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Abstract. We give a short geometric proof of the Kochen-Specker no-go theorem for non­
contextual hidden variables models. 

1. Introduction 

The fundamental theorem of Kochen and Specker (1967) shows that any hidden-variable 
theory for quantum measurement (on an at least three-dimensional system) must be 
contextual: i.e. in a deterministic theory randomness is explained not just by hidden states 
in the quantum system under study but also from hidden states in the measurement devices. 

The theorem is usually proved by exhibiting a finite collection of vectors in C3 (actually, 
R3 turns out to be enough) such that it is impossible to colour each vector either red or green 
subject to the following constraints: (i) within any orthogonal triple, exactly one vector is 
red and the other two are green; (ii) if one vector lies in a (complex) linear combination of 
another two and those two are both coloured green, then it is coloured green as well. The 
two constraints are connected to the so-called sum-rule and product-rule associating values 
of commuting observables. For the preparatory arguments showing why such a construction 
does supply a proof of the no-go theorem for non-contextual hidden variables models see 
Peres (1993) or Gill (1995a,b). 

The Kochen-Specker proof is based on a construction involving 117 vectors. Actually, 
the heart of the construction is a special configuration of just ten vectors, which is then 
chained in three groups of five (with three of the vectors being used twice). Ignored by most 
authors is an earlier construction by Bell (1966) again based on a special configuration of 13 
vectors repeated a number of times. Recently Peres (1991) gave a construction involving just 
33 vectors. In his more recent book (Peres 1993) he also shows a construction of Conway 
and Kochen involving just 31 vectors. This is the world record so far. Peres (1993) and 
Gill (1995b) also discuss further examples due to Peres, Mermin, and others, involving still 
fewer vectors, but requiring a higher-dimensional space. A recent contribution of this kind 
has been made by Cabello et al (1996). Such examples do illustrate the Kochen-Specker 
theorem but they do not prove it. 

Here we present a new construction similar in flavour to the Bell and Kochen-Specker 
constructions, being based on a repetition of a basic configuration. However, whereas those 
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constructions relied on some analytic computations to prove their existence, our construction 
relies on a geometric picture-in fact, exactly the same geometric idea used by Cooke et al 
(1985) at the heart of their elementary proof of Gleason's theorem. The recent Peres (1991) 
and Conway-Kochen (see Peres 1993) constructions have a geometrical aspect but are more 
combinatoric nature. It is therefore largely a matter of mathematical taste which proof is to 
be preferred. However, we feel there is some virtue in laying a connection with Gleason's 
theorem (which was also the inspiration of Bell's contribution), and in having a proof 
which can be 'seen' from a picture without any calculation or lengthy enumeration being 
necessary. Another (more complicated) geometric proof is given by Galindo (1976), while 
a more verbal proof using similar ideas to ours is given in the unpublished paper Dorling 
(1992). 

Some authors, e.g. van Fraassen (1991), use Gleason's theorem applied to the continuum 
of all vectors simultaneously to (allegedly) prove the theorem. In our opinion this cannot 
be built into a correct proof of the no-go result; see Gill (1995b) for an analysis of what 
can go wrong. Other authors misinterpret Bell's argument to require continuously many 
vectors and hence be disqualified but this does not do justice to Bell's argument which in 
our opinion is both concise and correct. 

'How many vectors' are needed in a given argument seems to us a relatively minor 
point. The theorem is already proved by Bell, Kochen and Specker, and us, after the 
initial configuration has been shown to exist. Moreover there are different ways of counting 
vectors (for instance, one might not accept the product-rule but only use the sum rule, and 
thereby need more vectors). We see no reason not to use anything at our disposal. 

2. A geometric lemma 

Consider the one-dimensional subspaces corresponding to non-zero, real, linear 
combinations of three orthogonal vectors in Ck, k ~ 3. These subspaces may be represented 
by points on (the surface of) the Northern Hemisphere of the Globe. The original triple is 
represented by the North Pole together with two points on the Equator whose longitudes 
differ by 90°. 

Now fix a point \jf in the Northern Hemisphere, not at the North Pole nor on the 
Equator. Consider the great circle through this point which crosses the Equator at the two 
points differing in longitude by ±90° from 'I'· Choose one of these equatorial points and 
call it 'l'E. Call the point on the Northern Hemisphere orthogonal to the great circle 'l'J.. Its 
longitude is that of 'I' plus 180° and its latitude is 90° minus that of 'I'· The triple \jf, \jfE, 

\jfl. are orthogonal. 
The great circle we just defined has \jl as its most northerly point. We call it the great 

circle descent from \jl. 
Starting from a point \jl = 'l'o go down its descent circle some way to a new point \jf 1• 

Now consider the new great circle descent from \j/1. Go down some way to a new point \jl2, 

and so on. After n steps arrive at \Jfn· Obviously 'Jin is more southerly than 'l'o· Cooke et 
al's geometric lemma states that one can reach any more southerly point than 'l'o by a finite 
sequence of great circle descents. For instance, one can fly from Amsterdam to Tokyo by 
a finite sequence of great circle descents. 

The lemma is proved by projecting the Northern Hemisphere from the centre of the 
earth onto the horizontal plane tangent to the earth at the North Pole. Lines of constant 
latitude project onto concentric circles, a great circle descent projects onto a straight line 
tangent to the circle of constant latitude at its summit. 



Letter to the Editor L291 

Proof of the theorem 

tillt with an orthogonal triple. Colour one point red and the other two green. Let the red 
0 int be the North Pole and the other two green points be on the Equator. Any further 
0 ints selected on the Equator get coloured green by the product rule. Take a point 'JI at 
~titute 60' above the :Equator. Together with \j/.L and \j/E we have a new orthogonal triple. 
joce \j/E gets coloured green, if \jf is coloured green then \j/.L is coloured red. Note that 
,.J. lies at 30° above the Equator, more southerly than \jf. 

Suppose \jl is coloured green. Since any point on its great circle descent is a linear 
::imbination of \jl and 'JfE, it is also coloured green. Repeating this argument, any point 
r}lich can be reached by a finite number of great circle descents from 'JI is also coloured 
reen. But this applies to 'VJ_, a contradiction. 

Therefore 'I' is coloured red just like the North Pole. So we have shown that any point 
rithin 30c of a red point is also coloured red. Now go in three steps of 30" from the North 
ole down to the Equator, then in three steps of 30' along the Equator, then in three steps of 
O" back up to the North Pole. One of the three 'comers' of this circuit has to be coloured 
~d, hence they all are, a contradiction. D 
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