
C e n t r u m W i s k u n d e & I n f o r m a t i c a

Software ENgineering

A new automata for parsing semi-bracketed contextual
grammars

L. Kuppusamy, M. Anand

REPORT SEN-E0802 DECEMBER 2008

Software Engineering

Centrum Wiskunde & Informatica (CWI) is the national research institute for Mathematics and Computer
Science. It is sponsored by the Netherlands Organisation for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2008, Centrum Wiskunde & Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

A new automata for parsing semi-bracketed
contextual grammars

ABSTRACT
Bracketed and fully bracketed contextual grammars were introduced to bring the concept of tree
structure to the strings by associating a pair of parentheses to the adjoined contexts in the
derivation. But these grammars fail to generate the basic non-context free languages thus
unable to provide a syntactical representation to natural languages. To overcome this problem,
a new variant called semi-bracketed contextual grammar was introduced recently, where the
selectors can also be non-minimally Dyck covered strings. The membership problem for the
new variant is left unsolved. In this paper, we propose a parsing algorithm (for non-projected
strings) of maximal semi-bracketed contextual grammars. In this process, we introduce a new
automaton called k-queue Self Modifying Weighted Automata (k-quSMWA).

2000 Mathematics Subject Classification: 68Q45
1998 ACM Computing Classification System: F.4.2
Keywords and Phrases: Automata, contextual grammars, MCS formalism, derivation tree
Note: The first author‚Äôs work was carried out during the tenure of an ERCIM ‚ÄúAlain Bensoussan‚Äù Fellowship
Programme.

1

A NEW AUTOMATA FOR PARSING SEMI-BRACKETED
CONTEXTUAL GRAMMARS

K. Lakshmanan(1),* and M. Anand (2)

(1) Centrum Wiskunde en Informatica, Amsterdam, The Netherlands. Email: L.Kuppusamy@cwi.nl
 (2) School of Computing Sciences, VIT University, Vellore-632 014. Email: manand@vit.ac.in

Abstract: Bracketed and fully bracketed contextual grammars were introduced in [7] to bring the concept of
tree structure to the strings by associating a pair of parentheses to the adjoined contexts in the derivation. But
these grammars fail to generate the basic non-context free languages thus unable to provide a syntactical
representation to natural languages. To overcome this problem, a new variant called semi-bracketed contextual
grammar was introduced in [4], where the selectors can also be non-minimally Dyck covered strings. The
membership problem for the new variant is left unsolved. In this paper, we propose a parsing algorithm (for
non-projected strings) of maximal semi-bracketed contextual grammars. In this process, we introduce a new
automaton called k-queue Self Modifying Weighted Automata (k-quSMWA).

Keywords: Contextual grammars, derivation tree, parsing, membership problem, MCS formalism.

1. INTRODUCTION
Contextual grammars were introduced by S.

Marcus in 1969. They produce languages starting
from a finite set of axioms and adjoining contexts,
iteratively, according to a selector present in the
current sentential form. If the contexts is adjoined
at the ends is called external [5] and if the contexts
is adjoined to the selector strings appearing as
substrings of the string is called internal contextual
grammars [10].

One of the important problems in the area of
formal language theory and natural language
processing is to obtain new classes of languages
that provide an appropriate description for natural
languages. In fact, the classes of languages
searched for should have the so called ‘mildly
context sensitive’ (MCS) properties which are
considered to be an appropriate description for
natural languages. The properties which describe
MCS are as follows:

1. The class of languages contains all
context-free languages.

2. The class of languages contains the
following three basic non-context free
languages.

 1. multiple agreements L1={anbncn | n≥1},
 2. crossed dependencies L2= {anbmcndm |n≥1},
 3. marked duplication L3={wcw | w {a,b}*}

3. The class of languages should be parsable
in polynomial time.

4. All languages in the class have the
bounded growth property.

A class of languages possesses the MCS
properties characterize the MCS family of
languages and the corresponding class of grammars
forms the MCS formalism. Generally, these MCS
formalisms are considered to be a good model for
the syntactical description of natural languages. For
more details on MCS formalisms, we refer to [8].
Even though contextual grammars were introduced

to give an appropriate model description for natural
languages [5], the basic class, internal contextual
languages itself is failed to contain the non-context-
free constructions [1], [6]. Further, the membership
problem for the above families of languages still
remains open [3].

In context-free grammars the structure to the
strings is preserved by means of derivation tree,
where as for contextual grammars, no structure by
means of derivation tree exists to the generated
strings. In order to introduce the structure to the
generated strings of contextual grammars,
bracketed and fully bracketed grammars were
introduced in [7]. The structure is preserved by
introducing a pair of parenthesis to the contexts
inserted at each derivation step but, when
considering the suitability of these grammars to
MCS formalisms, these grammars fail to generate
the three basic non-context free languages [9], [4].
This has been overcome in [4] by relaxing the
condition on the selectors in fully bracketed
contextual grammars and this new class of
grammars named semi-bracketed contextual
grammars where the structure to the string is also
maintained [4]. Besides, it was proved in [4] that
this of class of languages contains the class of
context-free languages and thus the properties 1
and 2 mentioned above are satisfied. By default all
contextual languages satisfy the property 4.

In this paper, we make an attempt to solve the
property 3 for the semi-bracketed contextual
grammars by introducing new automata called k-
queue Self Modifying Weighted Automata. By
using backtracking concept at each derivation step
a maximal selector is identified and the
corresponding left and right contexts are removed
from the input string. At latter stage of the parsing,
if needed the necessary contexts are inserted in the
input string and the parsing is continued until the
corresponding axiom is identified.

* The author’s work was carried out during the tenure of an ERCIM “Alain Bensoussan” Fellowship Programme.
 1

2

2. PRELIMINARIES
In this section, we introduce the notion of formal

languages and contextual grammars which are used
in the paper. A finite non-empty set V is called an
alphabet. We denote by V* the free monoid
generated by V, by λ its identity or the empty
string, and by V+ the set V*- {λ}. The elements of
V* are called words. For any word x V*, we
denote |x| the length of x. For more details on
formal language theory, we refer to [2], [11].
An internal contextual grammar is defined as
G = (V, A, (S1, C1),…,(Sm, Cm)),m≥1, where

 V is an alphabet
 A is a subset of V* is a finite set called the

set of axioms,
 Si is a subset of V*, 1≤i≤m, are the finite

set of selectors,
 Ci is a subset of V* x V*, Ci finite, 1≤i≤m,

are the finite set of contexts.
The modular presentation [10] of a contextual

grammar is given as G = (V, A, P) where V, A are
defined as above and P is the finite set of selector-
context rules of the form (S1, C1),…,(Sm, Cm). The
derivation in the internal mode (denoted by in) is
defined as x iny iff x=x1x2x3, y=x1ux2vx3, for
x1,x2,x3 V*, x2 Si, (u,v) Ci for some 1≤i≤m. The
maximal mode of the grammar is defined in the
following way x M y iff x = x1x2x3, y =
x1ux2vx3, for x1x2x3 V*, x2 belongs to Si, (u,v) Ci

for some 1≤i≤m and there are no x'1, x'2, x'3 V*,
such that x = x'1x'2x'3, x'2 Si, and x'2 contains x2.
That is, in this maximal mode, the chosen selector
x2 for the next derivation should not be contained
(in substring sense) in a longer selector x'2, where
both x2, x'2 Si for some i. The language generated
by a contextual grammar G in internal and maximal
mode is given as Lα(G) = {x V*| z *

α x,
z A}, where is * α the reflexive transitive
closure of the relation α and α {in, M}.

Let us consider the brackets [,] and denote the set
{[,]} by B. The Dyck language over B is denoted
by DB and it is the language generated by the
context-free grammar G = ({S}, B, S, {SSS,
S[S], S λ}). Given the two disjoint sets V and
B, we can define the projection mappings prV, prB,
from (V B)* to V*, B*, respectively as follows:
 prβ(a) = a, for a β
 λ, for a β, where β (V, B)

A string x (V B)* is said to be a Dyck covered
string if x * λ, by reduction rules of the form
[w]λ, for w V*. For instance, x1=[a[a]a[a]],
x2=[[a]], x3=[[a[a]a]a] are Dyck covered strings. A
Dyck covered string x (V B)* is said to be
minimally Dyck covered string if the following
conditions are hold:
 1. if x = x1]x2[x3 with x1, x3 (V B)* and x2

 V*, then x2 = λ
2. The reduction rule [] λ is not used when

 reducing x to λ.

Condition 1 refutes string x1 above, condition 2
refutes string x2, hence these strings are not
minimally Dyck covered; the string x3 is of this
type. We denote the language of all minimally
Dyck covered strings over the alphabet V by
MDC(V). For every string x MDC(V), a unique
derivation tree can be associated (refer Appendix).

A bracketed contextual grammar is a tuple G =
(V,A,(S1, C1),…,(Sm, Cm)), m≥1, where V is an
alphabet, A is a finite subset of MDC(V), called
axioms, Si V*, and Ci are finite subsets of V *×
V* − {(λ , λ)} for all 1 ≤ i ≤ m. The derivation
relation (in internal contextual mode) is defined as
follows: for x, y (V B)*, we write x G y,
iff x = x1x2x3, y = x1[ux2v]x3, x1,x3 (V B)*, x2

 MDC(V) and prV (x2) Si, (u,v) Ci, for some 1
≤i ≤ n.

A fully bracketed contextual grammar (in short,
FBIC grammar) is very similar to bracketed
contextual grammar, except that the selectors are in
MDC(V) instead of Si V*, and no projection is
applied to the chosen selector. It is proved in [7]
that if x G y is a derivation step in a bracketed
or fully bracketed contextual grammar, then y
MDC(V) whenever x MDC(V).

A semi-bracketed contextual grammar (in short,
SBIC grammar) is a construct G =
(V,A,(S1,C1),…,(Sm, Cm)), m≥1, where V is a finite
set of alphabet, A MDC(V) is a finite set of
axiom, Si [(V B)* (V B)*] and Ci are
finite subsets of V* V* − {(λ, λ)} for 1 ≤ i ≤ m,
with the condition that whenever Ci contains a
context (u, λ), u V+ for some i, then the
corresponding selector is of the form Si

[(V B)* and whenever Ci contains a context (λ,
v), v V+ for some i, then the corresponding
selector is of the form Si (V B)*]. Note that,
when the context is not one-sided (one sided means
either u = λ or v = λ in (u, v)), the corresponding
selector may be of any type; may start or end with a
bracket. The derivation relation is defined as
follows. For x, y (V B)*, we write x G y if
and only if x = x1x2x3, y = x1[ux2v]x3 , where x1, x3

 (V B)*, x2 Si, (u, v) Ci, for some 1≤i ≤m.
When the maximal condition (i.e., choosing the

selector of maximal length) is included with this
semi-bracketed contextual grammar, the grammar
is said to be maximal semi-bracketed contextual
grammar and is denoted by MSBIC grammar. The
string language generated by a bracketed or fully
bracketed or semi-bracketed contextual grammar G
= (V, A,(S1,C1),…,(Sm, Cm)),m≥1, can be defined
as two types of languages, one by collecting the
strings without applying any projection (non-
projected) and the other by collecting the strings
after applying the projection. The former one is
defined as LNPro(G) = {w'| z *

G w', for some z
 A}, and the later one is defined as L(G) = {prV

(w) | z *
G w, for some z A}, where *

G is
the one discussed already.

3

3. MEMBERSHIP ALGORITHM
In this section, we introduce our proposed

parsing algorithm for the non-projected strings of
semi-bracketed contextual grammars. First we
present the general flow of the algorithm in the
following major V steps and discuss each one in
detail.
Step I: The input is checked for MDC(V)
Step II: All possible Left contexts (Lc) are
identified in the given input string
Step III: A selector of maximal length is identified
for the corresponding Lc by using k-queue Self
Modifying Weighted Automata (k-quSMWA).If k-
queue Self Modifying Weighted Automata (k-
quSMWA) is not able to identify a maximal
selector for all Lc in a particular Selector context
table (Si, Lci) then insertion of context is done
(either single or multiple) in the input string and
step III is repeated
Step IV: The Lc and corresponding Rc are
identified for maximal selector and removed from
the input string
Step V: This step is used to identify whether w'
L(G)
Input: Input string (non-projected) w' MDC(V)
and a MSBIC (G) grammar
Output: w' L(G) before applying projection, no if if
w' L(G)
Method:
Step I: Scan the input from left to right and check
whether the w' MDC(V)
Step II: // This step is used to fill the necessary
values in the selector-context and axiom table by
using the given grammar G and by using the
selector-context table all possible left contexts are
identified in the input string and position of the
identified contexts are appended in the
corresponding selector-context table.
Step 2.1: Using the MSBIC grammar the following
values are entered in the selector-context table (Si,
Lci where Si denotes the selector and Lci denotes
the left context) and axiom table.
 (1)selector, (2) (Lc, length), (3) (Rc, length)
 (1)axiom, (2)length
Step 2.2: By using the selector-context table (using
the ([x, length) all possible positions of Lc are
identified in the given input string and the
following value are appended in selector- context
table
(1) position of the context in the input string (the

position will be n-tuple where n is the |Lc|)
Step 2.3: Repeat the step 2.2 for all Lc and for all
selectors by using selector-context table.

Step III: // Using the selector-context table a
maximal selector is identified by using k-quSMWA
and the required values are entered in selector-
position table. If k-quSMWA is not able to
identify a maximal selector for all Lc in a
particular (Si, Lci) table then single or multiple
insertion of context is done and necessary values

are filled in recently-inserted context table and |w'|
is modified and proceed further.
Step 3.1: for all (Si, Lci) tables do
Step 3.2: for (n-1) entries in (if the number of
entries is more than one) each (Si, Lci)table

Step 3.2.1: Start scanning the input from
the (last index in n-tuple)+1 position (the position
can be identified from Si Lci table)

Step 3.2.2: if there exists a maximal
selector for the Lc by using k-queue Self
Modifying Weighted Automata (k-quSMWA) the
following values are filled in selector-position table
and go to step (IV)
(1) selector, (2) selector position (positions are
identified by using index i from (k-
quSMWA), (3) Length of the identified selector

 else return to step 3.2
if k-quSMWA does not identifies the maximal
selector for all the contexts Lci in (Si, Lci) table
then do the following
 Step 3.2.2.1:// insertion of context in the
input string is done from the end of table
insert the last removed Lc and Rc in the input
string such that the remaining (n-1) entries (i.e
from the end of the table) are not substring of the
selector Si and the following values are entered in
recently-inserted context table for corresponding
selector Si selector with position and |w'| is
modified as |w'| + total length of inserted context (
|Lc| + |Rc|) which can be identified from removed
context table.
 Step 3.2.2.2:
 if there is a presence of a substring then
 do
 Step 1: Insert the necessary removed Lc
and Rc in input string such that their positions does
not overlap in the input string and the following
values are entered in the recently-inserted context
table for corresponding selector Si

(1) selector with position, (2) Lc, (3) Rc
 Step 2: |w'| is modified as |w'| + total
length of inserted context (|Lc| + |Rc|) which can
be identified from removed- context table.
 Step 3: For the both steps check the (Si,
Lci) table and insert Lc with position
if the Lc is not there.

Step 3.2.3:Continue from step 3.1 ((Si, Lci

) will be the recently modified table).
Step IV: Using the selector-position table the Rc is
identified and (Lc, Rc) are removed from the input
string and |w'| is modified. If the corresponding Rc
is not identified by using the recently-inserted
context table the necessary Lc and Rc are removed
from the input string and |w'| is modified.
Step 4.1: Using selector-position table start
scanning the input from the end of the identified
selector to identify the corresponding Rc
Step 4.2: if Rc is found then
 do

4

 Step 1: remove Lc and Rc from the input
string and fill the following values in the removed-
context table
 (1) selector, (2)Lc, (3) Rc, (4) position of Lc
 and Rc, (5) total length of removed contexts
 (Lc + Rc)
 Step 2: remove the Lc with position from
the (Si, Lci)table
 Step 3: |w'| is modified as |w'| - total length of
removed context and goto step (4.3)
 else
 Step 1: Remove Lc and Rc from the input
string by using recently-inserted context table for
the corresponding Si and the |w'| is modified as |w'|
- total length of inserted context
 Step 2: Remove the Lc with position from the
(Si, Lci)table and go to step(3.2)
Step 4.3: Scan the input for the presence of a
substring with a pattern of removed Lc
and include it in the corresponding (Si, Lci) table if
it is not available and go to stepV.
Step V: //This step is used to check for the presence
of the axiom
if (|w'| > length of all axioms in axiom table)
 continue from step III
 else if (|w'|=|ai|)
 case 1: // if the axiom table is having only one
 axiom
 step 1: check w' with ai if yes w' L(G) & exit
 else w' L(G) & exit
 case 2: // if the axiom table is having more
 than one axiom
 step 1: check w' with ai if yes w' L(G) & exit
 else
continue from step (III) until |w'| identifies its
corresponding axiom in the axiom table.

 In order to identify the maximal selector we
introduce a new automata in the following section.
The transition graph to the corresponding automata
will have the edges with weights (i,j,k) which are
self modifying according to the input read.

4. DEFINITION AND BEHAVIOR OF k-
queue Self Modifying Weighted Automata

(k-quSMWA)
A k-quSMWA is defined as = (Q, Σ, δ, q0, F, ')
where Q is non-empty finite set of states
Σ is finite set of symbols given by (Σ B)* where
Σ is alphabets from MSBIC (G) { γ }
where γ consists of following symbols
 Δ is used for a transition between non-
looping automata to looping automata
 π is used for a transition to the starting
state of the looping automata
 # is used for a transition between looping
automata to non-looping automata
 $ is used for a transition between two non-
looping automata (whenever there is a looping
automata between non-looping automata)

q0 Q is the initial state
F Q is a set of final states.

' is f { Φ }
 where f is a finite set of positive integers {i, j, k}
 i is an index denoting the position of the current
input symbol scanned (initially it will be (last index
in the n-tuple)+1 which can be identified from the
selector-context table for the current left context)
 j is an index denoting the length of the selector for
the corresponding left context (initially it will be zero)

 k is an index defining k-level queue whenever
regular selector is used (i.e for the following
operations kleene or positive closure initially it will
be zero)
 Φ is null value
where δ is defined as follows
 In general δ will be
δ: Q x Σ x ' x 'x ' Q x ' x ' x '
where i,j,k values will be modified
based on Σ and for some of the moves all the f

may not be used for such cases Φ will be used.
1) δ(qi, Σ-{ γ }, i, j, Φ)=(qi+1 , i , j+1, Φ)
2) δ(qi , Δ, i, j, Φ)=(qj, i, j, Φ) where qj is
 the start state of the looping automata
3) δ(qj , Σ, i, j, k)= (qj+1, i, j+1, k+1)

 4) δ(qp , π, Φ, Φ, Φ) = (qj ,Φ,Φ,Φ) where
 qj is the start state of the looping
 automata

5) δ(qp, #, i, j, k)= (qp+1, i, j, Φ) (applied
 only when qp is a non-final state)
6) δ(qi, $, i, j, Φ)= (qk ,Φ,Φ,Φ) where the
 automata should have the following
 move (qk, next input symbol, i,j+1,Φ)

Various data structures introduced:
k-level Queue(k-Qu):
A k-level queue is defined based on the current
k-value in the looping automata which is used
to identify the maximal length in the loop. The
entries in the queue will be (current input
symbol scanned, position)
k-Length Substring Pumping Stack (k-
LSPS):
A k-LSPS is based on the current k-value in
the looping stack which is used to store the
removed contexts after the identification of a
loop in the selector. The entries in the stack
will be (k-length substring, positions)
Recently Removed Context Stack (RRCS):
After identifying that the popped contexts k-
level does not matches the string in the looping
automata the removed contexts should be
stored in RRCS with their respective positions.
When the move δ(qp, π, Φ, Φ, Φ) = (qj, Φ, Φ,
Φ) is applied based on the current value of k
in the looping automata k-level queue is
defined and the following operations should be
done

1) scan k-symbols from the input from
ith position

2) push the k-symbols on the queue

5

3) push the k-length substring on k-
LSPS

4) pop the k-symbols from the k-queue
and perform the move (3)

5) When the popped context does not
matches the string in the automata
store the recently removed context in
RRCS.

 if qp is a final state then
 return maximal selector with positions and
 length.

else
 (1) apply the move (5)
 (2) case 1:
 pop the top most string from k-LSPS apply

 move (1) k-times and pop the top most
 string from RRCS and apply move (1) k-
 times
 case 2:
 pop the top most string from RRCS and
 apply move (1) k-times and perform move (1)

 (3) return maximal selector with
positions and length

Special Case :
δ(qs, Δ, i, j,Φ)= (qj ,Φ,Φ,Φ) where qs is the
final state and qj is the start state of the looping
automata then

step 1) current=j
 step2)δ(qj,Σ,i,j,k)=(qj+1,i,j+1,k+1)

 By applying (step 2) k-times if qp is
 reached where qp is a final state
 do 2.1) a k-level queue is defined based on
 the current k-value and Current1=j
 2.2) scan k-symbols from the input from
 the ith position and push k-symbols
 on queue
 2.3) pop the k-symbols and continue
 from step (1) where j=current1 (Σ is
 popped contexts from the queue)
else
 return the corresponding maximal selector
 and its position and its length (i.e., current)
By constructing the above automaton (refer
appendix for examples) the selector of maximal
length for the Lc is identified and the selector
position is entered in the selector-position table.

Refer Appendix for examples of k-quSMWA for
various selectors.

5. CONCLUSION
In this paper, we have proposed a parsing

algorithm for maximal semi-bracketed contextual
grammars for the non-projected strings by
introducing a new type of automata called k-queue
Self Modifying Weighted Automata (k-quSMWA).
We have used the following back tracking concept
to solve the membership problem: at each
derivation step a maximal selector is identified and

the corresponding left and right contexts are
removed from the input string. If some contexts
pair is removed from the input string in wrong
positions, they are identified at a little later stage
and corrected by replacing the removed contexts.
Since the correction happens only minimum
number of times, we believe that the algorithm runs
in deterministic polynomial time. The automaton is
constructed to identify the maximal selector while
back tracking. In connection with the proposed
work, the parsing of maximal semi-bracketed
contextual grammars for projected strings in
polynomial time is left as an open problem. If this
is solved, a new class of MCS formalism with
structured strings is obtained in the domain of
contextual grammars. Also, it will be interesting to
analyze the acceptance power of the introduced
automata in relevance with existing types of
automata.

REFERENCES
[1] A. Ehrenfeucht, L. Ilie, Gh. Paun, G. Rozenberg
and A. Salomaa, “On the generative classes of
contextual grammars. In Mathematical Linguistics
and Related Topics”, The publ. House of the
Romanian Academy: Bucharest, 105-118, 1995.
[2] J.E. Hopcroft and J.D. Ullman, “Introduction to
automata theory, languages and computation”,
Narosa Publishing House, 1979.
[3] L. Ilie, “On computational complexity of
contextual languages”, Theo. Comp. Science.
183/1, 33-44, 1997.
[4] K. Lakshmanan, “Semi-Bracketed contextual
grammars”, Proceedings of the second
International Workshop on Non-Classical Formal
Languages in Linguistics (ForLing) 2008,
Tarragona, Spain, 41-55, Sept. 2008.
[5] S. Marcus, “Contextual grammars”, Rev.
Roum. Pures. Appl. 14, 1525-1534, 1969.
[6] S. Marcus, C. Martin-Vide and Gh. Paun, “On
internal contextual grammars with maximal use of
selectors”, Proceedings of 8th Conference on
Automata and Formal Languages. Salgotarjan,
1996.
[7] C. Martin-Vide and Gh. Paun, “Structured
contextual grammars”, 1, 33-55, 1998.
[8] S. Marcus, C. Martin-vide and Gh. Paun,
“Contextual grammars as generative models of
natural languages”, Computational Linguistics,
24(2), 245-274, 1998.
[9] Gh. Paun, “Marcus Contextual grammars”,
Kluwer Academic Publishers: Dorrecht, The
Netherland, 1997.
[10] Gh. Paun and X.M. Nguyen, “On the inner
contextual grammars”, Rev. Roum. Pures. Appl.
25, 641-651, 1980.
[11] A. Salomaa, “Formal languages”, Academic
Press: New York, 1973.

6

Appendix

Examples of k-quSMWA for different selectors
(i) [a[ab]b]

 [,(i,j,Φ) a,(i,j,Φ) [,(i,j,Φ) a,(i,j,Φ) b,(i,j,Φ)],(i,j,Φ) b,(i,j,Φ)],(i,j,Φ)

(ii) [ab](a])*
 [,(i,j,Φ) a (i,j,Φ) b,(i,j,Φ)],(i,j,Φ) Δ a,(i,j,k)],(i,j,k)

 π
(iii) ([a)*[abc]

 [,(i,j,k) a,(i,j,k) # [,(i,j,Φ) a,(i,j,Φ) b,(i,j,Φ) c,(i,j,Φ)],(i,j,Φ)

 π

 $

Derivation tree for strings MDC(V)

For every string x MDC(V), we can associate a tree τ(x) with the labeled edges in the following way
 draw a dot representing the root of the tree; the tree will be represented with the root up and all the

leaves down
 scan x from the left to right and grow τ(x) according to the following two rules

1. for each maximal substring [w of x, with w V* (since w is maximal, after w we find either [
or]), we draw a new edge, starting at the current point of the partially constructed τ(x),
marked with w on its left side, and placed to the right hand of the currently constructed tree;

2. For each maximal w], w V*, not scanned yet (hence, either we find) before w, or w=λ and to
the left of] we have a substring [z for some z V* already scanned], we climb the current
edge, writing w on its right side.

A derivation tree τ(x) for the word x=[a][a[a[a[ab]b]c]ab][a]

a a ab a λ

 λ

 a c

 a b

ab λ

1

2 3

4

5

6

7

