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Abstract 

The empty space function of a stationary point process in Rd is the function that 
assigns to each r, r > 0, the probability that there is no point within distance r of 0. 
In a recent paper Van Lieshout and Baddeley study the so-called I-function, which is 
defined as the ratio of the empty space function of a stationary point process and that 
of its corresponding reduced Palm process. They advocate the use of the ]-function 
as a characterization of the type of spatial interaction. 

Therefore it is natural to ask whether J = 1 implies that the point process is 
Poisson. We restrict our analysis to the one-dimensional case and show that a 
classical construction by Szasz provides an immediate counterexample. In this 
example the interpoint distances are still exponentially distributed. This raises the 
question whether it is possible to have J ,.. 1 but non-exponentially distributed 
interpoint distances. We construct a point process with J"" 1 but where the interpoint 
distances are bounded. 
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1. Introduction and statement of the main result 

We will start by giving a rather informal introduction to some of the notions we 
need. For a formal treatment see, for instance, Daley and Vere-Jones (1988). 

Let µ, be the distribution of a stationary point process. The corresponding Palm 
process is obtained by 'conditioning on having a point in the origin'. (By a 'point' we 
will always mean a point of the point process.) It is well-known that if · · ·, L 1, 

r0 = 0, r 1, • • · denote the points of the Palm process, then the sequence of interpoint 
distances (X1, i e .l), defined by X; = r; - r;_ 1, i e .l is stationary. (One can also 
reverse the above procedure, so that each stationary sequence of non-negative 
random variables with finite expectations gives rise to a stationary point process.) 
Further, the reduced Palm process is simply obtained from the Palm process by 
removing the point at the origin. The distribution of the reduced Palm process will 
be denoted by µ, 1• 
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In a recent paper Van Lieshout and Baddeley (1996) introduced the function J 
defined by 

(1) 
( )- µ.!(no point in B(O, r)) 

J r - µ.(no point in B(O, r))' 
O<r<oo, 

where B(O, r) is the closed ball with center 0 and radius r. It is important to note 
that for a Poisson point processµ.=µ.!' and hence J = 1. To express the dependence 
of J on µ. we will sometimes write J w 

The ]-function was presented as a useful tool in spatial statistics (see also Stoyan 
et al. (1995), p. 121). In particular, Van Lieshout and Baddeley advocate its use as a 
(non-parametric) measure of spatial interaction. However, our results indicate that 
some care has to be taken in the use of this function as it is unable to distinguish 
between two very different types of point processes. 

Van Lieshout and Baddeley write that J < 1 suggests a 'clustered' pattern, J > 1 
suggests a 'regular' pattern, while J = 1 can be interpreted as lack of interaction. 
Because of the last it is a natural question whether J = 1 implies that the process is 
Poisson. 

In this paper we restrict to the one-dimensional case. We first show that a result of 
Szasz (1970) immediately implies that the answer to the question above is negative. 
Szasz proves that for every k there exists a point process (whose distribution we will 
denote by J.Lk) on lR, which is not Poisson, but has the property that, for all pairwise 
disjoint finite intervals VJ> U2 , • · · , Uk> the joint distribution of the number of points 
in U" 1 ~ i ~ k, is the same as for the Poisson point process with density l. Note that 
we have, for a stationary point process on lR with distribution µ,, 

(Z) J (r) = µ!(no point in [ -r, r]) 
µ µ(no point in [-r, r]) 

. µ,(no point [-r, e] and no point in[£, r] I one point in(-£, e)) 
=hm~~~~~~~~~~~~~~~~~~~~~~~~ 

, .... o µ.(no point in [-r, r]) 
(3) 

(4) 
. µ,(no point in [-r, r], one point in(-£, E), no point in [e, r]) 

=hm . 
, .... o µ. (one point in ( - e, £))µ(no point in [ -r, r]) 

However, for µ. = µ. 3, for every e > 0 each probability in the last expression is the 
same as for the Poisson point process with density l. Hence 

Inherent in this example is the fact that the interpoint distances are exponentially 
distributed. Therefore, the next natural question is whether there exists a point 
process with J = 1 but whose interpoint distances are not exponentially distributed. 
We show that this is indeed the case. In our example the interpoint distances are 
even bounded. 
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Figure 1 

Theorem 1. There exist suitable M > 0, c > 0 and an ergodic, stationary, symmetric 
point process which has J = 1, and for which the interpoint distances have expectation 
1 and probability density c/ (1 + x )2 on [O, M] and 0 outside this interval. 

Remarks. (i) Random variables with density proportional to 1/(1 + x)2 on a 
bounded interval are called shifted truncated Pareto random variables (with shape 
parameter 1). (ii) It will appear that M = 3.92 and c = 1.26. 

2. Proof of Theorem 1 

Consider a stationary point process with distribution µ,, and let, as before, X;, 
i E l. be the stationary sequence of interpoint distances for the associated Palm 
process. It is clear that if J = 1 then, after spatial scaling, we still have J = 1. 
Therefore we will assume that the X; have expectation 1. We will investigate what 
J = 1 means in terms of the interpoint distances. Clearly (using the notation of 
Section 1), 

(5) 
µ, 1(no point in [-r, r]) = P( L 1 < -r, • 1 > r) 

= P(X0 >r, X 1 >r) =P(X1 > r, X2>r). 

Now, for a Borel set B, let N(B) denote the number of points in B for the stationary 
point process, and let N0(B) be the analog for the Palm process. We have, of course, 

(6) µ,(no point in [-r, r]) = E[I(N([-r, r]) = O)], 

where /(') denotes the indicator function. From a standard result relating a 
stationary point process to its Palm process (see, e.g., equation (12.3.7) of Daley and 
Vere-Jones (1988)) we get immediately that the right-hand side in (6) equals 

E[lx, J(N0([x - r, x + r]) = 0) dx]. 
However, the above integral is evidently equal to (X1 - 2rt, where we use the 
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notation a"' for max (a, 0). So we have µ.(no point in [-r. r]) = E(X1 - 2r)"", and get 
the following lemma. 

Lemma l. Let · · · , X _ 1, X 0 , X 1 , • • • be a stationary sequence of non-negative 
random variables with E(X 0) = 1. Then the stationary point process whose Palm 
process has the above sequence (X;, i E £'.) as interpoint distances, has J = 1 if and 
only if 

(7) \:/r>O, 

Remark. It is easy to check that, for the Poisson process with intensity 1, (7) is 
indeed satisfied. 

Our strategy now is to construct a pair of random variables (X 1 , X 2) whose 
distribution is symmetric and satisfies (7) in Lemma l, and whose marginal 
distributions are as in Theorem 1. Moreover, our construction must have the 
property that the conditional distribution of X 2 , given X 1 , is sufficiently 'spread-out' 
so that we can extend the pair (X 1 , X 2 ) to a Markov chain · · · X _ 1, X 0 , X 1. • · • , 

that is stationary and ergodic. By Lemma 1 this sequence gives rise to a point 
process as mentioned in Theorem 1. 

Our construction uses the following lemma, which in turn is inspired by the 
construction used in Theorem 1 of Bedford and Meilijson ( 1993 ). 

Lemma 2. Let M > 0, and let F; and F;: [O, oc] ~ [O, 1] be continuous functions 
satisfying F; (0) = Fz(O) = 0, F1 = 1 on [ M /2, x) F2 = 1 on [ M, oc ), F; strictly increasing 
and differentiable on (0, M /2), Fi strictly increasing and differentiable on (0, M), and 
F; > F2 on (0, M). 

Then there exists a pair of non-negative random variables (X 1 , X 2) such that 
(a) (X 1 , X 2) has a symmetric distribution; 
(b) P(X 1 = X 2) = 0; 
(c) P(X 1 < t, X 1 < X2) = ~F1 (t), t E [O, oc); 
(d) P(X1 < t, X1 > X2) = ~Fz(t), t E [O, cc); 
(e) (X 1 , X 2 ) can be extended to a stationary ergodic sequence 
· · ·, X_1, Xo. X1, X2. · · ·. 

Remark. In fact, the sequence X;, i E "ll., in our construction will be a Markov 
chain. 

Proof of Lemma 2. See Figure 1. Let a0 = 1 and a;= fiFl 1(a;_ 1), i ~ 1 (where 
F] 1(1):= M/2). Then an!O as nj:x:. To construct (X 1, X 2), first draw a non-negative 
integer i with probability a; - ai+I· Then draw U1 and U2 uniformly and indepen
dently on the interval (a;+J• a;). Finally, with probability 1/2 take X 1 = F! 1(U1) and 
X2 = F2 1(U2) (call this choice 1) and with probability 1/2 take X 1 = Fi 1(U2) and 
X2 = F] 1(U1) (choice 2). 

We now prove the properties (a)-(e). 
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(a) This follows immediately from the (last step in the) above construction. 
(b) Note that given the value of i in the above construction, the random variable 
F2 1(U2) is (conditionally) independent of F) 1(U1) and has a continuous distribution 
(because Fi is strictly increasing on (0, M)). This implies the result. (Alternatively: 
F1 1(a;+1> a;) and F2 1(a;+ 1, a;) are disjoint. However this is no longer true after the 
adaptation in the remark below.) 
(c) First note that, in the construction above, U1 and U2 are uniformly distributed on 
(0, 1). Now 

(X1 < X2, X1 < t) ~ (X1 = F1 1(U1), X 1 < t)~(U1 < F;(t) and choice 1), 

which has probability ~Fi (t). 
(d) This is analogous to (c). 
( e) Let (X i. X 2) be as in the construction above. Given X 2 = x, choose X 3 

randomly with distribution P(X2 E. I X 1 = x). (This conditional probability is 
properly defined because of the differentiability condition in the statement of this 
lemma.) Then, given X3 = y, choose x4 randomly, with distribution P(X2 E .1 X1 = 

y) etc. Analogously, construct X 0 , X_ 1 etc. This is clearly a stationary sequence (in 
fact, it is a reversible stationary Markov chain). To show that this sequence is 
ergodic, we have to show that there is 'sufficient communication' between different 
parts of the state space [O, M]. To see this, define b; = F2 1(a;), i ~ 0. Note that, for 
i ~ 1, this is also equal to F1 1(a;_ 1). We have b0 = M > b1 = M /2 > b2 > b3 > · · ·, 
and bn-+ 0 as n-+ oo. This yields a partition of [O, M] in intervals (b 1 , b0], 

(b2, bi], .... 
Now let i ~ 1 and x E (b;+i. b;]. Given X 1 = x, there is a positive probability that 

choice 1 was made in the above construction, i.e. X2 = F2 1(U2) with U2 uniformly 
distributed in (a;, a;_ 1]. Hence X 2 has (conditional) positive density on (b;, b;- 1]. But 
there is also a positive probability that choice 2 was made, which, in an analogous 
way, shows that X 2 also has positive (conditional) density on (b;+2. b;+1l In the 
same way we see that, given X 1 = x E (b 1 , b0], X 2 has positive density on (b2 , bi]. 
We conclude that for each i and j ~ 0 and each x E (b;+ 1• b;], there exists a k such 
that, given X 1 = x, Xk+t has positive density on (b1+1> b1] (namely, if i ¥- j take 
k =Ii - jl, else take k = 2). This guarantees the 'amount of communication' 
mentioned above and hence the required ergodicity. 

This completes the proof of Lemma 2. 

Remark. Note that, in the above construction, we have a certain periodicity: given 
X 1 = x E (b;n b;], Xk has positive density on (b;+ 1, b;] for even k, but 0 density for 
odd k. This does not disturb our argument, since we only need stationarity and 
ergodicity in the ergodic-theoretical sense (i.e. not in the Markov chain theoretical 
sense which includes aperiodicity). However, with a small adaptation of our 
construction we can also get aperiodicity: instead of taking each a;+ 1 equal to 
F2Fj 1(a;), we can take the sequence (a;, i EN) so that Fj1(a;_ 1) < F2 1(a;), i ~ 1, and 
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F2 1(a1) < F] 1(a1_ 2), i ~2. In the previous construction F] 1((a;+ 1, a;)) was exactly 
F2 1((a1+ 2, a 1+ 1)) which 'caused' the above mentioned periodicity. But in the new 
construction F]1((a1+1, a1)) intersects F2 1((a;+ 2, a1+ 1)) and F2 1((a1+ 3, a1+ 2)), which 
provides a 'more flexible communication' and aperiodicity. 

Proof of Theorem 1. It is clear that for every M > 0 there exists a unique c > 0 
such that 

IM ( C Y' dx = 1, 
0 1 + x -

i.e. c/(l + x)2 is the probability density of a random variable with support M. 
Moreover, a few lines of standard calculations show that there is a unique pair 
(M, c) such that this random variable has expectation 1, i.e. 

IM ex 
o (1+x)2dx=1. 

(In fact, c is the solution of c(l - exp- 21c) = 1, which appears to be =l.26, and 
M = 1/(c -1) = 3.92; or, equivalently, M satisfies log (1+M)=2M /(1 + M).) From 
now on we work with this choice of c and M. 

Let Y be a random variable with the above probability density. In particular, 
EY = 1. Define, for x ::::: 0, 

(8) F1(x) = 1-E(Y- 2xt, 
and 

(9) 

Claim. F1 and F2 satisfy the conditions of Lemma 2. 

Proof of claim. The conditions that involve only F1 follow directly from the above 
definitions. The facts that F2 is differentiable, F;(O) = 0 and F;(M) = 1 also follow 
immediately. Further, F2 is clearly strictly increasing on [M /2, M]. Differentiation 
(with respect to x) shows that the condition that F2 is also strictly increasing on 
[O, M 12] is equivalent to 

1 1 1 
-->------
1 + M 1+2x (1 + x)2' 

O<x<M/2, 

which can be checked by differentiating once more. Finally, the condition F; (x) > 
F2(x ), x E (0, M), is clearly true for x ~ M /2 (because F; = 1 on [ M /2, M], 
F2(M) = 1, and F2 is strictly increasing on [M /2, M]). For x ~ M 12 it is equivalent to 
(evaluate the integrals in the definition of F; and F2) 

1 2x M-l 
-+log(l +2x)--->log(l + M)---
l +x l+M M+l' 

(10) O<x'2:.M/2, 

which can be checked by standard arguments: differentiating several times with 
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respect to x shows that the minimum of the left-hand side of (10) in the interval 
[O, M 12] can only be taken at x = 0 (where we already know directly from the 
definitions that F1 = F2 and hence that the left-hand side of (10) equals its right-hand 
side) or at x = M /2, for which we can easily check that (10) holds. This completes 
the proof of the above claim. 

Now application of Lemma 2 yields a stationary ergodic sequence (X;, i e &'.) with 

P(X1 < t) = P(X1 < t, X 1 <X2) + P(X1 < t, X1 > X2) 

(11) = !{F}(t) + F2(t)) 

= P(Y <t). 

The first equality follows from part (b) of Lemma 2, the second from part (c) and 
(d) of Lemma 2, and the last equality from (8) and (9). So each X; has probability 
density c/(1 +x)2 on (0, M) and 0 outside. 

We also have 

P(X1 > t, X 2 >t) =2P(X2 >X1 > t) 

(12) 
= 2(P(X1 <X2)-P(X1 <X2 , X 1 <t)) 

=1-F](t) 

=E(X1 -2tt. 

Here the first equation follows from part (a) of Lemma 2, the third from part (c), 
and the last from (8) and (11). 

Now application of Lemma 1 completes the proof of Theorem 1. 
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