 0 0

0 0 0


 .

Then both restrictions in (2.19) reduce to

(1 − θ)τ ≤ 1 .

With e = (1, 1, 1)T , it follows by some calculations that the second component
of S e is given by

(S e)2 = −1 + 2
1 − (1 − θ)τ

1 + θτ
.

It is now easily seen that ‖S‖∞ > 1 whenever (2.19) is not satisfied. �

So for the backward Euler case, θ = 1, we will have unconditional contrac-
tivity; see [44] for a related (nonlinear) result for a backward Euler scheme with
a compound step. Also for θ = 0 (forward Euler) the result of Theorem 2.4.1 is
entirely satisfactory; in fact, necessity of (2.19) is then already clear for diagonal
matrices A. However, for θ = 1

2 (trapezoidal rule), the time step conditions in
(2.19) are very strict. After all, the trapezoidal rule itself is A-stable.

The strict time steps for the trapezoidal rule are to some extent due to the
insistence on contractivity, ‖Sn‖ ≤ 1, rather than stability, where it is merely
required that the error growth is moderate. From a practical point of view,
having

‖SnSn−1 · · ·S2S1‖∞ ≤ M for all n ≥ 1 (2.21)

with some moderate constant M would be a sufficient stability condition. How-
ever, we will see below that for a standard linear example, arising from the heat
equation, this will not be satisfied for the trapezoidal rule with linear interpo-
lation if the step size τ is too large. This is due to the multirate procedure.
The trapezoidal rule itself is stable in the maximum norm for this example
(see e.g. [13]), and in the discrete L2-norm it will even be contractive (see e.g.
[18, 27]). The same heat equation example will also show that with quadratic
interpolation stability can even be lost for θ = 1.
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2.4.2 Stability for fixed partitioning and non-stiff cou-

plings

Consider Jn = J fixed. Since the time step is also assumed to be constant, the
amplification matrix S will then no longer depend on n either, so the stability
condition (2.21) becomes the power boundedness condition ‖Sn‖∞ ≤ M . In
the following we mostly restrict our attention to θ > 0 and linear interpolation,
γ = 0. Some remarks on quadratic interpolation are given near the end of this
section.

For fixed J it can be assumed without loss of generality that

A =

(
A11 A12

A21 A22

)
, J =

(
O

I

)
. (2.22)

This block partitioning can always be achieved by an index permutation. The
same partitioning will be used for

Z = [Zij ] = [τAij ] , R(Z) = [R(Z)ij ] , Q = [Qij ] , S = [Sij ] .

Further we denote U22 = (I − 1
2θZ22)

−1 for brevity. Then it is found by some
calculations that the blocks of S are given by





S11 = R(Z)11 , S12 = R(Z)12 ,

S21 = 1
2 (1 − θ)U22R( 1

2Z22)Z21 + 1
2U

2
22Z21Q11 + 1

2θU22Z21R(Z)11 ,

S22 = R( 1
2Z22)

2 + 1
2U

2
22Z21Q12 + 1

2θU22Z21R(Z)12 .

(2.23)

The actual form of the blocks R(Z)ij is somewhat complicated for general
non-commuting Aij , but if A is upper or lower block-triangular we obtain more
simple expressions. Stability for those cases is considered under the following
assumption on the diagonal blocks:

‖R(τA11)
n‖∞ ≤ K1r

n
1 , ‖R(

1

2
τA22)

2n‖∞ ≤ K2r
n
2 for n ≥ 1 , (2.24)

with K1,K2 > 0 and 0 ≤ r1, r2 ≤ 1.

Theorem 2.4.2 Assume θ > 0, γ = 0, (2.6), (2.24), and let r = min(r1, r2).
Furthermore, assume that either A21 = 0 or A12 = 0. Then there is a K > 0
such that

‖Sn‖∞ ≤ K

n∑

j=0

rj for n ≥ 1 .

Proof. We present the proof for the lower block-diagonal case A12 = 0. The
proof for A21 = 0 is easier because most of the terms in (2.23) then cancel.

If A12 = 0, we find that R(Z)12 = Q12 = 0 and R(Z)11 = R(Z11), which
gives

S12 = 0 , S11 = R(Z11) , S22 = R(
1

2
Z22)

2 .
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Moreover, from S12 = 0, it follows that

Sn =

(
S n

11 O
∑n

j=1 S
n−j
22 S21S

j−1
11 S n

22

)
,

and hence

‖Sn‖∞ ≤ ‖S n
11‖∞ + ‖S21‖∞

n∑

j=1

‖Sn−j
22 ‖∞‖Sj−1

11 ‖∞ + ‖S n
22‖∞ .

It remains to show that ‖S21‖∞ is bounded. Let U = [Uij ] = (I− 1
2θJZ)−1.

Then U22 is as above and U21 = 1
2θU22Z21 in this lower block-diagonal case.

Moreover, as seen in (2.20), assumption (2.6) implies ‖U‖∞ ≤ 1, and conse-
quently also ‖U21‖∞ ≤ 1, ‖U22‖∞ ≤ 1. It thus follows that

U22R(
1

2
Z22)Z21 =

θ − 1

θ
U22Z21 +

1

θ
U 2

22Z21

can be bounded as well for θ > 0. The same applies for the other terms in the
expression (2.23) for S21, where we note that Q11 = 1

2 (I + R(Z11)) because of
the linear interpolation. �

If r < 1 the theorem provides a stability result with ‖Sn‖∞ ≤ K/(1− r) for
all n ≥ 1. If r = 1 it merely demonstrates weak stability ‖Sn‖∞ ≤ Kn where a
linear error growth is possible.

The above result for lower or upper block triangular matrices can be ex-
tended to non-stiff couplings by a perturbation argument, where we assume
that A is not too far from a simpler matrix Ã for which stability with the
corresponding amplification matrix S̃ is known,

‖A− Ã‖∞ ≤ L , ‖S̃n‖∞ ≤M for all n ≥ 1 . (2.25)

Then stability of the scheme with the original amplification matrix S can be
concluded on finite time intervals 0 ≤ tn ≤ T .

Theorem 2.4.3 Suppose θ > 0, γ = 0. Further assume that µ∞(Ã) ≤ 0 and
(2.25). Then there exist C > 0 and τ∗ > 0 (depending only on γ, L,M) such
that

‖Sn‖∞ ≤M exp(CMtn) whenever τ ≤ τ∗ .

Proof. It is to be shown that ‖S − S̃‖∞ ≤ Cτ . Then the result follows from
a standard perturbation argument; see for example [42, p. 58]. The estimate on
S − S̃ requires some care.

We can decompose S as

S = V J(I +
1

2
(1 − θ)Z) + V (I − J)Q + W , (2.26)
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where

V = (I − 1
2θJZ)−1JR( 1

2JZ) , W = (I − 1
2θJZ)−1(I − J)R(Z) . (2.27)

For S̃ we consider the same form based on Z̃. Then

S − S̃ = [V − Ṽ ]J + 1
2 (1 − θ)[V − Ṽ ]JZ + 1

2 (1 − θ)Ṽ J [Z − Z̃]

+ [V − Ṽ ](I − J)Q + Ṽ (I − J)[Q− Q̃] + [W − W̃ ] .
(2.28)

Let us first consider R(Z) −R(Z̃). We have

R(Z) −R(Z̃) = (I − θZ)−1(Z − Z̃)(I − θZ̃)−1 ,

(I − θZ)−1 =
(
I − θ(I − θZ̃)−1(Z − Z̃)

)−1

(I − θZ̃)−1 .

Since µ∞(Ã) ≤ 0 we know that ‖(I − θZ̃)−1‖∞ ≤ 1. This leads to1

‖(I − θZ)−1‖∞ ≤ 1

1 − θLτ
, ‖R(Z) −R(Z̃)‖∞ ≤ Lτ

1 − θLτ
≤ 2Lτ

provided that τ < 1/(2θL). The same applies to the perturbations for R( 1
2JZ).

If we take τ∗ = 1/(4θL) then these bounds are valid uniformly for τ ∈ (0, τ∗].
The most difficult term to estimate in (2.28) is [V − Ṽ ]JZ, because Z is not

bounded by the assumptions. Denoting as before U = (I − 1
2θJZ)−1, we have

V − Ṽ = [U − Ũ ]JR(
1

2
JZ) + ŨJ

[
R(

1

2
JZ) −R(

1

2
JZ̃)

]
,

and hence

[V − Ṽ ]JZ =
1

2
θŨJ [Z − Z̃]UJR(

1

2
JZ)JZ +

1

2
ŨJŨJ [Z − Z̃]UJZ .

Now, by noticing that

UJR(
1

2
JZ)JZ =

θ − 1

θ
UJZ +

1

θ
U2JZ

and using the bounds for ‖U‖∞ and ‖UJZ‖∞ for τ ≤ τ∗, it follows that ‖[Ṽ −
V ]JZ‖∞ can be bounded by Cτ . Estimation of the remaining terms in (2.28)
proceeds in a similar way using the above estimates. �

The above perturbation result can be combined with Theorem 2.4.2 to obtain
a stability result for non-stiff couplings, where either ‖A21‖∞ or ‖A12‖∞ is
bounded by a moderate constant.

1Note that ‖X‖ ≤ 1 implies that ‖(I − XY )−1‖ ≤ (1 − ‖Y ‖)−1.
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Remark 2.4.1 For θ = 0 similar results can be derived if the assumptions
µ∞(Z) ≤ 0 or µ∞(Z̃) ≤ 0 are replaced by appropriate boundedness assump-
tions. Results for θ > 0 with quadratic interpolation require additional assump-
tions that are not satisfied in general for stiff systems. For example, in the proof
of Theorem 2.4.2, an explicit Z11 terms then appears in Q11 in which case addi-
tional assumptions are needed to bound the term U 2

22Z21Z11. For Theorem 2.4.3
it is similar. We will see in the next section that the stability properties of the
multirate scheme are very poor indeed if quadratic interpolation is used, even
if θ = 1. �

2.4.3 Asymptotic stability for 2 × 2 test equations

In this section we present some detailed results on stability of the scheme (2.2)
for the linear test equation (2.5) with real 2 × 2 matrices

A =

(
a11 a12

a21 a22

)
, J =

(
0 0

0 1

)
. (2.29)

We denote
κ =

a11

a22
, β =

a12a21

a11a22
. (2.30)

By assumption (2.6) we have κ ≥ 0 and |β| ≤ 1. We can regard κ as a measure
for the stiffness of the system, and β gives the amount of coupling between the
fast and slow part of the equation. For this two-dimensional test equation we
will consider asymptotic stability whereby it is required that the eigenvalues of
the amplification matrix S are bounded by one in modulus. Similar stability
considerations for 2×2 systems are found in [14, 16, 31, 43, 50, 55] for multirate
schemes with a compound step.

The elements of the 2 × 2 amplification matrix S will depend on the four
parameters zij = τaij , 1 ≤ i, j ≤ 2. However, the eigenvalues of S, which
depend only on the determinant and trace of S, can be written as functions of
three parameters: κ, β and z22. This can be seen by elaborating (2.23) for this
2 × 2 case. Instead of z22 ≤ 0 we will use the quantity

α =
1 + 1

2 (1 − θ)z22

1 − 1
2θz22

, (2.31)

which is bounded for z22 ≤ 0 and θ ≥ 1
2 .

The domains of asymptotic stability, where the spectral radius of S is
bounded by one, are shown in the Figures 2.1–2.3 for θ = 1

2 , 1 and linear or
quadratic interpolation. We present these domains in the (α, β)-plane for three
values of κ = 10j , j = 0, 1, 2. Notice that α ∈ [−1, 1] if θ = 1

2 and α ∈ [0, 1]
if θ = 1. Generally the asymptotic stability domains are decreasing when κ is
increased.

From Figure 2.1 it is seen that the combination of the trapezoidal rule and
linear interpolation will be stable if β ≥ 0, whereas for β < 0 the domain of
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Figure 2.1: Asymptotic stability domains (gray areas) for the trapezoidal rule with
linear interpolation, κ = 1, 10, 100.
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Figure 2.2: Asymptotic stability domains (gray areas) for the trapezoidal rule with
quadratic interpolation, κ = 1, 10, 100.
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Figure 2.3: Asymptotic stability domains (gray areas) for backward Euler with
quadratic interpolation, κ = 1, 10, 100.

instability increases when κ gets large. For the trapezoidal rule with quadratic
interpolation, the scheme becomes unstable for large κ, unless β = 0. For both
quadratic and linear interpolation, the limit case κ → 0, with α, β fixed, gives
stability of the scheme because then both z22 and z21 tend to zero as well.

As we already saw in Theorem 2.4.1, using the backward Euler method
as underlying time integration method, the scheme will be stable with linear
interpolation. However, as seen in Figure 2.3, the combination of backward
Euler and quadratic interpolation is no longer stable when κ becomes large. Of
course, in terms of accuracy it is for the backward Euler method not necessary
to use quadratic interpolation, but the observed instability is of interest anyway.

Remark 2.4.2 Stability conditions based on eigenvalues of S are rather weak.
If we have spectral radius ρ(S) < 1, then it is known that Sn → 0 as n→ ∞, but
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this does not guarantee that maxn≥0 ‖Sn‖∞ is bounded by a moderate number
because the bound may depend on τ and A. If ρ(S) = 1 is allowed, then even
polynomial growth may occur. In our opinion, (2.29) is primarily a useful test
equation for showing instability of certain schemes, such as the schemes with
quadratic interpolation in this chapter. Demonstrating stability for (2.29) in
some suitable norm is somewhat less relevant, because for an m-dimensional
system with partitioning (2.22), the blocks Aij may have complex eigenvalues,
and, moreover, they will not commute in general. �

2.5 Numerical experiments

2.5.1 A linear parabolic example

As a test model we consider the parabolic equation

ut + aux = duxx − cu+ g(x, t) , (2.32a)

for 0 < t < T = 0.4, −1 < x < 1, with initial- and boundary conditions

u(x, 0) = 0 , u(−1, t) = 0 , u(1, t) = 0 . (2.32b)

The constants and source term are taken as

a = 10 , d = 1 , c = 102 , g(x, t) = 103 cos(
1

2
πx)100 sin(πt) . (2.32c)

The solution at the end time T = 0.4 is illustrated in Figure 2.4.
Semi-discretization with second-order differences on a uniform spatial grid

with m points and mesh width h = 2/(m+ 1), leads to an ODE system of the
form (2.5). We use for this test m = 400, and the temporal refinements are
taken for the components corresponding to spatial grid points xj ∈ [−0.2, 0.2].
(Spatial grid refinements are not considered here; we use the semi-discrete sys-
tem just as an ODE example.)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

t= .1

t= .2

t= .4

Figure 2.4: Solution for the parabolic test problem (2.32) at intermediate times
t = 0.1, 0.2, 0.3 and the final time t = T = 0.4 (thick line).



2.5. Numerical experiments 39

Table 2.1 shows the discrete L2-errors (scaled Euclidian norm) at t = T
with respect to a time-accurate ODE solution; the maximum errors were quite
similar. The results are given for linear interpolation with the backward Euler
method (θ = 1) and the implicit trapezoidal rule (θ = 1

2 ), both with uniform,
non-refined time steps τ = T/N and with locally refined steps τ/2 on part of
the spatial domain.

Table 2.1: Relative L2-errors at t = T versus N for the parabolic test problem.
Results for the non-refined θ-method, θ = 1, 1

2
, and for the scheme with one level of

refinement and linear interpolation on the spatial region −0.2 ≤ xj ≤ 0.2.

N 10 20 40 80 160

θ = 1, non-ref. 1.57 · 10−3 7.96 · 10−4 4.00 · 10−4 2.00 · 10−4 1.00 · 10−4

θ = 1, γ = 0 1.21 · 10−3 5.93 · 10−4 2.86 · 10−4 1.37 · 10−4 6.55 · 10−5

θ = 1

2
, non-ref. 1.81 · 10−4 3.76 · 10−6 8.12 · 10−7 2.03 · 10−7 5.07 · 10−8

θ = 1

2
, γ = 0 4.17 · 10−4 4.74 · 10−5 1.49 · 10−5 4.85 · 10−6 1.58 · 10−6

The refinement region −0.2 ≤ xj ≤ 0.2 was only chosen for test purposes;
it is clear from Figure 2.4 that it is not a very good choice. Considering this
fact, the results for θ = 1 are satisfactory. However, for θ = 1

2 the errors with
the local refinements are much larger than those for the non-refined scheme.
This loss of accuracy is due to the linear interpolation, which lowers the order
of consistency in this example.

Quadratic interpolation did give very large errors due to instabilities in this
test, both for θ = 1 (with errors in the range 102—1016) and θ = 1

2 (errors in the
range 107—1091). In view of the unfavorable results that were found already
for the 2 × 2 example in the previous section, this is not surprising anymore.

2.5.2 The inverter chain problem

As a second test example we consider the inverter chain problem from [3]. The
model for m inverters consists of the equations



w′

1(t) = Uop − w1(t) − Υg
(
uin(t), w1(t)

)
,

w′
j(t) = Uop − wj(t) − Υg

(
wj−1(t), wj(t)

)
, j = 2, . . . ,m ,

(2.33a)

where

g(u, v) =
(

max(u− Uthres, 0)
)2

−
(

max(u− v − Uthres, 0)
)2

. (2.33b)

The coefficient Υ serves as stiffness parameter. We solve the problem for a
chain of m = 500 inverters with Υ = 100, Uthres = 1 and Uop = 5, over the time
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interval [0, T ], T = 130. The initial condition is

wj(0) = 6.247 · 10−3 for j even, wj(0) = 5 for j odd. (2.33c)

The input signal is given by

uin(t) =





t− 5 for 5 ≤ t ≤ 10 ,

5 for 10 ≤ t ≤ 15 ,
5
2 (17 − t) for 15 ≤ t ≤ 17 ,

0 otherwise.

(2.33d)

An illustration for some even components of the solution is given in Fig-
ure 1.8 in Chapter 1.

This problem is solved using the self-adjusting multirate time stepping strat-
egy introduced in Chapter 1. Given a global time step ∆tn = tn−tn−1, we com-
pute a first, tentative approximation at the new time level for all components.
For those components for which the error estimator indicates that smaller steps
are needed, the computation is redone with 1

2∆tn. The refinement is continued
recursively with local steps 2−l∆tn, until the error estimator is below a pre-
scribed tolerance for all components. For details on the selection of the time
step and number of refinement levels we refer to Chapter 1.

As the basic time integration method we use a linearized version of the
trapezoidal rule,

wn = wn−1 +
1

2
τ
(
F (tn−1, wn−1) + F (tn, wn−1) +A(wn − wn−1)

)
(2.34)

where A = ∂
∂wF (tn, wn−1). With this linearized trapezoidal rule nonlinear

algebraic systems are avoided. To estimate the error of a step we compare the
result with a step using the forward Euler method. It should be noted that
the tn argument is retained in the linearization (2.34). This done because the
solution of this inverter chain problem has very steep temporal gradients, which
are induced by earlier changes in the input function uin. Further linearization,
replacing F (tn, wn−1) in (2.34) by F (tn−1, wn−1) + τ ∂

∂tF (tn−1, wn−1), would
give larger errors in this problem, because the forward Euler method also only
uses information from time level tn−1, so changes over the interval [tn−1, tn] are
then felt too late by the error estimator.

In Table 2.2 the maximal errors over all components and all times tn (mea-
sured with respect to an accurate reference solution) are presented for several
tolerances with the single-rate scheme (without local temporal refinements) and
the multirate strategy. The results are given for linear interpolation at the cou-
pling interface; quadratic interpolation gave similar results, without instabili-
ties, in this example. As a measure for the amount of work we consider the
total number of components at which solutions are computed over the complete
integration interval [0, T ]; this is proportional to the number of scalar function
evaluations (2.33b). In addition, the CPU times are given.
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Table 2.2: Absolute maximal errors, work amount and CPU times with different
tolerances for the inverter chain problem.

Single-rate Multirate

tol error work CPU error work CPU

5 · 10−4 1.55 · 10−1 32089000 20.12 2.10 · 10−1 4266674 4.06

1 · 10−4 2.93 · 10−2 70156000 44.06 3.52 · 10−2 7294108 7.52

5 · 10−5 1.32 · 10−2 98750000 61.97 6.67 · 10−3 9410734 9.94

1 · 10−5 1.74 · 10−3 219320500 137.76 2.27 · 10−3 26586200 23.14

It is seen from the table that for the prescribed tolerances we get roughly a
factor 10 of improvement in work with the multirate scheme, compared to the
standard single-rate method, whereas for each given tolerance the errors of the
multirate scheme are of similar size as those of the single-rate scheme. In terms
of CPU times we get a speed-up factor 6 approximately.

So for this test problem the multirate scheme with the (linearized) trape-
zoidal rule works well. There is no instability when using quadratic interpolation
and there is no reduction in accuracy due to linear interpolation. It should be
noted that this example is only mildly stiff, in contrast to the semi-discrete
parabolic system in the first example.

Finally we note that the results in Table 2.2 are similar to those in Chapter 1
for a two-stage Rosenbrock method of order two. For practical problems that
method seems preferable over the linearized trapezoidal rule (2.34), because
the order of accuracy remains two if inexact Jacobians are used in the two-
stage method. Moreover, the two-stage method allows an embedded (one-stage)
method for error estimation with the same stability properties.

2.6 Conclusions

To obtain a better understanding of general multirate schemes, a simple scheme
was studied in this chapter, with the θ-method as basic time integration method
and with one level of refinement.

As seen from the local error bounds for the trapezoidal rule with linear
interpolation (θ = 1

2 , γ = 0), stiffness may lead to an order reduction where we
obtain a lower order of consistency than for non-stiff problems.

A proper stability analysis is very difficult in general, even for the simple
multirate scheme studied here. Detailed (numerical) results for very simple 2×2
cases are helpful to better understand possible instabilities for the schemes.

In spite of the lack of definitive theoretical results, multirate schemes can be
efficient for problems with different levels of activities in the various components.
The automatic partitioning strategy derived and tested in Chapter 1 (used in
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this chapter for the inverter chain test problem with a linearized trapezoidal
rule) provides in many cases of practical interest a significant speed-up compared
to the corresponding single-rate scheme.

Finally we note that for higher-order Runge-Kutta or Rosenbrock schemes
the class of possible interpolation formulas is larger than for the simple θ-method
considered in this chapter, because then also internal stage values are available.
For example, for the two-stage Rosenbrock method used in Chapter 1 prelimi-
nary tests have shown that there are interpolations of second-order consistency
which are stable for the stiff test problems that were considered in this chapter.
Extensions to methods of order larger than two are currently under investiga-
tion.



Chapter 3

Comparison of the asymptotic

stability properties for two

multirate strategies

This chapter contains a comparison of the asymptotic stability properties for
two multirate strategies. For each strategy, the asymptotic stability regions are
presented for a 2 × 2 test problem and the differences between the results are
discussed. The considered multirate schemes use Rosenbrock type methods as
the main time integration method and have one level of temporal local refine-
ment. Some remarks on the relevance of the results for 2 × 2 test problems are
presented.

3.1 Introduction

Many practical applications give rise to systems of ordinary differential equa-
tions (ODEs) with different time scales which are localized over the components.
To solve such systems multirate time stepping strategies are considered. These
strategies integrate the slow components with large time steps and the fast com-
ponents with small time steps. In this chapter we will focus on two strategies:
the recursive refinement strategy proposed in [25, 47] and the compound step
strategy used in [2, 16, 53, 55]. We will analyze these multirate approaches for
solving systems of ODEs

w′(t) = F (t, w(t)), w(0) = w0, (3.1)

with w0 ∈ R
m.

In the recursive refinement strategy, given a global time step τ , a tentative
approximation at the new time level is computed first. For those components,
where the error estimator indicates that smaller steps would be needed, the
computation is redone with a smaller time step 1

2τ . At this refinement stage,
the values at the intermediate time levels of components which are not refined
might be needed. These values can be calculated by using interpolation or a
dense output formula. During a single global time step the refinement procedure
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can be recursively continued until the local errors for all components are below
a given tolerance, hence the name ’recursive’. In our comparison in this chapter
we consider only the most simple case with one level of refinement.

In the compound step strategy (sometimes also called mixed compound-fast
[55]) the macro-step τ (for the slow components) and the first micro-step of a
smaller size (for the active components) are computed simultaneously. Again,
the values at the intermediate time levels of the slow components can be ob-
tained by interpolation or dense output. This strategy may require values at
the macro-step time level of the fast components. These values can be obtained
by extrapolation. The integration is followed by a sequence of micro-steps for
the fast components, until the time integration is synchronised with the slow
components. In this chapter in the compound step strategy also only micro
steps of size 1

2τ are considered for the comparison with the recursive refinement
strategy.

The values at the macro-step time level for the active components are calcu-
lated twice in the recursive refinement strategy, the first time during the global
step and the second time during the refinement step. The compound step strat-
egy avoids this extra work, however the partitioning in slow and fast components
for this strategy has to be done in advance before solving the system. With the
recursive refinement strategy, implicit relations of the same structure as with
single-rate time stepping are obtained. The refinement step just leads to a sys-
tem of smaller size. With the compound step strategy the compound step has
a somewhat more complicated structure.

In this chapter we consider multirate schemes for systems with two levels
of activity, slow and fast. It should be noted, however, that with the recursive
refinement strategy it is easy to extend these schemes to multirate schemes
with more levels of activity; for example, the multirate time stepping strategy
presented in Chapter 1 can be used. With the compound step strategy handling
more levels of activity is not easy.

In this chapter we study and compare asymptotic stability of these two
multirate strategies for linear problems in R

2. Our particular interest is to see
how the extrapolation of the fast components affects the asymptotic stability
of the scheme. A time integration method is called asymptotically stable if
its amplification matrix S satisfies ||Sn|| → 0 when n → ∞. A method is
asymptotically stable if and only if all eigenvalues of S are inside the unit
disk. Asymptotic stability does not guarantee stability, but it can help us with
understanding the instability of some schemes. We also discuss the relevance
of the results for the simple test equation in R

2 for some interesting higher-
dimensional systems.

The contents of this chapter is as follows. In Section 3.2 we introduce the
Rosenbrock ROS1 and ROS2 methods which will be used as our basic numerical
integration methods. In Section 3.3 we describe the 2 × 2 test problem for
which the asymptotic stability domains are determined. The two multirate
versions of ROS1 and ROS2 will be analysed in Sections 3.4 and 3.5. Some
remarks on the relevance of the results for the 2× 2 test problem are presented
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in Section 3.6. Section 3.7 is devoted to a property of the eigenvalues of the
partitioned Rosenbrock methods. Finally, Section 3.8 contains the conclusions.

3.2 Numerical integration methods ROS1 and

ROS2

As the basic methods for the multirate schemes in this chapter we use two
Rosenbrock methods [27]. The first method is a one-stage method, called in
this chapter ROS1, which for non-autonomous systems w′(t) = F (t, w(t)) is
given by

wn = wn−1 + k1 ,

(
I − γτJ

)
k1 = τF (tn−1, wn−1) + γτ2Ft(tn−1, wn−1) ,

(3.2)

where wn denotes the approximation to w(tn) and J ≈ Fw(tn−1, wn−1). The
method is of order two if γ = 1

2 . Otherwise the order is one. The method is
A-stable for any γ ≥ 1

2 and L-stable for γ = 1. In this chapter we use γ = 1
2 .

The second method is the two stage second order method, to which we will
refer to as ROS2,

wn = wn−1 + 3
2 k̄1 + 1

2 k̄2 ,

(
I − γτJ

)
k̄1 = τF (tn−1, wn−1) + γτ2Ft(tn−1, wn−1) ,

(
I − γτJ

)
k̄2 = τF (tn, wn−1 + k̄1) − γτ2Ft(tn−1, wn−1) − 2k̄1 ,

(3.3)

where J ≈ Fw(tn−1, wn−1). The method is also linearly implicit (to compute
the internal vectors k̄1 and k̄2, a system of linear algebraic equations is to be
solved), and it is of order two for any choice of the parameter γ and for any
choice of the matrix J . Furthermore, the method is A-stable for γ ≥ 1

4 and it

is L-stable if γ = 1 ± 1
2

√
2. In this chapter we use γ = 1 − 1

2

√
2.

Other possible values of the parameter γ were also considered (γ = 1 for
ROS1; γ = 1

2 and γ = 1 + 1
2

√
2 for ROS2). These values gave similar results

and conclusions.

3.2.1 Interpolation and extrapolation

For given approximations wn−1 ≈ w(tn−1), wn ≈ w(tn), the multirate schemes
will require an intermediate value wI(tn− 1

2
) ≈ w(tn− 1

2
). In [25] it was shown

that for the multirate scheme based on the ROS1 method (with γ = 1
2 ) and

linear interpolation, stiffness may lead to an order reduction. For a special
linear parabolic problem order 1.5 was obtained. Numerical experiments with
the ROS2 method led to the same conclusion. Nevertheless, for many problems
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order reduction will not be observed. Therefore, we consider in this chapter
along with linear interpolation

wI(tn− 1
2
) =

1

2
(wn−1 + wn) , (3.4)

also forward quadratic interpolation

wI(tn− 1
2
) =

3

4
wn−1 +

1

4
wn +

1

4
τF (tn−1, wn−1), (3.5)

and backward quadratic interpolation

wI(tn− 1
2
) =

1

4
wn−1 +

3

4
wn − 1

4
τF (tn, wn) . (3.6)

With the ROS2 method we could also use what we call "embedded" quadratic
interpolation, which uses the stages values of the method and avoids explicit
evaluations of F :

wI(tn− 1
2
) = wn−1 +

1

8(1 − 2γ)
(5 − 12γ) k̄1 +

1

8(1 − 2γ)
(1 − 4γ) k̄2 . (3.7)

This interpolation mimics the quadratic interpolation based on w(tn−1), w(tn)
and w′(tn−1 + γτ),

wI(tn− 1
2
) =

1

4(1 − 2γ)
((3 − 4γ)wn−1 + (1 − 4γ)wn + τF (tn−1+γ , wn−1+γ)) .

For linear problems and γ = 1 ± 1
2

√
2 the interpolation (3.7) coincides with

(3.6). In the case of ROS1 with γ = 1
2 , backward quadratic interpolation is

equivalent to the forward quadratic interpolation.

For the compound step strategy also extrapolation is needed: wE(tn) ≈
w(tn). Again, we consider three types of extrapolation: linear

wE(tn) = 2wn− 1
2
− wn−1 , (3.8)

forward quadratic

wE(tn) = 4wn− 1
2
− 3wn−1 − τF (tn−1, wn−1) , (3.9)

and backward quadratic

wE(tn) = wn−1 + τF (tn− 1
2
, wn− 1

2
) . (3.10)

Usually, for the compound step strategy, extra- and interpolations are done via
internal stages.
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3.3 The linear test problem in R
2

Usually, linear stability analysis of an integration method is based on the scalar
Dahlquist test equation w′(t) = λw(t), λ ∈ C. For multirate methods the scalar
problem cannot be used. Instead we consider a similar test problem, a linear
2 × 2 system

w′(t) = Aw(t) , w =

(
u

v

)
, A =

(
a11 a12

a21 a22

)
. (3.11)

We denote
Z = τA , zij = τaij . (3.12)

We will assume that the first component u of the system is fast and the second
component v is slow. Thus, to perform the time integration from tn−1 to tn =
tn−1 + τ we will complete two time steps of size 1

2τ for the first component and
one time step of size τ for the second component.

We denote
κ =

a22

a11
, β =

a12a21

a11a22
. (3.13)

It will be assumed that

a11 < 0 and a22 < 0 . (3.14)

Then, both eigenvalues of the matrix A have a negative real part if and only if
det(A) > 0. This condition can also be written as

β < 1 . (3.15)

We can regard κ as a measure for the stiffness of the system, and β indicates the
coupling between the fast and slow part of the system. For this two-dimensional
test equation we will consider asymptotic stability whereby it is required that
the eigenvalues of the amplification matrix of the multirate method are less
than one in modulus. Instead of z11 ≤ 0 and β < 1 it is convenient to use the
quantities

ξ =
z11

1 − z11
, η =

β

2 − β
, (3.16)

which are bounded between −1 and 0, and −1 and 1, respectively.

3.4 Asymptotic stability for multirate ROS1

3.4.1 Recursive refinement strategy

In our recursive strategy, first we take the global step

wn = wn−1 + k1 ,

(I − γZ) k1 = Zwn−1 ,

(3.17)
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from which we also obtain an approximation vI(tn− 1
2
) for the second component

at the intermediate time level tn− 1
2

by interpolation.
We continue with the first update step for the first component by solving

the sub problem
u′(t) = a11u(t) + a12vI(t) ,

where the interpolant vI is now considered as a time-dependent source term.
We get

un− 1
2

= un−1 + k̃1 ,

(
1 − 1

2
γz11

)
k̃1 =

1

2
(z11un−1 + z12vn−1) +

1

4
γz12τv

′
I(tn−1) ,

(3.18)

where the time derivative term is approximated by

τv′I(tn−1) = vn − vn−1 (3.19)

without loosing the second order of the method.
At this point we have an numerical approximation of the solution at time

tn− 1
2
,

wn− 1
2

=


 un− 1

2

vI(tn− 1
2
)


 . (3.20)

We proceed with the second update step

un = un− 1
2

+ k̂1 ,

(
1 − 1

2
γz11

)
k̂1 =

1

2
(z11un− 1

2
+ z12vI(tn− 1

2
)) +

1

4
γz12τv

′
I(tn− 1

2
) ,

(3.21)

where, again, we approximate

τv′I(tn− 1
2
) = vn − vn−1 , (3.22)

without loosing the second order of the method. The final numerical value of
the solution at time tn is now given by

wn =

(
un

vn

)
. (3.23)

3.4.2 Compound step strategy

In the compound step strategy, the first micro step for the first component

un− 1
2

= un−1 + k1 ,

(
1 − 1

2
γz11

)
k1 =

1

2
(z11un−1 + z12vn−1) +

1

4
γz12τv

′
I(tn−1)

(3.24)
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and the time step for the second component

vn = vn−1 + k̂1 ,

(1 − γz22) k̂1 = (z21un−1 + z22vn−1) + γz21τu
′
I(tn−1)

(3.25)

are computed at the same time. Then we continue with the second micro step
for the first component

un = un− 1
2

+ k̃1 ,

(
1 − 1

2
γz11

)
k̃1 =

1

2
(z11un− 1

2
+ z12vI(tn− 1

2
)) +

1

4
γz12τv

′
I(tn− 1

2
) .

(3.26)

The time derivative terms are approximated by

τu′I(tn−1) = 2(un− 1
2
− un−1) , (3.27)

τv′I(tn−1) = vn − vn−1 , (3.28)

τv′I(tn− 1
2
) = vn − vn−1 . (3.29)

Since these approximations are used for the τ2Ft term in (3.2), it follows that
the order of the method does not change by (3.27)-(3.29). Relations

2(un− 1
2
− un−1) = 2k1 ,

vn − vn−1 = k̂1 ,

used for (3.27)-(3.29), reveal the joint computation of k1 and k̂1 in (3.24)-(3.25).

3.4.3 Results

Both considered strategies can be written in the form of partitioned Rosenbrock
methods (see for example [3]). Therefore the eigenvalues of the amplification
matrix of the multirate schemes depend just on three parameters κ, η and
ξ (see Section 3.7). The domains of asymptotic stability are shown in the
Figures 3.1–3.4 for both strategies and all considered types of interpolation. We
present these domains in the (ξ, η)-plane for three values of κ = 10j , j = 0, 1, 2.
We observe that for these multirate schemes the stability region decreases with
the increasing of κ.

From Figure 3.1 and Figure 3.2 it is seen that the combination of ROS1 and
linear interpolation is unconditionally stable for both multirate strategies if the
coupling parameter η ≥ 0. For the η < 0 case, both strategies have instability
regions which increase when κ becomes large. In this case stability regions for
the recursive refinement strategy are somehow larger than for the compound
step strategy.

For the ROS1 with forward quadratic interpolation (Figure 3.3 and Fig-
ure 3.4), both multirate schemes become unstable for large κ, except the trivial



50 Chapter 3. Comparison of the asymptotic stability properties for two strategies

case η = 0. Both strategies have almost the same stability regions. The recur-
sive refinement strategy has slightly larger stability area for η > 0. For η < 0
there exist a small set of points (close to ξ = −0.8) where the compound step
strategy is asymptotically stable but the recursive refinement strategy is unsta-
ble. However, in general the recursive refinement strategy in the experiments
in this section is slightly more stable.
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Figure 3.1: Recursive refinement, ROS1 with linear interpolation. Asymptotic
stability domains (gray areas) for κ = 1, 10, 100.
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Figure 3.2: Compound step, ROS1 with linear interpolation. Asymptotic stability
domains (gray areas) for κ = 1, 10, 100.

The case η ≥ 0 is relevant to the semi-discrete systems which are obtained
by the central spatial discretization of the heat equation. The results obtained
here suggest that the both strategies, based on ROS1 and linear interpolation,
are stable for these semi-discrete systems. The results also show that for both
strategies it is not possible to have an unconditionally stable second order mul-
tirate scheme based on ROS1. Using linear interpolation/extrapolation we get
better stability properties, however we may lose one order due to stiffness (see
the analysis in Chapter 2).
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Figure 3.3: Recursive refinement, ROS1 with forward quadratic interpolation.
Asymptotic stability domains (gray areas) for κ = 1, 10, 100.
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Figure 3.4: Compound step, ROS1 with forward quadratic interpolation. Asymp-
totic stability domains (gray areas) for κ = 1, 10, 100.

3.5 Asymptotic stability for multirate ROS2

3.5.1 Recursive Refinement Strategy

In our recursive strategy, first we take the global step

wn = wn−1 +
3

2
k̄1 +

1

2
k̄2 ,

(I − γZ) k̄1 = Zwn−1 , (3.30)

(I − γZ) k̄2 = Z(wn−1 + k̄1) − 2k̄1 ,

from which we also obtain an approximation vI(tn− 1
2
) for the second component

at the intermediate time level tn− 1
2

by interpolation.
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We continue with the first update step for the first component

un− 1
2

= un−1 +
3

2
k̃1 +

1

2
k̃2 ,

(
1 − 1

2
γz11

)
k̃1 =

1

2
(z11un−1 + z12vn−1) +

1

4
γz12τv

′
I(tn−1) , (3.31)

(
1 − 1

2
γz11

)
k̃2 =

1

2
(z11(un−1 + k̃1) + z12vI(tn− 1

2
)) − 1

4
γz12τv

′
I(tn−1) − 2k̃1 ,

where the time derivative term is approximated with

τv′I(tn−1) = vn − vn−1 . (3.32)

Since this approximation is used for the τ2Ft term in (3.3), it follows that the
order of the method does not change by (3.32).

At this point we get the numerical approximation of the solution at time
tn− 1

2

wn− 1
2

=


 un− 1

2

vI(tn− 1
2
)


 . (3.33)

We proceed further with the second update step

un = un− 1
2

+
3

2
k̂1 +

1

2
k̂2 ,

(
1 − 1

2
γz11

)
k̂1 =

1

2
(z11un− 1

2
+ z12vI(tn− 1

2
)) +

1

4
γz12τv

′
I(tn− 1

2
) ,

(
1 − 1

2
γz11

)
k̂2 =

1

2
(z11(un− 1

2
+ k̂1) + z12vn) − 1

4
γz12τv

′
I(tn− 1

2
) − 2k̂1 ,

(3.34)
where, again, we approximate

τv′I(tn− 1
2
) = vn − vn−1. (3.35)

The final numerical value of the solution at time tn is given by

wn =

(
un

vn

)
. (3.36)

3.5.2 Compound step strategy

In the compound step strategy, the first micro step for the first component

un− 1
2

= un−1 +
3

2
k̄1 +

1

2
k̄2 ,

(
1 − 1

2
γz11

)
k̄1 =

1

2
(z11un−1 + z12vn−1) +

1

4
γz12τv

′
I(tn−1) , (3.37)

(
1 − 1

2
γz11

)
k̄2 =

1

2
(z11(un−1 + k̄1) + z12vI(tn− 1

2
)) − 1

4
γz12τv

′
I(tn−1) − 2k̄1
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and the time step for the second component

vn = vn−1 +
3

2
k̂1 +

1

2
k̂2 ,

(1 − γz22) k̂1 = (z21un−1 + z22vn−1) + γz21τu
′
I(tn−1) , (3.38)

(1 − γz22) k̂2 = (z21uE(tn) + z22(vn−1 + k̂1)) − γz21τu
′
I(tn−1) − 2k̂1

are computed at the same time. Then we continue with the second micro step

un = un− 1
2

+
3

2
k̃1 +

1

2
k̃2 ,

(
1 − 1

2
γz11

)
k̃1 =

1

2
(z11un− 1

2
+ z12vI(tn− 1

2
)) +

1

4
γz12τv

′
I(tn− 1

2
) , (3.39)

(
1 − 1

2
γz11

)
k̃2 =

1

2
(z11(un− 1

2
+ k̃1) + z12vn) − 1

4
γz12τv

′
I(tn− 1

2
) − 2k̃1.

The time derivative terms are approximated by

τu′I(tn−1) = 2(un− 1
2
− un−1) , (3.40)

τv′I(tn−1) = vn − vn−1 , (3.41)

τv′I(tn− 1
2
) = vn − vn−1 . (3.42)

Again, these approximations will not affect the order of the method.
A multirate scheme based on a third-order Rosenbrock method and com-

pound step strategy was considered in [3]. Due to stability constraints, instead
of the third-order method the embedded second-order method was used for time
stepping. Extra- and interpolations were done via internal stages.

3.5.3 Results

Again, both considered strategies can be written in the form of a partitioned
Rosenbrock methods (for example by adding some artificial extra stages to the
original method). Therefore the eigenvalues of the amplification matrix of the
multirate schemes will depend on three parameters κ, η and ξ (see Section 3.7).

The domains of asymptotic stability are shown in the Figures 3.5–3.10 for
both strategies and all considered types of interpolation/extrapolation. We
present these domains in the (ξ, η)-plane for three values of κ = 10j , j = 0, 1, 2.
From Figure 3.5 and Figure 3.6 it is seen that the combination of ROS2 and
linear interpolation is unconditionally stable for both multirate strategies if
η ≥ 0. An instability region appears at η close to −1. The instability region for
the recursive refinement strategy is smaller than for the compound step strategy.

For ROS2 with forward quadratic interpolation (Figures 3.7 and 3.8), both
multirate schemes become unstable for large κ, unless η = 0. In this case the
recursive refinement strategy has larger stability regions than the compound
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Figure 3.5: Recursive refinement, ROS2 with linear interpolation. Asymptotic
stability domains (gray areas) for κ = 1, 10, 100.
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Figure 3.6: Compound step, ROS2 with linear interpolation. Asymptotic stability
domains (gray areas) for κ = 1, 10, 100.
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Figure 3.7: Recursive refinement, ROS2 with forward quadratic interpolation.
Asymptotic stability domains (gray areas) for κ = 1, 10, 100.

step strategy. A curious fact is that for κ = 1 and κ = 10 the recursive
refinement strategy is stable almost for all the values of η when ξ = ξ∗, where
ξ∗ is a number close to −0.9. For κ = 100 this property is not valid anymore.

Figure 3.9 shows that the combination of ROS2 and backward quadratic
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Figure 3.8: Compound step, ROS2 with forward quadratic interpolation. Asymp-
totic stability domains (gray areas) for κ = 1, 10, 100.
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Figure 3.9: Recursive refinement, ROS2 with backward quadratic interpolation.
Asymptotic stability domains (gray areas) for κ = 1, 10, 100.
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Figure 3.10: Compound step, ROS2 with backward quadratic interpolation.
Asymptotic stability domains (gray areas) for κ = 1, 10, 100.

interpolation is almost unconditionally stable for the recursive refinement strat-
egy. There is a small set of points in the bottom-right corner of the domain
where this strategy is unstable. In this case the stability domain is getting larger
with the increase of the stiffness parameter κ, probably due to the L-stability of



56 Chapter 3. Comparison of the asymptotic stability properties for two strategies

the ROS2 scheme. As shown in Figure 3.10, the compound step strategy used
with ROS2 and backward quadratic interpolation has large instability regions,
which in this case is a disadvantage of this strategy in comparison with the
recursive refinement strategy.

In the case of linear and forward quadratic interpolation, for both strate-
gies stability regions decrease with the increase of κ. However, in the case of
backward quadratic interpolation, the stability region of the recursive refine-
ment strategy increases with the increase of κ. The compound step strategy,
used with backward quadratic interpolation, has irregular large stability regions,
which shows that it can lead to unpredictable stability problems.

In this section we showed some results for ROS2 with the choice γ = 1− 1
2

√
2.

We also performed some tests for γ = 1 + 1
2

√
2 and γ = 1

2 . The results we ob-

tained are very similar to the ones with γ = 1− 1
2

√
2. The asymptotic instability

regions were a bit larger for γ = 1+ 1
2

√
2 than for γ = 1− 1

2

√
2. The only signifi-

cant difference was that ROS2 with γ = 1
2 and backward quadratic interpolation

was as unstable as ROS2 with γ = 1
2 and forward quadratic interpolation.

The main result of this section is that for the recursive refinement strategy
there exists a second order multirate scheme, based on ROS2 and backward
quadratic interpolation, which is unconditionally asymptotically stable (except
for a very small region). For the compound step strategy it is not possible to
have a second order multirate scheme with this stability property.

3.6 Relevance of the linear 2 × 2 test problem

Asymptotic stability guarantees ||Sn|| → 0 as n→ ∞. This also implies bound-
edness of

M = sup
n≥0

||Sn|| , (3.43)

but this bound M may depend on τ and A, and in particular on the stiffness
of the problem. There is also lack of theory which would extend the results
of stability analysis for multirate schemes for the linear 2 × 2 test equation to
general systems of ODEs. Therefore, in order to see how relevant the asymptotic
stability results for the linear 2× 2 test problem are we did some stability tests
in R

m to determine M for some interesting matrices A. In this section we
consider m = 50 and we assume that the first 25 components of the system
are fast and the last 25 components are slow. We use ROS2 as our main time
integration method. Forward quadratic interpolation showed bad asymptotic
stability properties in the 2×2 tests and therefore we do not consider it anymore
in the following numerical tests.

3.6.1 The heat equation

Let us consider the heat equation

ut = duxx . (3.44)
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Applying the second order central discretization on a uniform spatial grid leads
to a semi-discrete system

w′(t) = Aw(t) , (3.45)

where A is a m×m matrix

A = µ tridiag(1,−2, 1) (3.46)

and µ > 0 will depend on m and d. For matrices A of type (3.46), with m = 50,
numerical tests for the recursive refinement and compound step strategies based
on ROS2 and backward quadratic interpolation showed boundedness for the
powers of the amplification matrix of the scheme in the maximum norm. From
Figure 3.11 it is seen that in this case ||Sn||∞ is bounded by 2 and 25, for any
choice of n and µ, for the recursive refinement and the compound step strategy
respectively. The bound value M = 25 for the compound step is much larger
than M = 2 for the recursive refinement strategy. For the compound step strat-
egy M becomes larger with the increase of m; numerical experiments suggest
that for this strategy M = 1

2m, which can be viewed as a weak instability.
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Figure 3.11: Problem (3.44). Plot of the bound value M for ROS2 with recursive
refinement (left) and compound step (right) strategies, used with linear (solid line)
and backward quadratic interpolation (dashed line).

However, if we consider the heat equation with a non-constant diffusion
coefficient

ut = d(x)uxx (3.47)

then with the same spatial discretization we obtain a semi-discrete system (3.45)
with

A = diag(µ1, . . . , µm)tridiag(1,−2, 1) . (3.48)

If, for this type of systems, we take µi = 7
6 for i ≤ 25 and µi = 35

3 for i > 25
then the compound step strategy based on ROS2 and backward quadratic in-
terpolation becomes unstable. Figure 3.12 shows that for this choice of the
coefficients µi, ||Sn||∞ is bounded by 2 for any n for the recursive refinement
strategy, whereas for the compound step strategy an exponential growth in n is
observed.

These numerical results are in accordance with the results obtained for the
linear 2×2 test problem. The 2×2 version of the matrix (3.46) would correspond
to κ = 1 and η = 1

7 . Figures 3.5, 3.6, 3.9 and 3.10 show that for these values of
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Figure 3.12: Problem (3.47). Plot of the ln(||Sn||) for ROS2 with recursive re-
finement (left) and compound step (right) strategies, used with backward quadratic
interpolation.

κ and η both multirate strategies are asymptotically stable. The 2×2 version of
the matrix (3.48) corresponds to κ = 10, η = 1

7 and ξ = −0.7. For these values
the compound step strategy is asymptotically unstable (Figure 3.10), but the
recursive refinement strategy is stable (Figure 3.9).

The numerical tests presented in this subsection suggest that the conclusions
obtained in Section 3.5 are also valid for more general systems. The following
conjecture can be formulated: the recursive refinement strategy, based on ROS2
and linear or backward quadratic interpolation, is stable if it is applied to the
discrete system obtained by second order spatial discretization of the heat equa-
tion. In the same context, the compound step strategy is stable if is used with
linear interpolation, but it can lead to instabilities when is used with backward
quadratic interpolation.

3.6.2 The advection equation

As a second test problem we consider the advection equation

ut + aux = 0 . (3.49)

Applying the first order upwind discretization on a uniform spatial grid leads
to a semi-discrete system

w′(t) = Aw(t) , (3.50)

where A is a m×m matrix

A = µ tridiag(1,−1, 0) . (3.51)

For the matrices A of type (3.51), numerical tests for the recursive refinement
and compound step strategies based on ROS2 and backward quadratic interpo-
lation showed uniform boundedness for the powers of the amplification matrix
of the scheme. From Figure 3.13 it is seen that in this case ||Sn||∞ is bounded
by 3 and 35, for any choice of n and µ, for the recursive refinement and the com-
pound step strategy, respectively. The bound M = 35 for the compound step
strategy is larger than the bound M = 3 for the recursive refinement strategy.
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However, for this case (3.51) it was observed in further numerical tests that
both these bounds do not change significantly, with increasing m, in contrast
to (3.46).
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Figure 3.13: Problem (3.49), first order upwind spatial discretization. Plot of the
bound value M for ROS2 with recursive refinement (left) and compound step (right)
strategies, used with linear (solid line) and backward quadratic interpolation (dashed
line).

We also consider the case of the second order central spatial discretization
of the advection term for the problem (3.49). With this discretization we obtain
a semi-discrete system (3.50) with

A = µ tridiag(1, 0,−1) . (3.52)

Numerical tests showed that both multirate strategies used with ROS2 are un-
stable for the system (3.50) with matrices A of type (3.52). Figure 3.14 shows
that the infinity norm of the powers of the amplification matrix S for the case
µ = 100 is not bounded.

0 100 200 300 400 500
0

200

400

600

800

n

ln
(|

|S
n
||
)

0 100 200 300 400 500
0

100

200

300

400

n

ln
(|

|S
n
||
)

Figure 3.14: Problem (3.49), second order central spatial discretization. Plot of
the ln(||Sn||) for ROS2 with recursive refinement (left) and compound step (right)
strategies, used with linear (solid line) and backward quadratic interpolation (dashed
line), ROS2.

Again, the results from this subsection agree with those obtained for the
linear 2×2 test problem. The 2×2 version of the matrix (3.51) would correspond
to κ = 1 and η = 0. Figures 3.5-3.10 show that for these values of κ and η both
multirate strategies are asymptotically stable. The 2 × 2 version of the matrix
(3.52) corresponds to η = −1 and ξ = 0. The same Figures show that these
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values of κ and ξ can lead to asymptotic instabilities of both strategies. All this
suggests that both strategies, based on ROS2 and linear or backward quadratic
interpolation, are stable when applied to the semi-discrete system obtained by
first order upwind spatial discretization of the advection equation. They are
unstable if, instead, the second order central spatial discretization is used.

3.7 A property of the eigenvalues of the ampli-

fication matrix for partitioned Rosenbrock

methods

All multirate schemes considered in this chapter can be transformed into a
partitioned Rosenbrock method, for example by adding some artificial extra
stages; see [3], for example.

For a system

u′ = F1(u, v) ,

v′ = F2(u, v) ,
(3.53)

a partitioned Rosenbrock method is given by

un = un−1 +

s1∑

i=1

b̄ik̄i , (3.54)

vn = vn−1 +

s2∑

i=1

b̂ik̂i , (3.55)

k̄i = τF1


un−1 +

i−1∑

j=1

ᾱij k̄j , vn−1 +

p̄i∑

j=1

β̄ij k̂j




+ τF1u

i∑

j=1

γ̄ij k̄j + τF1v

s2∑

j=1

δ̄ij k̂j , i = 1, . . . , s1 , (3.56)

k̂i = τF2


un−1 +

p̂i∑

j=1

α̂ij k̄j , vn−1 +

i−1∑

j=1

β̂ij k̂j




+ τF2u

s1∑

j=1

γ̂ij k̄j + τF2v

i∑

j=1

δ̂ij k̂j , i = 1, . . . , s2 , (3.57)

where Fiu = ∂Fi

∂u and Fiv = ∂Fi

∂v .
We mention that if

p̄i ≤ i and p̂i ≤ i (3.58)
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then the system (3.56-3.57) can be solved by sequentially computing the val-

ues of the pairs (k̄i, k̂i). The recursive refinement strategy leads to a multirate
scheme which can be written as a partitioned Rosenbrock method with property
(3.58). In the compound step strategy the macro step and the first micro step
are computed simultaneously. The micro step uses the information obtained
from the interpolation of the results from the macro step. The macro step uses
the information obtained by the extrapolation of the results from the micro
step. The partitioned Rosenbrock method derived from the multirate scheme
obtained with the compound step strategy may not satisfy (3.58). This hap-
pens if backward quadratic interpolation is used. In this case all micro steps
are computed using interpolation which depends on the value of the solution
calculated at the last micro step. Therefore for the compound step strategy,
(3.56-3.57) can result in large implicit systems. In practice, backward quadratic
interpolation is not used.

In the case of our 2× 2 linear test problem the system (3.53) can be written
as

u′ = a11u+ a12v ,

v′ = a21u+ a22v .
(3.59)

If we write the method (3.54)-(3.57) in a short form

(
un

vn

)
= S

(
un−1

vn−1

)
, (3.60)

with S = (Sij), i, j = 1, 2, then we can prove the following theorem.

Theorem 3.7.1 The eigenvalues of the amplification matrix S can be written
as functions of the three variables z11, z22 and det(Z).

Proof. For the problem (3.59) the formulas (3.56)-(3.57) reduce to

k̄i = z11(un−1 +

i∑

j=1

ᾱ∗
ij k̄j) + z12(vn−1 +

s2∑

j=1

β̄∗
ij k̂j) , (3.61)

k̂i = z21(un−1 +

s1∑

j=1

α̂∗
ij k̄j) + z22(vn−1 +

i∑

j=1

β̂∗
ij k̂j) . (3.62)

If we set (un−1, vn−1)
T = (1, 0)T then we get (S11, S21)

T = (un, vn)T . By

defining k̂i = z21k̂
∗
i from (3.61)-(3.62) we obtain

k̄i = z11(1 +

i∑

j=1

ᾱ∗
ij k̄j) + z12z21

s2∑

j=1

β̄∗
ij k̂

∗
j , i = 1, . . . , s1 , (3.63)

k̂∗i = 1 +

s1∑

j=1

α̂∗
ij k̄j + z22

i∑

j=1

β̂∗
ij k̂

∗
j , i = 1, . . . , s2 . (3.64)
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The solution of system (3.63)-(3.64) depends only on z11, z22 and det(Z). There-
fore we have

S11 = un = 1 +

s1∑

i=1

b̄ik̄i = f11(z11, z22,det(Z)) , (3.65)

S21 = vn = z21

s2∑

i=1

b̂ik̂
∗
i = z21f21(z11, z22,det(Z)) . (3.66)

In a similar way, by setting (un−1, vn−1)
T = (0, 1)T one can show that

S12 = z12f21(z11, z22,det(Z)) and S22 = f22(z11, z22,det(Z)) . (3.67)

Finally from

S =

(
f11(z11, z22,det(Z)) z12f21(z11, z22,det(Z))

z21f21(z11, z22,det(Z)) f22(z11, z22,det(Z))

)
(3.68)

the proof of the theorem directly follows. �

This property was already observed for some special methods in [25, 31, 50].

3.8 Conclusions

In this chapter we presented a comparison of asymptotic stability properties for
the multirate recursive refinement and the compound step strategies. We also
discussed how the obtained results can be used in the context of stability of
the more general schemes. For most of the tests in the chapter the recursive
refinement strategy does have the asymptotic stability regions somewhat larger
than the compound step strategy. Sometimes the difference is very small (ROS1
and quadratic interpolation), in other cases the difference is significant (ROS2
and backward quadratic interpolation).

The scheme based on the recursive refinement strategy used with ROS2 and
backward quadratic interpolation is clearly the favorite among the considered
second order schemes. It has a very small instability region. There are no
multirate schemes based on the compound step strategy, which are of second
order for stiff problems and have good stability properties.

The numerical tests for more general systems presented in the chapter gave
results which are in accordance with those obtained for the 2 × 2 linear test
problem. Therefore, the simple 2 × 2 case already gives a good indication for
stability properties for more general systems, such as the semi-discrete systems
obtained from the spatial discretization of the heat equation and the advection
equation.

Finally we mention that the compound step strategy, by avoiding the extra
work of doing the macro step for all the components, looses some stability
properties compared to the recursive refinement strategy, and it can also lead
to more complex implicit systems which are difficult to solve. The recursive
refinement strategy is very simple and it has better stability properties.



Chapter 4

Construction of high-order

multirate Rosenbrock methods for

stiff ODEs

Multirate time stepping is a numerical technique for efficiently solving large-
scale ordinary differential equations (ODEs) with widely different time scales
localized over the components. This technique enables one to use large time
steps for slowly varying components, and small steps for rapidly varying ones.
Multirate methods found in the literature are normally of low order, one or
two. Focusing on stiff ODEs, in this chapter we discuss multirate methods
based on the higher-order, stiff Rosenbrock integrators. Special attention is
paid to the treatment of the refinement interfaces with regard to the choice of
the interpolant and the occurrence of order reduction. For stiff, linear systems
containing a stiff source term, we propose modifications for the treatment of the
source term which overcome order reduction originating from such terms and
which we can implement in our multirate method.

4.1 Introduction

Many practical applications give rise to systems of ordinary differential equa-
tions (ODEs) with different time scales which are localized over the components.
To solve such systems, multirate time stepping strategies are considered. These
strategies integrate the slow components with large time steps and the fast
components with small time steps.

Numerous multirate methods were developed for solving stiff systems with
different time scales. A multirate method based on a two stage second-order
Rosenbrock method together with a self-adjusting multirate time stepping strat-
egy was introduced in Chapter 1. In [3] a scheme based on a third-order Rosen-
brock method was considered. However, due to stability constraints, instead of
the third-order method the embedded second-order method was used for time
stepping. A multirate method for circuit simulation problems based on the
backward Euler method was described in [55]. All these schemes are of order



64 Chapter 4. High-order multirate Rosenbrock methods for stiff ODEs

two at most. In this chapter we aim to develop multirate methods of higher
order.

We address the main difficulties which arise in the construction of higher-
order multirate methods. Special attention is paid to the treatment of the
temporal refinement interface. During the refinement step the intermediate
time values of the components which are not refined might be needed. Usually
these values are not directly available and have to be calculated by interpolation
or a dense output formula. Use of low-order interpolation can influence the order
of the method, therefore a better interpolation has to be considered.

We construct a multirate method which is based on the fourth-order Rosen-
brock method RODAS of Hairer and Wanner [19]. In the numerical experiments
the constructed method is compared with the multirate version of the second
order Rosenbrock method ROS2 from Chapter 1. From experiments it is seen
that the multirate RODAS shows good results and is more robust than the
multirate ROS2.

The contents of this chapter is as follows. In Section 4.2 we discuss the
main issues of the high-order Rosenbrock methods construction. In Section 4.3
we describe an interpolant which can be used together with a second-order two
stage Rosenbrock method ROS2 [27]. Fourth-order Rosenbrock methods are
discussed in Section 4.4. Order reduction issues and the modifications for the
Rosenbrock methods which help to avoid order reduction are presented in Sec-
tion 4.5. In Section 4.6 four test problems are solved using a self-adjusting
multirate strategy based on a Rosenbrock fourth-order method. The numeri-
cal results are compared with the ones obtained with lower-order Rosenbrock
methods. Finally, Section 4.7 contains the conclusions.

4.2 Considerations on construction of high-order

multirate Rosenbrock methods

We consider a system of ODEs

w′(t) = F (t, w(t)), w(0) = w0, (4.1)

with given initial value w0 ∈ R
m and given function F : R × R

m → R
m. The

approximations to the exact ODE solution at the global time levels tn will be
denoted by wn. The multirate methods in this chapter are based on the ap-
proach described in Chapter 1. For a given global time step τ = tn − tn−1, we
first compute a tentative approximation at the time level tn for all components.
For those components for which an error estimator indicates that smaller steps
are needed, the computation is redone with halved step size 1

2τ . During the re-
finement stage, values at the intermediate time levels of components which are
not refined might be needed. These values can be obtained by extrapolation,
interpolation or by use of dense output built in the time integration method.
The refinement is recursively continued until an error estimator is below a pre-
scribed tolerance for all components. A schematic example, with components
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horizontally and time vertically, is presented in Figure 4.1.

tn−1

tn

Figure 4.1: Multirate time stepping for a time interval [tn−1, tn].

Proper interface treatment during the refinement step is very important for
multirate schemes. Use of interpolation and dense output of order lower than
the order of the main time integration method can lead to order reduction.
For example, in Chapter 2 it was shown that the second-order trapezoidal rule
with linear interpolation can lead to first-order consistency for stiff problems.
Another important point in connection with stiff problems, is that interpolation
procedures which make explicit use of function evaluations are inappropriate.
In this case, the interpolant resulting from a stiff problem can dramatically
amplify the error of the numerical method. Such interpolants are usually called
"unstable" [4].

Let us consider an s-stage Rosenbrock method [19]

wn = wn−1 +
s∑

i=1

biki , (4.2)

ki = τF


tn−1 + αiτ, wn−1 +

i−1∑

j=1

αijkj


+ τ

∂F

∂w
(tn−1, wn−1)

i∑

j=1

γijkj

+γiτ
2 ∂F

∂t
(tn−1, wn−1) , (4.3)

where αij , γij , bi are real parameters defining the method, τ denotes the step
size, and

αi =

i−1∑

j=1

αij , γi =

i∑

j=1

γij . (4.4)

A dense output or a continuous extension for this method can be defined as

wI(tn−1 + θτ) = wn−1 +

s∑

i=1

θbi(θ)ki, 0 ≤ θ ≤ 1 . (4.5)

In this chapter we mainly consider numerical time integration methods for
which there exist interpolants which do not amplify the error of the numerical
method within one step for the linear test equation

w′(t) = λw(t), w(0) = 1 , (4.6)
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with λ ∈ C
−, where C

− denotes the left-half complex plane {z ∈ C : Re(z) ≤ 0}.
Following the definition presented by Bellen and Zennaro in [4], we will say that
the interpolant (4.5) is stable with respect to a Rosenbrock method (4.2)-(4.3)
if

max
0≤θ≤1

|wI(θτ)| ≤ max{1, |w(τ)|} (4.7)

for every z = λτ ∈ C
−.

In case of an A-stable Rosenbrock method, the condition of stability reduces
to

max
0≤θ≤1

|wI(θτ)| ≤ 1 , (4.8)

for every z = λτ ∈ C
−.

An interpolant with this property was considered together with a second-
order Rosenbrock method in Chapter 3. A detailed description of this inter-
polant is given in Section 4.3. This combination resulted in a multirate method
which showed good asymptotic stability properties. We believe that an inter-
polant with property (4.8) will not blow up the error of the associated method,
however, the stability analysis of the final multirate scheme is still missing.

For the dense output formula (4.5) used for the Rosenbrock method (4.2)-
(4.3), it is possible to derive order conditions, see [19]:

Order 1 ∑
bi(θ) = 1 , (4.9)

Order 2 ∑
bi(θ)βi =

1

2
θ − γ , (4.10)

Order 3 ∑
bi(θ)α

2
i =

1

3
θ2 , (4.11)

∑
bi(θ)βijβj =

1

6
θ2 − γθ + γ2 , (4.12)

Order 4 ∑
bi(θ)α

3
i =

1

4
θ3 , (4.13)

∑
bi(θ)αiαikβk =

1

8
θ3 − 1

3
γθ2 , (4.14)

∑
bi(θ)βikα

2
k =

1

12
θ3 − 1

3
γθ2 , (4.15)

∑
bi(θ)βikβklβl =

1

24
θ3 − 1

2
γθ2 +

3

2
γ2θ − γ3 , (4.16)

where

βij = αij + γij , βi =

i−1∑

j=1

βij .

Sometimes, for a given Rosenbrock method, it is impossible to define a con-
tinuous interpolant (for any 0 ≤ θ ≤ 1). Instead, the discrete version of the
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interpolation can be considered, in which the stability and order conditions are
satisfied just for few values of the parameter θ. In the case of our multirate time
stepping strategy, at each refinement step we have to interpolate time points
at the stages. Specifically, for the refinement step where we take two smaller
time steps of size 1

2τ instead of one of size τ , we need a stable interpolant for
θ = 1

2 (l + αi) for l = 0, 1 and i = 1, ..., s.

4.3 A stable interpolant for multirate ROS2

In this section we will consider the two-stage second-order Rosenbrock ROS2
method [27]. To proceed from tn−1 to a new time level tn = tn−1 + τ , the
method calculates

wn = wn−1 + 3
2 k̄1 + 1

2 k̄2 ,

(
I − γτJ

)
k̄1 = τF (tn−1, wn−1) + γτ2Ft(tn−1, wn−1) ,

(
I − γτJ

)
k̄2 = τF (tn, wn−1 + k̄1) − γτ2Ft(tn−1, wn−1) − 2k̄1 ,

(4.17)

where J ≈ Fw(tn−1, wn−1) and the notation k̄i instead of ki is used since we
have eliminated the matrix-vector product in the second stage. The method is
A-stable for γ ≥ 1

4 and L-stable if γ = 1± 1
2

√
2. We use γ = 1− 1

2

√
2. For this

method, for γ 6= 1
2 , we define the following second-order interpolant

wI(tn−1+θτ) = wn−1+
1

2(1 − 2γ)

(
θ2 + (2 − 6γ)θ

)
k̄1+

1

2(1 − 2γ)

(
θ2 − 2γθ

)
k̄2 ,

(4.18)
which was already used in Chapter 3.

For studying the stability of this interpolant we apply it to the test equation
(4.6) and use the maximum modulus principle from complex analysis. Thus we
have to check whether max0≤θ≤1 |wI(θτ)| ≤ 1 whenever Re(z) = 0, where z =
λτ . From Figure 4.2, where the values of |wI(θτ)| are presented for γ = 1− 1

2

√
2

and for three different values of θ, we can see that |wI(θτ)| does not exceed 1.
Experiments also showed that |wI(θτ)| does not exceed 1 for all 0 ≤ θ ≤ 1 and
γ ≥ 1

4 , γ 6= 1
2 .
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Figure 4.2: Plot of |wI(θτ)| for γ = 1 − 1
2

√
2 and three different values of θ.
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The stability of this interpolant in the sense of definition (4.8) can also be
shown analytically. Assuming w0 = 1 and inserting z = iy in (4.17) gives

k̄1 =
iy

1 − iγy
, k̄1 + k̄2 =

y2(2γ − 1)

(1 − iγy)2
.

The interpolant (4.18) becomes

wI(θτ) = 1 + θk̄1 +
θ(θ − 2γ)

2(1 − 2γ)
(k̄1 + k̄2)

= 1 + θ
iy

1 − iγy
− θ(θ − 2γ)

2

y2

(1 − iγy)2

= −1 +
1

2
θy

(θy − θγ2y3 + 4γ3y3) + (2θγy2 − 6γ2y2 − 2)i

(1 + γ2y2)2
(4.19)

After some simplifications we get

|wI(θτ)|2 = 1 − (4γ − θ)(2γ − θ)2y4

4(1 + γ2y2)4
.

Since we have 4γ − θ ≥ 0, it follows that |wI(θτ | ≤ 1. This shows that the
considered interpolant used together with the ROS2 method is stable in the
sense of definition (4.8).

4.4 Higher-order multirate methods

In this section we consider some fourth-order Rosenbrock methods well known
from the literature: Kaps-Rentrop methods [29] and the RODAS method of
Hairer and Wanner [19]. Attempts to construct multirate methods based on
the Kaps-Rentrop methods appeared to be not so successful (see Subsection
4.4.2). Therefore the main part of this section is about the multirate version of
the RODAS method.

4.4.1 Multirate RODAS

In this subsection we present a multirate method based on the fourth-order
stiffly accurate, A-stable Rosenbrock method RODAS [19]. RODAS has six
stages and a third-order embedded method which can be used for error estima-
tion. It also has a built-in dense output of order three.

The coefficients of the RODAS method, derived following [19, pp. 421], are
presented in Table 4.7 in the Appendix. The embedded method is given by

wn = wn−1 +
s∑

i=1

b̄iki , (4.20)
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with b̄i = α5i. The built-in dense output of the RODAS method is defined by

wI(tn−1 + θτ) = wn−1 +
s∑

i=1

3∑

j=0

bijθ
j+1ki , (4.21)

with the coefficients bij presented in Table 4.8 in the Appendix. These coef-
ficients were chosen to satisfy the third-order conditions (4.9)-(4.12), the first
fourth-order condition (4.13) and the condition b6(θ) = γθ, see [19].

In order to test the stability of the dense output in the sense of definition
(4.8), we apply the RODAS method together with its dense output to the scalar
test equation w′ = λw. We use the maximum modulus principle and check how
the value of |wI(θτ)| changes for different purely imaginary values of z = τλ.
In Figure 4.3 the plot of the max |wI(θτ)| for a range of z-values is presented.
We can see that the maximum of the modulus of the solution is always smaller
than 1.04, which is a slightly larger threshold than in definition (4.8). This also
holds for larger values of z. Therefore, the RODAS built-in dense output will
not amplify dramatically the error of the main numerical method. Moreover,
the RODAS formula itself will provide damping due to its L-stability.
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Figure 4.3: Plot of the max0≤θ≤1 |wI(θτ)| for a range of purely imaginary
z-values.

The dense output of RODAS, which is used for interpolation in our multirate
scheme, is of order three. Therefore, due to possible order reduction (see [25]),
the multirate method based on RODAS is of order three. However, in most
practical examples we will see order four due to cancellation and damping.

Asymptotic stability for 2 × 2 test equations

Usually, linear stability analysis of an integration method is based on the scalar
Dahlquist test equation w′(t) = λw(t), λ ∈ C. For multirate methods the scalar
problem cannot be used. Instead we can consider a similar test problem, a
linear 2 × 2 system

w′(t) = Aw(t), w =

(
u

v

)
, A =

(
a11 a12

a21 a22

)
.
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We denote
Z = τA, zij = τaij . (4.22)

We will assume that the first component u of the system is fast and the second
component v is slow. Thus, to perform the time integration from tn−1 to tn =
tn−1 + τ we will complete two time steps of size 1

2τ for the first component and
one time step of size τ for the second component.

We assume that
a11 < 0 and a22 < 0 . (4.23)

and we denote
κ =

a22

a11
, β =

a12a21

a11a22
. (4.24)

Both eigenvalues of the matrix A have a negative real part if and only if
det(A) > 0. This condition can also be written as

β < 1 .

We can regard κ as a measure for the stiffness of the system, and β gives the
amount of coupling between the fast and slow part of the equation. For this
two-dimensional test equation we will consider asymptotic stability whereby it
is required that the eigenvalues of the amplification matrix S are less than one
in modulus. Similar stability considerations for 2 × 2 systems are found in [45]
for lower order Rosenbrock methods.

The elements of the 2 × 2 amplification matrix S will depend on the four
parameters zij = τaij , 1 ≤ i, j ≤ 2. However, as it was shown in [45], the
eigenvalues of S depend only on the determinant and trace of Z and can be
written as functions of three parameters: κ, β and z11. Instead of z11 ≤ 0 and
β < 1 we will use the quantities

ξ =
z11

1 − z11
, η =

β

2 − β
, (4.25)

which are bounded between −1 and 0, and −1 and 1, respectively.
The domains of asymptotic stability are shown in Figure 4.4. We present

these domains in the (ξ, η)-plane for three values of κ = 10j , j = 0, 1, 2. It
is seen that the multirate RODAS will be stable if η ≥ 0, whereas for η < 0
the domain of instability increases when κ gets large. The stability domains for
large values of κ≫ 100 do not cover the whole region η < 0. They are similar to
the domain obtained for κ = 100. Compared to the stability domains obtained
for ROS2 (used with interpolation from Section 4.3) in Chapter 3, the stability
domains for RODAS are smaller. However the difference is not significant. We
can also see that there exist regions for which ROS2 is asymptotically unstable
and RODAS is stable.

4.4.2 Kaps-Rentrop fourth-order Rosenbrock methods

We have also examined the possibility of constructing multirate methods based
on the fourth-order Rosenbrock methods GRK4A and GRK4T [29]. In order
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Figure 4.4: Asymptotic stability domains (gray areas) for κ = 1, 10, 100.

to have a third-order interpolant, conditions (4.9) - (4.12) have to be satisfied.
This set of conditions can be written as a linear system

Ab(θ) = c(θ) , (4.26)

where A ∈ R
4×4 is a matrix fully determined by the Rosenbrock method coef-

ficients, b(θ) = [bi(θ)] ∈ R
4 is the dense output coefficients column vector and

c(θ) = [ci(θ)] ∈ R
4 is the (4.9) - (4.12) right-hand side values column vector.

For both methods GRK4A and GRK4T, the matrix A is of rank three. The
second, third and fourth rows of the matrix A are linearly dependent, which
also implies that the second, third and fourth elements of the column vector
c(θ) have to satisfy

a2c2(θ) + a3c3(θ) + a4c4(θ) = 0 , (4.27)

with a2, a3 and a4 constants dependent on the method coefficients. The relation
(4.27) holds for some of the values θ (for example θ = 1), however for all
other values of θ it fails for both methods. Hence, we conclude that for both
considered methods it is not possible to have a third-order built-in interpolant
of type (4.5). The construction of such an interpolant could alternatively be
achieved by adding extra stages for both methods. This would however result
in an increased amount of work per step compared with the single-rate version
of the original method.

4.5 Stiff source terms: the linear constant coef-

ficient case

Use of Rosenbrock methods for problems with stiff source terms can lead to
order reduction. In particular this can happen for problems with time dependent
Dirichlet boundary conditions. For Rosenbrock methods, order reduction was
studied for linear problems in [38]. A technique which avoids order reduction
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by modifying the usual boundary values of the intermediate stages was more
recently presented in [1]. During the refinement step within multirate time
stepping, sub problems with time dependent boundary conditions have to be
solved. Therefore, having proper local order, is of true importance for multirate
schemes. In this section we aim at improving the local order of the Rosenbrock
method by modifying the treatment of the source term. Using ideas from [26],
we will study the order reduction for linear constant-coefficient problems.

Let us consider the linear scalar test equation

w′(t) = λw(t) + g(t), w(0) = w0 , (4.28)

where λ ∈ C, Reλ ≤ 0, may be large in absolute value and also the source term
may be large. However we assume that the derivatives of w are of moderate
size.

The restriction to scalar problems is convenient for the notation. The results
carry over to linear systems w′ = Aw + g(t) if A is diagonisable and well
conditioned. On the other hand, the fact that only linear constant-coefficient
problems are studied is a genuine restriction.

In this section, for simplicity of the expressions, it will be assumed that a
time step from tn to tn+1 = tn + τ is taken. In the analysis we will derive
recursions for the global errors en = w(tn)−wn. These recursions will be of the
form

en+1 = Sen + dn ,

where S is the amplification factor and dn is the local error. In case of linear
test problems (4.28) we will have S = R(z), where R is the stability function of
the Rosenbrock method and z = τλ. Our aim is to derive error recursions with
local errors dn, which are independent from stiffness, so that for these recursions
the derived order holds in both the non stiff and the stiff case.

4.5.1 Standard source term treatment

Error recursion

Consider an s-stage Rosenbrock method (4.2)-(4.3) with coefficients αij , γij , bj .
This leads to approximations wn ≈ w(tn) computed from

kn,i = z(wn +
∑
j

βijkn,j) + τg(tn + αiτ) + γiτ
2g′(tn), i = 1, . . . , s ,

wn+1 = wn +
∑
j

bjkn,j .
(4.29)

Along with (4.29), we also consider the scheme with inserted exact solution
values w∗

n = w(tn), k∗n,i = τw′(tn + αiτ) + γiτ
2w′′(tn). This leads to

k∗n,i = z(w∗
n +

∑
j

βijk
∗
n,j + ρn,i) + τg(tn + αiτ) + γiτ

2g′(tn), i = 1, . . . , s ,

w∗
n+1 = w∗

n +
∑
j

bjk
∗
n,j + rn ,

(4.30)
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with residuals ρn,i and rn. For the final error recursion this choice for the exact
solution values k∗n,i for the interior stages is not relevant. With the above choice
it is the derivation of the error recursion that becomes simple.

For the analysis it is convenient to use a vector notation. Let kn = [kn,i] ∈
R

s and denote likewise

G = [γij ] ∈ R
s×s, B = [βij ] ∈ R

s×s,

α = [αi] ∈ R
s, β = [β] ∈ R

s, b = [bi] ∈ R
s, γ = [γi] ∈ R

s, e = [1] ∈ R
s .

Furthermore, if ϕ : R → R, we define

ϕ(tn + ατ) = [ϕ(tn + αiτ)] ∈ R
s .

This will be used for the source term g, the solution u and its derivatives.
With this notation the Rosenbrock method (4.29) can be compactly written

as

kn = z(ewn + B kn) + τg(tn + ατ) + γτ2g′(tn) ,

wn+1 = wn + bT kn .
(4.31)

For the scheme with exact solution values inserted we get

k∗
n = z(ew∗

n + B k∗
n + ρn) + τg(tn + ατ) + γτ2g′(tn) ,

w∗
n+1 = w∗

n + bT k∗
n + rn ,

(4.32)

with residuals ρn = [ρn,i] ∈ R
s and rn ∈ R.

Expressions for these residuals are easily found by a Taylor expansion. Since
we have k∗

n = τw′(tn+ατ)+γτ2w′′(tn), λw(tn+ατ)+g(tn+ατ) = w′(tn+ατ)
and λw′(tn) + g′(tn) = w′′(tn), it follows that

ρn =
1

z

(
τ(w′(tn + ατ) − g(tn + ατ)) + γτ2(w′′(tn) − g′(tn))

)

−(ew(tn) + B(τw′(tn + ατ) + γτ2w′′(tn))) (4.33)

= (
1

2
α2 − B2e)τ2w′′(tn) +

∑

k≥3

1

k!
(αk − kB αk−1)τkw(k)(tn) ,

and

rn = w(tn+1) − w(tn) − bT (τw′(tn + ατ) + γτ2w′′(tn))

= −bT γτ2w′′(tn) +
∑

k≥1

1

k!
(1 − kbT αk−1)τkw(k)(tn) , (4.34)

where αk = [αk
i ] and α0 = e.

With en = w∗
n − wn and ǫn = k∗

n − kn, we obtain

ǫn = z(een + B ǫn + ρn) ,
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en+1 = en + bT ǫn + rn .

Hence

ǫn = z(I − zB)−1een + z(I − zB)−1ρn ,

which finally gives recursion (4.5) with amplification factor S = R(z),

R(z) = 1 + zbT (I − zB)−1e, (4.35)

and local error

dn = zbT (I − zB)−1ρn + rn . (4.36)

Inserting the series expansions for ρn and rn, we can also write the local
error as

dn = γzbT (I − zB)−1eτw′(tn) − γbT (I − zB)−1eτ2w′′(tn)

+
∑

k≥1

1

k!
Hk(z)τkw(k)(tn) (4.37)

with rational functions Hk given by

Hk(z) = 1 − kbT αk−1 + zbT (I − zB)−1(αk − kBαk−1) . (4.38)

Stability assumptions

The stability region of the Rosenbrock method is given by the set

S = {z ∈ C : |R(z)| ≤ 1} .

We assume that

S ⊃ C
− . (4.39)

This means that the method is A-stable. In addition to this we will also assume
that

|Hk(z)| ≤ Ck for all z ∈ C
−, k ≥ 1 , (4.40)

with Ck > 0. Usually (4.39) implies (4.40) with Ck > 0 determined by the
method.

Local error bounds for the stiff case

Assume that the coefficients of the Rosenbrock methods satisfy

bT αk−1 =
1

k
for 1 ≤ k ≤ p0, k 6= 2 , (4.41)

and

bT β =
1

2
− γ, if p0 ≥ 2, k = 2 . (4.42)
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If the method has classical order p, then we have p0 ≥ p. Of course, there
are many more order conditions for a method to be of order p. It will also be
assumed that

B αk−1 =
1

k
αk, for 3 ≤ k ≤ p1 (4.43)

for a certain p1 and

B2e =
1

2
α2, if p1 ≥ 2 . (4.44)

This corresponds to a so-called simplifying order condition. A method that
satisfies (4.41) - (4.44) is said to have stage order q = min(p0, p1).

It is directly seen that these order conditions give O(τ q+1) bounds for the
residuals (4.33), (4.34) and also imply Hk = 0 for k ≤ q. By the stability
assumptions, it then follows that also |dn| = O(τ q+1). For example, for the
RODAS [19], GRK4A and GRK4T [29] methods we have q = 1.

4.5.2 Modified source term treatment

Instead of using the source terms g(tn + αiτ) + γτg′(tn) in the Rosenbrock
method (4.29), we replace these by gn,i with gn = [gn,i] chosen as

gn =
∑

k≥0

ωkτ
kg(k)(tn) . (4.45)

Here ω0 = e and the other ωk are free parameter vectors. In the vector notation,
the scheme then becomes

kn = τ(λewn + λB kn +
∑
k≥0

ωkτ
kg(k)(tn)) ,

wn+1 = wn + bT kn .

(4.46)

As before, we also consider a perturbed scheme with exact solution values in-
serted,

k∗
n = τ(λew∗

n + λB k∗
n +

∑
k≥0

ωkτ
kg(k)(tn) + λρn) ,

w∗
n+1 = w∗

n + bT k∗
n + rn .

(4.47)

We take again w∗
n = w(tn). For k∗

n it is now convenient to choose

k∗
n =

∑

k≥0

ωkτ
k+1w(k+1)(tn) .

This gives residuals

ρn =
∑

k≥1

(ωk − B ωk−1)τ
kw(k)(tn) , (4.48)

rn =
∑

k≥1

(
1

k!
− bT ωk−1)τ

kw(k)(tn) . (4.49)
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The requirement ρn, rn = O(τ q+1) thus leads to the conditions

ωk = Bωk−1, bT ωk−1 =
1

k!
(k = 1, . . . , q) , (4.50)

that is,

ωk = Bke, bT Bk−1e =
1

k!
(k = 1, . . . , q) . (4.51)

Note that if a method is of order p for non-stiff problems, then the condition

bT Bk−1e =
1

k!

holds for all k = 1, . . . , p. Therefore, in order to have a method of order p for
stiff problems, both conditions (4.51) should be fulfilled and we still have to
require

ωk = Bke, (k = 1, . . . , p) . (4.52)

The source term g(tn + cτ) can also be replaced by a more general series
expansion

gn =
∑

k≥0

Qkτ
kg(k)(tn + µkτ) , (4.53)

where Qk and µk are free parameter matrices and vectors respectively. In this
case the condition (4.52) becomes

k∑

l=0

1

(k − l)!
Qlµ

k−l
l = Bke (k = 1, . . . , q) . (4.54)

While (4.52) requires the first p derivatives g(k)(tn), k = 1, . . . , p, use of the
source term in the more general form (4.53) may allow less derivatives.

Example 4.5.1 In order to recover one order for stiff problems, that is, to
increase the stage order by one unit, one can use the source term modification
of type (4.45)

gn =

2∑

k=0

Bkeτkg(k)(tn) ,

which uses the first two derivatives of the source function g(t). One can also
use the modification of type (4.53)

gn = eg(tn) + Bτg′(tn + βτ) (4.55)

which only requires the value of the first derivative g′(t).
To recover two orders, again, one can choose between

gn =

3∑

k=0

Bkeτkg(k)(tn) (4.56)
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and
gn = eg(tn) + Beτg′(tn) + B2τ2g′′(tn + βτ) . (4.57)

Formula (4.56) cannot be modified such that only the functions g(t) and g′(t)
are used. The attempt to replace (4.56) with

gn = g(tn + ξ1τ) + P eτg′(tn + ξ2τ)

leads to an unsolvable system. �

4.5.3 Effect on the convergence for non-stiff problems

For non-stiff problems (4.28), where λ is of moderate size, and using our modified
source term (4.45), we obtain the following expansion for the local error

dn =
∑

k≥1

(
1

k!
− bT ωk−1

)
τkw(k)(tn)

+
∑

k≥2

k−1∑

j=1

λk−jbT Bk−j−1(ωj − Bωj−1)τ
kw(j)(tn) . (4.58)

We require that this remains O(τp+1), that is, we want the modification (4.45) of
the source term to be such that the classical order of consistency p is recovered.
We are thus left with the order conditions

bT ωk−1 =
1

k!
, bT Bk−j−1(ωj − Bωj−1) = 0, (1 ≤ j < k ≤ p) . (4.59)

Since ω0 = e and bTBk−1e = 1
k! for l ≤ p, it follows that these order conditions

are covered by

bT Bk−j−1ωj =
1

k!
(1 ≤ j < k ≤ p) . (4.60)

The standard form of the source term can be expanded as

g(tn + ατ) + γτg′(tn) = eg(tn) + βτg′(tn) +
∑

k≥2

1

k!
αkτkg(k)(tn) , (4.61)

which gives

ω0 = e, ω1 = β, ωk =
1

k!
αk, k ≥ 2 . (4.62)

We know that the use of the source term in the standard form leads to consis-
tency of order p. Thus the coefficients (4.62) satisfy condition (4.60).

If we consider
ωk = Bke, (k = 1, . . . , p) (4.63)

then

bT Bk−j−1ωj = bT Bk−j−1Bje = bT Bk−1e =
1

k!
. (4.64)
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This shows that the choice (4.63) helps us to recover the order of consistency
p for stiff problems and that it also does not affect the order of consistency for
non-stiff problems. If, however, (4.60) holds just for k with 1 ≤ j < k < p,
then the order of consistency for non-stiff problems can be lost. For example,
for fourth-order Rosenbrock methods, we loose one order if we use (4.55) for
non-stiff problems and we preserve the order in case of (4.57).

4.6 Numerical experiments

In this section we present numerical results for four test problems. In the first
test problem we consider the order behavior of the RODAS method. Results
for the standard and the modified source term treatment are presented. Along
with the single-rate time integration with time steps of size τ we perform the
dual-rate time integration, where after each time step of size 2τ the solution is
refined at a fixed spatial region by taking two smaller time steps of size τ . For
the other three test problems we use the self-adjusting multirate time stepping
strategy presented in Chapter 1. Given a global time step τ , we compute a
first, tentative approximation at the new time level for all components. For
those components for which the error estimator indicates that smaller steps
are needed, the computation is redone with 1

2τ . The refinement is continued
recursively with local time steps 2−lτ , until the error estimator is below a pre-
scribed tolerance for all components. The numerical results obtained for the
RODAS method are compared with those obtained using second-order ROS2
method [47]. For these tests we also use the source term treatment modifica-
tions suggested in Section 4.5. These modifications used for ROS2 give similar
results with those obtained using the standard source term treatment for these
problems.

4.6.1 A linear parabolic example

As a test model we consider the parabolic equation (also used in [25])

ut + aux = duxx − cu+ g(x, t) , (4.65a)

for 0 < t < T = 0.4, −1 < x < 1, with initial- and boundary conditions

u(x, 0) = 0 , u(−1, t) = 0 , u(1, t) = 0 . (4.65b)

The constants and source term are taken as

a = 10 , d = 1 , c = 102 , g(x, t) = 103 cos(
1

2
πx)100 sin(πt) . (4.65c)

The solution at the end time t = 0.4 is illustrated in Figure 2.4 in Chapter 2.
Semi-discretization with second-order differences on a uniform spatial grid

with m points and mesh width h = 2/(m+ 1), leads to an ODE system of the
form (4.1). We use for this test m = 400, and the temporal refinements are
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taken for the components corresponding to spatial grid points xj ∈ [−0.2, 0.2].
(Spatial grid refinements are not considered here; we use the semi-discrete sys-
tem just as an ODE example.) We solve the problem with the RODAS method
described in Section 4.4.1.

Tables 4.1 and 4.2 show the maximum errors at t = T with respect to a
time-accurate ODE solution. The results are given for the single-rate case with
uniform time steps τ = T/N and for the multirate case, where each time step
2τ is followed by two locally refined steps τ on part of the spatial domain. For
both cases the standard and the modified source term treatment described in
Section 4.5 are considered.

Table 4.1: Errors and orders for problem (4.65), single-rate case

Single-rate without correction Single-rate with correction

N error order error order

10 3.08 · 10−5 3.01 · 10−5

20 3.48 · 10−6 3.14 1.35 · 10−6 4.47

40 3.60 · 10−7 3.27 6.06 · 10−8 4.48

80 3.45 · 10−8 3.38 2.92 · 10−9 4.37

160 3.07 · 10−9 3.49 1.55 · 10−10 4.23

Table 4.2: Errors and orders for problem (4.65), multirate case

Multirate without correction Multirate with correction

N error order error order

10 7.95 · 10−4 8.86 · 10−4

20 3.05 · 10−5 4.70 3.17 · 10−5 4.80

40 1.96 · 10−6 3.95 8.25 · 10−7 5.26

80 3.46 · 10−7 2.50 2.36 · 10−8 5.12

160 7.14 · 10−8 2.27 1.13 · 10−9 4.38

The refinement region −0.2 ≤ xj ≤ 0.2 was only chosen for test purposes; it
is clear from Figure 2.4 that it is not a very good choice. Tables 4.1 and 4.2 show
that for this example we get order reduction for both single-rate and multirate
cases when we use the standard formulation of the Rosenbrock method. With
the modification from Section 4.5 we recover the fourth order of the RODAS
method. One can also see that the errors for the multirate case are somewhat
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larger than the corresponding errors for the single-rate case. This can be ex-
plained by the fact that the solution is active outside the refinement interval and
integration with one time step of size 2τ is less accurate than the integration
with two time steps of size τ for this spatial region.

4.6.2 The inverter chain problem

As a second test example we consider the inverter chain problem from [3]. The
model for m inverters consists of the equations




w′

1(t) = Uop − w1(t) − Υg
(
uin(t), w1(t)

)
,

w′
j(t) = Uop − wj(t) − Υg

(
wj−1(t), wj(t)

)
, j = 2, . . . ,m ,

(4.66a)

where

g(u, v) =
(

max(u− Uthres, 0)
)2

−
(

max(u− v − Uthres, 0)
)2

. (4.66b)

The coefficient Υ serves as stiffness parameter. We solve the problem for a
chain of m = 500 inverters with Υ = 100, Uthres = 1 and Uop = 5, over the time
interval [0, T ], T = 130. The initial condition is

wj(0) = 6.247 · 10−3 for j even, wj(0) = 5 for j odd. (4.66c)

The input signal is given by

uin(t) =





t− 5 for 5 ≤ t ≤ 10 ,

5 for 10 ≤ t ≤ 15 ,
5
2 (17 − t) for 15 ≤ t ≤ 17 ,

0 otherwise.

(4.66d)

An illustration for some even components of the solution is given in Figure 1.8
in Chapter 1.

In Table 4.3 the maximal errors over all components and all times tn (mea-
sured with respect to an accurate reference solution) are presented for several
tolerances with the single-rate scheme (without local temporal refinements) and
the multirate strategy. As a measure for the amount of work we consider the
total number of linear systems that had to be solved. In addition, the CPU
times (in seconds) are given. In Figure 4.5 the CPU-error diagram is presented,
where the values for the ROS2 method are taken from [47]. It shows that the
multirate RODAS method is more efficient than the multirate version of ROS2.
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Figure 4.5: CPU-error diagram for problem (4.66).

Table 4.3: Absolute maximal errors, work amount and CPU time with different
tolerances for the inverter chain problem, RODAS

Single-rate Multirate

tol error work CPU error work CPU

5 · 10−4 1.37 · 10−1 49554000 17.39 6.60 · 10−2 2686848 1.81

1 · 10−4 8.55 · 10−3 69705000 24.46 5.43 · 10−3 5120184 3.31

5 · 10−5 5.46 · 10−3 85935000 30.25 4.72 · 10−3 6742536 4.40

1 · 10−5 1.83 · 10−3 125031000 43.92 1.68 · 10−3 12570852 9.88

4.6.3 An ODE system obtained from semi-discretization:

a reaction-diffusion problem with traveling wave so-

lution

For our third test problem we consider the semi-discrete system obtained from
the reaction-diffusion equation

ut = ǫuxx + γu2(1 − u), (4.67)

for 0 < x < L, 0 < t ≤ T . The initial- and boundary conditions are given by

ux(0, t) = ux(L, t) = 0 , u(x, 0) =
(
1 + eλ(x−1)

)−1
, (4.68)
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where λ = 1
2

√
2γ/ǫ. If the spatial domain had been the whole real line, then

the initial profile would have given the traveling wave solution u(x, t) = u(x −
αt, 0) with velocity α = 1

2

√
2γǫ. In our problem, with homogeneous Neumann

boundary conditions, the solution will still be very close to this traveling wave,
provided the end time is sufficiently small so that the wave front does not come
close to the boundaries. The parameters are taken as γ = 1/ǫ = 100 and L = 5,
T = 3. In space we used a uniform grid of m = 1000 points and standard
second-order differences, leading to an ODE system in R

1000. An illustration of
the semi-discrete solution at various times is given in Figure 1.4 with (spatial)
components horizontally.

0 1 2 3 4 5 6 7

10
−5

10
−4

10
−3

e
rr

o
r

CPU

 

 

ROS2

MRROS2

RODAS

MRRODAS

Figure 4.6: CPU-error diagram for problem (4.67).

In Table 4.4 the errors (in the maximum norm with respect to the reference
ODE solution at time T ), the amount of work (number of linear systems that had
to be solved) and CPU time (in seconds) are presented for different tolerances.
From these results it is seen that a substantial improvement in amount of work
is obtained for this problem. For the single-rate scheme, the amount of work
is almost six times larger. In terms of CPU time we get a speed-up factor four
approximately. Moreover, the error behavior of the multirate scheme is very
good. We have roughly a proportionality of the errors and tolerances, and the
errors of the multirate scheme are approximately the same as for the single-rate
scheme.

In Figure 4.6 the CPU-error diagram is presented, where the values for the
ROS2 method are taken from [47]. It shows that the multirate RODAS method
is more efficient than the multirate version of ROS2.
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Table 4.4: Absolute maximal errors, work amount and CPU time with different
tolerances for the traveling wave problem, RODAS

Single-rate Multirate

tol error work CPU error work CPU

1 · 10−3 2.56 · 10−3 1213212 0.78 2.67 · 10−3 317648 0.19

5 · 10−4 1.41 · 10−3 1417416 0.91 1.16 · 10−3 330156 0.26

1 · 10−4 1.76 · 10−4 2396394 1.54 1.11 · 10−4 482694 0.41

5 · 10−5 4.09 · 10−5 3417414 2.21 5.11 · 10−5 571782 0.48

1 · 10−5 2.28 · 10−6 6582576 4.27 2.65 · 10−6 1030740 0.94

4.6.4 Transmission line problem

The M -dimensional transmission line circuit (obtained from A. Verhoeven, pri-
vate communication) can be described by the system




v′k(t) = 1

c (ik+1(t) − ik(t)) ,

i′k(t) = 1
l (vk(t) − vk−1(t) − rik(t)) ,

(4.69a)

for k = 1, . . . ,M , where iM+1(t) = 0, v0(t) = vin(t) + 103i1(t),

vin(t) =

{
1 if t > 10−11

1011t if t ≤ 10−11

and
vk(0) = 0, ik(0) = 0 , k = 1, . . . ,M . (4.69b)

We solve the problem for M = 100 with r = 0.35, c = 4 × 10−13 and l = 10−9.
An illustration of the solution for some of the components is given in Figure 4.7.

For the numerical test, the multirate method based on the second-order
ROS2 described in Chapter 1 and the multirate method based on the fourth-
order RODAS are used. In Tables 4.5 and 4.6, the errors at output time T =
10−9, measured in the maximum norm over time and components with respect
to an accurate reference solution, together with the amount of work (number
of linear systems to be solved) and CPU time (in seconds), are presented for
different values of tolerance for the single-rate and the multirate strategies. For
this test we do not get much improvement when using the multirate strategy.
For the single-rate scheme, the amount of work is almost two times larger.
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Figure 4.7: Solution components vk, k = 1, 10, 20, 30, 40, for problem (4.69).

Table 4.5: Errors, work amount and CPU time for problem (4.69), ROS2

Single-rate Multirate

tol error work CPU error work CPU

1 · 10−4 5.49 · 10−4 38800 0.05 4.27 · 10−4 20984 0.04

5 · 10−5 3.08 · 10−4 55600 0.07 2.66 · 10−4 28816 0.05

1 · 10−5 6.88 · 10−5 122400 0.14 6.62 · 10−5 66669 0.09

5 · 10−6 3.42 · 10−5 174000 0.23 3.67 · 10−5 96052 0.16

1 · 10−6 6.92 · 10−6 384800 0.44 5.60 · 10−6 206648 0.31

Table 4.6: Errors, work amount and CPU time for problem (4.69), RODAS

Single-rate Multirate

tol error work CPU error work CPU

1 · 10−4 1.24 · 10−4 66000 0.07 1.32 · 10−4 38832 0.06

5 · 10−5 5.26 · 10−5 82800 0.09 3.94 · 10−5 49608 0.07

1 · 10−5 5.30 · 10−6 139200 0.15 5.40 · 10−6 84684 0.12

5 · 10−6 2.12 · 10−6 174000 0.23 3.06 · 10−6 103409 0.16

1 · 10−6 4.47 · 10−7 288000 0.32 5.45 · 10−7 164544 0.25

Improvement in CPU time is smaller due to the extra work required for the
automatic partitioning.

In general, the execution time of a program based on our multirate strategy
is not greater than that of a program based on the single-rate strategy. In
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the case of multirating not leading to an improvement in work, the multirate
strategy automatically takes the same time steps as in the single-rate strategy.

In Figure 4.8 the CPU-error diagram is presented. It shows that the mul-
tirate RODAS method is more efficient than the multirate version of ROS2.
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Figure 4.8: CPU-error diagram for problem (4.69).
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Figure 4.9: Component-time grid (vk left and ik right) for problem (4.69).

In Figure 4.9 the component-time grids are shown on which the solution was
calculated using the multirate RODAS method with tolerance value tol = 2 · 10−3.
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In principle these two grids can be different. However, in the experiments they
are practically the same.

4.7 Conclusions

In this chapter we discussed the main aspects of the construction of higher-order
multirate methods.

As seen from the numerical tests, improper treatment of stiff source terms
and use of lower-order interpolants can lead to an order reduction where we
obtain a lower order of consistency than for non-stiff problems.

We presented a strategy of avoiding the order reduction for problems with a
stiff source term. This strategy helps us to recover the order of consistency for
stiff problems and does not affect the order of consistency for non-stiff problems.

A multirate method based on the fourth-order Rosenbrock method RODAS
and its third-order dense output was designed. The multirate RODAS method
showed good results in the numerical experiments and is clearly more efficient
than the considered second-order multirate methods.
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4.8 Appendix

In Table 4.7 we present the coefficients of the RODAS method, which were
derived following [19, pp. 421]. The coefficients of the built-in dense output
of the RODAS are presented in Table 4.8. These coefficients were chosen to
satisfy the third-order conditions (4.9)-(4.12), the first fourth-order condition
(4.13) and the condition b6(θ) = γθ, see [19].
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Table 4.7: Coefficients of the RODAS method

α21 = 0.386 α31 = 0.146074707525418 α32 = 0.063925292474582

α41 = −0.330811503667722 α42 = 0.711151025168282 α43 = 0.24966047849944

α51 = −4.552557186318003 α52 = 1.710181363241322 α53 = 4.014347332103150

α54 = −0.171971509026469 α61 = 2.428633765466978 α62 = −0.382748733764781

α63 = −1.855720330929574 α64 = 0.559835299227375 α65 = 0.25

γ = 0.25

γ21 = −0.3543 γ31 = −0.133602505268175 γ32 = −0.012897494731825

γ41 = 1.526849173006459 γ42 = −0.533656288750454 γ43 = −1.279392884256

γ51 = 6.981190951784981 γ52 = −2.092930097006103 γ53 = −5.870067663032724

γ54 = 0.731806808253845 γ61 = −2.080189494180926 γ62 = 0.59576235567668

γ63 = 1.701617798267255 γ64 = −0.088514519835879 γ65 = −0.378676139927128

b1 = 0.348444271286054 b2 = 0.213013621911897 b3 = −0.154102532662319

b4 = 0.471320779391497 b5 = −0.128676139927129 b6 = 0.25

Table 4.8: Coefficients of the RODAS dense output

b10 = 1.158234160966162 b11 = 3.888756124907816 b12 = −9.858437647569822

b13 = 5.159891632981919 b20 = 2.048767778074541 b21 = −4.936277941843626

b22 = 4.578307037111220 b23 = −1.477783251430241 b30 = −1.392687054381870

b31 = −1.897781380424416 b32 = 7.357213793345069 b33 = −4.220847891201125

b40 = −0.945903133634689 b41 = 3.525328088642974 b42 = −2.327663658815888

b43 = 0.219559483199102 b50 = −0.118411751024145 b51 = −0.580024891282749

b52 = 0.250580475929419 b53 = 0.319180026450346 b60 = 0.25

b61 = 0 b62 = 0 b63 = 0
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Chapter 5

Analysis of explicit multirate and

partitioned Runge-Kutta schemes

for conservation laws

Multirate schemes for conservation laws or convection-dominated problems seem
to come in two flavors: schemes that are locally inconsistent, and schemes that
lack mass-conservation. In this chapter these two defects are discussed for one-
dimensional conservation laws.

Particular attention will be given to monotonicity properties of the multirate
schemes, such as maximum principles and the total variation diminishing (TVD)
property. The study of these properties will be done within the framework of
partitioned Runge-Kutta methods.

5.1 Introduction

Multirate schemes for conservation laws that have appeared in the literature
all seem to have one of the following defects: there are schemes that are locally
inconsistent, e.g. [8, 9, 36, 37], and schemes that are not mass-conservative,
e.g. [54]. In this chapter these two defects are discussed for one-dimensional
conservation laws ut + f(u)x = 0. We will mainly concentrate on time stepping
aspects for simple schemes with one level of temporal refinement. The spatial
grids are assumed to be given and fixed in time. Spatial discretization of a PDE
(partial differential equation) then leads to a system of ODEs (ordinary differen-
tial equations), the so-called semi-discrete system. Particular attention will be
given to monotonicity properties of the multirate time stepping schemes, such
as maximum principles and the total variation diminishing (TVD) property.

After some preliminaries, we will present in Section 5.3 a detailed analysis
of two multirate forward Euler schemes, due to Osher & Sanders [37] and Tang
& Warnecke [54]. The first of these schemes is inconsistent at interface points,
but it will be shown that convergence of order one can be still obtained in
the maximum-norm. Furthermore, we will see that step size restrictions for
monotonicity will depend on the type of monotonicity: in general the restrictions
for maximum principles can be more relaxed than for the TVD property.
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In Section 5.4 we will present some multirate schemes that are based on
a standard two-stage Runge-Kutta method. These multirate schemes were re-
cently introduced by Tang & Warnecke [54], Constantinescu & Sandu [8], and
Savcenco et al. [47]. For these schemes some results of numerical experiments
for linear advection and Burgers’ equation are discussed.

For the analysis of general multirate schemes it is convenient to write them in
the form of partitioned Runge-Kutta methods. In Section 5.5 it will be seen that
recent results for (standard and additive) Runge-Kutta methods of Higueras,
Ferracina and Spijker [17, 21, 22, 52] can then be employed to obtain mono-
tonicity results for the multirate schemes through the partitioned Runge-Kutta
methods. As for the forward Euler multirate schemes, the step size restrictions
for maximum-norm monotonicity and maximum principles are in general more
relaxed than for the TVD property. Comparison of the theoretical results with
the numerical tests indicates that the restrictions for maximum-norm mono-
tonicity are more relevant in practice. This section also contains a discussion
on local and global temporal errors for problems with smooth solutions. To
understand the convergence behavior of the schemes, the propagation of the
local errors, with associated damping and cancellation effects, are to be taken
into account.

5.2 Preliminaries

5.2.1 Forward Euler multirate schemes for the advection

equation

Examples of simple schemes

Consider as a simple example the advection equation

ut + ux = 0 (5.1)

on a one-dimensional spatial region 0 < x < 1 with given initial value u(x, 0),
and inflow boundary condition u(0, t) or spatial periodicity. Spatial discretiza-
tion is performed with the first-order upwind scheme on cells Cj = (xj −
1
2∆xj , xj + 1

2∆xj). This gives a semi-discrete system

u′j(t) =
1

∆xj

(
uj−1(t) − uj(t)

)
for j ∈ I = {1, 2, . . . ,m} , (5.2)

where u′j(t) = d
dtuj(t), and uj(t) approximates u(xj , t) or the average value over

the surrounding cell Cj .

Application of the forward Euler method with time step ∆t gives the CFL
stability condition νj ≤ 1 for all j, where νj = ∆t/∆xj is the local Courant
number. Suppose this stability condition is satisfied for j ∈ I1 but on I2 = I−I1

we need to take two smaller steps with step size 1
2∆t to reach tn+1 = tn + ∆t.
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Then for this simple situation, the scheme of Osher and Sanders [37] can be
written as

u
n+ 1

2
j =




un

j for j ∈ I1 ,

un
j + 1

2νj(u
n
j−1 − un

j ) for j ∈ I2 ,
(5.3a)

un+1
j = un

j +
1

2
νj(u

n
j−1 − un

j ) +
1

2
νj(u

n+ 1
2

j−1 − u
n+ 1

2
j ) for j ∈ I . (5.3b)

As observed in [54], the scheme (5.3) is not consistent at the interface: if
i− 1 ∈ I1 and i ∈ I2 then

1

∆t

(
un+1

i − un
i

)
=

1

∆xi

(
un

i−1 −
1

2
(un

i + u
n+ 1

2
i )

)
=

1 − 1
4νi

∆xi

(
un

i−1 − un
i

)
,

which is consistent for fixed Courant number νi with the equation

ut + (1 − 1

4
νi)ux = O(∆t) + O(∆xi) ,

rather than the original advection equation (5.1).
To overcome this inconsistency, Tang and Warnecke [54] therefore proposed

the modified scheme

u
n+ 1

2
j = un

j +
1

2
νj(u

n
j−1 − un

j ) for j ∈ I , (5.4a)

un+1
j = u

n+ 1
2

j +





1
2νj(u

n
j−1 − un

j ) for j ∈ I1 ,

1
2νj(u

n+ 1
2

j−1 − u
n+ 1

2
j ) for j ∈ I2 .

(5.4b)

This scheme, however, is not mass conserving at the interface. If i− 1 ∈ I1 and
i ∈ I2 then the flux at xi−1/2 that leaves cell Ci−1 over the time interval [tn, tn+1]

equals un
i−1, whereas the flux that enters Ci is given by 1

2 (un
i−1 + u

n+1/2
i−1 ).

It should be noted that except for interface points the schemes (5.3) and
(5.4) are identical. For example, if I1 = {j : j < i} and I2 = {j : j ≥ i}, then
(5.3) and (5.4) give in one step the same result for j 6= i. It will be shown next
that, also with larger interface regions, the properties of internal consistency
and mass conservation cannot be combined.

Incompatibility of consistency and mass conservation

Consider the first-order upwind discretization (5.2) for the advection equation
with spatial periodicity. Then

M =
∑

j∈I

∆xjuj(t) .

is a conserved quantity. If the uj are densities, this is global mass conservation.
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Now suppose that for j ≤ k1 we use forward Euler with step size ∆t, for
j > k2 we apply forward Euler with step size 1

2∆t, and on the interface region
k1 < j ≤ k2 we take any combination of a number of forward Euler steps with
∆t and 1

2∆t together with interpolation or extrapolation. The result can be
written as

un+1
j =





un
j + νj(u

n
j−1 − un

j ) , 1 ≤ j ≤ k1 ,

un
j + νj(u

n
j−1 − un

j ) + ν2
j

m∑

k=1

αjk u
n
k , k1 < j ≤ k2 ,

un
j + νj(u

n
j−1 − un

j ) + 1
4ν

2
j (un

j−2 − 2un
j−1 + un

j ) , k2 < j ≤ m,
(5.5)

with unspecified coefficients αjk, and with u0 = um due to spatial periodicity.
The interface at x = 0, 1 poses no problem here. We will show that this scheme
cannot be both mass conservative and consistent, no matter how the scheme is
defined on the interface region k1 < j ≤ k2. For convenience it can be assumed
that the spatial grid is uniform, νj = ν = ∆t/∆x, and we set αjk = 0 for j ≤ k1

and j > k2.

Insertion of exact solution values in the scheme gives for k1 < j ≤ k2 the
truncation error

1

∆t

(
u(xj , tn+1)−u(xj , tn)

)
− 1

∆x

(
u(xj−1, tn)−u(xj , tn)

)
− ∆t

∆x2

m∑

k=1

αjku(xk, tn) .

For consistency, that is, truncation error O(∆t) + O(∆x), we obtain by Taylor
expansion the conditions

∑

k

αjk = 0 ,
∑

k

(k − j)αjk = 0 for k1 < j ≤ k2 . (5.6)

On the other hand, we have

∆x
∑

j

un+1
j − ∆x

∑

j

un
j =

∆t2

∆x

∑

j

∑

k

αjk u
n
k +

∆t2

4∆x

∑

j>k2

(
un

j−2 − 2un
j−1 + un

j

)

=
∆t2

∆x

∑

k

(∑

j

αjk

)
un

k +
∆t2

4∆x
un

k2−1 −
∆t2

4∆x
un

k2
,

from which it seen that the requirement of mass conservation leads to

∑

j

αjk =





0 if k 6= k2 − 1, k2 ,

− 1
4 if k = k2 − 1 ,

1
4 if k = k2 .

(5.7)
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However, the conditions (5.6) and (5.7) together lead to a contradiction:

0 =
∑

j

∑

k

(k − j)αjk =
∑

j

∑

k

(
(k − k2 + 1) − (j − k2 + 1)

)
αjk

=
∑

j

(j − k2 + 1)
∑

k

αjk −
∑

k

(k − k2 + 1)
∑

j

αjk =
∑

j

αjk2
=

1

4
.

This shows that consistency and mass conservation cannot be valid at the same
time.

5.2.2 General formulations

In this chapter we will discuss monotonicity properties and temporal conver-
gence of multirate schemes for general semi-discrete problems in R

m,

u′(t) = F (u(t)) , u(0) = u0 . (5.8)

The approximations to u(tn) = [uj(tn)] ∈ R
m will be denoted by un = [un

j ] ∈
R

m. As above, we consider partitioning I = I1 ∪ I2. Corresponding to these
sets Ik, let I1, I2 be m×m diagonal matrices with diagonal entries 0 or 1, such
that (Ik)jj = 1 for j ∈ Ik, k = 1, 2. We have I1 + I2 = I, the identity matrix.

The semi-discrete system (5.2) obviously fits in this form with linear F . The
general system (5.8) allows nonlinear problems and nonlinear discretizations.
For such systems the Osher-Sanders scheme (5.3) becomes




un+ 1

2
= un + 1

2∆tI2F (un) ,

un+1 = un + 1
2∆tF (un) + 1

2∆tF (un+ 1
2
) ,

(5.9)

and the Tang-Warnecke scheme (5.4) reads



un+ 1

2
= un + 1

2∆tF (un) ,

un+1 = un + ∆tI1F (un) + 1
2∆tI2

(
F (un) + F (un+ 1

2
)
)
.

(5.10)

In the following we will refer to (5.9) as the OS1 scheme, and to (5.10) as the
TW1 scheme. We note that in [37] and [54] the number of sub-steps on the
index set I2 was allowed to be larger than two for these schemes. More general
formulations will be considered in Section 5.5.

5.2.3 Monotonicity assumptions

Consider a suitable convex functional,1 semi-norm or norm ‖v‖ for v = [vj ] ∈
R

m. Interesting examples are the maximum-norm

‖v‖∞ = max
1≤j≤m

|vj | , (5.11)

1Recall that φ : R
m → R is called a convex functional if φ(v) ≥ 0, φ(v + w) ≤ φ(v) + φ(w)

and φ(αv) = αφ(v) for all α ≥ 0, v, w ∈ R
m. If we also have φ(−v) = φ(v) for all v ∈ R

m,
then φ is a semi-norm. If it holds in addition that φ(v) = 0 only if v = 0, then φ is a norm.
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or the total variation semi-norm

‖v‖
TV

=

m∑

j=1

|vj−1 − vj | with v0 = vm , (5.12)

arising from one-dimensional scalar PDEs with spatial periodicity.
The basic monotonicity assumption on the semi-discrete system that will be

used in this section is

‖v + τ1I1F (v) +
1

2
τ2I2F (v)‖ ≤ ‖v‖ for all v ∈ R

m and 0 ≤ τ1, τ2 ≤ τ0 ,

(5.13)
where τ0 > 0 is a problem dependent parameter. For the multirate schemes we
shall determine factors C such that we have the monotonicity property

‖un+1‖ ≤ ‖un‖ whenever ∆t ≤ Cτ0 . (5.14)

For a given scheme, the optimal C will be called the threshold factor for mono-
tonicity. In general, such monotonicity properties are intended to ensure that
unwanted overshoots or numerical oscillations will not arise. Following [48, 49]
we will call a scheme total variation diminishing (TVD) if (5.14) holds with
the semi-norm (5.12). If the (semi-)norm is not specified, methods that have a
positive threshold C can be called strong stability preserving (SSP), as in [15]
for standard, single-rate methods.

Example 5.2.1 Apart from (semi-)norms, such as ‖v‖
TV

and ‖v‖∞, we can
also consider sublinear functionals. For example, following [52], consider

‖v‖+ = max
1≤j≤m

vj , ‖v‖− = − min
1≤j≤m

vj .

Then, having (5.14) for both these convex functionals amounts to the maximum
principle

min
1≤i≤m

u0
i ≤ un

j ≤ max
1≤i≤m

u0
i for all n ≥ 1 and 1 ≤ j ≤ m.

In general, this is of course somewhat stronger than having monotonicity in
the maximum-norm, ‖un+1‖∞ ≤ ‖un‖∞, but for the schemes considered in this
chapter the associated threshold values C will be the same. �

Example 5.2.2 Consider a scalar conservation law ut + f(u)x = 0 with a
periodic boundary condition, and with 0 ≤ f ′(u) ≤ α. Spatial discretization in
conservation form gives semi-discrete systems (5.8) with

Fj(v) =
1

∆xj

(
f(vj− 1

2
) − f(vj+ 1

2
)
)

where vj±1/2 are the values at the cell boundaries, determined from the compo-
nents of v = [vi] ∈ R

m. Using limiters in the discretization it can be guaranteed
that

0 ≤
vj− 1

2
− vj+ 1

2

vj−1 − vj
≤ 1 + µ
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with a constant µ ≥ 0 determined by the limiter; see also formula (8) in [9]. This
holds trivially for the first-order upwind discretization with µ = 0; a detailed
higher-order example will be given in Appendix. It now follows that Fj(v) can
be written as

Fj(v) =
aj(v)

∆xj

(
vj−1 − vj

)
, j = 1, . . . ,m , v0 = vm ,

where
0 ≤ aj(v) ≤ α(1 + µ) for all j and v ∈ R

m.

Suppose that ∆xj = h for j ∈ I1 and ∆xj = 1
2h for j ∈ I2. Then a well-

known lemma of Harten [20, Lemma 2.2] shows that (5.13) will be valid for the
total variation semi-norm (5.12) provided that

ατ0
h

≤ 1

1 + µ
.

Moreover, it is easy to see that (5.13) will also hold in the maximum-norm under
the same CFL restriction. �

5.3 Analysis of the forward Euler multirate schemes

5.3.1 Monotonicity results

Monotonicity results for scheme TW1

Standard (single-rate) schemes give the same step size restriction for various
monotonicity properties. As we shall see, with the multirate schemes different
step size restrictions are obtained for the maximum-norm or the total variation
semi-norm.

In the first stage of the TW1 scheme (5.10) we have of course

‖un+ 1
2
‖ ≤ ‖un‖ whenever ∆t ≤ τ0 .

The second stage can be written in the form

un+1 = (1−θ)un+θ
(
un+ 1

2
−1

2
∆tF (un)

)
+∆tI1F (un)+

1

2
∆tI2

(
F (un)+F (un+ 1

2
)
)
,

with arbitrary θ ∈ [0, 1]. This leads to

un+1 = (1 − θ)
(
un +

2−θ
2(1−θ)∆tI1F (un) +

1

2
∆tI2F (un)

)

+ θ
(
un+ 1

2
+

1
2θ∆tI2F (un+ 1

2
)
)
.

(5.15)

Under assumption (5.13) this gives the monotonicity property (5.14) with

C = max
0≤θ≤1

min
(
1 ,

2(1−θ)
2−θ , θ

)
= 2 −

√
2 . (5.16)
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This value C ≈ 0.58 is valid for general semi-norms. So, in particular, it provides
a TVD result for schemes with limiters.

Next, consider the maximum-norm. Then, by noting that the second stage
can also be written as

un+1 = I1
(
un + ∆tI1F (un)

)
+ I2

(
un+ 1

2
+

1

2
∆tI2F (un+ 1

2
)
)
,

it directly follows (see also [54, Lemma2.1]) that the threshold factor for max-
norm monotonicity is

C = 1 . (5.17)

Note that this result has been obtained by using the inequality

‖I1v + I2w‖ ≤ max(‖v‖, ‖w‖) , (5.18)

which holds for the maximum-norm and for the convex functionals ‖ · ‖± from
Example 5.2.1, but not for general norms or semi-norms; in particular, it will
not hold for the total variation semi-norm.

Monotonicity results for scheme OS1

In the first stage of the OS1 scheme (5.9) we directly obtain

‖un+ 1
2
‖ ≤ ‖un‖ whenever ∆t ≤ τ0 .

The second stage can be written as

un+1 = (1 − θ)un + θ
(
un+ 1

2
− 1

2
∆tI2F (un)

)
+

1

2
∆tF (un) +

1

2
∆tF (un+ 1

2
)

with parameter θ ∈ [0, 1]. Hence

un+1 = (1 − θ)
(
un +

1
2(1−θ)∆tI1F (un) + 1

2∆tI2F (un)
)

+ θ
(
un+ 1

2
+

1
2θ∆tF (un+ 1

2
)
)
.

(5.19)

It follows that under assumption (5.13) the monotonicity property (5.14) holds
with

C = max
0≤θ≤1

min
(
1 , 2(1 − θ) , θ

)
=

2

3
. (5.20)

Again, for the maximum-norm a better result can be obtained by considering
I1un+1 and I2un+1 separately. Multiplication of (5.19) with I1 and taking
θ = θ1 = 1

2 gives

I1un+1 =
1

2
I1
(
un + ∆tI1F (un)

)
+

1

2
I1
(
un+ 1

2
+ ∆tI1F (un+ 1

2
)
)
.

Likewise, with θ = θ2 = 1, it follows that

I2un+1 = I2
(
un+ 1

2
+

1

2
∆tI2F (un+ 1

2
)
)
.
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Hence the threshold factor for max-norm monotonicity is

C = 1 . (5.21)

This result, formulated in terms of a maximum principle, was already obtained
in [37] for first-order upwind spatial discretization and in [30] for a class of high-
resolution discretizations. In these papers also TVD results were presented; this
will be discussed below.

The TVD property for linear first-order upwind advection

For the linear advection equation ut + ux = 0 with spatial periodicity, the
first-order upwind discretization (5.2) can be written as

u′(t) = Au(t) , A = H−1(E − I) , (5.22)

with H = diag(∆x1, . . . ,∆xm) and E the backward shift operator, (Ev)i = vi−1

for i = 1, . . . ,m with v0 = vm. Consider also

Ã = H−1(−I + ET ) .

This corresponds to first-order upwind discretization for ut−ux = 0. We denote
Z = ∆tA, Z̃ = ∆tÃ. Then

Z̃ = H−1ZTH .

For the OS1 and TW1 schemes applied to (5.22) we have un+1 = Sun, where
the amplification matrix S can be written as S = R(Z) with

R(Z) =




R

OS1
(Z) = I + Z + 1

4ZI2Z ,

RTW1(Z) = I + Z + 1
4I2Z

2 .

Let R̃ be such that
R̃(Z)Z = Z R(Z) . (5.23)

It is easily seen that R̃
OS1

(Z) = I +Z + 1
4Z

2I2 and R̃
TW1

(Z) = I +Z + 1
4ZI2Z.

For both schemes it follows by some simple calculations that

R(Z̃) = H−1R̃(Z)TH . (5.24)

As we saw above, both schemes OS1 and TW1 are such that

‖R(Z̃)‖∞ ≤ 1 (5.25)

whenever νj = ∆t/∆xj ≤ k for j = Ik, k = 1, 2. It will now be demonstrated
that under the same CFL restriction we have

‖R(Z)v‖
TV

≤ ‖v‖
TV

for all v ∈ R
m, (5.26)

that is, the TVD property is valid with threshold C = 1 for the special case of
first-order upwind advection discretization.
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Lemma 5.3.1 If (5.24) and (5.25) are valid, then (5.26) is also satisfied.

Proof. Along with the discrete L1-norm on R
m, ‖v‖1 =

∑m
j=1 ∆xj |vj |, we

also consider the ℓ1-norm ‖v‖ℓ1 =
∑m

j=1 |vj |, together with the induced matrix

norms. Then we have ‖W‖∞ = ‖WT ‖ℓ1 for any W ∈ R
m×m; see for example

[23]. Moreover, it is easily seen that ‖WT ‖ℓ1 = ‖H−1WTH‖1, and therefore

‖W‖∞ = ‖H−1WTH‖1 .

Hence (5.24) and (5.25) imply

‖R̃(Z)‖1 ≤ 1 . (5.27)

Further we have

‖v‖
TV

=

m∑

j=1

|vj−1 − vj | = ‖Av‖1 =
1

∆t‖Zv‖1 .

Consequently, for a scheme un+1 = R(Z)un the TVD property (5.26) is equiv-
alent to

‖ZR(Z)v‖1 = ‖R̃(Z)Zv‖1 ≤ ‖Zv‖1 .

This is satisfied because ‖R̃(Z)w‖1 ≤ ‖w‖1 for any w ∈ R
m, in view of (5.27). �

The above result is not new for the OS1 scheme. In fact, already in [37]
the result was given for the case of first-order upwind discretization for non-
linear problems. In [30] this was extended to a class of high-resolution spatial
discretizations. The proofs of these more general results for the OS1 scheme are
more technical than the above.

5.3.2 Convergence for smooth problems

In this section bounds for the global errors en = u(tn) − un will be derived. It
will be assumed that the problem (5.8) is sufficiently smooth. Both the schemes
OS1 and TW1 are covered by the formula

un+ 1
2

= un + κ∆tI1F (un) + 1
2∆tI2F (un) ,

un+1 = un + 1
2∆t

(
F (un) + F (un+ 1

2
)
)

+ κ∆tI1
(
F (un) − F (un+ 1

2
)
)
,

(5.28)

with parameter value κ = 0 for OS1 and κ = 1
2 for TW1.

If we insert exact ODE values u(tn), u(tn+1/2), u(tn+1) into the stages of
(5.28) we obtain residuals ρn+1/2 and ρn+1, respectively. By Taylor expansions
it is easily found that

ρn+ 1
2

= u(tn+ 1
2
) − u(tn) − κ∆tI1u

′(tn) − 1
2∆tI2u

′(tn)

=
(

1
2 − κ

)
∆tI1u

′(tn) + 1
8∆t2u′′(tn) + O(∆t3) ,
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ρn+1 = u(tn+1) − u(tn) −
(

1
2I + κI1

)
∆tu′(tn) −

(
1
2I − κI1

)
∆tu′(tn+ 1

2
)

= ∆t2
(

1
4I + 1

2κI1
)
u′′(tn) + O(∆t3) .

Let Zℓ ∈ R
m×m be such that

Zℓ

(
u(tℓ) − uℓ

)
= ∆t

(
F (u(tℓ)) − F (uℓ)

)
(5.29)

for all ℓ = n, n+ 1
2 , n ≥ 0. If F is differentiable we can take Zℓ as the integrated

Jacobian matrix

Zℓ =

∫ 1

0

∆tF ′(θu(tℓ) + (1 − θ)uℓ) dθ .

For the errors in the two stages of (5.28) it follows that

en+ 1
2

= en + κI1Znen + 1
2I2Znen + ρn+ 1

2
,

en+1 = en + 1
2Znen + 1

2Zn+ 1
2
en+ 1

2
+ κI1

(
Znen − Zn+ 1

2
en+ 1

2

)
+ ρn+1 .

Eliminating en+1/2 we thus obtain a recursion for the global errors of the form

en+1 = Snen + dn , n = 0, 1, . . . , (5.30)

with amplification matrix Sn and local discretization error dn. The resulting
expressions are given below for κ = 0, 1

2 . The recursion (5.30) will be the
basis for the subsequent analysis. The method is called consistent of order p if
‖dn‖ = O(∆tp+1), and convergent of order p if ‖en‖ = O(∆tp) for all n.

Since we want to study convergence at all grid points, including the interface
points, the natural norm is the maximum-norm. For stability it will be assumed
that

‖I + I1Zℓ +
1

2
I2Zℓ‖∞ ≤ 1 , (5.31)

for all ℓ = n, n+ 1
2 . It is easily seen that we then have

‖I + θ1I1Zℓ +
1

2
θ2I2Zℓ‖∞ ≤ 1

whenever 0 ≤ θj ≤ 1. This is of the same form as (5.13), with F (v) replaced by
Zℓv.

In combination with the smoothness assumptions on the problem this sta-
bility result will easily lead to convergence for the TW1 scheme. Due to the
inconsistency at interface points, the error build-up is more complicated for
scheme OS1. It will still be possible to show convergence with order one under
the following additional assumptions:

‖I2Zℓ‖∞ ≤ 4K < 4 , (5.32)

‖Zℓ+ 1
2
− Zℓ‖∞ ≤ L∆t , (5.33)

for ℓ = n, n+ 1
2 , n ≥ 0, with constants K ∈ (0, 1) and L ≥ 0. Note that (5.32)

may be slightly stronger than the local CFL condition implied by (5.31) on the
index set I2.
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Convergence of scheme TW1

For the TW1 scheme (5.10) we obtain from the above derivation, with κ = 1
2 ,

the expressions

Sn = I1
(
I + Zn

)
+ I2

(
I +

1

2
Zn+ 1

2

)(
I +

1

2
Zn

)
, (5.34)

dn =
1

2
∆t2
(
I1 +

1

2
I2 +

1

8
I2Zn+ 1

2

)
u′′(tn) + O(∆t3) . (5.35)

As already noted above, (5.31) has the same form as (5.13). Therefore we
can copy the derivation leading to (5.17) which now gives the bound

‖Sn‖∞ ≤ 1 (5.36)

for the amplification matrix.
Furthermore, (5.31) implies ‖I2(I + 1

4Zℓ)‖∞ ≤ 1, which provides the local
error bound

‖dn‖∞ ≤ 1

2
∆t2‖u′′(tn)‖∞ + O(∆t3) .

Convergence now follows in a standard fashion. Summarizing, we have the
following result:

Theorem 5.3.1 Consider the TW1 scheme (5.10) with the time step restric-
tion (5.31). Then ‖S‖∞ ≤ 1, and we have the error bound

‖en‖∞ ≤ 1

2
T∆t max

t∈[0,T ]
‖u′′(t)‖∞ + O(∆t2) , 0 ≤ tn ≤ T .

Convergence of scheme OS1

Also for the OS1 scheme (5.9) we can prove convergence with order one in the
maximum-norm, in spite of the local inconsistencies. For this result, damping
and cancellation effects are to be taken into account.

For the OS1 scheme we obtain from the above derivation, with κ = 0, the
expressions

Sn = I +
1

2
Zn +

1

2
Zn+ 1

2

(
I +

1

2
I2Zn

)
, (5.37)

dn =
1

4
∆tZn+ 1

2
I1u

′(tn) +
1

4
∆t2
(
I +

1

4
Zn+ 1

2

)
u′′(tn) + O(∆t3) . (5.38)

In the same way as above it follows that (5.36) is valid, showing stability of
the error recursion. However, here we get only an O(∆t) bound for the local
errors because ZℓI1u

′(tn) will not be an O(∆t) term in general; this is due to
the fact that I1u

′(t) is not a smooth grid function (jumps at the interfaces).
To prove convergence we need to establish a relation between local errors and
amplification factors.
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We have

Sn − I = Zn+ 1
2

(
I +

1

4
I2Zn

)
− 1

2

(
Zn+ 1

2
− Zn

)
.

Hence

Zn+ 1
2

= (Sn − I)Qn + 1
2

(
Zn+ 1

2
− Zn

)
Qn , Qn =

(
I + 1

4I2Zn

)−1
.

It follows that we can decompose the local error as

dn = (Sn − I)ξn + ηn , (5.39)

with

ξn = 1
4∆tQnI1u

′(tn) ,

ηn = 1
8∆t

(
Zn+ 1

2
− Zn

)
QnI1u

′(tn) + 1
4∆t2

(
I + 1

4Zn+ 1
2

)
u′′(tn) + O(∆t3) .

(5.40)
Such a decomposition can be used to show convergence for scheme OS1; the

arguments are the same as in [27, p. 216] for constant Sn = S. Let us define
ên = en + ξn for n ≥ 0. Then

ên+1 = Snên + d̂n , d̂n = ξn+1 − ξn + ηn ,

for n ≥ 0. Hence

‖ên‖∞ ≤ ‖ê0‖∞ +

n∑

k=0

‖d̂k‖∞ .

Since e0 = 0 we obtain

‖en‖∞ ≤ ‖ξ0‖∞ + ‖ξn‖∞ +
n∑

k=0

(
‖ξk+1 − ξk‖∞ + ‖ηk‖∞

)
. (5.41)

It remains to bound the terms on the right-hand side. Under assumption
(5.32) it is easily seen that

‖Qk‖∞ ≤ (1 −K)−1 .

Moreover, we have

Qk+1 −Qk = −1

4
Qk(I2Zk+1 − I2Zk)Qk+1 ,

‖Qk+1 −Qk‖∞ ≤ 1

2
∆tL(1 −K)−2 .

It follows that

‖ξk‖∞ ≤ 1
4 (1 −K)−1∆t‖u′(tk)‖∞ ,

‖ξk+1 − ξk‖∞ ≤ 1
8 (1 −K)−2L∆t2‖u′(tk)‖∞ + 1

4 (1 −K)−1∆t2‖u′′(tk)‖∞ + O(∆t3) ,

‖ηk‖∞ ≤ 1
8 (1 −K)−1L∆t2‖u′(tk)‖∞ + 1

4∆t2‖u′′(tk)‖∞ .

Insertion of these three estimates into (5.41) gives the following convergence
result.
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Theorem 5.3.2 Consider the OS1 scheme (5.9) with the time step restriction
(5.31). Then ‖S‖∞ ≤ 1. Under the additional assumption (5.32), (5.33) we
have the error bound

‖en‖∞ ≤ (M1 +M2TL)∆t max
t∈[0,T ]

‖u′(t)‖∞ +M3T∆t max
t∈[0,T ]

‖u′′(t)‖∞ +O(∆t2) ,

for 0 ≤ tn ≤ T , with M1,M2,M3 determined by K.

Convergence of OS1 for linear first-order upwind advection

Consider the first-order upwind discretization (5.2) for linear advection. Then
(5.31) will hold if

∆t
∆xj

≤ 1 for j ∈ I1 ,
∆t

2∆xj
≤ 1 for j ∈ I2 .

These are the usual restrictions on the local Courant numbers. To have (5.32)
we get the restriction

∆t

2∆xj
≤ K < 1 for j ∈ I2 .

However, for this first-order upwind advection case the condition (5.32) with
K < 1 is not needed. Let Z = ∆tA with A as in (5.22). Suppose for simplicity
that I1 = {j : j < i}, I2 = {j : j ≥ i} with given i ∈ I. Consider

(S − I)ξ = ZI1v ,

where ξ = ξn and v = vn = 1
4∆tu′(tn) in the local error decomposition (5.39).

The vector ξ will satisfy this relation if (I + 1
4I2Z)ξ = I1v, that is

I1ξ = I1v , I2
(
I +

1

4
Z
)
ξ = 0 .

It is seen that ξ = [ξj ] ∈ R
m is given by

ξj = vj (for j < i) , ξi+k =
( νj

νj−4

)k+1

vi−1 (for k ≥ 0) ,

where νj = ∆t/∆xj . Therefore ‖ξ‖∞ ≤ ‖v‖∞ if νj ≤ 2 on I2.
It follows that for this linear advection case, the local error decomposition

(5.39) will be valid under (5.31), with ‖ξn‖∞ = O(∆t), ‖ξn+1−ξn‖∞ = O(∆t2),
and with ‖ηn‖∞ = O(∆t2) containing the higher-order terms in the local error,
leading to convergence with order one.

5.4 Second-order schemes

In the literature, several second-order multirate schemes for conservation laws
have been derived that are based on the standard two-stage Runge-Kutta method

u∗n+1 = un + ∆tF (un) , un+1 = un + 1
2∆t

(
F (un) + F (u∗n+1)

)
.
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The second stage can also be written as

un+1 =
1

2
un +

1

2

(
u∗n+1 + ∆tF (u∗n+1)

)
.

Monotonicity properties are more clear with this form. The method is known
as the explicit trapezoidal rule or the modified Euler method. In this section
we consider some multirate schemes, based on this method, with one level of
temporal refinement. Results on internal consistency and mass conservation are
mentioned here, but a detailed discussion will only be given in Section 5.5.

The second-order scheme of Tang & Warnecke [54] reads





u∗
n+ 1

2

= un + 1
2∆tF (un) ,

un+ 1
2

= 1
2

(
un + u∗

n+ 1
2

+ 1
2∆tF (u∗

n+ 1
2

)
)
,

u∗n+1 = I1
(
un + ∆tF (un)

)
+ I2

(
un+ 1

2
+ 1

2∆tF (un+ 1
2
)
)
,

un+1 = 1
2I1
(
un + u∗n+1 + ∆tF (u∗n+1)

)
+ 1

2I2
(
un+ 1

2
+ u∗n+1 + 1

2∆tF (u∗n+1)
)
.

(5.42)
We will refer to this scheme as TW2. It will be shown below that this scheme
is internally consistent but not mass-conserving.

Constantinescu & Sandu [8] introduced the following scheme, which will be
referred to as CS2,





u∗
n+ 1

2

= un + ∆tI1F (un) + 1
2∆tI2F (un) ,

un+ 1
2

= un + 1
4∆tI2

(
F (un) + F (u∗

n+ 1
2

)
)
,

u∗n+1 = I1
(
un + ∆tI1F (un+ 1

2
)
)

+ I2
(
un+ 1

2
+ 1

2F (un+ 1
2
)
)
,

un+1 = un + 1
4∆t

(
F (un) + F (u∗

n+ 1
2

) + F (un+ 1
2
) + F (u∗n+1)

)
.

(5.43)

This scheme is mass-conserving but not internally consistent. Nevertheless, we
will see that it is still convergent (with order one) in the maximum-norm due
to damping and cancellation effects. Note that for non-stiff ODE systems the
scheme will be consistent and convergent with order two.

The related method of Dawson and Kirby [9] is also mass-conserving but
not internally consistent. However in that scheme a limiter is applied which is
adapted to the outcome of previous stages, so it does not fit in the framework
of this chapter where the semi-discrete system is supposed to be given a priori.

In Savcenco [45] several other multirate schemes of order two can be found
for stiff (parabolic) problems. These are Rosenbrock-type schemes that contain
a parameter γ, and setting γ = 0 yields an explicit scheme. We consider here
the scheme that was introduced in [47]; it will be referred to as SHV2. In this
scheme, first a prediction ūn+1 is computed, followed by refinement steps on I2
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using interpolated values ūn+1/2 on I1. The scheme reads





ū∗n+1 = un + ∆tF (un) ,

ūn+1 = 1
2un + 1

2 ū
∗
n+1 + 1

2∆tF (ū∗n+1) ,

ūn+ 1
2

= 1
2un + 1

4 ūn+1 + 1
4 ū

∗
n+1 ,

u∗
n+ 1

2

= I1ūn+ 1
2

+ I2
(
un + 1

2∆tF (un)
)
,

un+ 1
2

= I1ūn+ 1
2

+ I2
(

1
2un + 1

2u
∗
n+ 1

2

+ 1
4∆tF (u∗

n+ 1
2

)
)
,

u∗n+1 = I1ūn+1 + I2
(
un+ 1

2
+ 1

2∆tF (un+ 1
2
)
)
,

un+1 = I1ūn+1 + I2
(

1
2un+ 1

2
+ 1

2u
∗
n+1 + 1

4∆tF (u∗n+1)
)
.

(5.44)

This scheme will be seen to be internally consistent but not mass-conserving.
We note that (5.44) could be written with fewer stages; there are no function
evaluations of ūn+1 and ūn+ 1

2
, so these vectors are just included for notational

convenience. Further we note that this scheme was not intended originally as
used here. Instead, the prediction values ū∗n+1 and ūn+1 were used in [47] to
estimate local errors, and based on this estimate the partitioning I = I1∪I2 was
adjusted. For the schemes in the present chapter the partitioning is supposed
to be given, based on local Courant numbers.

The interpolation step in (5.44) can be written as

ūn+ 1
2

=
3

4
un +

1

4
ūn+1 +

1

4
∆tF (un) , (5.45)

which corresponds to quadratic Hermite interpolation. As an alternative we can
also consider linear interpolation

ūn+ 1
2

=
1

2
un +

1

2
ūn+1 , (5.46)

but in the numerical tests (5.45) gave somewhat better results (errors approxi-
mately 5% smaller) in general.

In practical applications, for systems of conservation laws, evaluation of the
function components Fj(v) will be the main computational work. Note that
if IkF (v) is needed then v should be known on Ik and on a few additional
points near the interface (how many points depends on the stencil of the spatial
discretization). If we ignore these interface points, and assume that Ik contains
mk points, m1 +m2 = m, then we can easily estimate the amount of work per
step with the schemes. For the schemes TW2 and SHV2 this is 2(m+m2)µW

,
and for the CS2 scheme it is 4mµW , where µW is the measure of work for a
single component Fj(v). Therefore, if m2 ≪ m1, that is, temporal refinement
is only needed at few points, then the CS2 scheme will be approximately twice
as expensive as the other two schemes.
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Table 5.1: Results for the smooth advection problem with the CS2, TW2 and SHV2
schemes. Maximum errors and L1-errors at final time tN = T for various m with fixed
Courant number ν = 0.4.

m 100 200 400 800

CS2, ‖eN‖∞ 1.97 · 10−3 5.64 · 10−4 1.88 · 10−4 9.96 · 10−5

CS2, ‖eN‖1 7.11 · 10−4 1.84 · 10−4 4.85 · 10−5 1.28 · 10−5

TW2, ‖eN‖∞ 6.08 · 10−4 1.57 · 10−4 3.98 · 10−5 9.99 · 10−6

TW2, ‖eN‖1 2.85 · 10−4 7.35 · 10−5 1.86 · 10−5 4.66 · 10−6

SHV2, ‖eN‖∞ 6.10 · 10−4 1.57 · 10−4 3.95 · 10−5 9.90 · 10−6

SHV2, ‖eN‖1 2.91 · 10−4 7.40 · 10−5 1.86 · 10−5 4.66 · 10−6

5.4.1 Numerical tests

An analysis of the above second-order schemes will be given in the next section
in the framework of partitioned Runge-Kutta methods. Here we already present
some numerical results that will serve as benchmarks for the analysis.

Linear advection with smooth solution

As a first test on the accuracy of the schemes we consider the linear advec-
tion equation (5.1) on the spatial interval 0 < x < 1 with periodic boundary
conditions, and time interval 0 < t ≤ T = 1. For test purposes a uniform
spatial grid is taken, so that interface effects are certainly not due to the spatial
discretization, for which the WENO5 scheme is chosen; the formulas for this
discretization can be found for example in [48]. Temporal refinement is used at
the union of spatial intervals Dk = {x : |x − k/10| ≤ 1/40}, k = 1, . . . , 9, and
we consider a fixed Courant number ν = ∆t/∆x = 0.4.

For this accuracy test a smooth solution u(x, t) = sin2(π(x−t)) is considered.
The errors in the maximum-norm and discrete L1-norm (‖v‖1 =

∑
j ∆xj |vj |)

are presented in Table 5.1. It is seen that with the CS2 scheme we have only
first-order convergence in the maximum-norm, due to the interface points; the
L1-errors are still second-order. For the schemes TW2 and SHV2 we see an
order two convergence also in the maximum-norm. The entries in Table 5.1 are
the total (absolute) errors with respect to the PDE solution, but it was verified
that the spatial errors are much smaller here than the temporal errors.

To see that the large errors for scheme CS2 in the maximum-norm are indeed
caused by the interface points, the errors as function of x at the final time with
m = 800 are displayed in Figure 5.1. The (relatively) large errors for CS2 at
the interface points are clearly visible. For scheme TW2 there are no visible
interface effects. The errors for SHV2 are almost the same as for TW2.
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Figure 5.1: Errors versus xj ∈ (0, 1) at final time tN = T for the schemes CS2
(thick solid line) and TW2 (thick dashed line), m = 800.

The CS2 scheme is not internally consistent at the interfaces, but we see in
this test that it is still convergent. This is similar as with the OS1 scheme.

The linear advection test was repeated with an initial block-function with
the aim of seeing the effect of the lack of mass-conservation for the TW2 and
SHV2 schemes. In general, mass conservation is needed to guarantee a correct
shock speed and shock location. However, this test with a block function showed
very little difference between the schemes.

Burgers’ equation with stationary shock

In the above numerical test the lack of mass conservation for scheme TW2 only
gave a very small effect. To make this effect more pronounced we consider the
Burgers equation with a stationary shock at a grid interface. The equation is
given by

ut +
1

2

(
u2
)
x

= 0 (5.47)

for 0 < t < T = 0.3 and −1 < x < 1, with initial profile

u(x, 0) =

{
1 if |x| < 0.3 ,

−1 otherwise ,

and boundary conditions u(−1, t) = u(1, t) = −1. This will lead to a rarefaction
wave around x = −0.3 and a stationary shock at x = 0.3. In this experiment
refinement is used at D = ∪ 10

k=1[yk, yk +0.1], yk = 0.2 k− 1.1. So the stationary
shock is located at a grid interface.

The spatial discretization is given by the limited TVD scheme of Appendix
using a cell-centered non-uniform grid with mesh widths ∆xj = 1

2∆x if xj ∈ D,
and ∆xj = ∆x otherwise. Also I2 = {j : xj ∈ D} and I1 = I \ I2, so that
spatial and temporal refinements are taken at the same points.

Numerical solutions at the output time t = T are shown in Figure 5.2 for
∆x = 1

80 and ν = ∆t/∆x = 0.8. The left picture shows the solution with
−1 < x < 1 for the CS2 scheme. Differences between the schemes are not
well visible on this scale. Therefore the right picture shows a zoom around
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x = 0.3 for the schemes TW2, CS2 and SHV2. One sees that with CS2 the
shock location is correct; there is some smearing due to numerical diffusion in
the spatial discretization, but it is more or less symmetric around x = 0.3. The
solution of TW2 is leaning too much to the left, and for SHV2 too much to the
right. This due to the lack of (local) conservation.
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Figure 5.2: Numerical solutions at time T = 0.3 for ∆x = 1

80
, ν = 0.8. Left

picture: initial profile (dashed), and semi-discrete solution for −1 < x < 1. Right
picture: solutions around the stationary shock with the schemes TW2 (� marks), CS2
(◦ marks) and SHV2 (⋄ marks), and with exact PDE solution (dashed line).

Let M(v) =
∑

j ∆xjvj . (If the vj were densities, this would be total mass;
for Burgers’ equation it is more natural to think of momenta.) Then M(u(tn))−
M(un) is a conservation defect. Figure 5.3 shows this defect at the final time
tN = T for the three schemes on a fixed spatial mesh, ∆x = 1/160, and with ν =
∆t/∆x varying between 0 and 1.2. (We have taken ν = k/40, k = 1, 2, . . . , 48,
with markers placed when ν is a multiple of 0.1.) In the same figure, middle
plot, the increase of the total variation ‖uN‖

TV
is displayed. The total variation

should be 4, as for the PDE solution, and this is the numerical value for the
semi-discrete system (within machine precision). In this example it is conserved
with larger Courant numbers for the scheme CS2 than for TW2 and SHV2. The
right plot in the figure shows the increase of the maximum norm ‖uN‖∞ − 1.
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Figure 5.3: Conservation defects and increase of total variation and max-norm for
0 < ν ≤ 1.2 with ∆x = 1

160
, for the schemes TW2 (� marks), CS2 (◦ marks) and

SHV2 (⋄ marks).
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In these figures overflow values are not plotted. The schemes CS2 remained
stable in this test up to ν = 1.2, which is slightly larger than with the other two
schemes. The instabilities did emerge at the stationary shock. Adding some
initial perturbations results in instability for ν > 1 with all three schemes.

Finally, in Figure 5.4 the logarithm (base 10) of the L1-errors of the three
schemes are given, again for ∆x = 1/160 with varying ν. Both the errors with
respect to the semi-discrete solution and the errors with respect to the PDE
solution are plotted. It is seen that the ODE errors for CS2 are smaller than
for the other two schemes for large Courant numbers. That is due to the fact
that CS2 has a smaller error near the stationary shock. However, this scheme
is more inaccurate than TW2 and SHV2 in the rarefaction wave, similar as in
the previous test, and that reveals itself in the larger error for small Courant
numbers. In the PDE errors the spatial errors will become dominant for small
time steps, so there the best results are found for CS2 overall. From the PDE
point of view, temporal errors less then 10−3 are not relevant on this spatial
grid where we have a spatial error of 3.4 · 10−3 approximately (PDE error for
ν → 0).
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Figure 5.4: Logarithm (log
10

) of the L1-errors, with respect to the exact semi-
discrete solution (ODE error) and the exact PDE solution (PDE error), for 0 < ν ≤ 1.2
with ∆x = 1

160
. Results for the schemes TW2 (� marks), CS2 (◦ marks) and SHV2

(⋄ marks).

Burgers’ equation with moving shock

The last test is again Burgers’ equation (5.47), but now with a moving shock.
We take 0 < t < T = 0.6, −1 < x < 1 with initial profile

u(x, 0) =

{
1 if −0.6 < x < 0 ,

0 otherwise.

and boundary conditions u(−1, t) = u(1, t) = 0. This will lead to a rarefaction
wave between x = −0.6+ t and x = 0, together with a moving shock at x = 1

2 t.
Further, we use the same set-up as in the previous test.

The solutions at time T = 0.6 are shown in Figure 5.5. The enlargement
around the shock at x = 0.3 now shows very little difference between the three
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Figure 5.5: Numerical solutions at time T = 0.6 for ∆x = 1

80
, ν = 0.8. Left

picture: initial profile (dashed), and semi-discrete solution for −1 < x < 1. Right
picture: solutions around the moving shock with the schemes TW2 (� marks), CS2 (◦
marks) and SHV2 (⋄ marks), and with exact PDE solution (dashed line).

schemes. So the lack of mass conservation for the TW2 and SHV2 schemes does
not have much impact for this test. This is similar as in the tests of [54] for the
TW2 scheme.

The conservation defects and the increase of total variation and maximum-
norm, with fixed mesh width ∆x = 1

160 and variable ν, are displayed in Fig-
ure 5.6. Here we see that all three schemes start to loose the TVD property when
Courant numbers become larger than 0.8, approximately. The plot on the right
of the overshoot values ‖uN‖∞−1 looks similar, except that now the increase
starts at Courant number one. The loss of the TVD property for ν ∈ [0.8, 1] is
cause by oscillations at the shock, not in the rarefaction wave.
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Figure 5.6: Conservation defects and increase of total variation and max-norm for
0 < ν ≤ 1.2 with ∆x = 1

160
, for the schemes TW2 (� marks), CS2 (◦ marks) and

SHV2 (⋄ marks).

We see that the conservation defect in this test is much smaller than in the
previous test with a standing shock at a grid interface. Of course, both these
tests are somewhat academic, but for practical situations the present test with
a moving shock seems more relevant. Monotonicity for the TW2 and SHV2
schemes holds with larger Courant numbers than in the previous test. This
is caused by the fact that in the previous test there were two incoming fluxes
at the standing shock, whereas now we have one incoming and one outgoing
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flux at each grid cell. In the standing shock test the conservation property of
the CS2 scheme did suppress the tendency of increasing the total variation and
maximum-norm.

In Figure 5.7 the temporal (ODE) errors and total (PDE) errors are plotted,
again with fixed mesh width ∆x = 1

160 and variable ν. The ODE errors for
the CS2 scheme are larger than for the other two schemes for small Courant
numbers, but for the PDE errors this is not relevant here. In the plot of the
PDE errors we see that here the SHV2 scheme gives somewhat larger errors than
the TW2 and CS2 schemes. Detailed inspection of the solution plots revealed
that this is due to a slight dissipation with SHV2 at the top and bottom of the
rarefaction wave. We did notice, however, that these errors are quite sensitive
to the precise set-up of the test. For example, with T = 0.5 and initial profile
u(0, x) = 1 for −T < x < 0 and 0 otherwise, then the PDE errors of SHV2 were
smaller than with the other two schemes for the larger Courant numbers.
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Figure 5.7: Logarithm (log
10

) of the L1-errors, with respect to the exact semi-
discrete solution (ODE error) and the exact PDE solution (PDE error), for 0 < ν ≤ 1.2
with ∆x = 1

160
. Results for the schemes TW2 (� marks), CS2 (◦ marks) and SHV2

(⋄ marks).

For theoretical purposes it is interesting to note that with the Burgers flux
function f(u) = 1

2u
2 we have f ′(u) ∈ [0, 1] in this test. Furthermore, the

mesh width in space is ∆xj = ∆x/k for j ∈ Ik, k = 1, 2, and µ = 1 for
the used spatial discretization. Therefore, as discussed in Example 5.2.2, the
monotonicity assumption (5.13) will be satisfied with

τ0 =
1

2
∆x

for both the maximum-norm and for the total variation semi-norm. Note that
with the first-order upwind discretization this would be τ0 = ∆x.

5.5 Partitioned Runge-Kutta methods

5.5.1 General properties

In the multirate examples considered thus far, only one level of refinement was
used to keep the notation simple. Generalizations will be formulated in this
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section in terms of partitioned Runge-Kutta methods; see also [8, 16]. This
will enable us to present the schemes in a compact fashion. Since this chapter
is concerned with schemes for conservation laws, we will restrict ourselves to
explicit methods.

For the ODE system in R
m, arising from semi-discretization of a PDE with

given initial value,
u′(t) = F (u(t)) , u(0) = u0 , (5.48)

let I = I1 ∪ · · · ∪ Ir be an index partitioning with corresponding diagonal
matrices I = I1 + · · · + Ir, where the entries of the Ik are zero or one, and I
is the identity matrix. For a time step from tn to tn+1 = tn + ∆t, an explicit
partitioned Runge-Kutta method reads

vn,i = un + ∆t

r∑

k=1

i−1∑

j=1

a
(k)
ij IkF (vn,j) , i = 1, . . . , s ,

un+1 = un + ∆t
r∑

k=1

s∑

j=1

b
(k)
j IkF (vn,j) .

(5.49)

The internal stage vectors vn,i, i = 1, . . . , s, give approximations at intermediate
time levels. The multirate schemes of the previous sections all fit in this form
with r = 2. With r > 2 more levels of temporal refinement are allowed.

Internal consistency and conservation

Let c(k)
i =

∑i−1
j=1 a

(k)
ij , i = 1, . . . , s. If we have

c
(k)
i = c

(l)
i for all 1 ≤ k, l ≤ r and 1 ≤ i ≤ s , (5.50)

then the internal vectors vn,i will be consistent approximations to u(tn + ci∆t),
and the method will be called internally consistent. As will be seen, this is
an important property for the accuracy of the method when applied to semi-
discrete systems.

Apart from consistency, we will also regard global conservation, for example
mass conservation. Suppose that hT = [h1, . . . , hm] is such that hTu(t) =∑

j hjuj(t) is a conserved quantity for the ODE system (5.48). This will hold
for arbitrary initial value u0 provided that

hTF (v) = 0 for all v ∈ R
m . (5.51)

For the partitioned Runge-Kutta scheme we have

hTun+1 = hTun + ∆t

r∑

k=1

s∑

j=1

b
(k)
j hT IkF (vn,j)

= hTun + ∆t
∑

k 6=l

s∑

j=1

(
b
(k)
j − b

(l)
j

)
hT IkF (vn,j) ,
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for any 1 ≤ l ≤ r. Therefore, as noted in [8], the conservation property
hTun+1 = hTun will be valid provided that

b
(k)
j = b

(l)
j for all 1 ≤ k, l ≤ r and 1 ≤ j ≤ s . (5.52)

Order conditions for non-stiff problems

Below we shall use the order conditions for partitioned Runge-Kutta methods
applied to non-stiff problems as found in [18, Thm. I.15.9] for r = 2. This
classical order will be denoted by p. As we will see, it often does not correspond
to the order of convergence for semi-discrete systems, and therefore p is often
referred to as the classical order.

To write the order conditions in a compact way, let Ak = [a(k)
ij ] ∈ R

s×s and
bk = [b(k)

i ] ∈ R
s contain the coefficients of the method, and set e = [1, . . . , 1]T ∈

R
s. The conditions for p = 1 are just

bTk e = 1 for k = 1, . . . , r , (5.53)

that is
∑s

j=1 b
(k)
j = 1 for all k. To have p = 2 the coefficients should satisfy

bTkAl e =
1

2
for k, l = 1, . . . , r . (5.54)

The number of conditions quickly increase for higher orders; for p = 3 we get

bTkCl1Al2e =
1

3
, bTkAl1Al2e =

1

6
for k, l1, l2 = 1, . . . , r , (5.55)

where Cl = diag(Ale).

Formulation for non-autonomous systems

For non-autonomous systems

u′(t) = F (t, u(t)) , u(0) = u0 , (5.56)

we will use the partitioned method (5.49) with the stage function values F (vn,j)
replaced by F (tn +cj∆t, vn,j). If (5.50) is valid, the abscissa are naturally taken
as ci = c(k)

i , which is independent of k.
If (5.50) does not hold, then a proper choice of the abscissa is less obvious.

For the OS1 and CS2 multirate schemes with r = 2 it is natural to take ci = c(2)i .
As generalization we will therefore use

ci = c
(r)
i , i = 1, . . . , s . (5.57)

Note that if hTF (t, v) = 0 for all t ∈ R, v ∈ R
m, then we still have the

conservation property hTun+1 = hTun if the scheme satisfies (5.52).
The alternative of replacing IkF (vn,j) in (5.49) by IkF (tn + c(k)

j ∆t, vn,j) will
destroy this conservation property. If the non-autonomous form originates from
a source term in the PDE, this loss of conservation may be of little concern, but
for the advection equation ut +

(
a(x, t)u)x = 0 with time-dependent velocity it

is still a very desirable property.
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Example 5.5.1 The OS1 scheme (5.9) leads to the partitioned method (5.49)
with r = 2 and coefficients given by

a
(1)
ij a

(2)
ij

b
(1)
j b

(2)
j

=

0 0

0 0 1/2 0

1/2 1/2 1/2 1/2

For non-autonomous systems u′(t) = F (t, u(t)) the scheme with (5.57) reads




un+ 1

2
= un + 1

2∆tI2F (tn, un) ,

un+1 = un + 1
2∆tF (tn, un) + 1

2∆tF (tn+ 1
2
, un+ 1

2
) .

The use of IkF (tn + c(k)
j ∆t, vn,j) instead of IkF (tn + cj∆t, vn,j), cj = c(2)j , would

lead to the same formula for un+1/2 in the first stage, but then

un+1 = un +
1

2
∆tF (tn, un) +

1

2
∆tI1F (tn, un+ 1

2
) +

1

2
∆tI2F (tn+ 1

2
, un+ 1

2
) ,

which is no longer conservative. �

The above order conditions have been derived for autonomous systems, but
with (5.57) they are also valid for non-autonomous systems. This follows from
the fact that u′(t) = F (t, u(t)) can be written as an equivalent, augmented
autonomous system u′(t) = F (ϑ(t), u(t)), ϑ′(t) = 1, with ϑ(0) = 0, and applica-
tion of the partitioned method to this augmented system gives the same result
as to the original, non-autonomous system provided the additional equation
ϑ′(t) = 1 is included in the index set Ir.

Conservation versus internal consistency

For the multirate schemes that have been considered in this chapter, the con-
ditions for internal consistency (5.50) and conservation (5.52) did not match.
This incompatibility is valid for all ‘genuine’ multirate schemes that are based
on one single method MRK, that is, for schemes (5.49) that reduce to mk ap-
plications (with step size ∆t/mk) of this base method MRK to cover [tn, tn+1]
in case that Ik = I and the other Il are empty.

Consider, as simple example, a quadrature problem u′(t) = g(t) ∈ R
m,

which is just a special case of (5.56). (In a PDE context, this can be viewed as
a degenerate case of advection with a source term where the advective velocity
happens to be zero.) Suppose (5.52) is valid, and let J = {i ∈ I : bi 6= 0}.
Then for the quadrature problem we simply get

un+1 = un + ∆t
∑

i∈J

bi g(tn + ci∆t) ,



114 Chapter 5. Multirate Runge-Kutta schemes for conservation laws

which is independent of the partitioning. However, if this is the result of a base
method MRK with m1 = 1, I1 = I, then the result for m2 = 2, I2 = I should
be

un+1 = un +
1

2
∆t
∑

i∈J

bi

(
g
(
tn +

1

2
ci∆t

)
+ g
(
tn +

1

2
(1 + ci)∆t

))
,

which is not the same for arbitrary source terms g.
Note that for general partitioned Runge-Kutta methods there is no conflict

between (5.50) and (5.52). Given a scheme with the same c(k)
i = c(l)

i (for all
i, k, l), but different weights b(k)

i 6= b(l)
i (for some i, k, l), we can add an extra

stage with new weights b∗i that are independent of k, to make it mass-conserving.
Of course, this will increase the computational work per step, and for the TW1,
TW2 and SHV2 schemes such a modification does not seem to lead to efficient
schemes.

5.5.2 Monotonicity and convex Euler combinations

We are in particular interested in the case where the partitioned Runge-Kutta
method (5.49) stands for a multirate scheme that takes mk substeps of size
∆t/mk on Ik to cover [tn, tn+1], k = 1, . . . , r, with m1 = 1 < m2 < · · · < mr.
The corresponding monotonicity assumption is

∥∥∥v +
r∑

k=1

τk
mk

IkF (v)
∥∥∥ ≤ ‖v‖ for all v ∈ R

m and τk ≤ τ0, k = 1, . . . , r ,

(5.58)
where ‖ · ‖ is a convex functional or (semi-)norm. For theoretical purposes we
will also consider

∥∥v +
τ0
mk

IkF (v)
∥∥ ≤ ‖v‖ for all v ∈ R

m and k = 1, . . . , r . (5.59)

Of course, (5.58) implies (5.59). On the other hand, if (5.59) is valid, then the
inequality in (5.58) will hold under the step size restriction τ1 + · · ·+τm ≤ τ0. If
we are dealing with the maximum-norm, then (5.58) and (5.59) are equivalent.

In the following we denote for l = 1, . . . , r,





κ
(l)
ij = mla

(l)
ij , 1 ≤ i, j ≤ s ,

κ
(l)
s+1,j = mlb

(l)
j , 1 ≤ j ≤ s ,

κ
(l)
i,s+1 = 0 , 1 ≤ i ≤ s+ 1 .

(5.60)

These coefficients will be grouped in the (s+ 1)× (s+ 1) matrix Kl = [κ(l)
ij ]. It

is convenient to add vn,s+1 = un+1 to the internal vectors. Then (5.49) can be
written as

vn,i = un +

r∑

l=1

i−1∑

j=1

κ
(l)
ij

∆t
ml

IlF (vn,j) , i = 1, . . . , s+ 1 . (5.61)
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Depending on the monotonicity assumption, we can consider various ways
to represent this partitioned scheme in terms of convex Euler combinations.
For this we will introduce new method coefficients α(k)

ij , β(k)
ij with corresponding

lower triangular matrices Ak = [α(k)
ij ] and Bk = [β(k)

ij ]. Such convex Euler forms
are also called Shu-Osher forms, after [49] where such representations were used
originally to demonstrate the TVD property of certain Runge-Kutta methods.

Inequalities for matrices or vectors in this section are to be understood
component-wise, that is, P = [pij ] ≥ 0 means that all pij are non-negative.
Furthermore, if P ∈ R

(s+1)×q1 and Q ∈ R
(s+1)×q2 , then [[P Q]] stands for the

matrix whose first q1 columns equal those of P and the other columns equal
those of Q. In this section we let e = [1, 1, . . . , 1]T ∈ R

s+1, and we use the
convention α/β = +∞ if α ≥ 0, β = 0.

Convex Euler form I: maximum-norm monotonicity.

A suitable form of (5.61) to obtain results on monotonicity in the maximum-
norm is

vn,i =

r∑

k=1

Ik

((
1 − α

(k)
i

)
un +

i−1∑

j=1

(
α

(k)
ij vn,j + β

(k)
ij

∆t
mk

F (vn,j)
))
, (5.62)

where α(k)
i =

∑i−1
j=1 α

(k)
ij and i = 1, . . . , s + 1. To have correspondence between

(5.61) and (5.62) the coefficients should satisfy

Kk =
(
I −Ak

)−1Bk , k = 1, . . . , r . (5.63)

Further we want the coefficients to be such that

α
(k)
i ≤ 1 , α

(k)
ij , β

(k)
ij ≥ 0 for 1 ≤ j < i ≤ s+ 1 , 1 ≤ k ≤ r . (5.64)

For such coefficients, let

C = min
i,j,k

α
(k)
ij /β

(k)
ij . (5.65)

If there are no coefficients such that (5.63) and (5.64) are satisfied, we set C = 0.

Theorem 5.5.1 Consider (5.62) with (5.64) and let C be given by (5.65). As-
sume (5.58) is valid in the maximum-norm. Then ‖un+1‖∞ ≤ ‖un‖∞ whenever
∆t ≤ Cτ0.

Proof. The form (5.62) is equivalent to

Ikvn,i = Ik

((
1−α(k)

i

)
un+

i−1∑

j=1

(
α

(k)
ij vn,j+β

(k)
ij

∆t
mk

IkF (vn,j)
))
, k = 1, . . . , r .

We have vn,1 = un. Suppose (induction assumption) that ‖vn,j‖∞ ≤ ‖un‖∞ for
j = 1, . . . , i− 1. Since

α
(k)
ij vn,j+β

(k)
ij

∆t
mk

IkF (vn,j) =
(
α

(k)
ij −Cβ(k)

ij

)
vn,j+Cβ

(k)
ij

(
vn,j+

∆t
Cmk

IkF (vn,j)
)
,
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we then have

‖α(k)
ij vn,j + β

(k)
ij

∆t
mk

IkF (vn,j)‖∞ ≤ α
(k)
ij ‖vn,j‖∞ ≤ α

(k)
ij ‖un‖∞ .

It follows that ‖Ikvn,i‖∞ ≤ ‖un‖∞ for k = 1, . . . , r, and hence ‖vn,i‖∞ ≤
‖un‖∞. Using induction with respect to i = 1, . . . , s+1 the proof thus follows. �

It is obvious that we are in particular interested in the optimal value of C
in (5.65) for a given method (5.61). To obtain a suitable expression for this
optimal value, we can follow the construction of Ferracina & Spijker [17] and
Higueras [21] for the individual Runge-Kutta methods given by the coefficients
Kk.

Theorem 5.5.2 The optimal value for C ≥ 0 in (5.65), under the constraints
(5.63) and (5.64), equals the largest γ ≥ 0 such that

(I + γKk)−1[[e γKk]] ≥ 0 , k = 1, . . . , r . (5.66)

Proof. Suppose γ ≥ 0 is such that (5.66) holds. We take Bk = (I + γKk)−1Kk

and Ak = γBk. With this choice it is easily seen that (5.63) and (5.64) are valid
and that (5.65) holds with C = γ.

On the other hand, suppose that we have (5.63), (5.64) and (5.65) with
C ≥ 0, and set γ = C. Then

(
I + γKk

)−1
[[e γKk]] =

(
I −Mk

)−1
[[(I −Ak)e γBk]] ,

where Mk = Ak − γBk. From (5.65) we know that Mk ≥ 0, and since it is a
strictly lower triangular matrix we also have

(I −Mk)−1 = I + Mk + M2
k + . . .+ Ms

k ≥ 0 .

It follows that (5.66) is valid. �

Convex Euler form II: monotonicity under (5.59)

If we assume (5.59) for a general (semi-)norm or convex functional, then a
suitable form for (5.61) is

vn,i =
(
1 − α

(0)
i

)
un +

r∑

k=1

i−1∑

j=1

(
α

(k)
ij vn,j + β(k)

ij

∆t
mk

IkF (vn,j)
)
, (5.67)

where α(0)
i =

∑i−1
j=1

(
α(1)

ij + · · · + α(r)
ij

)
, i = 1, . . . , s+ 1, and

Kk =
(
I −

r∑

l=1

Al

)−1

Bk , k = 1, . . . , r . (5.68)
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We want

α
(0)
i ≤ 1 , α

(k)
ij , β

(k)

ij
≥ 0 for 1 ≤ j < i ≤ s+ 1 , 1 ≤ k ≤ r , (5.69)

with an optimal

C = min
i,j,k

α
(k)
ij /β

(k)

ij
. (5.70)

Theorem 5.5.3 Assume (5.59) is valid.
(i) Consider (5.67) with (5.69) and let C be given by (5.70). Then ‖un+1‖ ≤
‖un‖ whenever ∆t ≤ Cτ0.
(ii) The optimal C ≥ 0 in (5.70), under the constraints (5.68) and (5.69), equals
the largest γ ≥ 0 such that

(
I +

r∑

l=1

γKl

)−1

[[e γKk]] ≥ 0 , k = 1, . . . , r . (5.71)

The proof of this result is similar to that of the Theorems 5.5.1 and 5.5.2.
In fact, the result for r = 2 can be obtained directly from Higueras [22] and
Spijker [52]. Further we note that the coefficient matrices Ak and Bk which
lead to an optimal value C are in this case given by Bk = (I +

∑
l γKl)

−1Kk

and Ak = γBk.

Convex Euler form III: TVD property and monotonicity under (5.58)

Finally, if (5.58) is assumed for a general (semi-)norm or convex functional, then
we consider

vn,i =
(
1 − α

(0)
i

)
un +

i−1∑

j=1

(
α

(0)
ij vn,j +

r∑

k=1

β
(k)

ij
∆t
mk

IkF (vn,j)
)
, (5.72)

where α(0)
i =

∑i−1
j=1 α

(0)
ij , i = 1, . . . , s+ 1, and

Kk = (I −A0)
−1Bk , k = 1, . . . , r . (5.73)

Here we want

α
(0)
i ≤ 1 , α

(0)
ij , β

(k)

ij ≥ 0 for 1 ≤ j < i ≤ s+ 1 , 1 ≤ k ≤ r . (5.74)

such that

C = min
i,j,k

α
(0)
ij /β

(k)

ij (5.75)

is optimal.

Theorem 5.5.4 Consider (5.72) with (5.74) and let C be given by (5.75). As-
sume (5.58) is valid. Then ‖un+1‖ ≤ ‖un‖ whenever ∆t ≤ Cτ0.
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The proof is similar to that of Theorem 5.5.1. For this case there is no
convenient representation of the optimal C. An optimization code can be used
to determine this optimal value. However, from the previous results we obtain
useful upper and lower bounds for C.

Theorem 5.5.5 The optimal values C, C, C in (5.65), (5.70) and (5.75) sat-
isfy

1
rC ≤ C ≤ C ≤ C .

Consequently, if C = 0 then C = 0.

Proof. Given an optimal C with corresponding coefficient matrices A0, Bk, we
can take Ak = A0, Bk = Bk. Then (5.63) and (5.64) hold and mini,j,k α

(k)
ij /β

(k)
ij ≥

C. Consequently we have C ≥ C for the optimal value C.
Likewise, for a given optimal C with corresponding Ak, Bk, we can choose

Bk = Bk, A0 =
∑r

l=1 Al. Then (5.73) and (5.74) hold and we have

min
i,j,k

α(0)
ij /β

(k)
ij ≥ C,

showing that C ≥ C.
On the other hand, for given optimal C with corresponding A0, Bk, we can

take Bk = Bk, Ak = 1
rA0. It follows that C ≥ 1

rC. �

Results for the multirate schemes with one level of refinement

The monotonicity results for the multirate schemes of the previous sections are
presented in Table 5.2. The table gives the threshold values C, C and C for the
various schemes. The results for the first-order schemes OS1 and TW1 can be
derived analytically as in Section 5.3.1; we get C = 1, C = 2/3, C = 1 − 1/

√
3

for OS1, and C = 1, C = 2 −
√

2, C = 1 − 1/
√

3 for TW1. The threshold
values C, C for the second-order schemes have been found numerically, using
(5.66) and (5.71). For the TW2 and CS2 schemes we have C = 0 and therefore
also C = 0. (The fact that C = 0 for these two schemes can also be shown
analytically, similar to [22], by considering (5.71) for small γ > 0.) The value
of C for SHV2 was obtained with the Matlab optimization code fminimax.
This does not provide a guarantee that the solution is a global optimum, and
therefore this C is to be considered as a lower bound. The fact that we merely
have C = 1/2 for the SHV2 scheme is due to the first stage. Finally we note that
for the variant of that scheme with linear interpolation (5.46), instead of (5.45),
it was found that C = 1/2, C = 0.304, and the optimization code produced the
same value C = 0.304 for this variant.

As noted before, the result C = 1 for the OS1 and TW1 scheme was already
given in [30, 37, 54] in terms of maximum principles. For the CS2 scheme the
same result has been proved in [8].

Recall that the threshold values C are such that we will have monotonicity
in the maximum-norm, as well as maximum principles, provided that ∆t ≤ Cτ0.
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Table 5.2: Threshold values for the multirate schemes with one level of refinement.
The entry C for the scheme SHV2 is a lower bound.

C C C

OS1 1 0.667 0.423

TW1 1 0.580 0.423

TW2 1 0 0

CS2 1 0 0

SHV2 0.5 0.284 0.284

Likewise, for spatial discretization with limiting the TVD property will hold if
∆t ≤ Cτ0. All this under corresponding assumptions (5.13) for the semi-discrete
system.

Comparison of these theoretical values with the experiments of Section 5.4.1
for Burgers’ equation with the TW2, CS2 and SHV2 schemes does not show a
clear correspondence. As was noted, in those experiments we had τ0 = 1

2∆x for
both the maximum-norm and the total variation semi-norm. Therefore, with
ν = ∆t/∆x, the TVD property is guaranteed by the above results for ν ≤ 1

2C
and the maximum principle for ν ≤ 1

2C. For the Burgers’ experiment with
a moving shock it was noticed that for the schemes TW2, CS2 and SHV2 we
had no overshoots for ν ≤ 1, whereas the TVD property was valid for ν ≤ 0.8
approximately. Therefore, for that test, the theoretical threshold values C = 0
for the TW2 and CS2 schemes in Table 5.2 are much too pessimistic. The same
seems to hold for the small value C = 1

2 of the SHV2 scheme compared to the
value C = 1 for TW2 and CS2. This may be caused by the fact that spatial
discretizations with flux-limiting (or of WENO type) do add some local diffusion
near very steep gradients, which may counteract an overshoot or increase of
total variation of the time stepping scheme. However, for the discrepancy in
the TVD results it is more likely that a more refined theory is needed. As
noted before, it was shown in [30] that the OS1 scheme is TVD for a class of
limited discretizations under the same step size restriction as for the maximum
principle, but that proof does not lend itself to generalization for the higher-
order schemes.

Remark 5.5.1 Refined TVD results for the OS1 and TW1 scheme were also
discussed in Section 5.3.1. It was shown that the TVD thresholds of both
the OS1 and TW1 schemes become 1 for the system (5.22) arising from linear
advection with first-order upwind discretization in space.

Experimentally, using various partitionings, including random partition-
ings, we observed that for this system the thresholds for monotonicity in the
maximum-norm are 1 for the TW2 and CS2 schemes, and approximately 0.66
for the SHV2 scheme, whereas the thresholds for the TVD property are 0.5 for
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the TW2 and CS2 schemes, and 0.86 for the SHV2 scheme.
Furthermore, it should be noticed that having a bound ‖S‖∞ ≤ 1 for the

amplification matrix S guarantees stability in the maximum norm for this linear
problem, but this is not a necessary condition. The spectral radius of S was
found to be bounded by 1 for Courant numbers νj = ∆t/∆xj ≤ k for j ∈ Ik,
k = 1, 2, for these three schemes, that is, including the SHV2 scheme. Note that
having spectral radius bounded by 1 is of course necessary for stability, but it
is not sufficient, not even in the L2 norm because the amplification matrices S
are not normal. �

5.5.3 Convergence for smooth problems

In this section we derive bounds for the discretization errors that are valid for
semi-discrete hyperbolic systems with smooth solutions. The classical, non-stiff
order conditions are then no longer sufficient to obtain convergence of order
p, due to the fact that F contains negative powers of the mesh widths ∆xj in
space. We will accept a restriction on ∆t/∆xj but the resulting error bounds
should not contain negative powers of ∆xj .

It is useful here to take also non-autonomous equations (5.56) into consider-
ation. Then linear constant coefficient problems u′(t) = Au(t) + g(t) with time
dependent source terms are included. Such g(t) may originate from a genuine
source term in the PDE or from an inhomogeneous boundary condition.

To ensure stability, it will be assumed that

∥∥ṽ − v +
τ0
mk

Ik
(
F (t, ṽ) − F (t, v)

)∥∥
∞

≤ ‖ṽ − v‖∞ , k = 1, . . . , r , (5.76)

for any two vectors ṽ, v ∈ R
m and t ∈ R. In applications to semi-discrete systems

obtained from conservation laws this τ0 will be proportional to the mesh widths
used in the spatial discretization, and hence an upper bound ∆t ≤ Cτ0 on the
step size will be a CFL restriction.

Perturbed schemes

Consider, along with (5.49) in non-autonomous form, the perturbed scheme

ṽn,i = ũn + ∆t

r∑

k=1

i−1∑

j=1

a
(k)
ij IkF (tn,j , ṽn,j) + ρn,i , i = 1, . . . , s ,

ũn+1 = ũn + ∆t
r∑

k=1

s∑

j=1

b
(k)
j IkF (tn,j , ṽn,j) + σn ,

(5.77)

where tn,j = tn + cj∆t and the ρn,i, σn are perturbations. These perturbations
will be used later on to obtain expressions for the discretization errors. In order
to distinguish the accuracy of the un from those of the internal stages we will
mainly use the standard form (5.49) rather than (5.61).

As before, let the matrices Ak = [a(k)
ij ] ∈ R

s×s and the vectors bk = [b(k)
i ] ∈

R
s contain the coefficients of the scheme. Further, for the vector of abscissa



5.5. Partitioned Runge-Kutta methods 121

c = [ci] ∈ R
s we denote cj = [c j

i ] for j ≥ 1, with c0 = e = [1, . . . , 1]T ∈ R
s. To

make the dimensions fitting we will use the Kronecker products Ak = Ak ⊗ I,
bT

k = bTk ⊗ I, cj = cj ⊗ I and e = e⊗ I with m×m identity matrix I = Im×m.
Likewise, Ik = I⊗Ik with s×s identity matrix I = Is×s. To make the notation
consistent, the ms×ms identity matrix is denoted by I.

Let Zn = diag(Zn,i) ∈ R
ms×ms with

Zn,i(ṽn,i − vn,i) = ∆t
(
F (tn,i, ṽn,i) − F (tn,i, vn,i)

)
. (5.78)

In view of (5.76) these Zn,i ∈ R
m×m can be taken such that2

∥∥I +
1

γmk
IkZn,i

∥∥
∞

≤ 1 for ∆t ≤ γτ0 , γ > 0 , k = 1, . . . , r . (5.79)

To write the difference of (5.77) and (5.49) in a compact form, let also ρn =
[ρn,i] ∈ R

sm and vn = [vn,i], ṽn = [ṽn,i] ∈ R
sm. Then

ṽn − vn = e(ũn − un) +

r∑

k=1

AkIkZn(ṽn − vn) + ρn ,

ũn+1 − un+1 = ũn − un +

r∑

k=1

bT
k IkZn(ṽn − vn) + σn .

(5.80)

Elimination of ṽn − vn thus leads to

ũn+1 − un+1 = Sn(ũn − un) + rT
nρn + σn , (5.81)

where

Sn = I + rT
ne , rT

n =
( r∑

k=1

bT
k IkZn

)(
I −

r∑

k=1

AkIkZn

)−1

. (5.82)

The following result provides stability for this recursion with a step size restric-
tion ∆t ≤ Cτ0, where C is the threshold for monotonicity in the maximum-
norm. We can consider arbitrary matrices Zn with blocks satisfying (5.79), so
that these matrices are independent from the perturbations ρn and σn.

Lemma 5.5.1 Consider (5.80). Assume (5.79) and ∆t ≤ Cτ0. Then

‖Sn‖∞ ≤ 1 , ‖rT
n‖∞ ≤ 2s . (5.83)

Proof. Denote wn,i = ṽn,i − vn,i and also wn,s+1 = ũn+1 − un+1, ρn,s+1 = σn.
Then

wn,i = ũn − un +

r∑

k=1

i−1∑

j=1

1
mk

κ
(k)
ij IkZn,jwn,j + ρn,i , i = 1, . . . , s+ 1 .

2As noted before, if F is differentiable we can take the Zn,i as integrated Jacobian matrices,
but also for non-differentiable F we can choose them to satisfy (5.78). This is similar to the
fact that if x, y ∈ R

m with ‖y‖∞ ≤ ‖x‖∞, then there is an V ∈ R
m×m such that V x = y

and ‖V ‖∞ ≤ 1; for example, if |xk| = ‖x‖∞, the matrix with kth column 1

xk
y and the other

columns zero.
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Following the construction used in Theorem 5.5.2 with optimal coefficients
β(k)

ij = α(k)
ij /γ, γ = C, we obtain

Ik(wn,i−ρn,i) =
(
1−α(k)

i

)
Ik(ũn−un)+

i−1∑

j=1

α
(k)
ij Ik

(
wn,j +

1
γmk

Zn,jwn,j−ρn,j

)
.

This leads to

‖Ikwn,i‖∞−‖ρn,i‖∞ ≤
(
1−α(k)

i

)
‖ũn −un‖∞ +

i−1∑

j=1

α
(k)
ij

(
‖wn,j‖∞ +‖ρn,j‖∞

)
.

If we make the induction assumption

‖wn,j‖∞ ≤ ‖ũn − un‖∞ + Lj max
ι≤j

‖ρn,ι‖∞ , (5.84)

for j = 1, . . . , i− 1, with Lj = 2j − 1, then

‖Ikwn,i‖∞ ≤ ‖ũn − un‖∞ +

i−1∑

j=1

α
(k)
ij

(
Lj max

ι≤j
‖ρn,ι‖∞ + ‖ρn,j‖∞

)
+ ‖ρn,i‖∞

≤ ‖ũn − un‖∞ + (Li−1 + 1) max
j≤i−1

‖ρn,j‖∞ + ‖ρn,i‖∞ .

Hence (5.84) will also be satisfied for j = i, and the proof thus follows. �

Note that without the internal perturbations we obtain a result on contrac-
tivity in the maximum-norm:

‖ũn+1 − un+1‖∞ ≤ ‖ũn − un‖∞ whenever ∆t ≤ Cτ0 , (5.85)

for any two parallel steps of the scheme (5.49), starting with ũn and un, respec-
tively. In the above proof, the arguments leading to monotonicity have been
copied. A more elegant and direct way to deduce contractivity from monotonic-
ity is found in [52, p. 1236], following a construction of [6] for inner-product
norms.

Local and global discretization errors

Throughout this section we will denote by O(∆tq) a term or vector that can be
bounded in norm by K∆tq, for ∆t > 0 small enough, with K not depending on
the mesh widths ∆xj in the spatial discretization. The norm in this section is
the maximum-norm. Moreover it will be tacitly assumed that the exact solution
is smooth, so that derivatives of u(t) are O(1).

Let en = u(tn)−un be the global discretization error at time level tn, n ≥ 0.
To obtain a recursion for these global errors we can employ the above perturbed
scheme with ũn = u(tn) and ṽn,i = u(tn,i), tn,i = tn + ci∆t, i = 1, . . . , s. This
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choice for the ṽn,i defines the perturbations ρn,i and σn. Assuming the exact
solution u to be l + 1 times differentiable, Taylor expansion directly leads to

ρn =

r∑

k=1

l∑

j=1

∆tj

j!

(
cj − jAkcj−1

)
Iku

(j)(tn) + O(∆tl+1) ,

σn =

r∑

k=1

l∑

j=1

∆tj

j!

(
I − jbT

k cj−1
)
Iku

(j)(tn) + O(∆tl+1) .

(5.86)

It follows that the global errors en = u(tn) − un satisfy the recursion

en+1 = Snen + dn , n ≥ 0 , (5.87)

with local discretization errors dn given by

dn = rT
nρn + σn , (5.88)

and with Sn ∈ R
m×m, rT

n ∈ R
m×ms given by (5.82).

Note that from ‖Sn‖∞ ≤ 1 it follows directly that consistency of order q (i.e.,
‖dn‖∞ = O(∆tq+1)) implies convergence of order q (i.e., ‖en‖∞ = O(∆tq)), but
we will see that the order of convergence can also be one larger than the order
of consistency.

Let us first consider methods with classical order p ≥ 1 that are not internally
consistent, that is, Ake 6= Ale for some k, l. Then the leading term in the local
error is

dn = ∆t rT
n

r∑

k=1

(c − Ake)Iku
′(tn) + O(∆t2) . (5.89)

This gives an O(∆t) local error bound, which is of course quite poor. After all,
dn is the error that results after one step if en = 0. However, as we will see
below, it can lead to convergence of order one.

Next assume the internal consistency condition (5.50) is satisfied, that is
Ake = Ale for 1 ≤ k, l ≤ r. If p = 1 it follows directly that ‖dn‖∞ = O(∆t2). If
p ≥ 2 the leading term in the local discretization errors is given by

dn = ∆t2rT
n

r∑

k=1

(1
2
c2 − Akc

)
Iku

′′(tn) + O(∆t3) . (5.90)

This still gives only consistency of order one, that is, an error O(∆t2) after one
step, but we will discuss below damping and cancellation effects that can lead
to convergence with order two in this case.

For problems that are (mildly) stiff, such as semi-discrete systems from hy-
perbolic equations, the above derivation shows that order reduction is to be
expected. This order reduction will appear primarily at interface points on the
spatial grid, where the grid-functions Iku

(j)(t) have jumps. This is similar to
the situation for standard Runge-Kutta methods, where order reduction ap-
pears at boundaries if the boundary values are time-dependent; see for instance
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the review with references in [27, Sect. II.2]. With the partitioned and multi-
rate schemes, we are creating interfaces that act like (internal) boundaries with
time-dependent boundary conditions.

Based on the local error behavior, one would expect convergence with order
one for the TW2 and SHV2 schemes, and lack of convergence for the scheme
CS2. This is not what was seen in the numerical test in Section 5.4.1 for
advection with a smooth solution. To obtain the correct (observed) order of
convergence q = 1, 2, we need to study the propagation of the leading term in
the local error. We already saw that the global error can be of the same order
∆tq as the local error if we have a suitable decomposition dn = (Sn − I)ξn + ηn.
In fact, we only need to study the principle term of the local error. It will be
assumed that there exist vectors ξn ∈ R

m, n ≥ 0, such that

∥∥∥
(
rT

ne
)
ξn − ∆tqrT

n

r∑

k=1

1

q!

(
cq − qAkcq−1

)
Iku

(q)(tn)
∥∥∥
∞

= O(∆tq+1) ,

‖ξn‖∞ = O(∆tq) , ‖ξn+1 − ξn‖∞ = O(∆tq+1) .




(5.91)

Then, following the proof of Theorem 5.3.2, we directly arrive at the following
result.

Proposition 5.5.1 Assume that (5.76) is valid, and let p be the (classical)
order of the partitioned Runge-Kutta method.
(i) If p = 1 and (5.91) holds with q = 1, then the method is convergent with
order one in the maximum-norm.
(ii) Suppose that p ≥ 2 and the method is internally consistent. Then, if (5.91)
holds with q = 2, the method is convergent with order two in the maximum-
norm.

The above result has been called a proposition, rather than a theorem, be-
cause it is far from clear how to verify the condition (5.91) in most situations of
practical importance. In the next subsection we will consider this condition for
a simple case: linear advection with first-order upwind spatial discretization.
Of course, this is not the spatial discretization one would like to use with a
high-order time stepping scheme, but it will give a heuristic explanation for the
temporal orders observed in the accuracy experiment in Section 5.4.1.

Remark 5.5.2 The above expressions for the local errors are similar to those
given in [24] for implicit-explicit Runge-Kutta methods, and in [40, 41] for a
class of implicit additive Runge-Kutta methods with domain decomposition.
Apart from the fact that these latter methods are implicit, because they are
intended for parabolic problems, an interesting feature is that the matrices Ik
are constructed from smooth grid functions, instead of the the step functions
(zero-one entries) in this chapter. This can have a positive influence on the
accuracy of the schemes. �
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Verification of condition (5.91) for linear advection

To study condition (5.91), let us consider linear problems with constant coeffi-
cients,

u′(t) = Au(t) + g(t) . (5.92)

Denote Z = ∆tA, Z = I ⊗ Z with I = Is×s the s× s identity matrix, and

r(Z)T = [r1(Z), . . . , rs(Z)] =
( r∑

k=1

bT
k IkZ

)(
I −

r∑

k=1

AkIkZ
)−1

. (5.93)

In this case we have bT
k IkZ = bTk ⊗ IkZ and AkIkZ = Ak ⊗ IkZ. The matrices

Ak are strictly lower triangular s× s matrices, and consequently a product of s
such matrices vanishes. Writing the matrix inverse in (5.93) as a power series,
it follows that

r(Z)T e =

s−1∑

l=0

r∑

k,j1,...,jl=1

(
bTkAj1 · · ·Ajl

e
)
IkZ Ij1Z · · · Ijl

Z . (5.94)

In the same way it is seen that

r(Z)T
r∑

i=1

(
cq − qAic

q−1
)
Ii

=

s−1∑

l=0

r∑

k,j1,...,jl,i=1

(
bTkAj1 · · ·Ajl

(cq − qAic
q−1)

)
IkZ Ij1Z · · · Ijl

Z Ii ,

(5.95)

If there is a matrix W ∈ R
m×m such that ‖W‖∞ = O(1) and

(
r(Z)T e

)
W = r(Z)T

r∑

i=1

(
cq − qAic

q−1
)
Ii , (5.96)

then we can take ξn = 1
q!∆t

qWu(q)(tn) in (5.91). Recall that ‖W‖∞ = O(1)
means that W can be bounded uniformly in the mesh width and dimension m.

Consider as a simple example, the semi-discrete system (5.2) in R
m with

u0(t) = 0, corresponding to first-order upwind discretization of the advection
equation with homogeneous inflow condition u(0, t) = 0. We take a partitioning
I = I1 ∪ I2 = {1, 2, . . . ,m} with I2 = {j : 1

4m < j ≤ 3
4m}, and mesh widths

∆xj = h if j ∈ I1, ∆xj = 1
2h if j ∈ I2, with h = 4/(3m). In Figure 5.8 we have

plotted the norm ‖W‖∞ as function of m = 20, 40, . . . , 640 for various values
of ν = ∆t/h for the schemes TW2 and CS2; the results for SHV2 were similar
to those of TW2. In this example, the matrix r(Z)T e is nonsingular, and it is
well-conditioned for ν ≤ 1. We see that ‖W‖∞ = O(1) provided that ν < 1,
whereas ‖W‖∞ ∼ m if ν = 1. Other partitionings I = I1 ∪I2 produced similar
results.

It is obvious that verification of condition (5.91) would be desirable for
nonlinear problems and higher-order (nonlinear) spatial discretizations. Never-
theless, the combination of Proposition 5.5.1 and these experimental bounds for
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Figure 5.8: Norm ‖W‖∞ versus m = 20, 40, . . . , 640 for various values of ν = ∆t/h
with the schemes TW2 (left) and CS2 (right). Markers: ◦ for ν = 0.5, � for ν = 0.75,
⋄ for ν = 0.9, △ for ν = 0.95 and ∗ for ν = 1.

first-order advection discretization does provide a heuristic explanation for the
numerical observations in Section 5.4.1 for the advection problem with smooth
solution and WENO5 spatial discretization, where we saw convergence of the
schemes TW2 and SHV2 with order two in the maximum-norm, and with order
one for the CS2 scheme.

5.6 Final remarks

5.6.1 Partitioning based on fluxes

For conservation laws ut + f(u)x = 0, the semi-discrete system (5.8) will in
general be of the form

u′j(t) = Fj(u(t)) =
1

∆xj

(
fj− 1

2
(u(t)) − fj+ 1

2
(u(t))

)
, j ∈ I = {1, 2, . . . ,m} .

Multirate methods can be based on these numerical fluxes fj±1/2(u) rather than
in terms of the components Fj(u), and this is not well covered by the above
formulations.

Suppose, as an example, that I1 = {j : j < i} and I2 = {j : j ≥ i}. Instead
of F = I1F + I2F , we can consider the decomposition F = F 1 +F 2 with vector
functions F 1 and F 2 whose jth component is given by

F 1
j (v) =

1
∆xj

(
fj− 1

2
(v) − fj+ 1

2
(v)
)
, F 2

j (v) = 0 for j < i ,

F 1
j (v) =

1
∆xi

fi− 1
2
(v) , F 2

j (v) =
−1
∆xi

fi+ 1
2
(v) for j = i ,

F 2
j (v) =

1
∆xj

(
fj− 1

2
(v) − fj+ 1

2
(v)
)
, F 1

j (v) = 0 , for j > i .





(5.97)
We can consider any of the above schemes with IkF (v) replaced by F k(v). Since
we are then dealing with fluxes, mass-conservation is guaranteed at any stage.
However, there are two reasons why such schemes were not considered in this
chapter.
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First, monotonicity assumptions such as (5.13) will not be valid in the
maximum-norm with this decomposition. This can be seen already quite easily
for the first-order upwind advection discretization (5.2). Writing this system as
u′(t) = Au(t), the above decomposition would correspond to A = AI1 + AI2,
that is, F k = AIk, but it is easy to show that ‖I + τAIk‖∞ is larger than one
for any τ > 0.

Secondly, such a decomposition of F can easily lead to inconsistencies, since
we do not have F k(u(t)) = O(1), no matter how smooth the solution is. For
example, for the first-order upwind system (5.2), formula (5.10) with F k replac-
ing IkF , k = 1, 2, leads to method (5.3) rather than (5.4). Using these F 1 and
F 2 in (5.9) gives a completely inconsistent result.

5.6.2 Summary and conclusions

In this chapter some multirate schemes based on the forward Euler method and
the two-stage explicit trapezoidal rule have been analyzed. All these methods
can be written as partitioned Runge-Kutta methods.

For the analysis of the monotonicity properties of the schemes we followed
the TVD/SSP framework of [15, 49], assuming monotonicity of one forward Eu-
ler step with suitable local time steps. Different monotonicity thresholds were
found for maximum-norm monotonicity and maximum principles on the one
hand, and the TVD property on the other hand. However, these theoretical
differences did not reveal themselves in the numerical tests. In practical situa-
tions, the threshold C found for maximum-norm monotonicity seems the most
relevant.

Many multirate schemes are not internally consistent. This may lead to low
accuracy at interface points. An analysis of the local discretization errors even
suggests lack of convergence, but this is too pessimistic. Also for the other
schemes, that are internally consistent, propagation of the leading local error
terms has to be studied to understand the proper convergence behavior.

Lack of mass conservation seems in many cases not a very serious defect be-
cause it only arises at interface points, so it will mainly be felt when a shock or
very steep solution gradient passes such an interface. This conclusion is similar
as in [54]. Of course, if mass conservation can be built in a scheme without
affecting other essential properties, such as internal consistency and compu-
tational work per step, this is advisable. For the schemes considered in this
chapter lacking mass conservation we did not find such suitable modifications.

The use of a high-order Runge-Kutta methods as basis for a multirate scheme
or a partitioned scheme will not directly lead to a high order of accuracy at
interface points. The discretization errors have to be considered within the
PDE context, leading to expressions for the local errors of the form (5.89) or
(5.90). Regarding the semi-discrete as a fixed (non-stiff) ODE will in general
lead to a too optimistic estimate of the rate of convergence.
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5.7 Appendix: a spatial discretization with TVD

limiter on non-uniform grids

As an example of a discretization with limiting we will consider formulas on
non-uniform grids that generalize the third-order upwind-biased scheme with
the so-called Koren limiter on uniform grids.

5.7.1 Discretization and limiting

For a non-uniform grid with cells Cj = (xj − 1
2∆xj , xj + 1

2∆xj) and cell-average
values uj , the third-order upwind-biased spatial discretization can be derived by
piecewise cubic reconstruction of the primitive grid-function Ui =

∑
j≤i ∆xjuj

and differentiation.
On Cj we take U(x) to be the cubic polynomial that passes through the

points (xj+k/2, Uj+k/2), k = −3,−1, 1, 3. Then the resulting values

uR
j− 1

2
= U ′(xj− 1

2
) , uL

j+ 1
2

= U ′(xj+ 1
2
) ,

can be used as cell-boundary values in a numerical flux-function. In the fol-
lowing we only give the formulas for the left states uL

j+1/2; those for uR
j−1/2 are

essentially the same, just the mirror image.
By some calculations (with Newton divided differences) it follows that

uL
j+ 1

2
= γL

−1,juj−1 + γL
0,juj + γL

1,juj+1 , (5.98)

with coefficients γL
0,j = 1 − γL

−1,j − γL
1,j and

γL
−1,j =

−∆xj∆xj+1

(∆xj−1 + ∆xj)(∆xj−1 + ∆xj + ∆xj+1)
,

γL
1,j =

(∆xj−1 + ∆xj)∆xj

(∆xj + ∆xj+1)(∆xj−1 + ∆xj + ∆xj+1)
.

This provides the non-limited value.
To apply a limiter, we first write (5.98) in the form

uL
j+ 1

2
= uj + ψ∗

j (uj+1 − uj) , ψ∗
j =

uL
j+ 1

2

− uj

uj+1 − uj
. (5.99)

Next we apply a limiter to this ψ∗
j ,

ψj = max
(
0 , min

(
1 , ψ∗

j , θj

))
, θj =

uj − uj−1

uj+1 − uj
, (5.100)

to obtain the limited value

uL
j+ 1

2
= uj + ψj(uj+1 − uj) . (5.101)
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This kind of limiting is often called ‘target limitering’ because the limited
values are taken as close as possible to a target scheme (which is in our case the
non-limited scheme) within the monotonicity constraints. It can be applied to
any scheme producing non-limited values uL

j+1/2. From (5.98), (5.99) it is seen

that ψ∗
j = γL

1,j − γL
−1,jθj , and therefore the limiter can also be written as

ψj = max
(
0 , min

(
1 , γL

1,j − γL
−1,jθj , θj

))
. (5.102)

To see that (5.101) will indeed introduce a spatial discretization with certain
monotonicity properties, such as positivity and TVD, note that

uL
j− 1

2

− uL
j+ 1

2

= ρj(uj−1 − uj) , ρj = 1 − ψj−1 + ψj / θj .

In view of (5.100) we have 0 ≤ ψj−1 ≤ 1 and 0 ≤ ψj/θj ≤ 1, and therefore

0 ≤ ρj ≤ 2 .

As explained in Example 5.2.2, this guarantees max-norm monotonicity and the
TVD property for ut + f(u)x = 0 with f ′(u) ≥ 0 (for the relevant range of u
values).

As mentioned already above, the formulas for the right states uR
j−1/2 are

essentially the same (reflexion around xj−1/2), and these will be used if we have
f ′(u) < 0 for all (relevant) u values. With an arbitrary flux function f(u)
a suitable flux splitting is to be used, for example the simple Lax-Friedrich
splitting given in [33, 48].

Remark 5.7.1 The numerical fluxes fj+1/2(u) = f(uj+1/2) of the limited dis-
cretization are Lipschitz continuous,

|fj+1/2(ũ) − fj+1/2(u)| ≤ L‖ũ− u‖|∞

for all ũ = [ũj ], u = [uj ] ∈ R
m. This is not obvious from (5.100), (5.102),

because the ratios θj will not satisfy a Lipschitz condition. However, if we
denote σj = uj+1 − uj , then by considering the different sign possibilities it is
seen that

uL
j+ 1

2
= uj + sign(σj)min

(
|σj | , γL

1,j |σj | − γL
−1,j |σj−1| , |σj−1|

)

if sign(σj) = sign(σj−1), and uL
j+1/2 = uj otherwise. From this the Lipschitz

condition can be deduced, with Lipschitz constant L determined by the actual
grid. �

5.7.2 Accuracy test

Consider the advection equation ut + ux = 0, 0 < x, t < 1, with spatial pe-
riodicity and initial value u(x, 0) = sin4(πx). The relative L1-errors of the
spatial discretization are given in Table 5.3 for various grids with m points,
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m = 20, 40, 80, 160. These results are to be compared with those in Ap-
pendix B of [5]. The random grids are chosen by first generating random
numbers σj ∈ [ 12 , 1] and then setting ∆xj = σj/

∑m
k=1 σk. The grids indi-

cated by ‘Block1’ and ‘Block2’ are cyclic repetitions of (∆x1,∆x2,∆x3,∆x4) =
(h, 2h, 3h, 4h) and (∆x1,∆x2,∆x3,∆x4) = (h, 2h, 10h, 11h), respectively, with
appropriate h = 4/(10m), h = 4/(14m), respectively.

Table 5.3: Relative L1-errors for scalar advection on non-uniform grids

Uniform Random Block 1 Block 2

Non-lim., m = 20 4.79 · 10−2 5.14 · 10−2 6.06 · 10−2 9.65 · 10−2

Non-lim., m = 40 6.82 · 10−3 7.49 · 10−3 9.13 · 10−3 1.58 · 10−2

Non-lim., m = 80 8.70 · 10−4 9.49 · 10−4 1.18 · 10−3 2.05 · 10−3

Non-lim., m = 160 1.09 · 10−4 1.19 · 10−4 1.49 · 10−4 2.60 · 10−4

Limited, m = 20 6.57 · 10−2 6.79 · 10−2 9.35 · 10−2 1.45 · 10−1

Limited, m = 40 1.36 · 10−2 1.49 · 10−2 2.02 · 10−2 3.32 · 10−2

Limited, m = 80 2.65 · 10−3 2.97 · 10−3 4.25 · 10−3 7.56 · 10−3

Limited, m = 160 4.97 · 10−4 5.73 · 10−4 8.11 · 10−4 1.58 · 10−3

The results compare favourably to those in [5], where it should be noted
that the random grid used here has more variation in [5] and also the initial
profile has been slightly changed to make it periodic.

We also note that the above limiter does not fit into the framework of slope
limiting with linear reconstruction considered in [5]. There it is required that
on each cell Cj we have an approximation u(x) = uj + (x− xj)sj , with slope sj

that may be limited, and then

uR
j− 1

2
= uj −

1

2
∆xjsj , uL

j+ 1
2

= uj +
1

2
∆xjsj .

To achieve this in the above algebraic framework one needs a certain ‘symmetry’
condition to ensure that uj is the average of uR

j−1/2 and uL
j+1/2.

The spatial discretization used in [8] is of the same form as (5.102) but
with different coefficients γk,j . In the above accuracy test this scheme gave less
accurate results, due to the fact that then the non-limited scheme is only of
order two. The errors with limiter were then a factor three to four larger than
in Table 5.3 on the fine grids, m = 160.

Finally we note that the limited schemes used in [54] are based on scaled
ratios θj = σj−1/σj with σk = (uk+1 − uk)/∆xk. It is not too difficult to
show that such schemes are not TVD or positivity preserving, but in tests
they do perform quite well; there are overshoots, but these are very minor.
Nevertheless, to remain within the theoretical framework outlined in Section ??,
the discretization (5.102) seems preferable.



Summary

For large systems of ordinary differential equations (ODEs), some components
may show a more active behavior than others. To solve such problems nu-
merically, multirate integration methods can be very efficient. These methods
enable the use of large time steps for slowly varying components and small steps
for rapidly varying ones. In this thesis we design, analyze and test multirate
methods for the numerical solution of ODEs.

A self-adjusting multirate time stepping strategy is presented in Chapter 1.
In this strategy the step size for a particular system component is determined
by the local temporal variation of this solution component, in contrast to the
use of a single step size for the whole set of components as in the traditional
methods. The partitioning into different levels of slow to fast components is
performed automatically during the time integration. The number of activity
levels, as well as the component partitioning, can change in time. Numerical
experiments confirm that with our strategy the efficiency of time integration
methods can be significantly improved by using large time steps for inactive
components, without sacrificing accuracy.

A multirate scheme, consisting of the θ-method with one level of temporal
local refinement, is analysed in Chapter 2. Missing component values, required
during the refinement step, are computed using linear or quadratic interpolation.
This interpolation turns out to be important for the stability of the multirate
scheme. Moreover, the analysis shows that the use of linear interpolation can
lead to an order reduction for stiff systems. The theoretical results are confirmed
in numerical experiments.

Two multirate strategies, recursive refinement and the compound step strat-
egy are compared in Chapter 3. The recursive refinement strategy has somewhat
larger asymptotic stability regions than the compound step strategy. The com-
pound step strategy, by avoiding the extra work of doing the macro step for all
the components, looses some stability properties compared to the recursive re-
finement strategy. It can also lead to more complex algebraic implicit systems,
which are difficult to solve numerically.

The construction of higher-order multirate Rosenbrock methods is discussed
in Chapter 4. Improper treatment of stiff source terms and use of lower-order
interpolants can lead to an order reduction, where we obtain a lower order of
consistency than for non-stiff problems. We recommend a strategy of avoidance
of the order reduction for problems with a stiff source term. A multirate method
based on the fourth-order Rosenbrock method RODAS and its third-order dense
output has been designed. This multirate RODAS method has shown very good
results in numerical experiments, and it is clearly more efficient than other
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considered multirate methods in these tests.
Explicit multirate and partitioned Runge-Kutta schemes for semi-discrete

hyperbolic conservation laws are analysed in Chapter 5. It appears that, for the
considered class of multirate methods, it is not possible to construct a multirate
scheme which is both locally consistent and mass-conservative. The analysis
shows that, in spite of local inconsistencies, global convergence is still possible
in all grid points.



Samenvatting

Voor grote systemen van gewone differentiaalvergelijkingen kunnen sommige
componenten een actiever gedrag vertonen dan andere. Om zulke problemen
numeriek op te lossen kunnen zogenaamde multirate methoden zeer efficiënt
zijn. Bij zulke methoden is het mogelijk om een grote tijdstap te nemen voor
langzaam variërende componenten en kleine tijdstappen voor componenten met
een snelle variatie. In dit proefschrift komen ontwerp, analyse en experimentele
resultaten aan de orde van multirate methoden voor het numeriek oplossen van
gewone differentiaal vergelijkingen.

Een zelf-regulerende multirate strategie wordt gepresenteerd in hoofdstuk 1.
Bij deze strategie is de stapgrootte voor een zekere component van het systeem
bepaald door de lokale verandering in tijd van deze component. Dit is anders
bij traditionele methoden waar één en dezelfde tijdstap gebruikt wordt voor
alle componenten. De partitionering in verschillende niveaus van activiteit,
van snelle tot langzame componenten, wordt automatisch uitgevoerd tijdens
de tijdsintegratie. Het aantal activiteiten-niveaus, alsmede de componenten
partitionering, kan variëren in tijd. Numerieke experimenten bevestigen dat de
efficiëntie van tijdsintegratie-methoden met onze strategie aanzienlijk verbeterd
kan worden door grote tijdstappen te gebruiken voor de inactieve componenten,
zonder aantasting van de nauwkeurigheid.

Een multirate schema, bestaande uit de zogenaamde θ-methode met één
niveau van lokale verfijning in tijd, wordt geanalyseerd in hoofdstuk 2. Niet-
aanwezige waarden van componenten die vereist worden tijdens de verfijn-
ingsstap worden berekend met lineaire of quadratische interpolatie. De keuze
van interpolatie blijkt zeer belangrijk voor de stabiliteit van het multirate schema.
De analyse laat bovendien zien dat het gebruik van lineaire interpolatie kan lei-
den tot een reductie van de orde van nauwkeurigheid van het schema voor stijve
problemen.

Twee multirate strategieën, recursieve verfijning en de compound step strate-
gie, worden vergeleken in hoofdstuk 3. De recursieve verfijnings strategie heeft
ietwat grotere gebieden van asymptotische stabiliteit. De compound step strate-
gie vermijdt het extra werk van de macro-stap voor alle componenenten, maar
dit leidt tot verlies van zekere stabiliteits eigenschappen in vergelijking met de
recursieve verfijnings strategie. Bovendien geeft de compound step strategie
aanleiding tot complexere algebraïsche impliciete systemen, die moeilijk nu-
meriek op te lossen zijn.

De constructie van hogere-orde multirate Rosenbrock methoden wordt be-
sproken in hoofdstuk 4. Een onjuiste behandeling van stijve brontermen en het
gebruik van lage-orde interpolanten kan leiden tot orde-reductie, waarbij we een
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lagere orde van consistentie krijgen dan voor niet-stijve problemen. Een aanpak
wordt aanbevolen waarmee deze orde-reductie voor problemen met een stijve
bronterm vermeden wordt. Een multirate methode gebaseerd op de vierde-
orde Rosenbrock methode RODAS met een derde-orde dense-output formule
is ontworpen. Deze multirate RODAS methode heeft zeer goede resultaten
opgeleverd in numerieke experimenten, en is duidelijk efficiënter dan andere
multirate methoden in deze experimenten.

Expliciete multirate methoden en gepartitioneerde Runge-Kutta methoden,
voor semi-discrete hyperbolische behoudswetten, worden geanalyseerd in hoofd-
stuk 5. Het blijkt dat het voor de beschouwde klasse van multirate methoden
niet mogelijk is om lokale consistentie te combineren met massabehoud. De
analyse geeft aan dat ondanks lokale inconsistenties toch globale convergentie
verkregen kan worden in alle roosterpunten.
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