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solving linear, scalar convection problems. Moving interior boundary conditions are embedded
in the fixed-grid fluxes in the direct neighborhood of the moving boundaries. Tailor-made limiters
are derived such that the resulting scheme is monotone. The results obtained are very accurate,
without requiring much computational overhead. It is anticipated that the method can readily be
extended to real fluid-flow equations.
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Summary. An accurate method, using a novel immersed-boundary approach, is
presented for numerically solving linear, scalar convection problems. Moving interior
boundary conditions are embedded in the fixed-grid fluxes in the direct neighborhood
of the moving boundaries. Tailor-made limiters are derived such that the resulting
scheme is monotone. The results obtained are very accurate, without requiring much
computational overhead. It is anticipated that the method can readily be extended
to real fluid-flow equations.
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1 Introduction

The immersed-boundary method, in general, is a method in which boundary con-
ditions are indirectly incorporated into the governing equations. It has first been
introduced by Peskin [4], and currently many varieties of it exist.

Immersed-boundary methods are very suitable for simulating flows around flex-
ible, moving and/or complex bodies. Basically, the bodies of interest are just em-
bedded in non-deforming Cartesian grids that do not conform to the shape of the
body. The governing equations are modified to include the effect of the embedded
bodies (EBs). Doing so, mesh (re)generation difficulties associated with body-fitted
grids are obviated; and, the underlying regular fixed grid allows to use a simple data
structure as well as simpler numerical schemes over a majority of the domain.

Our approach uses a cell-centered finite-volume discretization. The governing
partial differential equations are discretized using a standard finite-volume method
(FVM) away from the EBs. Near the EB, a special FVM is derived which takes the
prescribed interior boundary conditions into account.

The article begins with the problem description and with some standard finite-
volume results. The following sections present: the special fluxes that take the effects
of the EBs into account, the temporal discretization, monotonicity domains and
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limiters, and time adaptivity, in the respective order. Finally, some numerical results,
based on the present approach, and concluding remarks are given.

2 Model equation

Consider the scalar, linear convection equation:

Crd o0, f=i0) =, (1)
where ¢(z,t) is the scalar field, u the flow velocity, which is assumed to be constant
and positive, and f(c) the flux function. The independent variables x and ¢ represent
space and time, respectively. We take z € [0, 1].

Eq. (1) is hyperbolic. The initial solution c(z,0) = co(x) simply propagates
unchanged with the velocity u: ¢(z,t) := co(z—ut). We consider two initial solutions,
each with two interior, moving EBs. The solution at the left and right of each EB
is prescribed. The two moving EBs have arbitrary initial locations (0 < z1 < 1 and
0 < z3 <1, 1 # x2). The initial solutions read:

0, ifxy <z <o, 0, if 1 <z <o,
Co(CL‘) = and Co(CL‘) = 1—cos(2wx) (2)
1, elsewhere, —=="2  elsewhere.

The cosine function in (2) exploits the advantage that higher-order accurate numer-
ical schemes have in non-constant, smooth solution regions. Model equation (1) is
approximated in a periodic domain, allowing us to time-step for as long as we want
for a given, finite, spatial domain.

2.1 Standard FVM results

The unit domain is divided into N non-overlapping cells of uniform size. Let h = 1/N
be the cell width, z; = (¢ — 1/2)h the cell-center coordinates and z;,1 = ih the
cell-face coordinates for ¢ = 1,2,..., N. Let the fully discrete solution in cell 7, at
time level n, be denoted as ¢ = c(z;,t"). Then the semi-discrete finite-volume form
of (1) reads:

iy ()~ 1,y (0} =0, (3)
Eq. (3) is exact, inside a specific cell, so far and it is solved by approximating the

fluxes, at time level n, say f" i, and by time-stepping the temporal part. The fluxes

z+% )
are computed (dropping the index n, for convenience) as f; 1 =uc

i+l
is the cell-face state at i + %, which can be approximated in a variety of ways. For

example, for u > 0, ¢;, 1 = ¢; and Cipl =Ci + LZ—“(ciH —ci)+ %(ci —ci—1) are

h

where ¢, , 1

two classical cell-face states, computed with the first-order upwind- and van Leer’s
k-scheme [6], respectively. Note that, with no EB in the neighborhood, k € [-1,1].

The k-schemes yield non-monotone discretizations. Several algorithms have been
proposed in the literature that yield higher-order accurate, monotone solutions.
Most of these algorithms exploit the inherent monotonicity of the first-order up-
wind scheme. The best known representatives of these algorithms are the limited
schemes following Sweby’s total-variation diminishing (TVD) theory [5].
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The cell-face state Ciyl can be written in the limited form as Ciyl = Ci +
%¢(ri+%)(ci — ¢i—1), where ¢(r) is the limiter function and ril = % its

monotonicity argument. Here we specifically adopt the limiter proposed by Koren [3]
as the standard limiter. It gives a monotone third-order accurate net flux in a cell,
by resembling the kK = %—scheme.

Now, for later comparison purposes, we will show what the solutions are when
using the standard finite-volume discretizations described above, methods in which
no embedded-boundary conditions are imposed. For the time integration, the three-
stage Runge-Kutta scheme RK3b from [2] is employed. For both initial solutions (2),
we consider the locations of the EBs to be at z1 = % and z2 = % Furthermore, we
take u = 1, and we compute the solution at ¢ = 1, the time at which the solution has
made a single full-period. For both the first-order upwind and the k = % (unlimited
and limited) schemes, the computations are performed on a grid with 20 and 40 cells.
The solutions are depicted in Fig. 1. The time steps have been taken sufficiently
small to ensure that in all cases the temporal discretization errors are negligible
with respect to the spatial discretization errors.

3 Fluxes with embedded moving-boundary conditions

The sharp discontinuities of the initial solutions (2) are considered as infinitely thin
bodies going with the flow and the boundary conditions associated with these are

0 02 04 06 08 1 0 02 04 06 08 1
€T T

Fig. 1. Standard finite-volume solutions after one full-period. Red: exact discrete,
blue: first-order upwind, green: unlimited kK = % scheme, and black: limited ditto.
Note: the top two are the results on a 20-cell grid and the bottom two are on a
40-cell grid.



4 Yunus Hassen and Barry Koren

embedded in the fixed-grid fluxes. Here, the embedded-boundary conditions are
user-specified and enforced to remain intact to the EB and unchanged at all times.
The solution values on the left and right sides of the EB are designated as chkp and
CEB, respectively (Fig. 2).

CEB | CEB
¢, 1 1 C, 3
‘ — = = -
T —e T A T —e T —e — - x
7—1 i i+ 1 7+ 2
r—
Bh

Fig. 2. EB situated in cell ¢ at time t", its associated solution values (to be used
as ‘embedded-boundary conditions’), and the three affected cell-face states.

For an EB situated in cell ¢, with its coordinate zgg(t) = zgp given, its relative
position with respect to the cell face T 1 is Sh, where:

ng —Z;_1
There is no information flow across the EB. Fluxes on one side of the EB are all
computed based on the information on the same side and the additional interior
boundary condition on the respective side of the EB. In general, when considering
three-point upwind-biased interpolation for the fluxes, three cell-face states (c;_ 1
Cipl and ¢; +3 ) are affected by the presence of a single EB (in cell 7) and these are

the cell-face states of interest that are especially modified (Fig. 2). i1 and Civ3

are written as optimally blended, three-point upwind-biased interpolation formulae:

1 1+kK,_1 1—k, 1
Cim1 =Ci-1 + WT(CEB —ci—1)+ TZ(Ci—l —¢i—2), (5a)
1+Ki+§ 2 1 — K3 .
Ciy3 = Cit1+ TZ(CiH —cit1) + WTZ(CPA — CiB). (5b)

Since we do not draw information across the EB, no upwind-biased interpolation
formula can be derived for ¢, 1 Non-equidistant central interpolation is applied to
compute ¢, 1.

The blending parameters il and Kiy3 are optimized such that the net fluxes
in cells 7 — 1 and i + 2, respectively, are as accurate as possible. The net flux in cell
1 cannot be optimized due to the presence of the EB with its discontinuous solution
behavior. Deriving the modified equations in cells ¢ — 1 and 7 + 2, and equating the
leading term of the truncation errors to zero, we get:

768 17 768 17
e A P B et = ] B

The reasons to consider the net flux in cell i+ 2 instead of that of cell i + 1, for
optimizing Riy 3, are given in [1]. The formulae for the EB-affected cell-face states

are summarized, in terms of the parameter 3, as:
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— 8 Lo, 1+68 .
ci_p=ci-1+ G169 B 120 (cep — ci—1) + 181128 (ci1 — ciz2), (7a)
T 2-2 T
Cit+1 =CeB T ﬁ(ci+l — cEB), (7b)
11— 68 4

Cit8 = Cit1 + m(CH—Z —Cit1) + m(@-&-l — CEB)- (7c)
Note that it is assumed that two successive EBs are sufficiently far apart, such that
a given cell-face state is affected by only one EB. Recall that all but the EB-affected

fluxes are computed with a standard scheme.

4 Temporal discretization

After substituting the appropriate discretizations for the spatial operator in the
semi-discrete equation (3), it is integrated in time using an explicit method: either
the Forward Euler or the RK3b [2] scheme. The later gives a third-order accuracy
in time.

4.1 Monotonicity and limiters

Noting that the EB-affected cell-face states (7) are higher-order accurate and linear,
wiggles are imminent. These wiggles can be suppressed by carefully constraining the
convective cell-face states. Therefore, as explained in detail in [1], we define non-
standard monotonicity arguments, Fi_% and FH_%, and derive the limited forms of
i1 and ¢, 3 The cell-face state c; , 1, however, is not limited as we can not define a
monotonicity argument 7, , 1 Enforcing appropriate monotonicity requirements, the

resulting EB-sensitive limiter-functions ¢(7) become v-dependent (where v = ur/h
is the CFL number and 7 is the time step). The v-dependence, however, is avoided
by taking a stringent restriction v < %, to achieve a monotonicity preserving scheme
and a second-order accurate discrete-solution. Then, the resulting bounds for (E)(F)
are simplified and they are fully constrained, V 7,_ 1 and V 7, +8,as:

~ &(Fi—l)
0< ¢(7‘17%) <2 and —32 <1428, (8a)
o1
)
- ﬁg(ﬂ 2)
1< (F,3)<5—48 and 0<-—2° <3 (8b)
2 Tiys

Typical limiters, satisfying the special bounds (8), are depicted in Fig. 3.

4.2 Local adaptivity in time

If an EB is situated in such a way that zgg € [z, 1 xH%) and zhfh' € [xH% , acH%),

there is an abrupt change in Civl when going from t™ to t" ™! (see Fig. 4). To account

for this change, time adaptivity is introduced by first computing the time fraction
a at which the EB crosses Ty, as:
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Fig. 3. Typical EB-sensitive limiters (for 8 = 1/2), within the corresponding, sim-
plified, monotonicity domains, for the EB-affected cell-face states ¢ 1 (left) and

Ciy3 (right).

T, 1 +€—TEp
a= ZT’ a € (0,1). 9)

Next, the intermediate cell-face state c":f‘ is computed. Note that the EB is placed
2

i
at infinitesimal distance € off z, 1, in the direction of the flow. Then the cell-face
state CZ_ 1 is recomputed as the weighted average:

2

c;’_,_% = acl."+% +(1- a)c?:%a. (10)
Finally, solution updating, in Forward Euler, is continued everywhere, using the
time-adapted cell-face state, with the regular time step 7. For RK3b, we do not yet
resort to the temporal local-adaptivity. We instead split the regular time step 7 into
smaller time steps, depending on the number of EBs crossing cell faces, and update
the intermediate solutions everywhere.

nild ,, | _ Fig. 4. Stencil for local
adaptivity in time. The
ntal kb standard, modified and

N the intermediate cell-face
| fluxes are designated in
green, blue, and red,
i-1 i i+l i+2 respectively.

5 Results and conclusion

We present numerical results to validate the immersed-boundary approach intro-
duced in this work. We take the same data as in § 2.1. The results obtained, shown
in Fig. 5, are remarkably accurate. They show a significant improvement in res-
olution over those computed using the standard methods (Fig. 1). For the more
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discriminating initial solution, the cosine-cavity in (2), the numerical results of the
limited higher-order upwind-biased schemes are slightly deficient at the peripheries.
This is due to the property of limiters that they clip physically relevant extrema.
Apparently, the deficiency diminishes with decreasing grid size.

0.8

0.4

0 02 04 €T 06 0.8 1

0 0.2 0.4 x 0.6 0.8 1 0 0.2 0.4 x 0.6 08 1

Fig. 5. Immersed-boundary solutions after one full-period. O: exact discrete, O:
unlimited higher-order upwind-biased with Forward Euler, *: limited ditto, <: un-
limited higher-order upwind-biased with RK3b, x: limited ditto. Note: the top two
are the results on a 20-cell grid and the bottom two are on a 40-cell grid.

The essence of the present approach is that moving bodies are embedded in a
regular fixed grid and specific fluxes in the vicinity of the embedded boundary are
intelligently computed in such a way that they accurately accommodate the bound-
ary conditions valid on the moving EB. Then, over the majority of the domain,
where we do not have influence of the EBs, we use standard methods on the under-
lying regular fixed grid. Excellent results are achieved, without much computational
overhead. We foresee that the numerical methods introduced here can readily be
extended to real fluid-flow equations.
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