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ABSTRACT 
An accurate method, using a novel immersed-boundary approach, is presented for numerically 
solving linear, scalar convection problems. Moving interior boundary conditions are embedded 
in the fixed-grid fluxes in the direct neighborhood of the moving boundaries. Tailor-made limiters 
are derived such that the resulting scheme is monotone. The results obtained are very accurate, 
without requiring much computational overhead. It is anticipated that the method can readily be 
extended to real fluid-flow equations. 
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A Finite-Volume Method for Conve
tionProblems with Embedded Moving-Boundaries
Yunus Hassen1;2 and Barry Koren1;31 Centrum Wiskunde & Informati
a, Amsterdam, the Netherlands2 Fa
ulty of Aerospa
e Engineering, TU Delft, the Netherlands3 Mathemati
al Institute, Leiden University, the Netherlandsyunus.hassen�
wi.nl, barry.koren�
wi.nlSummary. An a

urate method, using a novel immersed-boundary approa
h, ispresented for numeri
ally solving linear, s
alar 
onve
tion problems. Moving interiorboundary 
onditions are embedded in the �xed-grid 
uxes in the dire
t neighborhoodof the moving boundaries. Tailor-made limiters are derived su
h that the resultings
heme is monotone. The results obtained are very a

urate, without requiring mu
h
omputational overhead. It is anti
ipated that the method 
an readily be extendedto real 
uid-
ow equations.Key words: immersed-boundary method; hyperboli
 
onservation laws; high-orders
hemes; monotoni
ity; limiters; time adaptivity.
1 Introdu
tionThe immersed-boundary method, in general, is a method in whi
h boundary 
on-ditions are indire
tly in
orporated into the governing equations. It has �rst beenintrodu
ed by Peskin [4℄, and 
urrently many varieties of it exist.Immersed-boundary methods are very suitable for simulating 
ows around 
ex-ible, moving and/or 
omplex bodies. Basi
ally, the bodies of interest are just em-bedded in non-deforming Cartesian grids that do not 
onform to the shape of thebody. The governing equations are modi�ed to in
lude the e�e
t of the embeddedbodies (EBs). Doing so, mesh (re)generation diÆ
ulties asso
iated with body-�ttedgrids are obviated; and, the underlying regular �xed grid allows to use a simple datastru
ture as well as simpler numeri
al s
hemes over a majority of the domain.Our approa
h uses a 
ell-
entered �nite-volume dis
retization. The governingpartial di�erential equations are dis
retized using a standard �nite-volume method(FVM) away from the EBs. Near the EB, a spe
ial FVM is derived whi
h takes thepres
ribed interior boundary 
onditions into a

ount.The arti
le begins with the problem des
ription and with some standard �nite-volume results. The following se
tions present: the spe
ial 
uxes that take the e�e
tsof the EBs into a

ount, the temporal dis
retization, monotoni
ity domains and



2 Yunus Hassen and Barry Korenlimiters, and time adaptivity, in the respe
tive order. Finally, some numeri
al results,based on the present approa
h, and 
on
luding remarks are given.
2 Model equationConsider the s
alar, linear 
onve
tion equation:�
�t + �f�x = 0; f = f(
) := u
; (1)where 
(x; t) is the s
alar �eld, u the 
ow velo
ity, whi
h is assumed to be 
onstantand positive, and f(
) the 
ux fun
tion. The independent variables x and t representspa
e and time, respe
tively. We take x 2 [0; 1℄.Eq. (1) is hyperboli
. The initial solution 
(x; 0) = 
0(x) simply propagatesun
hanged with the velo
ity u: 
(x; t) := 
0(x�ut). We 
onsider two initial solutions,ea
h with two interior, moving EBs. The solution at the left and right of ea
h EBis pres
ribed. The two moving EBs have arbitrary initial lo
ations (0 � x1 � 1 and0 � x2 � 1, x1 6= x2). The initial solutions read:
0(x) = (0; if x1 � x � x2,1; elsewhere, and 
0(x) = (0; if x1 � x � x2,1�
os(2�x)2 ; elsewhere. (2)The 
osine fun
tion in (2) exploits the advantage that higher-order a

urate numer-i
al s
hemes have in non-
onstant, smooth solution regions. Model equation (1) isapproximated in a periodi
 domain, allowing us to time-step for as long as we wantfor a given, �nite, spatial domain.2.1 Standard FVM resultsThe unit domain is divided intoN non-overlapping 
ells of uniform size. Let h = 1=Nbe the 
ell width, xi = (i � 1=2)h the 
ell-
enter 
oordinates and xi+ 12 = ih the
ell-fa
e 
oordinates for i = 1; 2; :::; N . Let the fully dis
rete solution in 
ell i, attime level n, be denoted as 
ni = 
(xi; tn). Then the semi-dis
rete �nite-volume formof (1) reads: hd
idt + f(fi+ 12 (t)� fi� 12 (t)g = 0: (3)Eq. (3) is exa
t, inside a spe
i�
 
ell, so far and it is solved by approximating the
uxes, at time level n, say fni+ 12 , and by time-stepping the temporal part. The 
uxesare 
omputed (dropping the index n, for 
onvenien
e) as fi+ 12 = u
i+ 12 , where 
i+ 12is the 
ell-fa
e state at i + 12 , whi
h 
an be approximated in a variety of ways. Forexample, for u > 0, 
i+ 12 = 
i and 
i+ 12 = 
i + 1+�4 (
i+1 � 
i) + 1��4 (
i � 
i�1) aretwo 
lassi
al 
ell-fa
e states, 
omputed with the �rst-order upwind- and van Leer's�-s
heme [6℄, respe
tively. Note that, with no EB in the neighborhood, � 2 [�1; 1℄.The �-s
hemes yield non-monotone dis
retizations. Several algorithms have beenproposed in the literature that yield higher-order a

urate, monotone solutions.Most of these algorithms exploit the inherent monotoni
ity of the �rst-order up-wind s
heme. The best known representatives of these algorithms are the limiteds
hemes following Sweby's total-variation diminishing (TVD) theory [5℄.



Conve
tion Problems with Embedded Moving-Boundaries 3The 
ell-fa
e state 
i+ 12 
an be written in the limited form as 
i+ 12 = 
i +12�(ri+ 12 )(
i � 
i�1), where �(r) is the limiter fun
tion and ri+ 12 = 
i+1�
i
i�
i�1 itsmonotoni
ity argument. Here we spe
i�
ally adopt the limiter proposed by Koren [3℄as the standard limiter. It gives a monotone third-order a

urate net 
ux in a 
ell,by resembling the � = 13 -s
heme.Now, for later 
omparison purposes, we will show what the solutions are whenusing the standard �nite-volume dis
retizations des
ribed above, methods in whi
hno embedded-boundary 
onditions are imposed. For the time integration, the three-stage Runge-Kutta s
heme RK3b from [2℄ is employed. For both initial solutions (2),we 
onsider the lo
ations of the EBs to be at x1 = 13 and x2 = 23 . Furthermore, wetake u = 1, and we 
ompute the solution at t = 1, the time at whi
h the solution hasmade a single full-period. For both the �rst-order upwind and the � = 13 (unlimitedand limited) s
hemes, the 
omputations are performed on a grid with 20 and 40 
ells.The solutions are depi
ted in Fig. 1. The time steps have been taken suÆ
ientlysmall to ensure that in all 
ases the temporal dis
retization errors are negligiblewith respe
t to the spatial dis
retization errors.
3 Fluxes with embedded moving-boundary 
onditionsThe sharp dis
ontinuities of the initial solutions (2) are 
onsidered as in�nitely thinbodies going with the 
ow and the boundary 
onditions asso
iated with these are
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Fig. 1. Standard �nite-volume solutions after one full-period. Red: exa
t dis
rete,blue: �rst-order upwind, green: unlimited � = 13 s
heme, and bla
k: limited ditto.Note: the top two are the results on a 20-
ell grid and the bottom two are on a40-
ell grid.



4 Yunus Hassen and Barry Korenembedded in the �xed-grid 
uxes. Here, the embedded-boundary 
onditions areuser-spe
i�ed and enfor
ed to remain inta
t to the EB and un
hanged at all times.The solution values on the left and right sides of the EB are designated as 
lEB and
rEB, respe
tively (Fig. 2).
PSfrag repla
ements
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Fig. 2. EB situated in 
ell i at time tn, its asso
iated solution values (to be usedas `embedded-boundary 
onditions'), and the three a�e
ted 
ell-fa
e states.
For an EB situated in 
ell i, with its 
oordinate xEB(t) = xnEB given, its relativeposition with respe
t to the 
ell fa
e xi� 12 is �h, where:� = xnEB � xi� 12h ; � 2 [0; 1℄: (4)There is no information 
ow a
ross the EB. Fluxes on one side of the EB are all
omputed based on the information on the same side and the additional interiorboundary 
ondition on the respe
tive side of the EB. In general, when 
onsideringthree-point upwind-biased interpolation for the 
uxes, three 
ell-fa
e states (
i� 12 ,
i+ 12 and 
i+ 32 ) are a�e
ted by the presen
e of a single EB (in 
ell i) and these arethe 
ell-fa
e states of interest that are espe
ially modi�ed (Fig. 2). 
i� 12 and 
i+ 32are written as optimally blended, three-point upwind-biased interpolation formulae:
i� 12 = 
i�1 + 11 + 2� 1 + �i� 122 (
lEB � 
i�1) + 1� �i� 124 (
i�1 � 
i�2); (5a)
i+ 32 = 
i+1 + 1 + �i+ 324 (
i+2 � 
i+1) + 23� 2� 1� �i+ 324 (
i+1 � 
rEB): (5b)Sin
e we do not draw information a
ross the EB, no upwind-biased interpolationformula 
an be derived for 
i+ 12 . Non-equidistant 
entral interpolation is applied to
ompute 
i+ 12 .The blending parameters �i� 12 and �i+ 32 are optimized su
h that the net 
uxesin 
ells i� 1 and i+ 2, respe
tively, are as a

urate as possible. The net 
ux in 
elli 
annot be optimized due to the presen
e of the EB with its dis
ontinuous solutionbehavior. Deriving the modi�ed equations in 
ells i� 1 and i+ 2, and equating theleading term of the trun
ation errors to zero, we get:�i� 12 = 7� 6�9 + 6� ; �i� 12 2 � 115 ; 79� and �i+ 32 = 7� 6�15� 6� ; �i+ 32 2 �19 ; 715� : (6)The reasons to 
onsider the net 
ux in 
ell i+2 instead of that of 
ell i + 1, foroptimizing �i+ 32 , are given in [1℄. The formulae for the EB-a�e
ted 
ell-fa
e statesare summarized, in terms of the parameter �, as:
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i� 12 = 
i�1 + 8(3 + 6�)(3 + 2�) (
lEB � 
i�1) + 1 + 6�18 + 12� (
i�1 � 
i�2); (7a)
i+ 12 = 
rEB + 2� 2�3� 2� (
i+1 � 
rEB); (7b)
i+ 32 = 
i+1 + 11� 6�30� 12� (
i+2 � 
i+1) + 4(9� 6�)(5� 2�) (
i+1 � 
rEB): (7
)Note that it is assumed that two su

essive EBs are suÆ
iently far apart, su
h thata given 
ell-fa
e state is a�e
ted by only one EB. Re
all that all but the EB-a�e
ted
uxes are 
omputed with a standard s
heme.
4 Temporal dis
retizationAfter substituting the appropriate dis
retizations for the spatial operator in thesemi-dis
rete equation (3), it is integrated in time using an expli
it method: eitherthe Forward Euler or the RK3b [2℄ s
heme. The later gives a third-order a

ura
yin time.4.1 Monotoni
ity and limitersNoting that the EB-a�e
ted 
ell-fa
e states (7) are higher-order a

urate and linear,wiggles are imminent. These wiggles 
an be suppressed by 
arefully 
onstraining the
onve
tive 
ell-fa
e states. Therefore, as explained in detail in [1℄, we de�ne non-standard monotoni
ity arguments, ~ri� 12 and ~ri+ 32 , and derive the limited forms of
i� 12 and 
i+ 32 . The 
ell-fa
e state 
i+ 12 , however, is not limited as we 
an not de�ne amonotoni
ity argument ~ri+ 12 . Enfor
ing appropriate monotoni
ity requirements, theresulting EB-sensitive limiter-fun
tions ~�(~r) be
ome �-dependent (where � = u�=his the CFL number and � is the time step). The �-dependen
e, however, is avoidedby taking a stringent restri
tion � � 12 , to a
hieve a monotoni
ity preserving s
hemeand a se
ond-order a

urate dis
rete-solution. Then, the resulting bounds for ~�(~r)are simpli�ed and they are fully 
onstrained, 8 ~ri� 12 and 8 ~ri+ 32 , as:0 � ~�(~ri� 12 ) � 2 and ~�(~ri� 12 )~ri� 12 � 1 + 2�; (8a)

�1 � ~�(~ri+ 32 ) � 5� 4� and 0 � ~�(~ri+ 32 )~ri+ 32 � 2; (8b)Typi
al limiters, satisfying the spe
ial bounds (8), are depi
ted in Fig. 3.4.2 Lo
al adaptivity in timeIf an EB is situated in su
h a way that xnEB 2 [xi� 12 ; xi+ 12 ) and xn+1EB 2 [xi+ 12 ; xi+ 32 ),there is an abrupt 
hange in 
i+ 12 when going from tn to tn+1 (see Fig. 4). To a

ountfor this 
hange, time adaptivity is introdu
ed by �rst 
omputing the time fra
tion� at whi
h the EB 
rosses xi+ 12 , as:
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Fig. 3. Typi
al EB-sensitive limiters (for � = 1=2), within the 
orresponding, sim-pli�ed, monotoni
ity domains, for the EB-a�e
ted 
ell-fa
e states 
i� 12 (left) and
i+ 32 (right).
� = xi+ 12 + �� xnEBu� ; � 2 (0; 1): (9)Next, the intermediate 
ell-fa
e state 
n+�i+ 12 is 
omputed. Note that the EB is pla
edat in�nitesimal distan
e � o� xi+ 12 , in the dire
tion of the 
ow. Then the 
ell-fa
estate 
ni+ 12 is re
omputed as the weighted average:
ni+ 12 := �
ni+ 12 + (1� �)
n+�i+ 12 : (10)Finally, solution updating, in Forward Euler, is 
ontinued everywhere, using thetime-adapted 
ell-fa
e state, with the regular time step � . For RK3b, we do not yetresort to the temporal lo
al-adaptivity. We instead split the regular time step � intosmaller time steps, depending on the number of EBs 
rossing 
ell fa
es, and updatethe intermediate solutions everywhere.
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xi�1 i i+1 i+2

t

n
n + �
n+1 Fig. 4. Sten
il for lo
aladaptivity in time. Thestandard, modi�ed andthe intermediate 
ell-fa
e
uxes are designated ingreen, blue, and red,respe
tively.
5 Results and 
on
lusionWe present numeri
al results to validate the immersed-boundary approa
h intro-du
ed in this work. We take the same data as in x 2.1. The results obtained, shownin Fig. 5, are remarkably a

urate. They show a signi�
ant improvement in res-olution over those 
omputed using the standard methods (Fig. 1). For the more
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riminating initial solution, the 
osine-
avity in (2), the numeri
al results of thelimited higher-order upwind-biased s
hemes are slightly de�
ient at the peripheries.This is due to the property of limiters that they 
lip physi
ally relevant extrema.Apparently, the de�
ien
y diminishes with de
reasing grid size.
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Fig. 5. Immersed-boundary solutions after one full-period. Æ: exa
t dis
rete, �:unlimited higher-order upwind-biased with Forward Euler, �: limited ditto, �: un-limited higher-order upwind-biased with RK3b, �: limited ditto. Note: the top twoare the results on a 20-
ell grid and the bottom two are on a 40-
ell grid.The essen
e of the present approa
h is that moving bodies are embedded in aregular �xed grid and spe
i�
 
uxes in the vi
inity of the embedded boundary areintelligently 
omputed in su
h a way that they a

urately a

ommodate the bound-ary 
onditions valid on the moving EB. Then, over the majority of the domain,where we do not have in
uen
e of the EBs, we use standard methods on the under-lying regular �xed grid. Ex
ellent results are a
hieved, without mu
h 
omputationaloverhead. We foresee that the numeri
al methods introdu
ed here 
an readily beextended to real 
uid-
ow equations.
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