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Abstract: Bracketed and fully bracketed contextual grammars were introduced in [7] to bring the concept of 
tree structure to the strings by associating a pair of parentheses to the adjoined contexts in the derivation. But 
these grammars fail to generate the basic non-context free languages thus unable to provide a syntactical 
representation to natural languages. To overcome this problem, a new variant called semi-bracketed contextual 
grammar was introduced in [4], where the selectors can also be non-minimally Dyck covered strings. The 
membership problem for the new variant is left unsolved. In this paper, we propose a parsing algorithm (for 
non-projected strings) of maximal semi-bracketed contextual grammars. In this process, we introduce a new 
automaton called k-queue Self Modifying Weighted Automata (k-quSMWA).
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1. INTRODUCTION
Contextual grammars were introduced by S. 

Marcus in 1969. They produce languages starting 
from a finite set of axioms and adjoining contexts, 
iteratively, according to a selector present in the 
current sentential form. If the contexts is adjoined 
at the ends is called external [5] and if the contexts 
is adjoined to the selector strings appearing as 
substrings of the string is called internal contextual 
grammars [10]. 

One of the important problems in the area of 
formal language theory and natural language 
processing is to obtain new classes of languages 
that provide an appropriate description for natural 
languages. In fact, the classes of languages 
searched for should have the so called ‘mildly 
context sensitive’ (MCS) properties which are 
considered to be an appropriate description for 
natural languages. The properties which describe 
MCS are as follows:

1. The class of languages contains all 
context-free languages.

2. The class of languages contains the 
following three basic non-context free 
languages.

 1. multiple agreements L1={anbncn | n≥1},
         2. crossed dependencies L2= {anbmcndm |n≥1},
      3. marked duplication L3={wcw | w {a,b}*}

3. The class of languages should be parsable 
in polynomial time.

4. All languages in the class have the 
bounded growth property.

A class of languages possesses the MCS 
properties characterize the MCS family of 
languages and the corresponding class of grammars 
forms the MCS formalism. Generally, these MCS 
formalisms are considered to be a good model for 
the syntactical description of natural languages. For 
more details on MCS formalisms, we refer to [8].  
Even though contextual grammars were introduced 

to give an appropriate model description for natural 
languages [5], the basic class, internal contextual 
languages itself is failed to contain the non-context-
free constructions [1], [6]. Further, the membership 
problem for the above families of languages still 
remains open [3]. 

In context-free grammars the structure to the 
strings is preserved by means of derivation tree, 
where as for contextual grammars, no structure by 
means of derivation tree exists to the generated 
strings. In order to introduce the structure to the 
generated strings of contextual grammars, 
bracketed and fully bracketed grammars were 
introduced in [7]. The structure is preserved by 
introducing a pair of parenthesis to the contexts 
inserted at each derivation step but, when 
considering the suitability of these grammars to 
MCS formalisms, these grammars fail to generate 
the three basic non-context free languages [9], [4]. 
This has been overcome in [4]  by relaxing  the 
condition on the selectors in fully bracketed 
contextual grammars and this new class of 
grammars named semi-bracketed contextual 
grammars where the structure to the string is also 
maintained [4]. Besides, it was proved in [4] that 
this of class of languages contains the class of 
context-free languages and thus the properties 1 
and 2 mentioned above are satisfied. By default all 
contextual languages satisfy the property 4.

In this paper, we make an attempt to solve the 
property 3 for the semi-bracketed contextual 
grammars by introducing new automata called k-
queue Self Modifying Weighted Automata. By 
using backtracking concept at each derivation step 
a maximal selector is identified and the 
corresponding left and right contexts are removed 
from the input string. At latter stage of the parsing, 
if needed the necessary contexts are inserted in the 
input string and the parsing is continued until the 
corresponding axiom is identified.

* The author’s work was carried out during the tenure of an ERCIM “Alain Bensoussan” Fellowship Programme.
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2. PRELIMINARIES
In this section, we introduce the notion of formal 

languages and contextual grammars which are used 
in the paper. A finite non-empty set V is called an 
alphabet. We denote by V* the free monoid 
generated by V, by λ its identity or the empty 
string, and by V+  the set V*- {λ}. The elements of 
V* are called words. For any word x  V*, we 
denote |x| the length of x. For more details on 
formal language theory, we refer to [2], [11].
An internal contextual grammar is defined as
G = (V, A, (S1, C1),…,(Sm, Cm)),m≥1, where

 V is an alphabet
 A is a subset of V* is a finite set called the 

set of axioms,
 Si is a subset  of V*, 1≤i≤m, are the finite 

set of selectors,
 Ci is a subset of V* x V*, Ci finite, 1≤i≤m, 

are the finite set of contexts.
The modular presentation [10] of a contextual 

grammar is given as G = (V, A, P) where V, A are 
defined as above and P is the finite set of selector-
context rules of the form (S1, C1),…,(Sm, Cm). The 
derivation in the internal mode (denoted by in) is 
defined as x iny iff x=x1x2x3, y=x1ux2vx3, for 
x1,x2,x3 V*, x2 Si, (u,v) Ci for some 1≤i≤m. The 
maximal mode of the grammar is defined in the 
following way x M y iff x = x1x2x3, y = 
x1ux2vx3, for x1x2x3 V*, x2 belongs to Si, (u,v) Ci

for some 1≤i≤m  and there are no x'1, x'2, x'3 V*, 
such that x = x'1x'2x'3, x'2 Si, and  x'2 contains x2.  
That is, in this maximal mode, the chosen selector 
x2 for the next derivation should not be contained 
(in substring sense) in a longer selector x'2, where 
both x2, x'2 Si for some i. The language generated 
by a contextual grammar G in internal and maximal 
mode is given as Lα(G) = {x V*| z *

α x, 
z A}, where  is * α the reflexive transitive 
closure of the relation  α  and α  {in, M}.

Let us consider the brackets [,] and denote the set 
{[,]} by B. The Dyck language over B is denoted 
by DB and it is the language generated by the 
context-free grammar G = ({S}, B, S, {SSS, 
S[S], S λ}). Given the two disjoint sets V and 
B, we can define the projection mappings prV, prB, 
from (V B)* to V*, B*, respectively as follows: 
         prβ(a) =       a, for a  β
                            λ, for a   β, where β  (V, B) 

A string x (V B)* is said to be a Dyck covered 
string if x * λ, by reduction rules of the form 
[w]λ, for w V*. For instance, x1=[a[a]a[a]], 
x2=[[a]], x3=[[a[a]a]a] are Dyck covered strings. A 
Dyck covered string x (V  B)* is said to be 
minimally Dyck covered string if the following 
conditions are hold: 
 1. if x = x1]x2[x3 with x1, x3  (V  B)* and  x2

     V*, then x2 = λ
2. The reduction rule [ ] λ  is not used when    

      reducing x to λ.

Condition 1 refutes string x1 above, condition 2 
refutes string x2, hence these strings are not 
minimally Dyck covered; the string x3 is of this 
type. We denote the language of all minimally 
Dyck covered strings over the alphabet V by 
MDC(V). For every string x  MDC(V), a unique 
derivation tree can be associated (refer Appendix).

A bracketed contextual grammar is a tuple G = 
(V,A,(S1, C1),…,(Sm, Cm)), m≥1, where V is an 
alphabet, A is a finite subset of MDC(V), called 
axioms, Si  V*, and Ci are finite subsets of V *× 
V* − {( λ , λ )} for all 1 ≤ i ≤ m. The derivation 
relation (in internal contextual mode) is defined as 
follows: for x, y  (V  B)*, we write x G y, 
iff x =  x1x2x3, y = x1[ux2v]x3,  x1,x3  (V  B)*, x2

 MDC(V ) and prV (x2) Si, (u,v)  Ci, for some 1 
≤i ≤ n.

A fully bracketed contextual grammar (in short, 
FBIC grammar) is very similar to bracketed 
contextual grammar, except that the selectors are in 
MDC(V) instead of Si V*, and no projection is 
applied to the chosen selector. It is proved in [7] 
that if x G y is a derivation step in a bracketed 
or fully bracketed contextual grammar, then y
MDC(V ) whenever x  MDC(V ).  

A semi-bracketed contextual grammar (in short, 
SBIC grammar) is a construct G = 
(V,A,(S1,C1),…,(Sm, Cm)), m≥1, where V is a finite 
set of alphabet, A  MDC(V ) is a finite set of 
axiom, Si  [(V  B)*  (V  B)*] and Ci are 
finite subsets of V* V* − {(λ, λ)} for 1 ≤ i ≤ m, 
with the condition that whenever Ci contains a 
context (u, λ), u  V+ for some i, then the 
corresponding selector is of the form Si

[(V B)* and whenever Ci contains a context (λ, 
v), v  V+ for some i, then the corresponding 
selector is of the form Si  (V B)*]. Note that, 
when the context is not one-sided (one sided means 
either u = λ or v = λ in (u, v)), the corresponding 
selector may be of any type; may start or end with a 
bracket. The derivation relation is defined as 
follows. For x, y  (V B)*, we write x G y if 
and only if  x = x1x2x3, y = x1[ux2v]x3 , where x1, x3

 (V B)*, x2  Si, (u, v)  Ci, for some 1≤i ≤m. 
When the maximal condition (i.e., choosing the 

selector of maximal length) is included with this 
semi-bracketed contextual grammar, the grammar 
is said to be maximal semi-bracketed contextual 
grammar and is denoted by MSBIC grammar. The 
string language generated by a bracketed or fully 
bracketed or semi-bracketed contextual grammar G 
= (V, A,(S1,C1),…,(Sm, Cm)),m≥1, can be defined 
as two types of  languages, one by collecting the 
strings without applying any projection (non-
projected) and the other by collecting the strings 
after applying the projection. The former one is 
defined as LNPro(G) = {w'| z *

G w', for some z 
 A}, and the later one is defined as L(G) = {prV

(w) | z *
G w, for some z  A}, where *

G is 
the one discussed already.
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3. MEMBERSHIP ALGORITHM
In this section, we introduce our proposed 

parsing algorithm for the non-projected strings of 
semi-bracketed contextual grammars. First we 
present the general flow of the algorithm in the 
following major V steps and discuss each one in 
detail.
Step I: The input is checked for MDC(V)
Step II: All possible Left contexts (Lc) are 
identified in the given input string
Step III: A selector of maximal length is identified 
for the corresponding Lc by using k-queue Self 
Modifying Weighted Automata (k-quSMWA).If k-
queue Self Modifying Weighted Automata (k-
quSMWA) is not able to identify a maximal 
selector for all Lc in a particular Selector context 
table (Si, Lci) then insertion of context is done 
(either single or  multiple) in the input string and 
step III is repeated
Step IV: The Lc and corresponding Rc  are
identified for maximal selector and removed from 
the input string
Step V: This step is used to identify whether w'   
L(G)
Input: Input string (non-projected) w'  MDC(V)  
and a MSBIC (G) grammar
Output: w'   L(G) before applying projection, no if if  
w'  L(G)
Method:
Step I: Scan the input from left to right and check 
whether the w'   MDC(V) 
Step II: // This step is used to fill the necessary 
values in the selector-context and axiom table by  
using the given grammar G  and by using the 
selector-context table all possible left contexts are 
identified in the input string and position of the 
identified contexts are appended in the 
corresponding selector-context table.
Step 2.1: Using the MSBIC grammar the following 
values are entered in the selector-context table (Si, 
Lci where Si denotes the selector and Lci denotes 
the left context) and axiom table.
 (1)selector, (2) (Lc, length), (3) (Rc, length)                          
 (1)axiom, (2)length  
Step 2.2: By using the selector-context table (using 
the ([x, length) all possible positions of Lc  are 
identified in the given input string and the 
following value are appended in selector- context 
table
(1) position of the context in the input string (the 

position will be n-tuple where n is the |Lc| )
Step 2.3: Repeat the step 2.2 for all Lc and for all 
selectors by using selector-context table.

Step III: // Using the selector-context table a 
maximal selector is identified by using k-quSMWA 
and the required values are entered in selector-
position table. If  k-quSMWA is not able to 
identify a  maximal selector for all Lc in a 
particular (Si, Lci) table then single or multiple 
insertion of context is done and necessary values 

are filled in recently-inserted context table and  |w'| 
is modified and  proceed further.
Step 3.1: for all (Si, Lci) tables do
Step 3.2: for (n-1) entries in  (if the number of 
entries is more than  one) each (Si, Lci )table               

Step 3.2.1: Start scanning the input from 
the (last index in n-tuple)+1 position  (the position 
can be identified from Si Lci  table)

Step 3.2.2: if there exists a maximal 
selector for the Lc by using k-queue Self 
Modifying Weighted Automata (k-quSMWA) the 
following values are filled in selector-position table  
and go to step (IV)
(1) selector, (2) selector position (positions are 
identified by using index i from (k-                                            
quSMWA), (3) Length of the identified selector

                             else  return to step 3.2
if k-quSMWA does not identifies the maximal 
selector  for all the contexts Lci in (Si, Lci) table 
then    do the following
         Step 3.2.2.1:// insertion of context in the 
input string is done from the end of table                   
insert the last removed Lc and Rc in the input  
string  such that the  remaining (n-1) entries (i.e 
from the end of  the table) are not substring of the 
selector Si and the following values are entered in  
recently-inserted context table for corresponding  
selector Si  selector with position and |w'| is 
modified as |w'| + total length of inserted context ( 
|Lc| + |Rc| ) which  can  be identified from removed 
context table. 
         Step 3.2.2.2:
           if there is a presence of a substring then
            do
               Step 1: Insert the necessary  removed Lc 
and Rc in input string such that their positions does 
not overlap in the input string and  the following 
values are entered in the recently-inserted context 
table for corresponding selector Si

(1) selector with position, (2) Lc, (3) Rc
               Step 2: |w'| is modified as |w'| + total 
length of inserted context ( |Lc| +  |Rc| ) which can  
be identified from removed- context table.
               Step 3: For the both steps check the (Si, 
Lci) table and insert Lc with position                                             
if the Lc is not there.

Step 3.2.3:Continue from step 3.1 ((Si, Lci

) will be the recently modified table).
Step IV: Using the selector-position table the Rc is 
identified and (Lc, Rc) are removed from the input 
string and |w'| is modified. If the corresponding Rc 
is not identified by using the recently-inserted 
context table the necessary Lc  and Rc are removed 
from the input string and |w'| is modified.
Step 4.1: Using selector-position table start 
scanning the input from the end of the identified 
selector to identify the corresponding Rc
Step 4.2: if Rc is found then 
    do
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        Step 1: remove Lc and Rc from the input 
string and fill the following values in the removed-
context table 
     (1) selector, (2)Lc, (3) Rc, (4) position of Lc 
     and Rc, (5) total length of removed contexts
     (Lc + Rc)
        Step 2: remove the Lc with position   from 
the (Si, Lci )table
        Step 3: |w'| is modified as |w'| - total length of 
removed context and goto step (4.3) 
             else
        Step 1: Remove Lc and Rc from the input 
string by using recently-inserted context table for 
the corresponding Si and the |w'| is modified as |w'| 
- total length of  inserted context      
       Step 2: Remove the Lc with position from the 
(Si, Lci )table and go to  step(3.2)                                       
Step 4.3: Scan the input for the presence of a 
substring with a pattern of removed Lc                     
and include it in the corresponding (Si, Lci) table if 
it is not available and go to stepV.
Step V: //This step is used to check for the presence 
of the axiom
if (|w'| > length of all axioms in axiom table)
                continue from step III
 else if (|w'|=|ai| )
   case 1: // if the axiom table is having only one 
                  axiom
        step 1: check w' with ai   if yes  w'  L(G) & exit
                             else w'  L(G) & exit
   case 2: // if the axiom table is having more
                   than one axiom
        step 1: check w' with ai if yes  w'  L(G) & exit
                     else                
continue from step (III) until |w'| identifies its 
corresponding axiom in the axiom table.

                              In order to identify the maximal selector we 
introduce a new automata in the following section. 
The transition graph to the corresponding automata 
will have the edges with weights (i,j,k) which are 
self  modifying  according to the input read.

4. DEFINITION AND BEHAVIOR OF k-
queue Self Modifying Weighted Automata 

(k-quSMWA)
A k-quSMWA is defined as = (Q, Σ, δ, q0, F, ')
where Q is non-empty finite set of states
Σ is finite set of symbols given by (Σ  B)* where 
Σ  is alphabets from MSBIC (G) { γ }
where γ consists of following symbols 
          Δ is used for a transition between non-  
looping automata to looping automata
          π is used for a transition to the starting     
state of the looping automata
          # is used for a transition between looping  
automata to non-looping automata
          $ is used for a transition between two non-
looping automata (whenever there is a looping 
automata between non-looping  automata)

q0  Q is the initial state
F   Q  is a set of final states.

' is f  { Φ }
 where f is a finite set of positive integers {i, j, k}
    i is an index denoting the position of the current 
input symbol scanned (initially it will be (last index 
in the n-tuple)+1 which can be identified from the 
selector-context table for the current left context)
    j is an index denoting the length of the selector for 
the corresponding left context (initially it will be zero)

  k is an index defining k-level queue whenever 
regular selector is used  (i.e for the following 
operations kleene or positive closure initially it will 
be zero)
    Φ is null value 
where δ is defined as follows
             In general δ will be
δ: Q x Σ x ' x  'x  '  Q x ' x ' x '  
where i,j,k values will be modified                           
based on Σ and for  some of the moves all the  f 

may not be used for such cases  Φ will be used.      
1) δ(qi, Σ-{ γ }, i, j, Φ)=( qi+1 , i , j+1, Φ)
2) δ(qi , Δ, i, j, Φ )=(qj, i, j, Φ) where qj is
        the start state of the looping automata
3) δ(qj , Σ, i, j, k)= (qj+1, i, j+1, k+1)

      4)   δ(qp , π, Φ, Φ, Φ) = (qj ,Φ,Φ,Φ) where 
              qj  is the start state of the looping 
              automata

5)  δ(qp, #, i, j, k)= (qp+1, i, j, Φ) (applied 
        only when qp  is a non-final state)
6)  δ(qi, $, i, j, Φ )= (qk ,Φ,Φ,Φ) where the 
        automata should have the following 
        move (qk, next input symbol, i,j+1,Φ)

Various data structures introduced:
k-level Queue(k-Qu):
A k-level queue is defined based on the current 
k-value in the looping automata which is used 
to identify the maximal length in the loop. The 
entries in the queue will be (current input 
symbol scanned, position)
k-Length Substring Pumping Stack (k-
LSPS):
A k-LSPS is based on the current k-value in 
the looping stack which is used to store the 
removed contexts after the identification of a 
loop in the selector. The entries in the stack 
will be (k-length substring, positions)
Recently Removed Context Stack (RRCS):
After identifying that the popped contexts k-
level does not matches the string in the looping 
automata the removed contexts should be 
stored in RRCS with their respective positions.
When the move δ(qp, π, Φ, Φ, Φ ) = (qj, Φ, Φ, 
Φ)  is applied based on the current value of k 
in the looping automata k-level queue is 
defined and the following operations should be 
done

1) scan k-symbols from the input from 
ith position

2) push the k-symbols on the queue
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3) push the k-length substring on k-
LSPS

4) pop the k-symbols from the k-queue 
and perform the move (3)

5) When the popped context does not 
matches the string in the automata 
store the recently removed context in 
RRCS. 

                            if qp is a final state then 
              return maximal selector with positions and 
              length.

else
          (1) apply the move (5)
                    (2)  case 1: 
        pop the top most string from k-LSPS apply 

         move (1) k-times and   pop the top most      
         string from RRCS and apply move (1) k-
         times
                         case 2:
         pop the  top most string from RRCS and 
         apply move (1) k-times and perform move (1) 

      (3) return maximal selector with 
positions and length

Special Case :
δ(qs, Δ, i, j,Φ)= (qj ,Φ,Φ,Φ) where qs is the 
final state and qj is the start state of the looping 
automata then

step 1) current=j
      step2)δ(qj,Σ,i,j,k)=(qj+1,i,j+1,k+1)                 

     By applying (step  2) k-times if qp is  
     reached where qp is a final state 
     do 2.1) a k-level queue is defined based on 
                 the current k-value and Current1=j               
          2.2) scan k-symbols from the input from 
                 the ith  position and push k-symbols 
                on  queue                
          2.3) pop the k-symbols and continue 
                from step (1)  where j=current1 (Σ is 
                popped contexts from the queue)
else
      return the corresponding maximal selector 
 and its position and its  length (i.e., current)
By constructing the above automaton (refer 
appendix for examples) the selector of maximal 
length for the Lc is identified and the selector 
position is entered in the selector-position table.

Refer Appendix for examples of k-quSMWA for 
various selectors.

5. CONCLUSION
In this paper, we have proposed a parsing 

algorithm for maximal semi-bracketed contextual 
grammars for the non-projected strings by 
introducing a new type of automata called k-queue 
Self Modifying Weighted Automata (k-quSMWA). 
We have used the following back tracking concept 
to solve the membership problem: at each 
derivation step a maximal selector is identified and 

the corresponding left and right contexts are 
removed from the input string. If some contexts 
pair is removed from the input string in wrong 
positions, they are identified at a little later stage 
and corrected by replacing the removed contexts. 
Since the correction happens only minimum 
number of times, we believe that the algorithm runs 
in deterministic polynomial time. The automaton is 
constructed to identify the maximal selector while 
back tracking. In connection with the proposed 
work, the parsing of maximal semi-bracketed 
contextual grammars for projected strings in 
polynomial time is left as an open problem. If this 
is solved, a new class of MCS formalism with 
structured strings is obtained in the domain of 
contextual grammars. Also, it will be interesting to 
analyze the acceptance power of the introduced 
automata in relevance with existing types of 
automata. 
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Appendix

Examples of k-quSMWA for different selectors
(i) [a[ab]b]

          [,(i,j,Φ)              a,(i,j,Φ)          [,(i,j,Φ)           a,(i,j,Φ)          b,(i,j,Φ)            ],(i,j,Φ)            b,(i,j,Φ)            ],(i,j,Φ)

(ii) [ab](a])*
                       [,(i,j,Φ)         a (i,j,Φ)             b,(i,j,Φ)             ],(i,j,Φ)               Δ                  a,(i,j,k)           ],(i,j,k)

                                                                                                             π                                                                                                             
(iii) ([a)*[abc]

        [,(i,j,k)           a,(i,j,k)                #                   [,(i,j,Φ)              a,(i,j,Φ)           b,(i,j,Φ)         c,(i,j,Φ)          ],(i,j,Φ)

                           π

                                $
                                           
Derivation tree for strings MDC(V)

For every string x  MDC(V), we can associate a tree τ(x) with the labeled edges in the following way
 draw a dot representing the root of the tree; the tree will be represented with the root up and all the 

leaves down
 scan x from the left to right  and grow τ(x) according to the following two rules

1. for each maximal substring [w of  x, with w V* (since w is maximal, after w we find either [ 
or ]), we draw a new edge, starting at the current point of the partially constructed τ(x), 
marked with w on its left side, and placed to the right hand of the currently constructed tree;

2. For each maximal w], w V*, not scanned yet (hence, either we find) before w, or w=λ and to 
the left of ] we have a substring [z for some z V* already scanned], we climb the current 
edge, writing w on its right side.

A derivation tree τ(x) for the word x=[a][a[a[a[ab]b]c]ab][a]
                                                                                                        

                                         
a       a   ab a λ

  λ

  a c

  a b

ab λ

1

2 3

4

5

6

7


