
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

Software ENgineering

Minimal ownership for active objects

D.G. Clarke, T. Wrigstad, J. Östlund, E.B. Johnsen

REPORT SEN-R0803 JUNE 2008

Software Engineering

Centrum voor Wiskunde en Informatica (CWI) is the national research institute for Mathematics and
Computer Science. It is sponsored by the Netherlands Organisation for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2008, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

Minimal ownership for active objects

ABSTRACT
Active objects offer a structured approach to concurrency, encapsulating both unshared state
and a thread of control. For efficient data transfer, data should be passed by reference
whenever possible, but this introduces aliasing and undermines the validity of the active objects.
This paper proposes a minimal variant of ownership types that preserves the required race
freedom invariant yet enables data transfer by reference between active objects (that is, without
copying) in many cases, and a cheap clone operation where copying is necessary. Our
approach is general and should be adaptable to several existing active object systems.

2000 Mathematics Subject Classification: none
1998 ACM Computing Classification System: D1.3, D3.3
Keywords and Phrases: ownership types; active objects; data races
Note: This work was carried out under project SEN3 EU-FP6 CREDO.

Minimal Ownership for Active Objects?

Dave Clarke1, Tobias Wrigstad2, Johan Östlund2, and Einar Broch Johnsen3

1CWI, Amsterdam, The Netherlands
2Purdue University, USA

3University of Oslo, Norway

Abstract Active objects offer a structured approach to concurrency,
encapsulating both unshared state and a thread of control. For efficient
data transfer, data should be passed by reference whenever possible,
but this introduces aliasing and undermines the validity of the active
objects. This paper proposes a minimal variant of ownership types that
preserves the required race freedom invariant yet enables data transfer by
reference between active objects (that is, without copying) in many cases,
and a cheap clone operation where copying is necessary. Our approach is
general and should be adaptable to several existing active object systems.

1 Introduction

Active objects have been proposed as an approach to concurrency that gels natu-
rally with object-oriented programming [1,43,70]. They are used for concurrency
in, for example, Symbian OS [50], though threads are also allowed. Active objects
encapsulate not only their state and methods, but also a single (active) thread
of control. Additional mechanisms, such as asynchronous method calls and fu-
tures, reduce the temporal coupling between the caller and callee of a method.
Together, these mechanisms make a large degree of potential concurrency ex-
ploitable for deployment on multi-core or distributed architectures.

Internal data structures of active objects, used to store or transfer local data,
do not need independent threads of control. In contrast to the active objects,
these passive objects resemble ordinary (Java) objects. An immediate benefit of
distinguishing active and passive objects is that all the concurrency control is
handled by the active objects, and locking (via synchronised methods) becomes
redundant in the passive objects. This significantly simplifies programming and
enables the (re-)use of standard collection APIs without additional concurrency
considerations.

Unfortunately, introducing passive objects into the model gives rise to alias-
ing problems. Objects belonging to the state of one active object could be passed
to another active object, enabling concurrent modification and/or observation
of changes to the passive data objects via aliases. Specifically, two ‘threads’ can
access the same passive data; if at least one thread modifies the data, then dif-
ferent access orders may produce different results. Unless passive objects have
? This work is in the context of the EU project IST-33826 CREDO: Modeling and anal-

ysis of evolutionary structures for distributed services (http://credo.cwi.nl).

locks (which is what the active objects model tries to avoid), concurrent access
could occur at arbitrary points in the code. Thus, we are immediately recast into
the setting of unconstrained shared variable concurrency. This problem can be
addressed several ways:

immutable data only Active objects are mutable, but field values belong to
immutable data types; e.g., integers or booleans, immutable objects such as
Java-style strings or XML, or Erlang- and Haskell-style datatypes [5, 41].

cloning Locally, active objects can arbitrarily access passive objects, but when
data is passed between active objects, the data must be deeply cloned. This
approach is taken for distributed active objects (e.g., [7, 17]).

unique references Only one reference to any passive object allowed at any
time. Passive objects can be safely transferred between active objects.

However, none of these approaches is entirely satisfactory.
Emerald [38, 60] partly addresses this problem using the first approach. Ob-

jects can be declared immutable to simplify sharing and for compiler optimi-
sation, but immutability is an unchecked annotation which may be violated.
Immutability is optional, as adopting pure immutability means that programs
cannot be implemented in an imperative object-oriented style.

ProActive [7] uses the second approach and copies all message parameters.
The programmer gets a simple and straightforward programming model, but the
overhead may be massive in message-intensive applications.

Last, using uniqueness requires a radical change in programming style and
may result in fragile code in situations not easily modelled without aliasing.

Contributions This paper investigates the application of ownership types in the
context of active object-based concurrency. We develop a type system that stat-
ically identifies the boundaries of active objects and hence the opportunities for
reference semantics instead of copying semantics in method calls. Our ownership
types system requires very few annotations and seems practical to integrate with
systems like SCOOP [48] and ProActive [7].

Concurrency is often mentioned as a natural albeit under-investigated appli-
cation area for ownership types. In previous work, we combined ownership types
with effects to facilitate reasoning about disjointness [19] and with uniqueness
for ownership transfer [22]. Recently, we coalesced these to realise flexible forms
of immutability and read-only references [58]. In this paper we tune these sys-
tems to the active objects concurrent setting, and extend the resulting system
with the arg reference mode from Flexible Alias Protection [56]. Furthermore,
our specific choices for ownership defaulting make the proposed language de-
sign very concise in terms of additional type annotations. This paper’s main
contributions are:

Type System A synthesised minimal type system with little syntactic over-
head that identifies active object boundaries. This type system enables static
checking and automatic inference of safe practices that programmers today
must do manually (framework permitting), such as:

2

– Replace deep copying with reference passing for immutable (parts of) ob-
jects, or objects which are invalidated at the source (unique references).

– Replace remote references by copying for immutable (parts of) objects
for more efficient local access in a distributed setting.

Generality Our results apply to any active object or actor based concurrency
model. Active object systems such as ProActive [7], Emerald [38, 60], and
Scoop [48] use unchecked immutability or active annotations. Integrating our
type system with these approaches for static checking seems straightforward.

Organisation Section 2 surveys the alias control mechanisms on which we build
our proposal. Section 3 further details the problem we address and Section 4
presents our solution to it. Section 5 formalises our proposal in the language
Joëlle, and shows its type system. Section 6 presents Joëlle’s dynamic semantics
and meta-theory. Section 7 compares our work with related work, and Section 8
concludes.

2 Ownership and Other Alias Control Mechanisms

This section surveys the alias control mechanisms used in this paper. These
mechanisms address the problem of reasoning about shared mutable state [36,
56], which is problematic as a shared object’s state can change unexpectedly,
potentially violating a sharer’s invariants or a client’s expectations. There are
three main approaches to this problem:

ownership: encapsulate all references to an object within some box ; such as
another object, a stack frame, a thread, a package, a class, or an active
object [3, 4, 10,12,18,23,35,52,56].

uniqueness: eliminate sharing so that there is only one active reference to an
object [3, 10,13,22,35,49].

immutability: eliminate or restrict mutability so an object cannot change, or
so that changes to it cannot be observed [9, 14,56,63,66,71].

2.1 Ownership

Ownership types [23] initially formalised the core of Flexible Alias Protection [56];
variants have later been devised for a range of applications [3,10,12,18,23,52,56].
In general, object graphs form an unstructured “soup” of objects. Ownership
types impose structure on these graphs by first putting objects into boxes [27],
then imposing a topology [2,18] on the boxes, and finally restricting the way ob-
jects in different boxes can access each other, either prohibiting certain references
or limiting how the references can be used [51,52].

Ownership types record the box in which an object resides, called the owner,
in the object’s type. The type system syntactically ensures that fields and meth-
ods with types containing the name of a private box are encapsulated (thus

3

only accessible by this). This encapsulation ensures that the contents of pri-
vate boxes cannot be exported outside their owner. For this to work, the owner
information must be retained in the type. Consider the following code fragment:1

class Engine {}
class Car { this::Engine e; }

In class Car, the owner of the Engine object is this, which indicates that the
object in the field e is owned by the current instance of Car (or, in other words,
that every car has its own engine). The type system ensures that the field e is
accessible only by this, the owning object.

Ownership types enforce a constraint on the structure of object graphs called
owners-as-dominators. This property ensures that access to an object’s internal
state goes through the object’s interface: the only way for a client of a Car object
to manipulate the Car’s Engine is via some method exposed in the Car’s public
interface. Some ownership types proposals [2, 3, 11,52] weaken this property.

All classes, such as Engine above, have an implicit parameter owner which
refers to the owner of each instance of the class. Thus, arbitrary and extensible
linked data structures may be encapsulated in an object. Contrast this with
Eiffel’s expanded types [47] and C++’s value objects [65], which enable an object
to be encapsulated in another object, but require a fixed sized object. In the
following class
class Link { owner::Link next; int data; }

the next object has the same owner as the present object. This is a common
idiom, and we call such objects siblings. (The Universes system [52] uses the
keyword peer instead of owner.)

2.2 External Uniqueness

Object sharing can be avoided using unique or linear references [3,10,13,22,35,
49]: at any point in the execution of a program, only one accessible reference to
an object exists. Clarke and Wrigstad introduced the notion of external unique-
ness [22,68] which gels nicely with ownership types and permits unique references
to aggregate objects that are inherently aliased, such as circularly linked lists. In
external uniqueness, unique references must be (temporarily) made non-unique
to access or call methods on fields. The single external reference is thus the only
active reference making the aggregate effectively unique. External uniqueness
enables ownership transfer in ownership types systems.

External uniqueness is effectively equivalent to introducing an owner for the
field or variable holding a reference into the data structure, such that the only
occurrence of that owner is in the type of the field or variable. In the code below,
first holds the only pointer to the (sibling) link objects.
class List { unique::Link first; }

External uniqueness can be maintained by destructive reads, or techniques
such as Alias Burying [13].
1 In this section, code uses syntax from Joe-like languages [19,22,58].

4

2.3 Immutability and ‘Safe’ Methods

Immutable objects can never change after they are created. An immutable ref-
erence prevents the holder from calling methods that mutate the target object.
Furthermore, references to representation objects returned from a method call
via an immutable reference are also immutable—or immutability would be lost.
Observational exposure [14] occurs when an immutable reference can be used to
observe changes to an object, which is possible if non-immutable aliases exist to
the object or its representation. Fortunately, strong encapsulation, uniqueness,
and read-only methods make the (staged) creation of “truly immutable” objects
straightforward [58]. This is similar to Fähndrich and Xia’s recently proposed
Delayed Types [28].

In Flexible Alias Protection [56], ‘arg ’ or safe references (our preferred ter-
minology) to an object may only access immutable parts of the object; i.e., the
parts which do not change after initialisation. Thus, clients accessing an object
via a safe reference can only depend on the object’s immutable state, which is
safe as it cannot change unexpectedly. Safe references can refer to any object,
even one which is being mutated by a different active object, without any risk
for observational exposure.

2.4 Owner-Polymorphic Methods

Owner-polymorphism is crucial for code reuse and flexibility in the ownership
types setting [18,68]. Owner-polymorphic methods are parametrised with owners
to give the receiver temporary permission to reference an argument object. For
example, the following method accepts an owner parameter foo in order to
enable a list owned by any other object to be passed as an argument:

<foo> int sum(foo::List values) { ... }

Clarke [18] established that owner-polymorphic methods can express a no-
tion of borrowing : an object may be passed to another object, which does not
own it, without the latter being able to capture a reference to the former. (For
further details, see [68].) Owner-polymorphic methods are reminiscent of region-
polymorphic procedures in Cyclone [32].

3 Active Objects and Data Sharing

Active objects interacting through asynchronous method calls (e.g., [17, 40, 48])
have been proposed as a concurrency model that gels better with object-oriented
programming. Such active object proposals aim to hide much of the complexity of
concurrent and distributed programming by using object-internal threads and
single-thread-per-object invariants. Several slightly differently flavoured active
objects systems exist for languages such as Java [7], Eiffel [16,53] and C++ [50].

The primary goal of this work is to design an ownership types system for
active objects to control data races and data sharing while avoiding cloning where
possible. We also want to provide a sensible default semantics for completely

5

unannotated classes to facilitate reuse of existing classes as passive objects in
the setting of active objects.

3.1 Motivating Controlled Data Sharing

In Concurrent programming in Java [44], Doug Lea writes:

To guarantee safety in a concurrent system, you must ensure that all
objects accessible from multiple threads are either immutable or employ
appropriate synchronization, and also must ensure that no other object
ever becomes concurrently accessible by leaking out of its ownership
domain.

The simple ways to guarantee the above are the first two we listed in Section
2: making everything immutable or use deep copying semantics. While efficient,
the first is both severely restrictive and requires careful inspection of the code to
determine that the messages are truly immutable. The second is easier to check,
just check for clone operations on arguments, but has the downside of adding
potentially massive copying overhead.

We argue that the most effective approach is the pragmatic combination:
using ownership transfer or immutable objects where possible, and deep copying
only when there is no other way. To enable this in a statically and modularly
checkable fashion, we use a few extra annotations on interfaces of active object
classes. We believe that inserting these extra annotations will be helpful for
maintenance and possibly also refactoring. Most importantly, we believe that the
static checking enabled by the annotations will save time, both programmer-time
and run-time.

Back in the active object setting, assume that there are two active objects
Client and Broker and let Client create a complex data structure Request,
which Broker shall match with an Offer. If Request is cloned when passed
from Client to Broker, two potential problems arise. Firstly, there is the cost
of cloning it (and potentially the cost of passing it back via cloning). Secondly,
the two copies of the request must be synchronised if changed concurrently. The
situation becomes even worse for complex networks of active objects, leading to
additional copying.

4 Active Ownership

This section describes our ownership types system for controlled data sharing in
active objects. Our active objects model is shared with ProActive [7] (modulo
minor things unimportant in this context), which is an implementation of ASP
active objects [17] as a Java framework. Our system should however be relatively
straightforward to adapt to, for example, SCOOP [48] or Emerald [38]. We phrase
our contribution directly in terms of a Java-like language formalised on top of
FJ [39] for generality and to simplify the presentation. To give a flavour for how

6

Shared Immutable
Objects

message
queue

fieldfieldmethods

fieldfieldfields

Broker (active)

Passive Objects

active
method

unique pointer
or clone

message
queue

fieldfieldmethods

fieldfieldfields

Client (active)

Passive Objects

active
method

argument

message

Figure 1. Active Ownership. Safe references are not depicted. Broker and Client are
active objects from the code example in Figure 2.

unobtrusive the extension would be, code examples use annotations for owners to
completely fit in the Java syntax, and we design default annotations to minimize
the syntactic overhead.

Our alias control mechanisms uphold the invariant that no two ‘threads’
concurrently change or observe changes to an object, which is the invariant
obtained by the deep copying of message arguments in ProActive (with minor
exceptions unimportant to us here).

We now present the features of our type system and the constraints it im-
poses, along with justification for these constraints. The elements of our proposal
are shown in Figure 1.

4.1 Active and Passive Classes

Active and passive objects are instantiated from active and passive classes re-
spectively. These are declared as follows:

Active classes are annotated with a @active annotation and have an optional
run method which is activated immediately after the active object is con-
structed.

Passive classes are not annotated with @active. Thus, classes are passive
by default; e.g., the classes in the Java libraries are all considered passive
without annotating them.

Active objects primarily interact via asynchronous method calls. These are de-
fault for active objects and return a future. A future is a placeholder for a value
which need not be currently available. For asynchronous calls, the future is the
placeholder for the methods’ actual return values. Thus, the caller need not wait
for the call to complete. A future’s value is accessed by the future’s get method,

7

@active class Client {
void run() {

Request rm = ...; // formulate Request
@future Offer offer = myBroker!book(rm.clone());
... // evaluate offer

offer.getProvider().accept(offer.clone());
}

}
@active class Broker {

void run() { ... } // go into reactive mode
// book returns first Offer that responds to the request
Offer book(Request request) { ... }

}
@active class Provider {

void run() { ... } // go into reactive mode
Offer query(Request request) { ... }
boolean accept(Offer offer) { ... }

}
class Request {

Request(String desc) { ... }
void markAccepted() { ... }

}
class Offer {

Offer(Details d, Provider p, Request trackback) { ... }
Provider getProvider() { ... }

}

Figure 2. Example of active objects exchanging arguments by copying. Here @future
Offer denotes a future of type Offer. For clarity, we use a !-notation on asynchronous
method calls, e.g., myBroker!book(rm).

which blocks until the future has a value. Synchronous calls may be encoded
by calling get directly after asynchronous method calls. Method calls to passive
objects are always synchronous; i.e., they are similar to standard method calls
as found in Java.

Figure 2 shows a use of active objects that deliberately copy arguments. Later
we show how this copying is avoided, see Figure 3. For brevity, we focus simply
on the interfaces, which suffices for the type annotations. The figure shows the
following scenario:

1. Client sends request to broker
2. Broker forwards request to provider(s) and negotiates a deal
3. Broker returns resulting offer to client
4. If client accepts offer, client sends acceptance to provider

The client, the broker, and all providers are represented as active objects and
execute concurrently. In contrast, requests and offers are passive objects, passed
between active ones by copying to avoid data races between the active objects.

8

4.2 Language Constructs for Active Ownership

This section describes our language features leading up to an encoding of the
example from Figure 2 that avoids copying.

Ownership structure The type system presented has the following owners:

@active globally accessible owner of all active objects
@owner the object owning the current this
@this owner denoting the current this
@unique owner denoting the current field or variable
@immutable globally accessible owner of all immutable objs
@safe globally accessible owner allowing safe access

The owners @active, @unique, @immutable, and @safe are available in any
context, and denote the global owner of active objects, unique references, im-
mutable references, and safe references, respectively. Nested inside each active
object is a collection of passive objects, owned by the active object with owner
@this. The owner @owner is available only in passive classes only for referring
to the owner of the current instance, and is used to create linked data structures
within an active object.

Note that the ownership hierarchy is very flat, as there is no owner @this

inside a passive class. Ownership encapsulates passive objects inside an active
object. Consequently, there is no need to keep track of nesting or other relation-
ships such as links between owners [2]. In addition, the classes in this system take
no owner parameters, in contrast to the original ownership types system [23].
Therefore no run-time representation of ownership is required [69].

Immutable and Safe References Immutable types have owner @immutable,
which is valid everywhere. In our system, only passive objects can have im-
mutable type. Fields or variables containing immutable references are not final
unless explicitly declared final or if the container enclosing the field is immutable.
Only read-only and safe methods (see below) can be called on immutable objects,
which preserves immutability.

Safe references (called argument references in Flexible Alias Protection [56])
have owner @safe and can be used only to access the final fields of an object, and
the final fields of the values returned from methods, and so forth. These parts
of an object cannot be changed underfoot. Methods that object these conditions
are called safe methods, denoted by a @safe annotation. Any non-active type
can be subsumed into a @safe type.

Our immutable references must be created from unique objects. Essentially,
immutability is achieved through invalidating all references to an object with a
mutating capability. This is powerful and flexible as it allows a single class to
be used both as a template for both mutable and immutable objects (see Clarke
and Wrigstad’s original external uniqueness paper [22]) and staged construction.
Effectively, immutability becomes a property of the object, rather than of the
class or references.

9

In contrast to immutables, a safe reference does not preclude the existence
of references with a mutating capability to the same object. A safe reference
merely limits what operations can be performed on the referenced object via the
reference in terms of mutation and observing an object’s state. Both kinds of
references avoid observational exposure.

Read-only and Safe Methods Following previous read-only proposals, e.g.,
[9,14,35,63], a read-only method preserves the immutability of objects, and does
not return non-immutable references to otherwise immutable objects. Read-only
methods cannot update any object with owner @owner, which notably includes
the receiver. They are not, however, purely functional: they can be used to modify
unique references passed in as arguments or objects freshly created within the
method itself and they can call mutating methods on active objects.

By virtue of immutability encoded in the owners, a return value from a
read-only method that has owner @owner will (automatically) have the owner
@immutable when the read-only method is called on an immutable reference,
and hence will not provide a means for violating the immutability of the original
reference [58, 71]. In order to allow modular checking, read-only methods are
annotated with @read.

A safe method, annotated @safe, is an additionally restricted read-only
method that may only access immutable parts of the receiver’s state, i.e., fi-
nal fields containing safe or immutable references. Conceptually, a read-only
method prevents mutation whereas a safe method also prevents the observation
of mutation.

4.3 Data Transfer and Minimal Cloning

To ensure that the data race freedom invariant is preserved, care is needed when
passing data between active objects. How data is passed, will depend on the
owner of the data:

@active pass by reference
@this object must be cloned
@owner (in passive object) object must be cloned
method owner parameter object must be cloned
@unique pass by reference (destructively)
@immutable or @safe pass by reference

Active objects are safe to pass by reference as external threads of control never
enter them by virtue of asynchronous methods calls and futures. Immutable
and safe objects are obviously safe to pass by reference as their accessible parts
cannot be changed. Uniques are safe to pass by reference as they are effectively
transferred to the target.

Other objects must be cloned. Cloning returns a unique reference which can
be moved across regardless of the owner of the expected parameter type.

Using the owner annotations, it is possible to statically infer what parts of
an object that must be further cloned to be safely passed to another active

10

object. The inferred (generated or generic reflexive) clone operation does not
differ significantly from standard serialisation algorithms in that it preserves the
underlying object graph structure, and is similar to the sheep clone described by
Noble et al. [18, 55] for ownership types and Nienaltowski’s object import [53].
The clone operation behaves as follows on references:

@active reference is copied
@this object is cloned
@owner (in passive object) object is cloned
method owner parameter object is cloned
@unique object is cloned
@immutable or @safe reference is copied

Reducing Syntactic Baggage We adopt a number of reasonable defaults for
owner annotations to reduce the amount of annotations required in a program,
and to use legacy code immediately in a sensible way.

Passive Classes (including all library code) have one implicit owner parameter
@owner, which is the default owner of all fields and all method arguments.
Note that this means that library code, in general, requires no annotations.

Active Classes have the implicit owner @active. In an active class, the default
owner is @this for all fields and unique for all method arguments.

Together these defaults imply that all passive objects reachable from an ac-
tive object’s fields are encapsulated inside the active object, in the absence of
immutable and safe references. By default, all method parameters in the pub-
lic interface of active objects are @unique. This is the only way to guarantee
that mutable objects are not shared between active objects. References passed
between active objects must be unique, either originally or as a result of per-
forming a clone. Note that this default annotation as @unique does not apply to
active class types appearing in the interface, as these can only be @active. This
choice of defaults is supported by results of Potanin and Noble [59] and Ma and
Foster [46], which indicate that many arguments between objects could well be
unique references.

Benchmarks of non-trivial programs performed by Carlsson et al. [15] for a
related system, albeit in the context of Erlang, show that avoiding unnecessary
copying of arguments in message passing can have a measurable effect on the
overall performance of an application. We suspect that our story here is even
slightly stronger, since we would not need any dynamic checks to determine
correctness at run-time. Importantly, both systems guaranteed non-sharing of
message objects at compile-time.

4.4 Revisiting the example

Figure 3 adds active ownership annotations to Figure 2 in order to avoid all
copying. Only six annotations are needed to express the intended semantics of
Figure 2. This might seem excessive for a 20-line program, but remember that

11

@active class Client {
void run() ‡ {

†Request rm = ...; // formulate Request
@future @immutable Offer offer = myBroker!book(rm); // (1)
... // evaluate offer
offer.getProvider().accept(offer); // (2)

}
}
@active class Broker {

void run() ‡ { ... } // go into reactive mode
// book returns first provider that responds to the request
Offer book(@safe Request request) ‡ { ... } // (3)

}
@active class Provider {

@immutable Offer query(@safe Request rq) ‡ { ... } // (4)
boolean accept(@immutable Offer offer) ‡ { ... } // (5)

}
class Request {

Request(†String desc) ‡ { ... }
void markAccepted() ‡ { ... }

}
class Offer {

Offer(†Details d, †Provider p, @safe Request r) ‡ ... // (6)
Provider getProvider() @read { ... } // (7)

}

Figure 3. The active objects example with active ownership. † indicates an implicit
use of a default, @owner in passive classes and @this in active. ‡ indicates an implicit
use of the @write default for methods. These are not part of the actual code.

this is just the interface, and that the actual code for this program would be
much longer. Furthermore, no annotations are required for library code used by
this program.

The offer is made immutable (4), which allows it to be safely shared between
concurrently executing clients, brokers and providers. This propagates to the
type of the future variable (1) and formal parameter (5). The request is received
as a safe reference (3), so the broker may only access its immutable parts which
precludes both races and observational exposure. This constraint is reasonable,
since changing crucial parts of a request under foot might lead to invalid offers.
Parts of the request can still be updated by the client (but not by the broker or
any provider), e.g., to store a handle to the accepted offer in it. The safe anno-
tation propagates to (6). Read-only methods are annotated read (7). Reading
the provider from an immutable offer (2) returns an immutable reference, since
offer is immutable (1).

12

4.5 Other Relevant Features

Here we briefly discuss other language features that can be bundled with our
type system to increase expressiveness. For space reasons, we omit a discussion
of exceptions, which is a straightforward addition (they would be immutable).

Owner-polymorphic methods (and their problems) The previous dis-
cussion ignored owner-polymorphic methods. An owner-polymorphic method of
an active object enables the active object to borrow passive objects from an-
other active object, with the guarantee that it will not keep any references to
the borrowed objects. Such methods require care, as they are problematic in the
presence of asynchronous method calls. It is easy to see that an asynchronous call
could easily lead to a situation where two active objects (Client and Broker)
have access to the same passive objects (Request):

1. Client lends Request to Broker via an asynchronous method call.
2. Client continues executing on Request.
3. Broker concurrently operates on Request.

We choose the simplest solution to avoid this problem by banning asyn-
chronous calls to owner-polymorphic methods. Alternative approaches would
require preventing Client from accessing Request—or more precisely, objects
with the same owner as Request—until the method call to Broker returned.
This can be achieved using an await on the future returned by the asynchronous
call to the method on Broker.

Dealing with Globals The presence of globally accessible fields and methods
can be problematic in the active object model as they introduce opportunities
for sharing passive objects across active ones. If not treated carefully, they can
result in potential race conditions. Our solution is reminiscent of that of Scala [57]
where globally accessible singleton objects can be declared directly through the
object keyword. For a Java program the static fields of non-primitive type and
static methods of every class needs to be moved to an active singleton object.
Thus, they remain globally accessible, but protected from race conditions as they
are encapsulated in an active object. For Java, this translation is straightforward:
All accesses to static fields and methods need to be modified to use the newly
created object. Our treatment of global variables is comparable to an approach
in Lea’s book in the context of Java [44, page 85].

5 The Language and its Type System

This section introduces Joëlle, a kernel language reminiscent of ProActive. It
extends Featherweight Java (FJ) [39], combining active objects, asynchronous
method calls and futures, with ownership, uniqueness, and immutability. Joëlle-
objects encapsulate their state—the fields of an object are accessible only via the

13

Prg ::= L { T x; sr }
L ::= [active] class C extends C { T f; final T ′ f ′;M }

M ::= <a> T m (T x) P { T ′ y; sr }
P ::= write | read | safe

lval ::= f | x
e ::= lval | e.get | e.uget | e!m(e) | e.<o>m(e)

| new C() | null | lval-- | clone e
s ::= lval := e | s; s | borrow lval as x, a { s }

sr ::= s; return e
T ::= o :: C | !T
o ::= active | owner | this | unique | immutable | safe | a

Figure 4. The language syntax. Variables lval are fields (f) or local variables (x),
and C is a class name. Owner variables are denoted a. Overline, x, indicates tuples of
features, following Featherweight Java, and brackets [opt] indicate optional features.

object’s methods. Objects execute concurrently and each active object has its
own thread. The type system is a synthesis of the type systems of FJ and Classic-
Java [31,39], Creol [25], External Uniqueness [22,68], and Joe3 [58]. To simplify
the presentation of the formalism, we assume that all default annotations on
types and methods have been elaborated.

Just like in ProActive and SCOOP, we restrict our concurrency model so
that only one thread may execute be active in an active object at a time; other
threads in the object are suspended.2 We distinguish between blocking a thread
and releasing a thread. Method calls to active objects are asynchronous and
the result is stored in a future. Forcing the caller to wait for the call to return
is unsatisfactory in a distributed setting where communications may disappear
and block the caller’s process permanently. Execution is blocked only when at-
tempting to read from a future, using get, which does not yet have an assigned
value.

5.1 Syntax

The language syntax is given in Figure 4. A program Prg is a list of class defi-
nitions, followed by a method body which acts like the main method. A class L
inherits from a superclass, which may be Object, extending it with additional
fields f and methods M . For æsthetic and spatial reasons, we lose the @-sign on
the annotations, so active classes are indicated by the keyword active, etc.

Methods M can be owner-polymorphic. For simplicity, we require owner pa-
rameters to be expressly declared using <a>, although this is not strictly needed
since owners don not have a nesting relation.

A method annotated with read or safe does not modify its target but may
modify its arguments, depending upon their types. Additionally, safe methods
2 ProActive has a couple of exceptions to this; e.g., for methods that throw checked

exceptions. This seems to be purely due to limitations in the underlying Java lan-
guage.

14

may depend on immutable state. Only read and safe methods may be called on
immutable references, and only safe methods may be called on safe references.
A method body may have a number of local variables, as expected.

Expressions e are mostly standard. Asynchronous method calls are denoted by
e!m(e) and the (blocking) read operations by e.get and e.uget (the latter
destructively reads the future). Although our work on a compiler for Joe3 has
shown us that parameters to owner-polymorphic methods in general can be
inferred, we require synchronous local method calls e.<o>m(e) to take owner
explicit arguments o whenever the method is owner-polymorphic to simplify the
formalism. lval-- destructively reads a unique field or variable, and clone e
clones the result of an expression. Both result in unique references.

Statements s include borrowing blocks, borrow lval as x, a :: C { s }, which
enable a unique reference to an aggregate object to be temporarily treated non-
unique for the duration of statement s. This allows manipulation of the aggregate
object without violating uniqueness [22,68].

Futures are given a value once (under the hood) and this value remains for
its lifetime.

Types consist of either an annotated class type or a future type, denoted fut(T),
a future of type T . Type annotations indicate owner or access mode. An anno-
tation on a future type determines how the future is treated. For example, a
variable typed fut(unique :: C) must be treated as a unique reference. The
owners is described in Section 4.2.

5.2 Static Semantics

We now briefly present the static semantics of Joëlle using the auxiliary functions
and judgements surveyed in Figure 5.

The auxiliary definitions, shown in Figure 6, are slightly adapted from FJ,
extended with owner and permission annotations on methods. Functions callok,
writeok, and readok check that a method call is correct with respect to access
modes, that member fields are only written in write methods, and that accessed
fields are final in safe methods, respectively. For brevity we omit trivial functions,
such as final for testing finality of a field.

Figure 7 shows the rules for good environments, owners, types, and subtyping.
The typing environment Γ binds variables to their type and records the owners
in scope (with ‘type’ ∗). P denotes the permissions of the current context: read,
write, or safe. Figures 8 and 9 show the static semantics. The standard rules
should be straightforward. Statements and expressions that mutate the heap
need a mutable context; i.e., P = write. Fields accessed in a safe method must
be final. This is ensured by predicates writeok and readok, respectively.

(Stat-Borrow) introduces an owner a, allowing the unique l-value to be
stored in x as a normal reference for the scope of the block. (Expr-Exact) uses
the exact annotation on types (in type rules only) so that subsumption does

15

fields(C) = T f the fields of class C and their types
mtype(m, C) = · · · return/argument types, permission and

owner parameters of method m in class C
mbody(m, C) = · · · the permission and body of method m in class C
override(m, D, · · ·) governs OK overriding (= preserve types)
callok(P, P ′, o) calling a method on o with permission P ′ is ok, given

permission P
writeok(P, lval) reading lval is ok, given permissions P
readok(P, lval) writing to lval is ok, given permissions P
Γ ` � good environment Γ
Γ ` o : ∗ good owner o
Γ ` T good type T
Γ ` T � T ′ T is a subtype of T ′

` Prg good program Prg
` L ok good class L
Γ ` M ok ∈ C good method M in class C
Γ ` lval : T exact T is exact type lval
Γ ; P ` s ok good statements s, given permissions P
Γ ; P ` e : T expression e has type T , given permissions P

Figure 5. Judgements for Joëlle’s semantics. The permissions P govern the necessary
permission to call a certain method or write to or read from a field. Note that exact
types are required for type soundness when assigning to lvals and in borrowing blocks,
which do a read and an assign to an lval .

not change the type. Ultimately, this is to ensure that assignment to an lval is
type correct and to ensure type soundness when using borrowing blocks, as the
borrowed value in a borrowing block is read from and written to the same lval .
Distinguishing between lvals as l-values and expressions is required to preserve
uniqueness (see [22, 68]). Asynchronous calls are only allowed on active objects
by (Expr-Call-Async) and synchronous calls only on passive objects by (Expr-

Call-Sync). In (Expr-Call-Sync), callok prevents calling mutating methods on
immutable references, etc. Adding an additional type rule to allow synchronous
calls of safe methods on active objects is straightforward.

By (Expr-New), instantiation returns an externally unique reference. Thus,
creating an immutable object is simply storing the result of an instantiation in
a variable or field with immutable owner. (Expr-Dread) destructively reads a
unique lval into a free value. Destructively reading a field is only allowed in a
write method. (Expr-Clone) clones an object and returns a (externally) unique
reference to the clone.

As dealing with finals properly is orthogonal to our proposal we simply treat
reading uninitialised final fields and reassigning final fields as errors.

16

Auxiliary Functions (fields(Object) = ε)

CT (C) = class C extends D { T f; final T ′ f ′;M }

fields(C) = fields(D), T f, T ′ f ′

CT (C) = class C extends D { · · ·;M }
<a> T m(T x) P { · · · } ∈ M

mtype(m, C) = (a, P, T → T)

CT (C) = class C ext. D { · · ·;M }
m is not defined in M

mtype(m, C) = mtype(m, D)

CT (C) = class C · · · { · · ·;M }
<a> T m(T x) P { U y; sr } ∈ M

mbody(m, C) = (P, T x, U y, sr : T)

CT (C) = class C ext. D { · · ·;M }
m is not defined in M

mbody(m, C) = mbody(m, D)

mtype(m, D) = (a, P, U → U)

⇒ (a = a′ ∧ P = P ′ ∧ T = U ∧ T = U)

override(m, D, a′, P ′, T → T)

callok(P, safe, safe)

P ′ ≤ read

callok(P, P ′, immutable)

o ∈ {this, owner} P ′ ≤ P

callok(P, P ′, o)

callok(P, P ′, a)

¬final(f)

writeok(write, f) writeok(P, x)

P = safe⇒ final(f)

readok(P, f) readok(P, x)

Figure 6. Lookup functions adopted (and slightly modified) from Featherweight Java.
We assume the following ordering on P : safe < read < write. ⇒ is implication.

6 Dynamic Semantics

This section presents Joëlle’s dynamic semantics, based on our work on the
active object language Creol [25], and on the formal semantics of ownership and
external uniqueness due to Wrigstad [68].

6.1 Configurations and Reduction Rules

The semantics is a small-step reduction relation on configurations of objects,
futures, and owner-bindings (see Fig. 10). An object has an id, an indication
of whether it is active or passive, a type consisting of an owner and a class,
some fields, and a collection of running and sleeping processes for the method
invocations on the object. We extend the syntax of statements s (and hence sr)
to include the stack as part of the expression in order to track the value of local
variables:

s ::= · · · | T x v; s

This states that the statement s has stack variable x of type T storing value v.
We also add the usual booleans.

A future captures the state of an asynchronous method call: initially sleeping,
the call later becomes active, and finally, when completed, it stores its result in
the future. The value mode ∈ {s, a, c} represents these future states. Types get

17

Good Environment (Γ ::= ε | Γ, lval : T | Γ, o : ∗)

(Env-ε)

ε ` �

(Env-lval)

Γ ` T lval /∈ dom(Γ)

Γ, lval : T ` �

(Env-Owner)

Γ ` � o /∈ dom(Γ) o ∈ {a, owner, this}
Γ, o : ∗ ` �

Good Owner

(Owner)

Γ ` � o : ∗ ∈ Γ

Γ ` o : ∗

(Owner-Other)

Γ ` � o ∈

immutable, safe,
unique, active

ff
Γ ` o : ∗

Good Type

(Type-Owned)

Γ ` o : ∗ [active] class C · · · ∈ CT

Γ ` o :: C

(Type-Future)

Γ ` T

Γ ` !T

Good Subtyping

(Sub-Class)

Γ ` o : ∗ [active] class C extends D · · · ∈ CT

Γ ` o :: C � o :: D

(Sub-Unique)

Γ ` o :: C o 6= active

Γ ` unique :: C � o :: C

(Sub-Safe)

Γ ` o :: C o 6= active

Γ ` o :: C � safe :: C

(Sub-Refl)

Γ ` T

Γ ` T � T

(Sub-Trans)

Γ ` T � T ′ Γ ` T ′ � T ′′

Γ ` T � T ′′

(Sub-Future)

Γ ` T � T ′

Γ `!T � !T ′

Figure 7. Well-formed Environments, Owners, Types and Subtyping.

default values by the default function (e.g., default(C) = null, default(bool) =
false, and default(fut(T)) = null). The initial configuration of a program
L {T x; sr} has one object (o, ∅, ∅, T x default(T); sr : T). The default mode, κ,
for final fields is u, indicating that they are uninitialised, and for other fields the
mode is v, virginal.

The modes κ serve a dual purpose. Firstly, they are used to dynamically
track proper (one-time) intialisation of final fields are initialised before use, as in
Tribe [20]. Secondly, κ tracks whether a non-final field has been read or written.

An object is virginal if all its (non-final) fields are marked virginal. A con-
figuration is virginal if all of its constituents are.

Reduction takes the form of a relation config → config′. Rules apply to partial
configurations and may be applied in parallel. This differs from the semantics of
object-oriented languages with a global store [31], but it allows true concurrency
and enables reasoning about data races. The key rules are given in Fig. 11. The
context reduction semantics decomposes a statement into a reduction context
and a redex, and reduces the redex [29]. Reduction contexts are process sets Q,
method bodies M , statements S, and expressions E with a single hole denoted
by •:

18

Good Program

Prg = L {T x; s; return e} ` L ok
x : T ; write ` s ok Γ ′; write ` e : T

` Prg

Good Class

¬active(D) fields(C) = U g

Γ = g : U, owner : ∗, this : owner :: C Γ ` M ok ∈ C

` class C extends D { T f; final T ′ f ′;M } ok

active(D) fields(C) = U g

Γ = g : U, this : ∗, this : active :: C Γ ` M ok ∈ C

<> T run()write{ · · · } ∈ M for some T

` active class C extends D { T f; final T ′ f ′;M } ok

Good Method

P = safe =⇒ |a| = 0 Γ ′ = Γ, a : ∗, x : T , y : U
Γ ′; P ` s ok Γ ′; P ` e : T

CT (C) = class C extends D { . . . }
override(m, D, a, P, T → T)

Γ ` <a> T m(T x) P { U y; s; return e } ok ∈ C

Γ ′ = Γ, x : T , y : U Γ ′; P ` s ok Γ ′; P ` e : T
CT (C) = active class C extends D { . . . }

override(m, D, ε, P, T → T)

Γ ` T m(T x) P { U y; s; return e } ok ∈ C

Figure 8. Good Declarations.

Q ::= (P,run, M) processes
M ::= • | S;return e | return E
S ::= • | T x v; S | lval := E | S; s |BB(lvar){S}
E ::= • | E.get | E.uget | E!m(e) | v!m(v, E, e)

Although our reduction context notion is standard, Q deserves explaining. It
is used to denote the location of a redex in some method body within the set of
processes.

As statements are evolving, we have incorporated stack frames T x v;S and
a run-time representation of the borrowing construct BB(lvar){S} to represent
an active borrowing block [68].

Redexes reduce in their respective contexts; i.e., body-redexes in M , stat-
redexes in S, and expr-redexes in E. Redexes are defined thus:

body-redexes ::= return v
stat-redexes ::= lval := v | borrow lval as T x{ s }

| BB(lvar){T x v;skip}
expr-redexes ::= x | f | v.get | v.m!(v) | new C() | lval--

19

Good Statement

(Lval-Assign)

lval : o :: C ∈ Γ Γ ; P ` e : o :: C writeok(P, lval)

Γ ; P ` lval := e ok

(Stat-Sequence)

Γ ; P ` s ok
Γ ; P ` s′ ok

Γ ; P ` s; s′ ok

(Stat-Borrow)

Γ ` lval : unique :: C exact

Γ, a : ∗, x : a :: C ` s ok
writeok(P, lval)

Γ ; P ` borrow lval as a :: C x {s} ok
Good Expression

(Expr-Exact)

lval : T ∈ Γ

Γ ` lval : T exact

(Expr-Lval)

Γ ` lval : o :: C exact

o 6= unique readok(P, lval)

Γ ; P ` lval : o :: C

(Expr-Dread)

Γ ` lval : unique :: C exact

writeok(P, lval)

Γ ; P ` lval-- : unique :: C

(Expr-Get)

Γ ; P ` e : !T
¬unique(T)

Γ ; P ` e.get : T

(Expr-Unique-Get)

Γ ; P ` e : !T unique(T)

Γ ; P ` e.uget : T

(Expr-Call-Async)

Γ ; P ` e :: active : C

mtype(m, C) = (ε, P ′, T → T)

this ∈ owners(T) ⇒ e = this

Γ ; P ` e : T

Γ ; P ` e!m(e) : !T

(Expr-Call-Sync)

Γ ; P ` e : o :: C o 6= active

mtype(m, C) = (a, P ′, T → T) |a| = |o|
this ∈ owners(T) ⇒ e = this σ = [o/owner, o/a]

o⊆{a,this,owner} Γ ; P ` e : Tσ callok(P, P ′, o)

Γ ; P ` e.<o>m(e) : Tσ

(Expr-New)

Γ ; P ` � ¬active(C)

Γ ; P ` new C() : unique :: C

(Expr-New-Active)

Γ ; P ` � active(C)

Γ ; P ` new C() : active :: C

(Expr-Null)

Γ ` T

Γ ; P ` null : T

(Expr-Clone)

Γ ; P ` e : o :: C o 6= active

Γ ; P ` clone e : unique :: C

(Expr-Clone-Active)

Γ ; P ` e : active :: C

Γ ; P ` clone e : active :: C

(Expr-Subsumption)

Γ ; P ` e : T
Γ ; P ` T � T ′

Γ ; P ` e : T ′

Figure 9. Typing statements and expressions. owners(T) gives the set of owners ap-
pearing in some type in T .

20

config ::= ε | object | future | obind | config config
object ::= (oid, α, τ, fds, processes)

α ::= active | passive
τ ::= ovar :: C

fds ::= κ f v
v ::= oid |mid | null | b
κ ::= v | r | w | u | i

future ::= (mid, mc,mode, v)
mc ::= oid.m(v)

process ::= (P,flag, sr : T)
processes ::= ε | process | processes processes

flag ::= run | sleep
obind ::= (ovar, ovar)

Figure 10. The syntax for run-time configurations. Here, oid and mid denote identi-
fiers for objects and futures, respectively. Processes correspond to method invocations,
and include P to indicate whether the method is safe, read, or write, and a flag
to indicate whether or not it is running or sleeping. κ denotes an annotation on fields
used to record whether a final field is uninitialised (u) or initialised (i), and whether
a non-final field is virginal (v), has been only read (r), or has been at least written
(w). obind records a mapping from owner placeholders to actual owners—a level of
indirection which enables transfer of ownership without requiring a global substitution
of owners.

Filling the hole of a context Q with an expression r is denoted Q[r].
Recall that l-values ranges over fields and variables. Fields are in component

fds of a configuration, whereas variables form part of sr. To find the value of
x when in some context Q, the innermost x must be selected from the stack of
the selected process in Q. This is relatively simple to define. We abstract the
operations of looking up and assign lvals as the following operations, defined
over a tuple of the fields fds and a context Q. We assume that these operations
update the mode, κ, for any field accesses and updates:

– (v, fds′) = access(fds, Q)(lval): v is the value stored in l-value lval. If lval
is a field, then its mode is updated to indicate that a read has occurred. This
function fails if a final field is uninitialised with an error we are not aiming
to trap. The resulting fields fds′ reflect the updated mode.

– (fds′, Q′) = update(fds, Q)(lval, v): updates the l-value lval with new value
v, giving a new set of fields or new context. This function also updates the
mode to indicate that a write has occurred, in the case that lval is a field,
and it marks uninitialised final fields as initialised and fails when a lval is
an already initialised final field.

Next we define a function Oh-Lookup to find the value associated with a
syntactic owner (this, owner or an owner parameter, though not unique, safe,
read): Oh-Lookup(o, process) = ovar, whenever ovar is the owner associated
with o in proccess.

21

A function collects the identifiers defined in a configuration:

dom(ε) = ∅
dom(config config′) = dom(config) ∪ dom(config′)

dom((oid, , ,)) = {oid}
dom((mid, , ,)) = {mid}

dom((ovar,)) = {ovar}

(Red-Active-Call)

mid is fresh

(oid, α, τ, fds, Q[oid′!m(v)]) → (oid, α, τ, fds, Q[mid]) (mid, oid′.m(v),s,null)

(Red-Get)

(oid, α, τ, fds, Q[mid.get]) (mid, mc,c, v) → (oid, α, τ, fds, Q[v]) (mid, mc,c, v)

(Red-Unique-Get)

(oid, α, τ, fds, Q[mid.uget]) (mid, mc,c, v) → (oid, α, τ, fds, Q[v]) (mid, mc,c,null)

(Red-New)

oid′ and ovar′ are fresh fds′ = defaults(C)
active(C) ⇒ α = active ¬active(C) ⇒ α = passive

(oid, α, τ, fds, Q[new C()]) →
(oid, α, τ, pq, fds, Q[oid′]) (oid′, α′, ovar′ :: C′, fds′, ε) (ovar′ ovar′)

(Red-Bind)

τ = :: C mbody(m, C) = (P, T x, U y, sr : T)

p = (P, sleep, T x v; U y default(U); fut(T) destiny mid; sr : T)

(oid, α, τ, fds, pq) (mid, oid.m(v),s,null) → (oid, α, τ, fds, pq :: p) (mid, oid.m(v),a,null)

(Red-Schedule)

α = active⇒ {(P,flag, sr) ∈ pq | P = write ∧ flag = run} = ∅
(oid, α, τ, fds, (P, sleep, sr) :: pq) → (oid, α, τ, fds, (P, run, sr) :: pq)

(Red-Return)

l(destiny) = mid

(oid, α, τ, fds, (P, run, M [return v : T]) :: pq)) (mid, oid.m(v),a,null) →
(oid, α, τ, fds, pq) (mid, oid.m(v),c, v)

(Red-Context)

config → config′ dom(config′) ∩ dom(config′′) = ∅
config config′′ → config′ config′′

(Red-Parallel)

config1 configs → config′
1 config1

s config2 configs → config2 config2
s configs is virginal

dom(configs) = dom(config1
s) = dom(config2

s) dom(config′
1) ∩ dom(config′

2) = ∅
config1 config2 configs → config′

1 config′
2 (config1

s � config2
s)

Figure 11. The context reduction semantics I.

22

(Red-Lval)

(v, fds′) = access(fds, Q)(lval)

(oid, α, τ, fds, Q[lval]) → (oid, α, τ, fds′, Q[v])

(Red-Lvar-Dread)

(v, fds′) = access(fds, Q)(lval) (fds′′, Q′) = update(fds′, Q)(lval, v)

(oid, α, τ, fds, Q[lval--]) → (oid, α, τ, fds′′, Q′[v])

(Red-Lval-Assign)

(fds′, Q′) = update(fds, Q)(lval, v)

(oid, α, τ, fds, Q[lval := v]) → (oid, α, τ, fds′, Q′[skip])

(Red-Owner-Cast)

Oh-Lookup(o, (oid, α, τ, fds, Q[(o)oid′])) = ovar′′

(oid, α, τ, fds, Q[(o)oid′]) (ovar′′ ovar′′′) (oid′, α′, ovar :: C, fds′, pq) (ovar ovar′) →
(oid, α, τ, fds′, Q[oid]′) (ovar′′ ovar′′′) (oid′, α′, ovar :: C, fds′, pq) (ovar ovar′′′)

(Red-Borrowing-Start)

access(fds, Q)(lval) = (v, fds′)

(oid, α, τ, fds, Q[borrow lval as T x{ s }]) → (oid, α, τ, fds′, Q[BB(lvar){T x v; s}])

(Red-Borrowing-Finish)

(fds′, Q′) = update(fds, Q)(lval, v)

(oid, α, τ, fds, Q[BB(lvar){T x v;skip}]) → (oid, α, τ, fds′, Q′[skip])

Figure 12. The context reduction semantics II. (Red-Owner-Cast) is a coercion
inserted automatically when owners change via subsumption [22].

Expressions. In (Red-Call), an asynchronous call adds a sleeping future to
the configuration, returning the future’s id to the caller—this provides a unique
identifier for the invocation. In (Red-Get), a read operation on a future variable
blocks the active process until the future is in completed mode. (Red-Unique-

Get) is the variant for futures containing uniques—it destructively reads the
future. Object creation in (Red-New) introduces a new instance of a class into the
configuration, with default values for the new object’s fields.

Method invocation and return. A method call results in an activation on the
callee’s process queue. As the call is asynchronous, there is a delay between the
call and its activation, represented by the sleeping mode of a future. Subsequent
to the call, (Red-Bind) creates a process to run the method. This process is added
to the process queue, and the future changes its mode to active, thus preventing
multiple activations of the method. (Red-Schedule) is the rule to select and run a
method. It allows only one write call to be active in an active object. When
process execution is completed, the return value is stored by (Red-Return) in
the future identified by the destiny variable. This future changes its mode
to completed, and the process is discarded.

Note that we assume synchronous calls have been encoded using an asyn-
chronous call followed by a get.

Context and parallel reductions. A reduction applies to a subconfiguration by
rule (Red-Context). Rule (Red-Parallel) allows concurrent reductions on potentially

23

overlapping configurations. These overlapping configurations are then merged
after the reduction has occurred, indicated by the operation �. This operation
fails in the case that a write-write or read-write conflict occurs in the two concur-
rent reductions (or an error occurs with final initialisation). Merging also collects
together futures that may be shared, relying on the fact that at most reduction
could have updated it. We define config � config′ over two configurations that
have the same domain. It works ‘pointwise’, that is, for pairs of elements with
the same id, so we simply need to define how it operates for objects and futures:

objects

(oid, α, τ, fds, pq)� (oid, α, τ, fds′, pq′) = (oid, α, τ, fds� fds′, pq � pq′)

where pq � pq′ is the union of the two process queues provided that the
destiny variables (containing a supposedly unique future id for each invo-
cation) have distinct values, and that only one has an active process in the
case of active objects.
Now we define (κ f v)� (κ′ f v′) = (κ′′ f v′′). Note that if the field f is not
written by either branch, then we have that κ, κ′ ∈ {u, v, r} and that v = v′

(as they both started from the same configuration).
– If κ = i, then require κ′ = u or κ′ = i and v = v′. In that case, the

resulting κ′′ = i and v′′ = v. And vice versa. Otherwise, the entire result
is a final variable fault—which we do not care about.

– if (κ, κ′) ∈ {(w, w), (r, w), (w, r)}, then a data race is reported. This is the
error we do care about.

– in all other cases, either one of κ and κ′ is w, in which case the corre-
sponding v or v′ is chosen as v′′, or, v = v′ and hence define v′′ = v.

futures Assuming that s < a < c, (mid,mc,mode, v) � (mid,mc,mode′, v′) =
(mid,mc,mode′′, v′′), where mode′′ = max(mode,mode′), ¬(mode = mode′ =
c), and v′′ is v if v 6= null and v′ otherwise.

6.2 Meta-Theory Overview

The system presented here extends the formalisation of ownership types and
external uniqueness presented in Wrigstad’s thesis [68] in several ways. Firstly,
object interaction is via asynchronous method calls and futures. Secondly, various
mechanisms are present to limit which fields can be read and/or written in a
method. Neither of these affect the soundness of the underlying class types nor
the ownership and external uniqueness part of our system.

Our dynamic semantics is designed so that data races are detected exclusively
in the rule (Red-Parallel), but the challenge comes in showing that this rule
does not fail due to data races. The absence of data races comes down the the
fact that the type system combined with method invocation scheduling (Red-

Schedule) ensure either that:

– at most one write method can be running in an active object at a time; and

24

– due to the invariant imposed by ownership types—namely that only the
normal references to a passive object are held by the owning active object
or by other passive objects owned by the active object—we obtain that at
most one write method can be running in a passive object at a time; and

– any number of safe methods can also be running at the same time.

OR, in the case that a unique reference to a passive object is converted into a
immutable reference, and hence no normal reference to the object exists,

– any number of read methods can be running in a passive object; and
– any number of safe methods can be running at the same time.

It is relatively easy to show that read methods only read fields (of their
target object) and that safe methods only read the final fields of their target
object (and no fields apart from those in the target objects are accessible).

Together, these combine to show that no write-write or write-read conflicts
occur within both active and passive objects.

7 Related Work

7.1 Ownership Types

This paper is not the first to apply ownership types to concurrency control. Some
approaches introduce thread-local owners to encapsulate data within threads [6,
10], thus avoiding data races and, in the latter case, deadlocks. Guava [6] is
presented as an informal collection of rules, instead of a type system, which would
require a significantly more complex ownership types system that the one we
present here. Boyapati et al.’s PRFJ [10] encodes a lock ordering in class headers,
which imposes a rigid structure on the code which makes program evolution
tedious. This system is more complex than ours, and forces programmers to
handle threads explicitly. Another related approach uses Universes instead of
ownership types for race safety [24]. In each case the underlying concurrency
model is threads and not active objects.

More recently, X10 incorporates place types to statically describe where data
resides to improve data locality [61]. Place types have complex structure. X10
also has futures and a shared space of immutable data. Remote data is remotely
accessed, and no unique references are used to enable efficient data transfer
between places. X10 has a hierarchical memory model, similar to a distributed
system, so pointer transfer need not have the same advantages as in a shared
memory system. X10 uses conditional atomic blocks (on local data), similar to
software transactional memory. X10 is designed for high performance computing,
whereas we aim for more general purpose programming.

StreamFlex [64] is a proposal which is close in spirit to ours. It uses a
minimal notion of ownership, with little need for annotations, to handle garbage
collection issues in a real-time setting. Objects may be passed between concur-
rent components without copying (as does the Singularity OS [37]). Stream-
Flex’s notion of immutability is however more limited safe or unique references

25

are not supported. In conclusion, the additional limitations of the stream pro-
gramming approach (compared to our more general-purpose approach) allows
StreamFlex to use even less syntactic baggage than Joëlle. Previous experi-
ments (e.g., [21]) suggest that the massive syntactic overhead of full-blown own-
ership types systems can be very much lowered when adapted to more a specific
programming model. We believe that Joëllehas a very elegant trade-off between
expressiveness, generality, and syntactic overhead.

7.2 Actors and Active objects

In the actor model [1], concurrent threads (called actors) employ asynchronous
message passing as their only means for communication. Thus, message passing
does not transfer control between objects. Modern actor models/libraries such as
those developed for Java and Scala [33,67], and Erlang’s actor model [5], include
features such as access to the sender of a message and message forwarding.

Erlang is relevant as a purely functional language with immutable data. This
is a bad fit for OO and encoding of data structures that rely on sharing or object
identifiers is difficult or impossible. In a proposal related to ours, Carlsson et
al. [15] present an underapproximate message analysis, reminiscent of escape
analysis, to detect when messages can be safely shared rather than copied for
a mini-Erlang system. Their analysis has cubic worst-case time complexity. Our
type-system based approach should fare better for the price of a few additional
concepts.

Active objects interacting through asynchronous method calls have been pro-
posed to better combine object-orientation with concurrent and distributed pro-
gramming (e.g., [17, 40, 48]), due to looser coupling between callers and callees
than with synchronous calls. Asynchronous calls introduce wait-by-necessity syn-
chronisation: execution proceeds until the method return, encapsulated as a fu-
ture [8,17,30,34,45,70], is accessed. In contrast to synchronous calls, no control
is transferred with the call; asynchronous calls may be seen as triggers of con-
current activity [54]. Just like

Other active object languages such as the Emerald system [38,60] do not use
asynchronous method calls. Emerald objects can be active or passive, but method
calls are synchronous, so > 1 thread in a single object is possible. Objects have a
monitored section which guarantees mutual exclusion and processes synchronise
through system-defined condition objects. To simplify sharing, Emerald supports
immutable objects through unchecked programmer annotation.

Active objects are implemented as a main concurrency model of Symbian
OS [50] and in the ProActive Java framework [7]. Based on Eiffel, Eiffel// [16]
is an active objects system with asynchronous method calls with futures, and
SCOOP [48] uses preconditions for task scheduling. In SCOOP, active object
boundaries are captured by separate annotations on variables, which are not
statically enforced. (This is partially improved by Nienaltowski [53].) In the
original SCOOP proposal, method arguments across active objects have deep
copying semantics. Object migration through uniqueness is not supported. Later

26

versions of SCOOP [53] integrate an eager locking mechanism to enable pass-by-
reference arguments for non-value objects. An integration of our approach with
SCOOP seems fairly straightforward.

The concurrency model of Creol [40] inspired the formalisation of our dy-
namic semantics. In Creol only one method may execute in an active object at
any given time, similar to ASP [17]; however, the active object may yield its
thread of control at specified release points in the code, so the active object may
accept external method calls. Thus, an active object may have multiple pend-
ing method activations, some of which are midway through execution. These
execute in some interleaved way, which allows different activities to be pursued
within the object; in particular, active and reactive object behaviour are easily
and dynamically combined [40].

Different components or active objects communicate data by cloning in, e.g.,
the coordination language ToolBus [26] and ASP [17]. In a distributed setting
this is vindicated, but, as ToolBus developers [26] observe, copying data is a
major source of performance problems. This is exactly the problem our approach
aims to address, without introducing data-races, in a light-weight, statically
checkable fashion.

7.3 Software Transactional Memory

Software Transactional Memory is a recent approach to avoiding data races [62].
Critical sections are protected by atomic blocks, which are executed in an op-
timistic, transactional way, without locking. Changes are logged and eventually
committed atomically. If a conflict occurs, the atomic block is reversed and
restarted. Software transactional memory is not alien to active objects. For ex-
ample, one could imagine Software transactional memory under the hood of
Emerald’s mutually exclusive object regions [38,60].

We view software transactional memory as a complementary approach. If
our type system were introduced in a context with software transactional mem-
ory, we could statically infer methods for which transactions would not need to
be monitored (safe and immutable methods) and could exploit uniqueness to
optimise the software transactional memory implementation. In turn, the trans-
actional memory could remove the need for programmer-inserted release points
(which, however, are orthogonal to our proposal).

Ongoing work by Kotselidis et al. [42] adds software transactional memory to
ProActive. Preliminary results are promising, but the system retains ProActive’s
deep-copying semantics even for inter-node computations.

8 Concluding Remarks

In this paper, we applied ownership types to a data sharing problem of active
objects. Our solution involves a combination of ownership, external uniqueness,
and immutability. Our formalisation is close to ASP [17], and to its framework
realisation in Java, ProActive [7]. Our minimal ownership system was defined

27

so that default annotations can be chosen to give a low syntactic overhead.
Specifically, we expect that few changes would be necessary to code for passive
objects if our system were implemented in ProActive.

Our system is close in spirit to several existing systems that lack our static
checking for things like immutability. No existing active objects system is pow-
erful enough to infer minimal safe cloning the way we outlined in Section 4.3.
We believe that our system should be possible to incorporate in many existing
systems. Potentially, Joëlle could even be compiled to a version of Proactive
that avoids copying when safe to do so. Furthermore, we believe that our system
captures existing programming practices (close inspection of Lea’s concurrency
book [44] supports this) with low syntactic overhead in a statically checkable
fashion.

References

1. G. Agha and C. Hewitt. Actors: A conceptual foundation for concurrent object-
oriented programming. In Research Directions in Object-Oriented Programming,
pages 49–74. MIT Press, 1987.

2. J. Aldrich and C. Chambers. Ownership Domains: Separating Aliasing Policy from
Mechanism. In ECOOP, LNCS 3086, pages 1–25. Springer, 2004.

3. J. Aldrich, V. Kostadinov, and C. Chambers. Alias Annotations for Program
Understanding. In OOPSLA, 2002.

4. P. S. Almeida. Balloon Types: Controlling sharing of state in data types. In
ECOOP, LNCS 1241. Springer, 1997.

5. J. Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf, 2007.

6. D. F. Bacon, R. E. Strom, and A. Tarafdar. Guava: a dialect of Java without data
races. In OOPSLA, 2000.

7. L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, M. Morel, and R. Quilici.
Grid Computing: Software Environments and Tools, chapter Programming, Com-
posing, Deploying, for the Grid. Springer, 2006.

8. H. G. Baker Jr. and C. Hewitt. The incremental garbage collection of processes.
In Proc. Symposium on Artificial Intelligence Programming Languages, ACM SIG-
PLAN Notices 12, 1977.

9. A. Birka and M. D. Ernst. A practical type system and language for reference
immutability. In OOPSLA, 2004.

10. C. Boyapati, R. Lee, and M. Rinard. Ownership Types for Safe Programming:
Preventing Data Races and Deadlocks. In OOPSLA, 2002.

11. C. Boyapati, B. Liskov, and L. Shrira. Ownership Types for Object Encapsulation.
In POPL, 2003.

12. C. Boyapati and M. Rinard. A Parameterized Type System for Race-Free Java
Programs. In OOPSLA, 2001.

13. J. Boyland. Alias burying: Unique variables without destructive reads. Software—
Practice and Experience, 31(6):533–553, 2001.

14. J. Boyland. Why we should not add readonly to Java (yet). Journal of Object
Technology, 5(5):5–29, 2006.

15. R. Carlsson, K. F. Sagonas, and J. Wilhelmsson. Message analysis for concurrent
programs using message passing. ACM TOPLAS, 28(4):715–746, 2006.

28

16. D. Caromel. Service, Asynchrony, and Wait-By-Necessity. Journal of Object Ori-
ented Programming, pages 12–22, 1989.

17. D. Caromel and L. Henrio. A Theory of Distributed Objects. Springer, 2005.
18. D. Clarke. Object Ownership and Containment. PhD thesis, University of New

South Wales, Sydney, 2001.
19. D. Clarke and S. Drossopolou. Ownership, Encapsulation and the Disjointness of

Type and Effect. In OOPSLA, 2002.
20. D. Clarke, S. Drossopoulou, J. Noble, and T. Wrigstad. Tribe: A simple virtual

class calculus. In AOSD. ACM, 2007.
21. D. Clarke, M. Richmond, and J. Noble. Saving the world from bad beans:

Deployment-time confinement checking. In OOPSLA, 2003.
22. D. Clarke and T. Wrigstad. External uniqueness is unique enough. In ECOOP,

LNCS 2473. Springer, 2003.
23. D. G. Clarke, J. Potter, and J. Noble. Ownership types for flexible alias protection.

In OOPSLA, pages 48–64, 1998.
24. D. Cunningham, S. Drossopoulou, and S. Eisenbach. Universe Types for Race

Safety. In VAMP 07, 2007.
25. F. S. de Boer, D. Clarke, and E. B. Johnsen. A complete guide to the future. In

ESOP, LNCS 4421. Springer, 2007.
26. H. de Jong. Flexible Heterogeneous Software Systems. PhD thesis, University of

Amsterdam, 2007.
27. S. Drossopoulou, D. Clarke, and J. Noble. Types for hierarchic shapes. In ESOP,

LNCS 3924. Springer, 2006.
28. M. Fahndrich and S. Xia. Establishing object invariants with delayed types. SIG-

PLAN Not., 42(10):337–350, 2007.
29. M. Felleisen and R. Hieb. The revised report on the syntactic theories of sequential

control and state. Theoretical Computer Science, 103(2):235–271, 1992.
30. C. Flanagan and M. Felleisen. The semantics of future and an application. J.

Funct. Program., 9(1):1–31, 1999.
31. M. Flatt, S. Krishnamurthi, and M. Felleisen. A programmer’s reduction semantics

for classes and mixins. In Formal Syntax and Semantics of Java, LNCS 1523.
Springer, 1999.

32. D. Grossman, M. Hicks, T. Jim, , and G. Morrisett. Cyclone: A type-safe dialect
of C. C/C++ Users Journal, 23(1), 2005.

33. P. Haller and M. Odersky. Actors that unify threads and events. In COORDINA-
TION, LNCS 4467. Springer, 2007.

34. R. H. Halstead Jr. Multilisp: A language for concurrent symbolic computation.
ACM TOPLAS, 7(4):501–538, 1985.

35. J. Hogg. Islands: Aliasing protection in object-oriented languages. In OOPSLA,
1991.

36. J. Hogg, D. Lea, A. Wills, D. deChampeaux, and R. Holt. The Geneva Convention
on the treatment of object aliasing. OOPS Messenger, 3(2):11–16, 1992.

37. G. Hunt and J. Larus. Singularity: Rethinking the software stack. Operating
Systems Review, 40(2):37–49, 2007.

38. N. C. Hutchinson, R. K. Raj, A. P. Black, H. M. Levy, and E. Jul. The Emerald
programming language report. Technical Report 87-10-07, Seattle, 1987. Revised
1997.

39. A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a minimal core
calculus for Java and GJ. ACM TOPLAS, 23(3):396–450, 2001.

40. E. B. Johnsen and O. Owe. An asynchronous communication model for distributed
concurrent objects. Software and Systems Modeling, 6(1):35–58, 2007.

29

41. S. P. Jones and J. H. (editors). Haskell 98: A non-strict, purely functional language.
Technical report, 1999.

42. C. Kotselidis, M. Ansari, K. Jarvis, M. Luján, C. Kirkham, and I. Watson. In-
vestigating software transactional memory on clusters. In IWJPDC ’08: 10th In-
ternational Workshop on Java and Components for Parallelism, Distribution and
Concurrency. IEEE, 2008.

43. R. G. Lavender and D. C. Schmidt. Active object: an object behavioral pattern
for concurrent programming. Proc. Pattern Languages of Programs, 1995.

44. D. Lea. Concurrent Programming in Java. Addison-Wesley, 2nd edition, 2000.
45. B. H. Liskov and L. Shrira. Promises: Linguistic support for efficient asynchronous

procedure calls in distributed systems. In D. S. Wise, editor, PLDI, pages 260–267.
ACM, 1988.

46. K.-K. Ma and J. S. Foster. Inferring aliasing and encapsulation properties for Java.
In OOPSLA, 2007.

47. B. Meyer. Eiffel: The Language. Prentice Hall, 1992.
48. B. Meyer. Systematic concurrent object-oriented programming. Commun. ACM,

36(9):56–80, 1993.
49. N. H. Minsky. Towards alias-free pointers. In ECOOP, LNCS 1098, pages 189–209.

Springer, 1996.
50. B. Morris. CActive and Friends. Symbian Developer Network, Novem-

ber 2007. http://developer.symbian.com/main/downloads/papers/
CActiveAndFriends/CActiveAndFriends.pdf.

51. P. Müller. Modular Specification and Verification of Object-Oriented Programs,
LNCS 2262. Springer, 2002.

52. P. Müller and A. Poetzsch-Heffter. Universes: A type system for controlling rep-
resentation exposure. In A. Poetzsch-Heffter and J. Meyer, editors, Programming
Languages and Fundamentals of Programming, pages 131–140. Technical Report
263, Fernuniversität Hagen, 1999.

53. P. Nienaltowski. Practical framework for contract-based concurrent object-oriented
programming. PhD thesis, ETH Zurich, 2007.

54. O. Nierstrasz. Composing active objects. In Research directions in concurrent
object-oriented programming, pages 151–171. MIT Press, 1993.

55. J. Noble, D. Clarke, and J. Potter. Object ownership for dynamic alias protection.
In TOOLS Pacific, 1999.

56. J. Noble, J. Vitek, and J. Potter. Flexible Alias Protection. In ECOOP, 1998.
57. M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. Micheloud, N. Mihaylov,

M. Schinz, E. Stenman, and M. Zenger. An overview of the Scala programming
language. Technical Report IC/2004/64, EPFL, 2004.

58. J. Östlund, T. Wrigstad, D. Clarke, and B. Åkerblom. Ownership, uniqueness and
immutability. In IWACO, 2007.

59. A. Potanin and J. Noble. Checking ownership and confinement properties. In
Formal Techniques for Java-like Programs, 2002.

60. R. K. Raj, E. Tempero, H. M. Levy, A. P. Black, N. C. Hutchinson, and E. Jul.
Emerald: A general-purpose programming language. Software: Practice and Expe-
rience, 21(1):91–118, 1991.

61. V. A. Saraswat, V. Sarkar, and C. von Praun. X10: concurrent programming for
modern architectures. In Principles and Practice of Parallel Programming, 2007.

62. N. Shavit and D. Touitou. Software transactional memory. In PODC, pages 204–
213. ACM, 1995.

63. M. Skoglund and T. Wrigstad. Alias control with read-only references. In Sixth
Conference on Computer Science and Informatics, Mar. 2002.

30

64. J. H. Spring, J. Privat, R. Guerraoui, and J. Vitek. StreamFlex: High-throughput
Stream Programming in Java. In OOPSLA, 2007.

65. B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1986.
66. M. S. Tschantz and M. D. Ernst. Javari: Adding reference immutability to Java.

In OOPSLA, pages 211–230, 2005.
67. A. Welc, S. Jagannathan, and A. Hosking. Safe futures for Java. In OOPSLA,

pages 439–453. ACM, 2005.
68. T. Wrigstad. Ownership-Based Alias Management. PhD thesis, Royal Institute of

Technology, Stockholm, May 2006.
69. T. Wrigstad and D. Clarke. Existential owners for ownership types. Journal of

Object Technology, 4(6):141–159, 2007.
70. A. Yonezawa, J.-P. Briot, and E. Shibayama. Object-oriented concurrent program-

ming in ABCL/1. In OOPSLA’86. SIGPLAN Notices, 21(11):258–268, 1986.
71. Y. Zibin, A. Potanin, M. Ali, S. Artzi, A. Kiezun, and M. D. Ernst. Object and

reference immutability using Java generics. In ESEC/SIGSOFT FSE, pages 75–84.
ACM, 2007.

31

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Shift: none
 Normalise (advanced option): 'improved'

 32

 D:20080623072034
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 Full
 1106
 333

 None
 Right
 4.2520
 0.0000

 Both
 34
 AllDoc
 49

 CurrentAVDoc

 Uniform
 14.1732
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0c
 Quite Imposing Plus 2
 1

 0
 31
 30
 31

 1

 HistoryList_V1
 qi2base

