
Three Logics for Branching Bisimulation 

ROCCO DE NICOLA 

UniL,ersita di Roma "La Sapienza", Rome, Italy 

AND 

FRITS V AANDRAGER 

CW!, Amsterdam, The Netherlands 

Abstract. Three temporal logics are introduced that induce on labeled transition systems the same 
identifications as branching bisimulation, a behavioral equivalence that aims at ignoring invisible 
transitions while preserving the branching structure of systems. The first logic is an extension of 
Hennessy-Milner Logic with an "until" operator. The second one is another extension of 
Hennessy-Milner Logic, which exploits the power of backward modalities. The third logic is 
CTL* without the next-time operator. A relevant side-effect of the last characterization is that it 
sets a bridge between the state- and action-based approaches to the semantics of concurrent 
systems. 

Categories and Subject Descriptors: F.1.1 [Computation by Abstract Devices]: Models of Compu
tation; F.3.1 [Logics and Meanings of Programs]: General; 

General Terms: Theory, verification 

Additional Key Words and Phrases: Backward modalities, branching bisimulation equivalence, 
concurrency, CTL*, doubly labeled transition systems, Hennessy-Milner logic, Kripke structures, 
labeled transition systems, reactive systems, semantics, stuttering equivalence, until operations 

R. De Nicola was partially supported by Esprit Basic Research Action Program, Project 3011 
CEDISYS, by CNR Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo contract number 
91.00894.69. 

The research of F. Vaandrager was supported by RACE Project 1040, SPECS. 

Part of the research was carried out while R. De Nicola was with the Institute di Elaborazione 
dell'Informazione. 

An extended abstract of this paper appeared as DE NICOLA, R., AND V AANDRAGER, F. W. 1990. 
Three logics for branching bisimulation (extended abstract). In Proceedings of the 5th Annual 
Symposium on Logic in Computer Science (LICS). IEEE Computer Society Press, New York, pp. 
118-129; this a revised version of CWI Report CS-R9012, Amsterdam 1990. 

Authors' addresses: R. De Nicola, Dipartimento di Scienze dell'Informazione, Universita di 
Roma, "La Sapienza", Via Salaria 113, 1-00198 Rome, Italy, e-mail: DENICOLA@VM.CNUCE. 
CNR.IT; F. Vaandrager, CWI, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands, e-mail: 
FRITSV@CWI.NL. 
Permission to make digital/hard copy of all or part of this material without fee is granted 
provided that the copies are not made or distributed for profit or commercial advantage, the 
ACM copyrightjserver notice, the title of the publication, and its date appear, and notice is given 
that copying is by permission of the Association for Computing Machinery, Inc. (ACM). To copy 
otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific 
permission and/or a fee. 
© 1995 ACM 0004-5411/95/0300-0458 $03.50 

Journal of the Association for Computing Machinery, Vol. 42, No. 2, March 1995, pp. 458-487. 



Three Logics for Branching Bisimulation 

1. Introduction 

459 

The operational semantics of concurrent systems has often been described by 
means of labeled transition systems. However, these descriptions are frequently 
too concrete and do not always give the same account of systems that exhibit 
identical observable behavior. The addition of plausible notions of behavioral 
equivalences permits one to overcome these problems. These notions make it 
possible to relate systems described at different levels of abstraction and to 
verify, for example, the correctness of an implementation with respect to a 
more abstract specification of a given system. The interested reader is referred 
to De Nicola [1987] and van Glabbeek [1990] for comparative presentations of 
many such equivalences. 

Among the best known behavioral equivalences are the bisimulation equiva
lences (also called observational equivalences) of Milner [1989] and Park [1989]. 
Intuitively, two systems are bisimulation equivalent whenever they can perform 
the same sequences of actions to reach bisimulation equivalent states. Bisimu
lation equivalences are called strong when all labels of transitions are consid
ered as visible, and weak when they ignore some actions, considered internal 
and thus invisible. Bisimulation equivalences have proved of fundamental 
importance for working with structures used to describe nondeterministic 
systems. Indeed, two of the major schools of concurrency theory, that of CCS 
[Milner 1989] and ACP [Baeten and Weijland 1990] consider bisimulations as 
the basic equivalence notation, and have developed a rich and powerful theory 
around them. The existence of a bisimulation of some type between two 
structures, means that at a deep level they are very much alike. The definition 
of bisimulations already suggests a useful method for showing equivalence of 
two systems: one guesses a relation among the states of the systems, and 
verifies that it is a bisimulation relation. Checking this is local and involves 
only one or a few computation steps at the time. In the case of finite state 
systems, one can alternatively use one of the efficient algorithms based on 
partition refinement for deciding bisimulation. Finally, there are elegant com
plete equational axiom systems for a wide variety of bisimulation based process 
algebras, see Baeten and Wejland [1990] for applications. In spite of some 
theoretical concerns (e.g., bisimulations are too fine, capable of distinguishing 
systems that ought to be identified [Abramsky 1987; Bloom et al. 1989]), 
bisimulations are a central part of concurrency theory. 

In parallel with the definition of behavioral equivalences, different attempts 
have been made towards defining (modal and temporal) logics that permit 
specifying specific properties of concurrent systems. The logics having the 
advantage over behavioral equivalences of not always requiring to specify the 
full behavior of a system; they permit one to concentrate on specifying 
particular properties of a system, like safety, fairness, etc., that are of interest. 

Indeed, modal and temporal logics have been proved useful formalisms for 
specifying and verifying properties of concurrent systems (see, e.g., de Bakker 
et al. [1989] and Manna and Pnueli [1992]), and different tools have been 
developed to support such activities [Clarke et al. 1986; Cleaveland et al. 1990]. 
However, to date, there is no general agreement on the type of logic to be 
used. Since a logic naturally gives rise to equivalences (two systems are 
equivalent if they satisfy the same formulas) often the proposed logics have 
been contrasted with behavioral equivalences for a better understanding and 
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evaluation. In general, establishing a direct correspondence between a logic 
and a behavioral equivalence provides additional confidence in both ap
proaches. 

A well-known result relating operational and logical semantics is that report
ed in Hennessy and Milner [1985]. In that paper, a modal logic, now known as 
Hennessy-Milner Logic (HML), is defined which, when interpreted over (arc-) 
labeled transition systems with and without silent actions, is proved to be in full 
agreement with the two operational equivalences called strong and weak 
obseroational equivalence. Other correspondences have been established in 
Browne [1988], where two equivalences over Kripke structures (node-labeled 
transition systems) are related to two variants of CTL* [Emerson and Halpern 
1986]. It is first shown that a variant of strong observational equivalence 
coincides with the equivalence induced by CTL*; and then that CTL* without 
the next operator (CTL*-X) is in full agreement with stuttering equivalence, an 
equivalence based on the idea of merging adjacent states that have the same 
labelling. 

Recently, a new notion of behavioral equivalence for labeled transition 
systems, called branching bisimulation ( z b ), has been proposed [van Glabbeek 
and Weijland 1989]. It aims at generalizing strong observational equivalence to 
ignore silent actions while preserving the branching structures of systems. 
Branching bisimulation considers two systems as equivalent only if every 
computation, that is, every alternating sequence of (visible and silent) actions 
and states, of one system has a correspondent in the other. By correspondent 
computations it is meant computations with the same sequence of visible 
actions and such that all their intermediate states have equivalent potentials. 

Branching bisimulation is more restrictive than weak observational equiva
lence but has a pleasant axiomatic characterization that leads to a complete 
canonical-term rewriting system [Akkerman and Baeten 1990; De Nicola et al. 
1990] and does indeed preserve the branching structures of systems. In Groote 
et al. [1990] an O(m X n) algorithm-m is the number of transitions and n is 
the number of states in the transition system-for branching bisimulation is 
presented; a trial implementation of this algorithm runs faster than existing 
tools for deciding weak observational equivalence. An additional pleasant 
properties of branching bisimulation is that it is resistant to refinement of 
actions while weak bisimulation is not [Darondeau and Degano 1990; van 
Glabbeek and Weijland 1989 /1991]. 

In this paper, we propose three logical characterizations of branching bisimu
lation, that on one hand permit a deeper understanding of the equivalence 
itself and on the other hand permit using existing tools to tackle the problem of 
mechanical support to the verification of properties of concurrent systems. The 
three logics we will present are (natural extensions of) well-known and thor
oughly studied logics. The first logic we will consider, Lu, is obtained from 
HML by replacing the indexed operator (a) with a kind of "until" operator. 
The new binary operator, written cp(a)q/, tests whether a system can reach, by 
exhibiting a visible action "a", a state that satisfies cp' while moving only 
through states that satisfy cp. The second logic, L 8F, stems from the characteri
zation of zb as a back and forth bisimulation equivalence [De Nicola et al., 
1990]. It extends HML with reverse modalities that permit inquiries to be made 
about the past of computations (see, e.g., Lichtenstein et al. [1985], Stirling 
[1992], Street [1982]). The third logic that we use to characterize zb is a 
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variant of CTL*. More specifically it is CTL*-X interpreted, as in the original 
proposal (see Emerson and Srinivasan [1989]), over all paths of Kripke struc
tures and not just over maximal ones . 
. The ~ctua~ proof of the cor!espondence between CTL*-X and :::::b has 
mterestmg s1de-eff ects. It reqmres establishing precise connections between 
branching bisimulation and the stuttering equivalence over Kripke structures 
( ""s) defined by Browne et al. [1988]; these connections permit clarifying the 
relationships between the state- and action-based approaches to the semantics 
of concurrent systems also in presence of invisible events. We set up a general 
construction that, given a labeled transition system, yields an enriched system 
that has essentially the same structure of the original one, but carries labels on 
both states and transitions. We prove that a divergence blind version of 
stuttering equivalence and ""b , and a divergence sensitive version of branching 
bisimulation and ""s induce the same identifications on the enriched transi
tion systems. 

The different logics characterizing the same equivalence over a given class of 
systems can serve different (complementary) purposes. Indeed, as they are at 
the moment, Lu and L 8 F cannot really be used to specify systems properties 
(they would need at least adding a recursion operator). However, due to their 
closeness to the operational description, they are optimal for explaining the 
differences between inequivalent systems. CTL, on the other hand, has been 
successfully used to specify systems properties. 

Since their publication in the conference version of this paper [De Nicola 
and Vaandrager 1990b], its results have inspired subsequent work. 

-Korver [1992] has defined an algorithm that, given two states of a finite 
automaton that are not branching bisimulation equivalent, produces an Lu 
formula that distinguishes between them. Such an algorithm provides a 
useful extension of the algorithm of Groote and Vaandrager [1990] since it 
helps a user in understanding why certain finite state systems are inequiva
lent. Polak [1992] describes an implementation of the algorithm of Korver 
[1992] on the top of that of Groote and Vaandrager [1990]. 

-The intermediate structures we had to introduce to prove that CTL* is an 
adequate logic for branching bisimulation led us to define also an action
based version of CTL, [De Nicola and Vaandrager 1990a] that we called 
ACTL. This logic can naturally be used to describe safety and liveness 
properties of systems and permits reasoning in terms of the actions they can 
perform, rather than in terms of the properties of their states. 

-Minor modifications of the translation functions between Kripke Structures 
and Labeled Transition Systems have also allowed us to build a model 
checker for ACTL that completely relies on the existing model checker for 
CTL and guarantees linear model checking for action-based formulas [De 
Nicola et al. 1993]. This has permitted the implementation of a verification 
environment where both logical and behavioral properties can be proved by 
relying on a single underlying model, namely that of Labeled Transition 
Systems (see, e.g., LITE [Bolognesi et al. 1995]). . . 

-The alternative characterization of ::::: 5 in terms of divergence bhnd stutter
ing equivalence has been used as a key step towards the O(m X n) algo
rithm for deciding stuttering equivalence of Groote and Vaandrager [1990], 
which is a definite improvement of the O(n5) algorithm of Browne et al. 
[1988]. 
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-In Laroussinie et al. [1995], it has been shown that, for each Lu formula, 
there is a logically equivalent L 8F formula, and vice versa. The (rather 
complex) proof uses an auxiliary logic L 8u that combines the modalities of 
Lu and L 8 F, and gives effective procedures by which Lu formulas can be 
rewritten into LsF formulas, and vice versa, via rewrite steps that preserve 
logical equivalence. 

The rest of the paper is organized as follows: In the next section, we present 
branching bisimulation and two of the logics that will be used to characterize 
it; namely, HML with the until operator and HML with backward modalities. 
In the third section, we consider CTL and CTL* and show that minor variants 
of them are in full agreement with branching bisimulation; to do this we define 
transformations that permit us to move freely between state labeled systems 
and transition labeled ones. The final section contains concluding remarks, 
comparisons with related works and pointers to further research. 

2. Branching Bisimulation and Hennessy-Milner Logics 

In this section, we introduce two logical characterizations of branching bisimu
lation equivalence based on Hennessy-Milner Logic, HML for short. The first 
logic relies on a kind of until operator which, given a sequence of transitions 
(run), permits testing not only what is true after that run but also what are the 
properties that hold along it. The second logic introduces a backward modality 
and permits to test both for properties that hold after the execution of a 
particular visible action and for properties that were enjoyed before the 
execution of the action. 

2.1. LABELED TRANSITION SYSTEMS AND BRANCHING BISIMULATION. We will 
now provide the necessary background definitions about transition systems and 
their runs and introduce branching bisimulation. The actual definition of the 
latter is slightly simpler and apparently less restrictive than the original one 
proposed in van Glabbeek and Weijland [1989 /1991]; however, it can be easily 
proved that our equivalence does indeed coincide with the original one. 

Definition 2.1.1 (Notation for strings). Let K be any set. K* stands for the 
set of finite sequences of elements of K; Kw denotes the set of infinite 
sequences of elements of K; K"" stands for Kw u K*. Concatenation of a 
sequence in K* with a sequence in K"' is denoted by juxtaposition; t: denotes 
the empty sequence; I er I denotes the length of a sequence u. 

Definition 2.1.2 (Labeled Transition Systems). A labeled transition system (or 
LTS) is a triple .s:rl = (S, A, _,.)where: 

-S is a set of states; 
-A is a set of actions; also a silent action T is assumed that is not in A; 
- _,. ~ S X (A U T) X Sis the transition relation. An element (r, a, s) of ~ , 

usually written as r ~ s, is called a transition. 

We assume "$.A and use AT to denote A u {T} and A, to denote A U {€}. 
Moreover, we let r, s, ... range over S; a, b, ... range over A; a, {3, ... range 
over AT; and h, k, ... range over Ae- We will also make use of the mapping 
(·)

0
: AT -i. A. defined by a 0 = a if a EA and a 0 = E othexwise. 
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Definition 2.1.3 (Runs over LTSs). Let .91 = (S, A, ---+)be an LTS. 

-a run of .91 is a finite, nonempty alternating sequence p = s a s a ... 
• • • 0 0 I I 

sn- I an- I sn of states a~d actions, begmnmg and ending with a state, such 

that, for 0 ::::;; i < n, s; ~ S;+ 1• We say also that p is a run from s0; 

-If p = SoaoS1 a1 ... sn-I an-lsn is a run then first( p) = s0 and last( p) = s; 
-We write run.w('>, or just run(s), for the set of runs from s; n 

-We write run.w for the set of runs in .91. 

We let p, a-, ... range over runs. With abuse of notation, we will sometimes 
write s for the run consisting just of state s. 

Definition 2.1.4 (Many step transitions and bounded nondeterminism). Let 
.91 = (S, A, ---+) be an LTS. 

(i) With ~ we denote the transitive and reflexive closure of ~.For a EA, 
we define the relation ~ on S, by r !. s iff there exists r' and s' in S such 

E Q E 

that r = r' ---+ s' = s. 

(ii) .91 has bounded nondeterminism iff for all s E S and k E Ae the set {r ~ r} 
is finite. 

Definition 2.1.5 (Branching bisimulation). Let .91 = (S, A, ---+)be an LTS. 

-A relation R ~ S X S is called a branching bisimulation if it is symmetric 
and satisfies the following transfer property: if r R s and r ~ r', then either 

E a 
a= T and r' R s, or 3s', s" such that s = s'---+ s", r R s' and r' R s". 

-Two states r, s of S are branching bisimilar, abbreviated .91: r =b s, or 
r :::::b s, if there exists a branching bisimulation relating r and s. 

The diagrams shown in Figure 1 summarize the main transfer properties of 
branching bisimulation. We have used the dotted lines to represent the 
relations that have to be established in order to conclude that the two states 
connected by the plain line are equivalent. 

It can be easily proved [van Glabbeek and Weijland 1989] that the arbitrary 
union of branching bisimulation relations is again a branching bisimulation, 
and that :::::b is the maximal branching bisimulation and an equivalence relation. 
We could have strengthened the above definition of branching bisimulation by 
requiring all intermediate states in s ~ s' to be related with r. The following 
lemma implies that this would have led to the same equivalence relation. The 
same would have happened if we had allowed for extra T-moves after reaching 
s" and required that all reached states be related to r'. 

LEMMA 2.1.6 (Stuttering lemma). Let .91 = (S, A,) be an LTS and let s0TS 1T 
··· sn_ 1Tsn, n > 0, be a run in .91 with s0 :::::b Sw Then, for all 0 :S: i::::;; n, 
So ""b S;. 

r-a~r· 

I 

or s =£=> s' -a~ s" 

FIG. 1. Transfer diagrams for branching 
bisimulation. 



464 R. DE NICOLA AND F. V AANDRAGER 

PROOF. This lemma is due originally to van Glabbeek and Weijland [1989]. 
In its present form, it has been proved in De Nicola et al. [1990]. It is reported 
in the appendix for the sake of completeness. 0 

We would like to note that the definition of weak bisimulation [Milner 1989] 
is similar to that for the branching one; it only relies on a slightly less 
demanding transfer property, namely: 

-if r R sand r ~ r', then 3s' such that s ~ s' and r' R s'. 

This means that two states are considered equivalent if they lead, via the same 
sequences of visible actions, to equivalent states; the intermediate states are 
not questioned. Formally, two states r, s of an LTS Si' are weakly bisimilar, 
notation sf: r :::w s, or r :::w s, if there exists a weak bisimulation relating r 
and s. 

The diagram shown in Figure 2 summarizes the transfer property for the 
weak bisimulation. We have used the same notational conventions of Figure 1. 

2.2. HENNESSY- MILNER LOGIC. In the rest of the paper, we will study the 
equivalences induced by different logics. For this, the following general defini
tion will be useful. 

Given a logical language L and an associated satisfaction relation F= 
interpreted over states of a labelled transition system .W', the equivalence - L 

on the states of sf, induced by L-formulas, is given by: 

sf: r "'L s if and only if ('ilcp EL: sf, r F= cp ~Si', s F= cp). 

The main aim of this paper is to show that, for three significantly different 
logics L, the equivalence ~L coincides with branching bisimulation equiva
lence. 

In the following definitions, we will present syntax and semantics of the 
original Hennessy-Milner Logic (HML) and state the main characterization 
theorem, which establishes the strict correspondence between HML and weak 
bisimulation. In the definitions, and in the rest of the paper, we will use T to 
denote the Boolean value true. 

Definition 2.2.1 (Hennessy-Milner Logic). Let A be a given alphabet of 
symbols. The syntax of HML is defined by the following grammar, where 
ip, ip', ... range over HML-formulas and k ranges over A€: 

cp::= Th iplcp /\ ip'l<k)cp. 
Definition 2.2.2 (The satisfaction relation for HML). Let Si' = (S, A, -7) be a 

LTS. Satisfaction of a HML-formula cp by a state s E S, notation Si', s F= cp, or 
just s F= <.p, is defined inductively by: 

-s F= T always 
-s F= -, 'P iff s It: 'P 
-s F= <.p /\ cp' iff s F= cp and s F= cp' 

-s F= ( k )cp iff there is an s' such that s ~ s' and s' F= cp. 

r=k=> r' 

F10. 2. Transfer diagram for weak bisimulation. I : 
s =k=> s' 
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For labeled transition ~ystem with bounded nondeterminism, the above logic 

has been proved to be m full agreement with weak observational equivalence 
[Hennessy and Milner 1985]. 

THEOREM 2.2.3 (HML and =w induce the same identifications on bounded 

LTSs). Let.#= (S, A, -i.) be a LTS with bounded nondeterminism. Then, for 
all r, s in S: 

.W: r =w sifandonlyifsr!: r ~HML s. 

2.3. UNTIL OPERATORS. We are now set to introduce the variant of Hen

~essy-Miln~r Logic, which, rather than a family of diamond operators, has 

mdexed until operators. Within the new version of HML, in order to take also 

t~e properties of the intermediate states of a run into account, we replace the 

diamond operator ( k )cp with a binary operator, written <p( k )r.p', which is used 

to test, whether a system can reach via action k, a state which satisfies r.p' while 

moving only through intermediate states that satisfy cp. 

Definition 2.3.1 (Hennessy-Milner Logic with Until: Lu). Let A be a given 

alphabet of symbols. The syntax of the language Lu is defined by the following 

grammar where cp, cp' ··· range over Lu-formulas and (k) ranges over A,: 

'P ::=Th 'Pi'P /\ cp'lcp(k)cp'. 

Definition 2.3.2 (The satisfaction relation for Lu). Let .91' = (S, A, ->)be an 

LTS. Satisfaction of an Lu-formula cp by a state s E S, notation .W', s I= <p, or 

just s I= cp, is defined inductively by: 

-s F= t 
-s F= -, cp 
-s F= 'P A cp' 
-s I= cp<k)cp' 

always 
iff s Ii= 'P 
iff s F= cp and s F= cp' 
iff either k = E and s F= cp', or there is a run s0TS 1T ·•· 

s,,_ 1Ts,,as,,+ 1 such that s0 =sand Vi:::;; n: si I= <p, k = 
a 0 and Sn+l F= cp' with n :2: 0. 

It is possible to define, within Lu, other temporal operators. For example, 

we will write (k)<p for T(k)1.p, r.p[k]cp' for .....,(....., cp(k)-, <p1 ) and [k]r.p for 

-, T[k]cp. The original HML can be recovered from Lu in the sense that the 

diamond operator "(k)1.p" of HML is rendered by our (k)(c)r.p or, more 

directly, by T( k )(T< E) 'P ). In the latter formula, we need to have ( E) after ( k) 

because the relativized until operators are interpreted only over runs which 

always end with the action which indexes them. In HML, this restriction is not 

present and, when defining satisfaction of ( k) <p, runs are considered which 

may continue with sequences of invisible actions. Clearly, if no silent action is 

present, the logics Lu and HML are equivalent. 

We exhibit now two pairs of systems and two formulas that show. the 

additional power of Lu when compared with the original ~enness~-M1\ner 

Logic. The two pairs < r, s) and ( p, q) of Example 2.3.3 are J~st two msta~ces 

of the second and third 7-law (see, e.g., Milner (1989]), respectively. Thus, smce 

r =w s and p ::::::w q, these states are certainly not differentiated by HML. 

However, we will see that there exist Lu formulas that can tell them apart. 
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Example 2.3.3 (Lu can distinguish weakly equivalent states). Consider LTS 
Jlf2•3.3, as shown in Figure 3. 

If we let cp = ((b)T)(a) T, then s F= cp while r t;t: cp. 

If we let cp' = [a](( c) T), then p F= cp' while q t;t: cp'. 

For the first pair of systems, we have that on the one hand from state s it is 
possible to perform an a-step such that, at any point before the a actually 
takes place, it is still possible to perform a b-step. On the other hand, from 
state r, there is only one execution possible that contains an a, and in this 
execution, the option of performing a b-step is lost after the initial r-step. 

For the second pair of systems, we have that if an a-step is performed from 
state p, then always immediately after this, the option is left of performing a 
c-step; this is not the case for state q. 

We are now ready to establish the relationships between branching bisimula
tion equivalence and the equivalence induced by L 0 . In the theorem below, we 
will restrict attention to bounded LTSs simply for a matter of separation of 
concerns. We do not foresee many problems in generalizing our results by 
resorting to infinitary logics in the same vein of Milner [1989]. However, the 
addition of such infinitary connectives would have complicated definitions and 
proofs without adding much insight. 

THEOREM 2.3.4 (Lu and zb induce the same identifications on bounded 
LTSs). Let .Sil= (S, A, ~)be an LTS with bounded nondetenninism. Then, for 
all r, sin S: 

Jlf: r zb s if and only if Jlf: r,.,, Lus. 

PROOF. " ~ " Suppose r zb s and let cp E L. With rather straightforward 
induction on the structure of cp we prove that r F= cp iff s F= cp. 

Pe 

a 

FIG. 3. Two pairs of threes that are not branching bisimilar. 
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(1) If cp = T, then obviously s F= cp and r F= cp. 
(2) If cp = ...., cp', then, by definition r F= cp iff r !:F cp'. By induction r !:F cp' iff 

s !:F cp'. Again by definition s !:F cp' iff s F= cp. 
(3) If cp = cp1 /\ cp 2 , then by definition we have s F= cp 1 and s F= cp2 and the 

claim follows by straightforward induction. 
(4) If cp = rp 1(k)rp2 , suppose that r I== rp. We will prove that s F= cp. The 

reverse implication then follows by symmetry. We have to distinguish two 
cases: 

(i) k = E and r F= rp 2 ; 

(ii) there exists a run r0rr17···rn_ 1rr11 ar11 _ 1 such that r=r0 , k=a 0 

and 'Iii:::;; n: ri F= rp 1, k = a 0 and rn+I F= rp 2 • 

In case (i), by the inductive hypothesis, we have s F= rp 2; hence, s I== cp 
follows. 

In case (ii), by repeatedly applying the transfer property of branching 
bisimulation equivalence, we can construct a matching execution from s. The 
simplest case is when k = E and r,,+ 1 :::::b s. In this case, the matching run 
consists just of s and s F= rp follows by induction. Otherwise, there exists a run 
s 0rS 17 ··· sm _ 17sm asm + 1 with s = s0 and by the stuttering lemma (Lemma 
2.1.6) r :::::b si for all i:::;; m and r11 + 1 :::::b sm+ r· From the inductive hypothesis, 
we have that s; F= cp1 for all i :::;; m, and that sm + 1 F= cp 2 • From this, s F= cp 
follows. 

"=" Suppose r "'Lu s. We prove that "'Lu is a branching bisimulation. 
Clearly the relation is symmetric. Suppose p "'Li q and p - a --'> p'. A first 
possibility is that both a = 7 and p' ,..., L q. In this case the transfer property 
holds trivially. So suppose that either a j, 7 or not p' "'Lu q. 

Consider the set Q of all runs from q of the form q07qr · ·· q" _ 17q11 aq' with 
q 0 = q such that there are no cycles in the 7-part (i.e., 'I:/ i, j: qi = qj implies 
i = j). We claim that Q is finite. To see this, consider the set S0 of states that 
occur in a nonfinal position of a run of Q, and the set Sr of final states of runs 

E 

of Q. Since .!¥' has bounded nondeterminism and since q = q', for all states 
q' E S0 , we have that S0 is finite. Similarly, we can deduce that also S1 is finite, 

k 
because q = q' for all states q" E Sr. Finiteness of S 1 and S0 together with the 
fact that there are no repetitions of states of S0 in the 7-part of the runs in Q 
implies that Q is finite. 

In order to prove the transfer property, it is sufficient to show that there is a 
run in Q with the property that all states on the run, except for the last one, 
are related via ""L top, and the last state is related via "'Lu top'. Suppose 
that there is no su~h run. We will derive a contradiction. We can split Q into 
two subsets Q, and Q 1 such that for any run a;, in Q, there is a formula 'Per, 
that holds in p but not in all nonfinal states of a;,, and for any run <rr in Qr 
there is a formula 'Pa, that holds in p' but not in the last state of <rr· Let cp, be 
the conjunction of the formulas 'Pa, with a;, in Qs and let 'Pr be the 
conjunction of the formulas 'Pur with <rr in Qr· Now we can distinguish 
between two cases. 

(1) a= r. In this case, since not (p' "'Lu q), there exists a 'Po such that 
p' F= cp0 but q !:F rp0 • Consider the formula rp = cp,( E )('Pr A cp0 ). We have 
that p F= cp while q !:F cp and thus a contradiction. 
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(2) a * T. Now we take 'P = 'Ps< a >'Pr and we have a contradiction because 
p I= cp but q tt: cp. D 

2.4. BACKWARD MODALITIES. In this section, we present a new kind of 
bisimulation that we call back-and-forlh bisimulation. It not only requires the 
futures of equivalent processes to be equivalent but constrains also their pasts. 
This new bisimulation has been put forward in De Nicola et al. [1990], where it 
is proved that it induces on LTSs the same identifications as branching 
bisimulation. Here, we take advantage of this result and introduce a variant of 
Hennessy-Milner Logic with a backward modality that permits analyzing the 
past of computations. The spirit of this generalization of HML is similar to that 
proposed by Hennessy and Stirling [1985]; the relevant difference is that, here, 
the possibility that some of the actions might be invisible is also taken into 
account. In Hennessy and Stirling [1985], only visible actions are considered, 
and thus partially controlled state changes are not permitted. Indeed, the past 
operator is introduced in Hennessy and Stirling [1985] only to capture noncon
tinuous properties (e.g., fairness) of generalized transition systems. There it is 
also proved that, in the case of classical (limit-closed) transition systems 
without silent moves, the equivalence induced by the logic with the past 
operator coincides with strong bisimulation equivalence. 

Before actually introducing the new logic, we need additional notation. Since 
we want to talk about the past of systems, we need to define transition 
relations on runs rather than on single states; this enables us to go back from a 
state along the run that represents its history. We can easily generalize the 
definition of the transition relation from states to runs: 

-p ~ O', if there exists a state s such that O' = pas; 
-p ~ O', if there exists p0 , p1, •.. , Pn• n ;;::::: 0, with p = p 0 , Pn = O' and 

T 

P; ~ P;+ 1 for all 0 :$; i < n; 
a "f h · 1 e a e -p = O', 1 t ere exist 'P, u' such that 'P = p' ~ u' = O'. 

In Definition 2.4.1, we present the definition of back-and-forth bisimulation; 
more detailed discussions and motivations of the new bisimulation and its 
consequences can be found in De Nicola et al. [1990]. Here, we would only like 
to stress, once again, that we do not define this new bisimulation as a relation 
between states but as a relation between runs. 

Definition 2.4.1 (Back-and-forth bisimulation). Let ~ = (S, A, ~) be an 
LTS. Two states r, s ES are back-and{orth bisimilar, abbreviated ~: r =bf s 
or r =bf s, if there exists a symmetric relation R ~run..., X run...,, called a 
back-and-forth bisimulation, satisfying: 

(i) r R s; 

(ii) if p Ra and p ! p', then 30'' such that u ! u' and p' RO''; 

(iii) if p Ra and p' ! p, then 3u' such that a' ! a and p' R 0' 1• 

The diagram of Figure 4 illustrates that, in order to prove that two states are 
back and forth bisimulation equivalent, we need to prove that both their past 
and their future are in the same relation. As in the diagrams for weak and 
branching bisimulation, we have used the dotted lines to represent the rela
tions that have to be established in order to conclude that the two states 
connected by the plain line are equivalent. 
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r" =h=> r =k=> r' 

I I FIG. 4. Transfer diagram for back-and-forth bisimulation. 

t" =h=> s =k=> s' 

THEOREM 2.4.2 (Back-and-forth and branching bisimulation induce the same 

identificatfons). Let .Yi'= (S, A, ~) be a LTS. Then for r, sin S: .W: r ""'b s if 

and only if sf: r ""'bf s. 

PROOF. This lemma has been proved in De Nicola et al. [1990]; it is 

reported in the appendix for the sake of completeness. o 

Definition 2.4.3 (Hennessy-Milner Logic with backward modalities: Lap). Let 

A be a given alphabet of symbols. The syntax of Back-and-Forth Logic L 3F is 

defined by the following grammar where 'P and q;' denote generic formulas 
and k ranges over A e: 

'P ::=Th q;lq; /\ q;'l<k)q;I< ... k)q;. 

Definition 2.4.4 (The satisfaction relation for Lap). Let .rif = (S, A, ~)be an 

LTS. Satisfaction of an L 3F-formula <p by a run p of sf, notation s!f, p I= q;, or 

just p I= q;, is defined inductively by: 

-p I= T 
-p I= -, 'P 
-p I= 'P /\ q;' 

-p1=<k)1.p 

-p I=<+- k)q; 

always; 
iff p l:;t: q;; 
iff p I= r.p and p I= r.p'; 

iff there exists a run p' such that p !, p' and p' I= cp; 

iff there exists a run p' such that p' !, p and p' I= r.p. 

It is worth pointing out that, when interpreted over transition systems 

without silent actions, the above logic does not provide us with any additional 

discriminating power with respect to HML. This consideration agrees with 

Hennessy and Stirling [1985] where it is shown that for the class of transition 

systems we are considering here, when no silent action is present, HML and 

L 3F do coincide. Thus, we have that HML, L 3 F and Lu induce the same 

identifications on systems without silent actions. However, the example below 

shows that also L 3F is able to differentiate the systems of Example 2.3.3 and 

thus that, when dealing with systems with silent action, L 8F is more expressive 

than HML. 

Example 2.4.5 (Lap can distinguish weakly equivalent states). Let p, q, r, and 

s be as in Example 2.3.3, and let [k] = -,<k)-, and[ ... k] = ,< ... k)-,. 

If r.p =(a)[<- a]<b)T, then s F= r.p while r l:t: r.p. 

If r.p' = [a][b]( ... b)(c)T, then p I= q;' while q l:t: r.p'. 

THEOREM 2.4.6 ( L BF and z b induce the same identifications on bounded 

LTSs). Let .Yi'= (S, A, ~) be an LTS with bounded nondeterminism. Then for 

all r, sin S: 

sif: r ""'b s if and only if sf: r ~L 111 s. 
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PROOF. Given an LTS .w', we can build a new one, BF(.w'), which is 
obtained by replacing the single step transition relation of .91' with the corre
sponding many step forward and backward arrows between runs of .91'. More 
precisely, we define BF(.w') = (run_w, Abf, ~bf) where Abr = Ae U { ..... klk E 

Ae} and for p, p' E run_.... and k EA., p ~bf p' iff p ~ p' and p ~bf p' iff 

p' ~ p. We can now prove that .w': r zbf s if and only if BF(.91'): r "'=' s, 
where z stands for Milner's strong observational equivalence. The claim then 
follows directly from Theorem 2.4.2 and from the HML characterization of z 

in Hennessy and Stirling [1985]. D 

3. Branching Bisimulation and CTL* 

In this section, we shall study the relationship of branching bisimulation with a 
different type of logic, the temporal logic known as CTL*. This will be achieved 
by relating branching bisimulation to a variant of the stuttering equivalence 
defined and related to CTL* in Browne et al. [1988]. 

3.1 CTL* AND ITS MODELS. First of all, we introduce the relevant notation 
for the class of structures that have been used to interpret CTL* and to define 
stuttering equivalence. 

Definition 3.l.l (Kripke structures). Let AP be a fixed nonempty set of 
atomic proposition names ranged over by p, q, .... A Kripke structure (or KS) is 
a triple .% = (S, .:?, ~) where: 

-S is a set of states; 
-£': S ~ 2AP is the proposition labeling; 
- ~ ~ S X S is the transition relation; an element (r, s) E ~ , usually written 

as r ~ s, is called a transition. 

We let r, s, ... range over states of Kripke structures. 

Definition 3.1.2 (Notation for Kripke structures). Let .% = (S, .27, ~) be a 
Kripke structure. 

-Anonempty(finite or infinite) sequence s0s 1s2 ••• ES"' such that s; ~ s;+i• 
with i ~ 0, is called a path from s0 ; if the sequence of pairs of states is 
maximal the path is called a fallpath. 

-We write pathx(s), or just path(s), for the set of paths from s, and 
µ,pathx(s), or just µpath(s), for the set of maximal paths (fullpaths) from s. 

-We let p, a-,(), 'YJ, ••• range over paths. 
-If p = s0s 1s 2 ••• is a path then first( p) = s0 ; if p is finite then last( p) 

denotes the last state of p. 
-With p < 8 and p s () we indicate that path () is a proper suffix, respec

tively a suffix, of path p. 

Definition 3.l.3 (CTL* and CTL). The set of formulas CTL* is defined as 
the smallest set of state formulas such that: 

-if p E AP, then p is a state formula; 
-if cp and cp' are state formulas, then -, cp and cp /\ cp' are state formulas; 
-if TT is a path formula, then 3TT is a state formula; 
-if cp is a state formula, then cp is a path formula; 
-if TT and TT 1 are path formulas, then -, TT, TT /\ TT', X TT and TT UTT' are path 

formulas. 
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We let cp, .•. range over state formulas and 71', ••• over path formulas. 
CTL is defined as the subset of CTL* in which we restrict path formulas to 

be: 

-if cp and cp' are state formulas, then Xcp and cpUcp' are path formulas; 
-if 71' is a path formula, then so is -, 1T'. 

Below, when we write CTL*-X and CTL-X, we refer to the subsets of CTL* 
and CTL, consisting of formulas without the next (X) operator. Moreover, we 
write T for -,(p0 /\ -, p 0), where Po is some arbitrarily chosen atomic pro
position name, 1T' V 7T' for -, (-, 1T' /\ -, 'TT''), 1T' = 7T' for .., 71' A 7r', 'V7T for 
-, 3 .., 7T, Prr for T U 7T, and G7T for .., F .., 7T. 

Now, we present two different satisfaction relations for CTL*. This will be 
done by relying on different structures to interpret formulas. In one case, we 
will use only maximal paths of Kripke structures to interpret path formulas; in 
the other, we will use both finite and infinite paths. Due to its ability of 
describing noncontinuous properties like fairness, the generally accepted inter
pretation of CTL*, is that based on maximal paths only. The less restrictive 
interpretation, however, has a series of interesting properties and is the version 
of CTL* that was originally proposed (see Emerson and Srinivasan [1989]. 

Definition 3.1.4 (Two satisfaction relations for CTL* ). Let Jf' = (S, 2', ~)be 
a Kripke structure. 

(i) Satisfaction of a state formula cp by a state s, notation %, s F= cp or just 
s F= cp, and of a path formula 7T by a path p, notation %, p F= 71' or just 
p F= 1T', is defined inductively by: 

-sF=p 
-s F= -, cp 
-s I= cp A cp' 
-s I= 37T 

-p I= cp 

iff p E.2'(s) 
iff s ';F cp 
iff s I= cp and s I= cp' 
iff there exists a path p e path(s) such that p F= 71' 

iff first( p) I= cp 
-p I= -, 1T iff p ';F 71' 

-p I= ,,,. /\ ,,,., iff p I= ,,,. and p I= ,,,., 
-p I= ,,,. U ,,,., iff there exists a 8 with p ::; () such that (}I= 7T 1 and 

for all p ::; TJ < (}: TJ I= ,,,. 
-p F= X,,,. iff there exists a state s and a path (} such that p = s8 

and (} I= 1T'. 

(ii) Satisfaction with respect to maximal paths of a state formula cp by a state 
s, notation z, s F=.u cp (or briefly s F=" cp), an? of a path for.mula .71' by a 
maximal path p, notation %, p 1= ..... 1T (or bnefly p I=µ. 1T' ~ .1s defmed by 
replacing in the above definition I= by I=" and the defimt1on of s I= 37T 

by: 

iff there exists a path p E µ.path(s) such that p I==µ. 71'. 

3.2. CTL* AND STUTIERING EQUIVALENCES. We will now introduce stutter
ing equivalence. Actually, our definition of stuttering equivalence, although 
similar in spirit, is slightly different from that of Browne et al. [1988] they 
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consider only structures whose states are never deadlocked; if systems that 
contain states without outgoing transition have to be modeled, they assume the 
presence of a transition from the final state to itself, thus all maximal paths of 
a system are infinite. We will take a somewhat complementary approach and 
rather than avoiding deadlocked states, we do emphasize their presence. 

We will present two variants of stuttering equivalence that differ in the way 
they deal with divergent processes. These two variants will be proved to be in 
direct correspondence with the two interpretations of CTL* described above. 

Definition 3.2.l (Divergence blind stuttering equivalence). Let.%= (S, !l', ~) 
be a Kripke structure. 

(i) A relation R ~ S x S is called a divergence blind stuttering bisimulation 
(DBSB) if it is symmetric and whenever r R s then: 

-2'(r) =!l'(s) and 
-if r ~ r', then there exist, with n ~ 0, s0 , s 1, ••. , sn such that s0 = s and 

for all i < n: s; ~ S;+ 1, r R S; and r' R sn. 
(ii) Two states r, s are divergence blind stuttering equivalent, abbreviated .%: 

r :::::dbs s or r =ctbs s, if there exists a divergence blind stuttering bisimula
tion relating r and s. 

(iii) Two paths p, <I and divergence blind stuttering equivalent, notation .%: 
p = dbs <7 or p :::::: dbs <7, if p can be partitioned as p1 p2 • • • and cr can be 
partitioned as <71 cr2 ••• in such a way that, for all j, sequences pi and ~ 
are both nonempty and every state in pi is divergence blind stuttering 
equivalent to every state in ~· 

As in the case of branching bisimulation, we have that the arbitrary union of 
DBSBs in again a DBSB, and that :::::dbs is the maximal DBSB and an 
equivalence relation. 

LEMMA 3.2.2. Let .7r = (S, !l', ~) be a Kripke structure, let r, s E S with 
r ::::: dbs s, and let p E path(r ). Then there exists a <T E path(s) such that p ::::: dbs a. 

PROOF. The actual proof is easy, only notationally somewhat cumbersome; 
it is left to the reader. D 

THEOREM 3.2.3. Let .7r = (S, 2', ~) be a Kripke structure and let r, s E S 
with r ::::: dbs s. Then for every CTL *-X formula cp: r I= cp if! s I= <p. 

PROOF. Suppose r :::::dbs s. Let p E path(r) and a E path(s) with p :::::dbs cr 
and let x be either a state formula or a path formula that does not contain any 
X-operator. We will prove the following statements by induction on the 
structure of x. 
(i) If x is a state formula, then r I= x if and only if s I= x 

(ii) If x is a path formula, then p I= x if and only if a I= x. 
First, we consider the case of state formulas. 

(1) X = p: r I= p iff p ESf(r), the latter is equivalent to p E..<t"(s) by defini
tion of r :::::dbs s, and p E2'(s) iff s I= X· 

(2) X = ..., cp: r I= ..., cp iff r It= cp, this by induction is equivalent to s tt: cp, 
which in turn is equivalent to s I= ..., cp. 

(3) X = cp /\ cp': the fact that r I= cp /\ cp' iff s I= cp /\ cp' follows since, by 
induction, r I= cp and r I= cp' iff s I= cp and s I= cp'. 
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(4) X = 311": Suppose r I= 311". Then there exists a path p' E path(r) such that 
p' I= 1T. By Lemma 3.2.2, we can find a path er' E path(s) such that 
p' :::::: dbs er'; moreover, by induction, we have that er I= 1T. Thus, s 1= 37T. 
The other direction is symmetric. 

Next, we consider the four cases of path formulas. 

(5) X = 'P: We have p I= 'P iff first( p) = r I= 'fJ, which by induction is equiva
lent to first( er) = s I= cp. By definition, the last statement is equivalent to 
er I= 'P· 

(6) x = ..., 1T: Easy induction. 
(7) X = 1T A 77': Easy induction. 
(8) x = 1T U77': Suppose p I= 1T U 7T 1

• Then, there exists a path e with p s e 
such that e1= 77' and for all ps v< e,vt= 77. Since p::::::ubs er, there 
exists a partition Pi p2 ••· of p and a partition ffi er2 • · • of a such that for 
all j, pj and Oj· are both nonempty and every state in p is stutteringly 
bisimilar to every state in ~- Now, let Pk be a suffix of p i~ which the first 
state of e occurs. One can easily check that e ::::: ctbs erk erk+ i · · · . Thus, by 
induction we have erk uk + i · · · I= 7T 1• Let YJ be a path such that u ::; YJ < 
uk uk + i · · · , and let er1 be the block in which the first state of YJ occurs; we 
have Pi Pi+i ··· ::::::ctbs YJ. Since 1 < k, we have also p < p1 Pi+i ... < e 
and thus p 1 Pi+ i I= 7T. By induction, we obtain also YJ I= 1T. The other 
direction is symmetric. D 

THEOREM 3.2.4. Let.%= (S, 2, --'>) be a finite state Kripke structure and let 

s E S. Then there exists a CTL-X formula 'P such that for all r ES: r I= 'P if! 

r::::::dln S. 

PROOF. The actual proof is based on the algorithm for deciding divergence 
blind stuttering equivalence that is presented in Groote and Vaandrager [1990]. 

-For B, B' ~ S the set pos(B, B') is defined as the set of states in B from 
which, after some initial stuttering, a state in B' can be reached: 

pos(B, B') = {s E Bl3 n ~ 0,3 s0 , ••• , sn E B, 3 s' E B' such that s = s0 and 

('<;/ 0 <is n: s; E Band s;-i----+ s) and s11 --'> s'}. 

-Call B' a splitter of B if and only if 0 * pos(B, B') *B. 
-If P is a partition of S with B, B' E P and B' is a splitter of B, define 

Ref, (B, B') as the partition obtained from P by replacing B by pos(B, B') 
and B - pos(B, B'). 

-A partition is stable if for no B, B' E P, B' is a splitter of B. 

Consider the following algorithm: 

P := {{r E SJ..2"(r) =..2"(s)}Js ES}; 
while P is not stable do 

choose B, B' E P such that B' is a splitter of B; 
P := Ref/B, 8 1 ) 

od 

In Groote and Vaandrager [1990], it is shown that two states are in the same 
block of the final partition exactly when they are divergence blind stuttering 
equivalent. The idea of our proof is that, while executing the algorithm, we 
maintain a mapping that associates a CTL-X formula to each block that only 
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holds for the states in that block. This is trivial for the initial partition. Since 
states in the same block have the same labeling while states in different blocks 
have different labeling, one can easily give a propositional formula for each 
block that only holds for its states. Suppose that, at one moment, during the 
execution of the algorithm, B' is a splitter for B and this is split into 
B 1 = pos(B, B') and B2 = B - pos(B, B'). Let q/ be the formula associated to 
B' and let cp be the formula associated to B. In the new partition we associate 
to B1 the formula cp /\ (3 cp U cp') and to B2 the formula cp /\ (-, 3 cp U cp'). For 
the other blocks, the associated formulas remain unchained. Now, if we 
associate to every state the formula l/J that is associated to the block of the 
final partition in which the state occurs, then ljJ will have the required 
property. D 

THEOREM 3.2.5 (Divergence blind stuttering, CTL *-X and CTL-X agree for F= ). 
Let .% = (S, .£', --+) be a finite state Kripke structure and let r, s E S. The 
following statements are equivalent: 

(i) r zdbs s, 
(ii) For every CTL*-X formula cp: r F= cp if! s F= cp, and 
(iii) for every CTL-X formula cp: r F= cp iff s F= cp. 

PROOF. We have that (i) = (ii) follows from Theorem 3.2.3; (ii) = (iii) is 
immediate; while (iii) = (i) follows from Theorem 3.2.4. D 

Now, we introduce the new version of stuttering equivalence which, for finite 
state Kripke structures, can be proved to coincide with the original stuttering 
equivalence of Browne et al. [1988] and does not ignore divergence. The new 
version is defined in terms of the divergence blind one, and relies on adding to 
Kripke Structures a fresh state that is used as sink-state for deadlocked or 
divergent states. 

Definition 3.2.6 (Extending K.Jipke structures with livelocked state). Let .% = 

(S, .£', --+) be a finite state Kripke structure, let s0 be a state not in S and let 
p 0 be an atomic proposition such that for all s ES we have Po f.E.!l'(s). Define 
the Kripke structure L(.%) by L(.%) = (S', g', ~) where 

-S' = S U {s0}, 

-.:?' =!?U {<s0,{p0})} and 
- ~ / = ~ u {(s, s0)ls is on a cycle of states with the same label or has no 

outgoing edges}. 

Definition 3.2.7 (Divergence sensitive stuttering equivalence). Let .% = 
(S, .£', --+) be a finite state Kripke structure. 

(i) Two states r, s E S are stuttering equivalent, abbreviated .%: r zs s, iff 
L(.%): r z dbs s. 

(ii) Two paths p, u of.% are stuttering equivalent, abbreviated 2: p zs er, iff 
L(Jf"): P z dbs u · 

The next example illustrates the different stress the two equivalence put on 
divergence (infinite stuttering). Note that also divergence sensitive stuttering 
equivalence does not distinguish between deadlock and divergence; the equiva
lence is sensitive to any divergence except for that occurring in otherwise 
deadlocked states. 
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J' ::::::: 

J p dbs -dbs 

--s 
~s oq 2• 

q 
s~ • 

q 

Example 3.2.8 (Dil+erences between ::::: and ::::: ) JJ' s dbs 

Let r.p = \:/ F q. Then s 1 t==µ r.p and s2 t=:µ r.p, whereas s3 1;1:: µ cp, s1 1;1:: r.p, s2 J;1:: cp 
and s3 J;I:: cp. 

LEMMA 3.2.9. Let .5't = (S, 2', - ) be a finite state Kripke structure, let 
r, s ES with r ==s sand let p E µ,run(r). Then there exists a O" E µ,nm(s) such 
that p "".,. O". 

PROO~. Given any maximal path p from r in .5f' then it is also a path in 
L(Z). Smee L(Z): r ==ctbs s, we can use Lemma 3.2.2 to find a path a from s 
in ..2"(%) which is equivalent to p. It must be that O" is also a path of 5f 
because if s0 was in O" then the latter could never be related to p. If O" is 
maximal in %, then we are done. Now, suppose that it is not; we have to 
distinguish whether p is finite or not. 

In case p is finite, since it is also maximal it must be that r' = last( p) is a 
deadlocked state. Thus, in L(Z), there is the transition (r', s0 ). Lets'= last(O" ), 
since p ""ctbs O" we have L(Z): r' ""ctbs s'. We can now rely on the fact that 
::::: dbs is a divergence blind stuttering bisimulation to find, for some n z 0, a 
sequence u0u1 ••• un such that s' = u0 and for all i < n, u; - U;+ 1 and 
r' ""'ctbs u; and s0 ""'ctbs un- But this means that un = s0 so that, in Jr,un-i is 
either deadlocked or occurs in a cycle of states with the same label. In case 
un- I is deadlocked, consider path 0" 1 = O"U 1 ••• un_ 2un-i· One can easily 
check that 0" 1 is maximal in 5f and p ""s a'. In case u 11 _ 1 occurs in a cycle of 
states with the same label, let the path 1T = v0 u1 • · · um be a cycle of states 
with the same label starting in u,,_ 1 (i.e., un-i = v0, \:Ji< m: V; -t ui+ 1 and 
vm - u0 ). One can easily show that all states in a cycle of states with the same 
label are divergence blind stuttering equivalent. Now consider the path J" 

obtained by concatenating O"u 1 ··· u 11 _ 2 with (1T)w; it is maximal and we have 
p =, (}"". 

The case of p infinite is dealt similarly and is left to the reader; it relies on 
the fact that 5f has only a finite number of states. D 

THEOREM 3.2.10. Let 5f = (S, 2', - ) be a finite state Kripke structure and let 
r, s ES with r :::::, s. Then for every CTL*-X formula r.p: rt==µ r.p if! s F=µ r.p. 

PROOF. Copy the proof of the corresponding Theorem 3.2.3 for divergence 
blind stuttering equivalence and replace Lemma 3.2.2 by Lemma 3.2.9. D 

THEOREM 3.2.11. Let .5't = (S, 2', - ) be a finite state Kripke structure and let 
s ES. Then there exists a CTL-X formula cp such that for all r ES: r F=µ r.p if! 
r =s S. 

PROOF. Similar to the proof of Theorem 3.2.4. Now, we apply the partition 
refinement algorithm on the structure L(.%). We associate a formula to each 
block different from {s0}, which when interpreted over%, only holds for the 
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states in that block. The interesting case is the one where a block B with 
associated formula cp, is split into a block B1 of states, from which after some 
stuttering there is a transition to s0 , and into a block B2 = B - B1• 

Now associate the formula cp A (3 G cp) to B1 and the formula cp A (VF -, cp) 
to B2• 0 

By combining Theorem 3.2.10 and 3.2.11, we obtain the following results: 

THEOREM 3.2.12 (Stuttering, CTL*-X and CTL-X agree for 1=1_). Let.%= 
(S, £?, ~) be a finite state Kripke structure and let r, s E S. Then the following 
statements are equivalent: 

(i) r ::::: s s, 
(ii) for every CTL*-X formula cp: r l=IL cp if! s I= µcp, and 
(iii) for every CTL-X formula cp: r l=!L cp if! s I=µ cp. 0 

Since a similar result was proved in Browne et al. [1988], we have, as a 
corollary of the above theorem, that our version of stuttering equivalence 
coincides with that of Browne et al. [1988] for finite state Kripke structures 
without deadlocked states, that is, for the class of KSs they consider. 

3.3. DIVERGENCE BLIND STUTIERING EQUIVALENCES AND BRANCHING BISIM

ULA TIONS. In this section, we want to study the relationships between branch
ing bisimulation and CTL*-X. We will do it, by exploiting the relationships 
between stuttering equivalence and this logic. Indeed, we get the new logical 
characterization of branching bisimulation by relating CTL*-X to the diver
gence blind stuttering equivalence studied above. We need some preliminary 
work that will enable us to relate the different structures on which branching 
and stuttering equivalence are defined; namely, Kripke Structures and Labeled 
Transition Systems. 

We introduce a new kind of structure that can be projected naturally on both 
Labeled Transition Systems and Kripke structures. The new structures will be 
called Doubly Labeled Transition Systems (L2TS). 

Definition 3.3.1 (Doubly Labeled Transition Systems). An L2TS is a structure 
9 = (S, A, ~ , ..2") where (S, A, ~) is an LTS and £?: S ~ 2AP is a labeling 
function that associates a set of atomic propositions to each state. With 
LTS(.9J) we denote the substructure (S, A, ~) of .9J and with KS(9) we 
denote the substructure (S, .2', ~')of 9 where r ~ 's if and only if 3a: r ~ s. 
Equivalences defined on the states of an LTS or of a KS can be naturally lifted 
to L2 TS by ignoring either the labels of the states or the labels of the 
transitions: 

-9: r "'s = defLTS(9): r - s 
-9: r -'s = defKS(9): r - 's. 

The actual definition of L2TS is too general for our interests. Indeed, the 
generalized transition systems which we need have also to guarantee a certain 
degree of consistency between the labels of two adjacent states and the labels 
of the transitions connecting these states. Because of this, we introduce the 
restricted class of consistent L2TSs. Essentially, the restrictions amount to 
requiring that the states that are connected by invisible actions have the same 
labels and that the only difference between the labels oc adjacent states 
connected by a visible transition be the information carried by the label of the 
transition connecting them. 



Three Logics for Branching Bisimulation 477 

Definition 3.3.2 (Consistent L2 TSs). A L2TS (S, A, -? , .2") is consistent if 
there exists a function 

-action: 2AP X 2AP ~ A 7 

such that, for any subsets P, Q, Q' of AP, we have: 

(i) action(P, P) = r; 
(ii) action(P, Q) = action(P, Q') implies Q = Q'; 
(iii) r ~ s implies a = action(x(r ), .2"( s ))). 

The above restriction on L2TSs, permits performing the first step toward 
relating branching bisimulation and CTL*-X; indeed, stuttering equivalence 
and branching bisimulation agree when they are defined on consistent L2 TSs. 

THEOREM 3.3.3 (Divergence blind stuttering and ""'b agree on consistent 
L2TSs). If 9 = (S, A,~, .2") is a consistent L2 TS, then for all r, sin S: 

9: r ""'dbs s if and only if .2"(r) =.2"(s) and 9: r ""'b s. 

PROOF. Immediate from the definitions of the equivalences and from the 
consistency requirements on 9. o 

We can now start studying the relationships between stuttering equivalence 
as defined on Kripke structures and branching bisimulation as defined on 
labeled transition systems. We set up general construction that given a labeled 
transition system or a Kripke structure yields an enriched system, that has a 
structure similar to the original one, but carries labels on both states and 
transitions. It is worth remarking that one of the main sources of problems in 
these transformations is the presence of invisible actions. 

First of all, we present a straightforward way of labeling the transitions in a 
Kripke structure in such a way that divergence blind stuttering equivalence in 
the original structure coincides with branching bisimulation equivalence in the 
enriched structure. 

Definition 3.3.4 (From KSs to L2 TSs). Let % = (S, .2", ---? ) be a Kripke 
structure. The L2 TS t r(%) is defined as (S, 2AP, -? ', .2") where 

-r ~ 1s if and only if r -? s and .2"(r) = x(s ); 
1 I 

-r-? s if and only if r-? s and .2"(r) *Y(s) and .2"(s) = l. 

In Figure 5, we present an example of the above defined construction. 
One can easily verify that t ,..(%) is consistent and moreover that KS(t r(%)) 

= .%. Theorem 3.3.5 is an immediate consequence of these properties. 

,.~ 

..a---1.e Q 
Q 

tr 

FIG. 5. An example translation from KS to L2TS. 

Q 
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THEOREM 3.3.5. Let.%= (S, £', - ) be a Kripke structure. Then for all r, sin 
S: 

%: r =dhs s if and only if .Y(r) =.Y(s) and tr(..%): r =b s. 

PROOF. By the above property, we have that %: r = dbs s if and only if 
KS(t,{.%)): r =cths s. By definition KS(tr(.%)): r =ctbs s if and only if tr(Jf): 
r = dhs s. Now, since t r(.%) is consistent, it follows from Theorem 3.3.3 that the 
latter holds if and only if .Y(r) =.Y(s) and tr(..%): r =b s. D 

The construction of a L2TS from a LTS is less straightforward than the 
construction starting from a KS. The first idea that comes to mind is to label a 
state with the label of a transition leading to it, if the label is visible, and with 
the label of the source state of the transition otherwise. This would not deal 
properly with situations where a state is accessed by transitions with different 
labels. Moreover, problems arise with structures like those reported in Figure 6 
that capture a very different intuition but would be identified by the outlined 
naive transformation. 

One possible solution is proposed in Clarke et al. [1989]. There, a given LTS 
is extended by labeling each state with the set of the labels of the paths which 
lead to it; paths are labeled by the set of those actions which are performed an 
odd number of times. Unfortunately, this construction does not always lead to 
consistent L2TSs and is not able to cope with systems whose states can be 
reached via two paths which contain the same action an even resp. an odd 
number of times. Indeed, the authors restrict attention to those LTSs that lead 
to unique labeling and this restricted class of LTSs gives rise to consistent 
L2TSs only. 

The LTS in the left hand side of Figure 7 shows that in general it is not 
possible to give a labeling of the states in an LTS such that the resulting L2TS 
is consistent. Thus, there exists no transformation function which preserves the 
structure of the LTS up to isomorphism. 

In De Nicola and Vaandrager [1990b], we presented a transformation that 
gives rise to L2TS that have isomorphic unfolding with the original transition 
systems; that transformation has the disadvantage that it might lead to a 
quadratic blowup in the size of the system (unless one assumes that the 
alphabet A is finite and fixed). 

Below, we describe an alternative transformation from LTS to L2TS that is 
linear in the number of states and transitions. It was suggested in Emerson and 
Lei [1984] where it is presented in a setting without silent actions. The price to 
be paid for choosing this transformation is that corresponding states in the LTS 
and the L2TS do no longer give rise to isomorphic unfoldings. However, the 
structure of the LTS and the L2TS are still very similar: the L2TS is obtained 
by placing a new state in the middle of each visible transition of the LTS. 

FIG. 6. A pair of transition systems critical for transfor
mations. 

s. 
a a 
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r • l 

,~b 
- ..... (r,b,t)~ 

1 ad' t e I 

tr' 

a 

(s,a,s) 

F10. 7. An example translation from LTS to L2TS. 

Definition 3.3.6 (From LTSs to consistent L2TSs). Let sf= (S, A, ~)be an 
LTS. The L2TS t,v'(sf) is defined as (S', A,~', 2') where 

-S' =SU {(r, a, s)la EA and r ~ s}; 

--' = {(r,T,s)lr~s} U {(r,a,(r,a,s))lr~s} U {((r,a,s),a,s)lr~s}: 
-For r, s ES and a EA: 2'(s) = { ..L} and 2'((r, a, s)) ={a}. 

It is immediate from the definitions that t /(sf) is a consistent L 2TS. We 
report in Figure 7 an example of the above-defined construction. 

PROPOSITION 3.3.7. Two states r, sin an LTS sf are branching bisimilar if and 
only if they are so in t ,/(sf). 

PROOF. Let sf = (S, A, ~) be a LTS and t r'(sf) be its translation. 
First, suppose sf: r ==b s. Then there exists a branching bisimulation R on .W' 

with (r, s) ER. Define relation R' on S' by 

R' =Ru {((t,a,t'),(u,a,u')) E- 2 la EA,tRuandt'Ru'}. 

It is routine to check that R' is a branching bisimulation on t ,/(sf); from this 
t r'(sf): r ::::b s follows. For the other direction, suppose t r'(sf): r =b s. Then 
there is a branching bisimulation on t /(sf) with ( r, s) E R. Define 

R' = R n ( S x S). 

Again, it is routine to show that R' is a branching bisimulation on sf, and that 
sf: r ::::b s. D 

Now, Proposition 3.3.7 and Theorem 3.3.3, together with Theorem 3.2.5, 
allow us to prove the following important theorem which says that, via 
transformation tr', CTL*-X can be viewed as a logic for branching bisimula
tion equivalence. 

THEOREM 3.3.8. Let sf= (S, A, ~) be a finite LTS. Then for all r, s in S: 

sf: r :::: b s if and only if 'V q; E CTL * -X, t r' (sf), r I= r.p = t / (.r;1), s I= cp. 

Clearly, due to Theorem 3.2.5, we can also replace CTL*-X with CTL-X in 
the above theorem. 
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Example 3.3.9 (CTL*-X can distinguish weakly equivalent states). Consider 
the LTS .w2_:u of Example 2.3.3. 

If we define ip = 3(3 Fb) U a, then t ./(.w'2_33 ), s I= <p but .t ./ (SJ12_3), r i:;i: If'· 

If we define <p' = 3( (a = 'r/ G -, c) U b ), then t r' (sf2.3.3 ), q I= If' but t / Cw23_), 

p i:;i: ip'. 

3.4. STUTrERING EQUIVALENCES AND DIVERGENCE SENSITIVE BRANCHING 
B1s1MULATION. We conclude this chapter by introducing a new version of 
branching bisimulation that for finite systems is in full agreement with the 
stuttering equivalence of Browne et al. [1988] and thus with the equivalence 
induced by the standard interpretation of CTL* and CTL without the next-time 
operator, when interpreted over maximal paths. What we need is nothing more 
than a divergence sensitive version of the original definition of Section 2. We 
pedantically follow the approach we took to define stuttering equivalence from 
its divergence blind version. 

Definition 3.4.1 (Extending L2 TSs and LTSs with livelocked state). 

(i) Let g = (S, A, ~ , ..2") be a finite L2 TS, Jet s0 be a fresh state, a0 be a 
fresh action and let p0 be a fresh atomic proposition. The L 2TS with 
livelocked states L( 9) = ( S', A', ~ ', ..2"') is given by: 

-S' = S U {s0}, 

-A'= Au {a 0}, 

- ~' = ~ U { ( s, a0, s0 ) Is occurs in a T-cycle or has no outgoing transi-
tions} and 

-..2"' =..2"U ({so,{Po})}. 
(ii) Let sf = (S, A, ~) be a finite L TS. The LTS with livelocked states L(Slf) 

is given by LTS(L(!iJ')) where g' is the L2TS(S, A, -7 , 0). 

The following facts are immediate from the above definitions and from 
Definition 3.2.6. 

LEMMA 3.4.2. Let g = (S, A, ~ , ..2") be a finite and consistent L2TS. Then 

(i) L(9) is a finite and consistent L2TS; 
(ii) LTS(L(9)) = L(LTS(!iJ)); 

(iii) KS(L(9)) = L(KS(!iJ)). 

Definition 3.4.3 (Divergence sensitive branching bisimulation). Let SJf = (S, 
A, ~) be a finite L TS. Two states r, s in S are divergence sensitive branching 
bisimilar, abbreviated (.w:) r ::::dsb s, if and only if L(SJt): r :::::b s. 

THEOREM 3.4.4 (STUTTERING EQUIVALENCE AND :::: AGREE ON CONSISTENT 
J DSB 

L~ TSs). Let 9 = (S, A, ~ , ..2") be a finite and consistent L2TS then for all r, s 
in S: 

!iJ: r :::: 5 sifandonlyif!iJ: r ::::dsb sand2'(r) =2'(s). 
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PROOF. The theorem follows from the following chain of double implica
tions: 

91: r :::::, s =(Definition 3.3.1) 

KS(9): r :::::, s =(Definition 3.2.7) 

L(KS(.91)): r :::::ctbs s =(Lemma 3.4.2 (iii)) 

KS(L(.91)): r :::::ctbs s =(Definition 3.3.1) 

L(9): r :::::dbs s _ =(Lemma 3.4.2 (i) and Theorem 3.3.3) 
L(9): r :::::b sand .Y'(r) =.2'(s) =(Definition 3.3.1) 

LTS(L(9)): r :::::b sand .2'(r) =S"(s) =(Lemma 3.4.2 (ii)) 

L(LTS(9)): r :::::b sand .2'(r) =S"(s) =(Definition 3.4.3) 

LTS(9): r :::::dsb sand .2'(r) =S"(s) =(Definition 3.3.1) 
9 : r ::::: dsb s and .2'( r) = .2'( s). 0 

The final theorem states that for our transformation t r<' from LTSs to 

L2TSs, divergence sensitive branching bisimulation equivalence coincides with 

the equivalence induced by CTL*-X under the standard interpretation over 
maximal paths. 

LEMMA 3.4.5. Let .s¥' = (S, A, -7) be a finite LTS. Then for all r, sin S: 

sl: r :::::dsb s if and only if tr'Cw): r :::::dsb s. 

PROOF. Similar to the proof of Proposition 3.3.7. o 

THEOREM 3.4.6. Let S1' = (S, A, -7) be a finite LTS. Then for all r, sin S: 

sl: r :::::dsb s if and only if 'Vcp E CTL*-X, tr'(st), r I=='" <.p =t1.'(.w), s I='" <.p. 

PROOF 

.5¥': r :::::dsb s = (Lemma 3.4.5) 

t ,.' (st): r ::::: dsb s = (States in S have label { J_}) 

1j(J¥): r :::::dsb sand .2'(r) =.2'(s) = (Theorem 3.4.4) 

t'r<'(st): r ::::: 5 s = (Theorem 3.2.12) 

'Vq; E CTL*-X, t.r'(.N), r l==IL 'P = t.r'(st), s l==IL cp. 0 

As always, we can replace CTL*-X with CTL-X in the above theorem. 

4. Conclusions and Related Work 

In this paper, we have introduced three significantly different logics that are in 

full agreement with branching bisimulation equivalence ( ""b ). The first logic, 

Lu, is an extension of Hennessy-Milner Logic [Hennessy and Milner 1985] 

with a kind of "until" operator; it is close in spirit with the actual definition of 

branching bisimulation in van Glabbeek and Weijland [1989 /1991]. The second 

logic, L 8 p, is another extension of Hennessy-Milner Logic that exploits the 

power of backward modalities; it stems directly from the alternative characteri

zation of branching bisimulation presented in De Nicola et al. [1990b]. The 

third logic is CTL* (see, e.g., Emerson and Srinivasan [1989]) without the 

next-time operator (CTL*-X). 
The latter characterization exploits the relationships between variants of 

stuttering equivalence [Browne et al. 1988] and CTL*. We have established 

that branching bisimulation equivalence is in full agreement with CTL*-X by 
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proving that it is in full agreement with a divergence blind variant of stuttering 
equivalence. The actual proof had to face the problem that the two equiva
lences are defined on different structures; namely, K.ripke structures (KSs) and 
Labeled Transition Systems (LTSs). Thus, transformation functions from one 
structure to the other were needed. 

We defined a transformation function from general L TSs with invisible 
labels to KSs. This transformation permits naturally relating branching bisimu
lation to divergence blind stuttering equivalence and divergence sensitive 
branching bisimulation to stuttering equivalence. The transformation enjoys 
two important properties; it is linear in the size of the systems and preserves a 
close correspondence between the source and the target system. We defined 
also a translation from KSs to LTSs, which enjoys the same properties of that 
from LTSs to KSs. These two transformations and their properties permit one 
to move freely between an action-based and a state-based view of concurrent 
system and to use automatic tools that have been designed for reasoning within 
either model. 

To facilitate the discussion, we also introduce a new kind of structures, 
Doubly Labeled Transition Systems (L2TS), which were used as target of the 
translation functions. We proved that branching bisimulation and stuttering 
equivalence are in full agreement on a subclass of L2TS in which a strong 
consistency relation between the labels of the nodes and those of the incoming 
and outgoing arcs holds and have proved that our translations always yield 
consistent L2TS. Here, we want to remark that the new structures are interest
ing in their own in that they permit richer descriptions of systems. It is 
certainly worthwhile exploring how much the consistency constraint on L2 TS 
can be relaxed while keeping full agreement between the state-based and the 
action-based equivalence. It would also be interesting studying the equiva
lences that are obtained once consistency is lost. 

The philosophy behind the backward generalization of HML is very similar 
to that of the logic called JT, introduced by Hennessy and Stirling [1985] to 
deal with noncontinuous properties of generalized transition systems with 
infinite computations. The relevant difference is that L 8 p permits abstracting 
from silent actions, while JT does not. Indeed, in the context of traditional 
Oimit closed) labeled transition systems, J T has no more discriminating power 
than strong observational equivalence (see also De Nicola et al. [1990b]). The 
characterization of =b in terms of a more abstract version of J T gives 
strength to the claims that branching bisimulation is indeed a natural general
ization of strong bisimulation and that it can be easily extended to cope with 
infinitary properties. 

Stirling [1989) provides a different interpretation of CTL*-X based on LTS 
extended with the double arrow relation ~ ; he shows that weak bisimulation 
and the newly interpreted CTL* (with the next-time operator) are in full 
agreement. This result is weaker than ours and is a direct consequence of the 
fact that strong bisimulation and CTL* are in full agreement. 

In the literature, various translations functions between K.ripke Structures 
and Labeled Transition Systems have been proposed. Our transformation 
function from general LTSs to KSs was inspired by Emerson and Lei [1985); we 
generalized their proposal to deal with invisible labels. The transformation 
function from KSs to LTSs was independently proposed by Koutny [1991). In 
Jonsson et al. [1990), a LTS is translated into a KS by introducing, in 
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correspondence of each transition in the LTS, a state in the associated KS with 
the obvious labeling, and by introducing a transition in correspondence of each 
pair of consecutive transitions in the L TS. This construction does not permit 
relating stuttering equivalence and branching bisimulation. Another translation 
from LTSs to KSs is described in Clarke et al. [1989] but their construction only 
works for a special class of LTSs which does not allow systems with states 
reachable via two paths which contain the same action respectively, an even 
and an odd number of times. In the paper by De Nicola and Vaandrager 
[1990b], we have proposed another transformation that has the advantage over 
all the others that it preserves the structure of the source LTS up to isomor
phism of unfoldings; it however might lead to a quadratic blowup in the size of 
the system (unless one assumes that the alphabet A is finite and fixed). 

The problem of the complete axiomatization of Lu and LaF is still open, 
and so are the satisfiability and model checking problems for these logics. We 
think that, by expressing Lu within the modal mu-calculus of Kozen [1983] and 
Pratt [1981] we can answer the latter questions for the logic Lu; the complexity 
of the translation algorithm is, however, not clear to us. Since the translations 
of Laroussinie et al. [1993] are effective, the connection with the modal 
mu-calculus would also give satisfiability and model checking algorithms for 
LaF· However, since again the complexity of the translation algorithm is 
unclear, and possibly quite high, this might not be the most efficient route. 

Appendix A 

LEMMA Al (Lemma 2.1.6). Let .w' = (S, A, -t) be an LTS and let s0rs 1r · ·· 
sn-1TSn, n > 0, be a run in ,sq' with So zb Sn. Then for all 0 s i s n: So zb S;. 

PROOF. Define for i > 0 . 

.Ylo = zb 

.Yl; =9f;_ 1 U {(r,r'),(r',r)l3r": r~r' ~r"&r.9l;_ 1 r"} 

.!Jlw = U i< wf}fi 

First, we show that .!Jlw enjoys the property that we want to prove for zb • 

Let for some n > 0, r0rr1 ••• rn_ 1rrn be a run with r0 9fwrn. Indeed, we can 
prove by induction on n that for all 0 s i s n: r0 .9lwri. If n = 1, the statement 
is trivially correct. Now consider the case n > l. Since r09fJn, there exists an 
m < w with r0 .9lmrn- By definition of 9fm+I: r0 9fm+Irn-l" Thus, r0 .9lwrn-l 
and, by induction hypothesis, r0 .9l,,,r; for all 0 s i s n - 1; this together with 
the hypothesis proves the claim. 

Next, we will prove with induction that, for every n < w, B?n is a branching 
bisimulation. This would suffice to conclude that fJfw is a branching bisimula
tion and that B?w s;;; zb . But, by construction, we have zb s;;;.!Jlw. Hence, 
zb = fJfw, and we have proved the lemma . .9?0 is a branching bisimulation 
because zb is such. Now, suppose that, for certain n > 0, B?n-t is a branch
ing bisimulation. We prove that B?n is a branching bisimulation too. By 

QI 

construction .!Jln is symmetric. Suppose r fJfn r' and r -+ s. If r B?n- l r', then the 
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transfer property is trivially fulfilled. In the other case, we have that there exist 
r"..9P,, _ 1 r which is reachable via a single T transition either from r or r'. More 
specifically, we have two possibilities: 

(1) For some r": r ~ r' ~ r" and r 92,,_ 1 r". Using r 9i,, _ 1 r", a first possibility 
€ t 'T If • h I is that a = T and s !Jll,, _ 1 r". But this means that r' = r ~ r wit r 9i,, r 

E et 
and s !Jll,, r". Otherwise, there are r 1, r 2 such that r" = r 1 ~ r 2 , r !Jll,, _ 1 r 1 

1 e a d rm and s 9i, _ 1 r?· But then r = r 1 ~ r2 , r 92,, r1 an s .::n,, r 2 • 
l .. e 7" e a 

(2) For some r": r' = r ~ r" and r' r,,_ 1 r". Then r' = r ~ s, r 9i,, r and 
s 9i,, s. D 

LEMMA A.2 (X-property). Let (S, A, ~) be an LTS and let r, s ES with 
r =bf s. Let 92 s;;; run.of X run.of be the maximal weak back-and-forth bisimulation 
between rand s. Then 92 has the following X-property: 

'flp, p E run(r), 'flu, u E run(s): 

[ p ~ p', u ~ u', p 92 u' & p' 9i u] = p' 9i u'. 

PROOF. Define relation 

!Jll' =92 u {C p', u'), (u', p')I p E run(r), u E run(s): 

p = p'' u = u'' P !Jll <T' & p' 92 u E € } 

We prove that !Jll' is a weak back-and-forth bisimulation. Since 9i is the 
maximal back-and-forth bisimulation and 92 ~ 92' by construction, the fact 
that 92' is a weak back-and-forth bisimulation would imply that 9i = 92'. Thus, 
92 has the X-property. 

Clearly, !Jll' is symmetric. Moreover, r !Jll's because r 9i s. Suppose p' 9i' er' 
with p" E run(r) and cr' E run(s ). If p'92 a', then the back-and-forth condi
tions 2 and 3 are trivially fulfilled. Otherwise, there must be a p and a a such 

E € 

that: p = p', <T= cr', p92u', and p' 9ia. We check transfer property 2. 
k k 

Suppose p' = p". Then p => p". Since p 9i u', there exists an u" such that 
k k 

<T 1 =a" and p" 92' u". Next we check transfer property 3. If p" = p', then, 

since p' 92 a, there exists an u" such that a" ~ u and p" 9i' a". Now observe 
k 

that er"= u'. 
The remaining case that u' 92' p' with u' E run(s) and p' E run(r) is 

symmetric. D 

THEOREM A.3 (Theorem 2.4.2). Let sf= (S, A, ~)be an LTS. Then for r, s 
in S: sf: r ""b s if and only if sf: r =bf s. 

PROOF 

"=" Suppose r =b s. Let cct be the mapping that associates to each run p in 
s1' its concrete colored trace, that is, the sequence which is obtained from p by 
replacing each state by its branching bisimulation equivalence class. So 

cct(s0a 1s1 ... s,,_ 1a,,s,,) = (s 0/zb a 1s1/=b ··· s,,_ 1/zb a,,s,,/::::b). 
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Let et be th.e mapping that associates to each run p in .W' its (abstract) colored 

trace, that 1s, the sequence which is obtained from cct( p) by removing all 
elements (C, T, C) from the sequence. Define relation !Jl by 

.9l = { ( P, a-), (a-, p) I p E run( r), a- E run( s) & et( p) = et( o-)}. 

Us~ng the stuttering lemma (Lemma 2.1.6), it is straightforward to check that 
Yl 1s a back and forth bisimulation between r and s. 

" "S L -~ ui:pose r ""br s. et !Jl ~ run.w X run.w be the maximal back-and-forth 
b1s11nulat10n between r and s. Define 

.92' = {(last(p),last(o-))\p!Jlo-}. 

Clearly r fff'. s. We show that !Jl' is a branching bisimulation. !Jl' is symmetric 

because .9l 1s. Suppose r0 !Jf' s0 • Then there are p, o- with p 9l a-, last( p) = r0 

and last( a-) = s 0 • Suppose that r 0 ~ r' and let p' = p a r'. In the proof of the 
transfer property, we distinguish between two cases. 

(1) a =I= r. Since p ~ p' and p 9l a-, there exist a-1, o-2, u' such that 
E a € E 

a-= 0-1 ~ a-2 = <T 1 and p' !Jf a-'. Since o-2 = a', there exists a p1 such that 
E 

Pi =Pi !Jf <T2 • But since the last transition of p' has label a, p1 = p' so 

that p' .9lu2 • Because a 1 ~ a-2 , there exists a p2 such that p2 ~ p ~ p' 

and p2 9f u 1• How use that !Jf has the X-property (Lemma A.2) to obtain 
p .9l a-1• But this gives us the transfer property; namely we have 

E a 
s0 => last(u1 ) ~ last(o-2 ), r0 .<JP' last(a1 ) and r' .<JP' last(o-2 ). 

(2) a = T. Since p ~ p' and p !Jl a, there is an n ~ 0 and there are O'; for 

0:::;; i:::;; n such that o-0 = u, for 0 < i S: n: a;_ 1 ~ O';, and p' !Jfun. If 

n = 0, then r' !Jf' s0 and we have proved the transfer property. If n > 0, 

then we can go back with an E-move from un to un _ 1• A first possibility is 
that p' can simulate this step by doing nothing: p' !Jf un- 1. If this is the 
case, then either n = 1 and we are ready, or we can go back one more 

E-step from an- 1 to un _ 2. Repeating this, we either find p' !?I o-0 , in which 
case we have proved the transfer property for branching bisimulation since 

r' Yl' s0 , or, for some m > 0 with p' 9l O'm, we have that a backward step to 

um_ 1 is simulated by a backward step p1 ~ p ~ p' with p1 .91 um_ 1• In this 

case we use the X-property (Lemma A.2) to obtain p !Jf a-m- i· This gives us 

the transfer property for branching bisimulation since: 

E T ( ) s0 = last( O"m _ 1) ~ last CTm , 

r 0 !Jf' last( um_ 1) and r' 91' last( O"m). 0 
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