
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

Software ENgineering

Coalgebraic reasoning in Coq: bisimulation and
λ-coiteration scheme

M. Niqui

REPORT SEN-R0806 OCTOBER 2008

Software Engineering

Centrum Wiskunde & Informatica (CWI) is the national research institute for Mathematics and Computer
Science. It is sponsored by the Netherlands Organisation for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2008, Centrum Wiskunde & Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

Coalgebraic reasoning in Coq: bisimulation and
λ-coiteration scheme

ABSTRACT
In this work we present a modular theory of the coalgebras and bisimulation in the intensional
type theory implemented in Coq. On top of that we build the theory of weakly final coalgebras
and develop the λ-coiteration scheme, thereby extending the class of specifications definable in
Coq. We provide an instantiation of the theory for the coalgebra of streams and show how some
of the productive specifications violating the guardedness condition of Coq can be formalised
using our library.

2000 Mathematics Subject Classification: 68Q60 ; 18C50
1998 ACM Computing Classification System: F.3.1
Keywords and Phrases: theorem proving; coalgebras; type theory

Coalgebraic Reasoning in Coq: Bisimulation and
λ-Coiteration Scheme

Milad Niqui ?

Department of Software Engineering
Centrum Wiskunde & Informatica, The Netherlands

M.Niqui@cwi.nl

Abstract. In this work we present a modular theory of the coalgebras
and bisimulation in the intensional type theory implemented in Coq . On
top of that we build the theory of weakly final coalgebras and develop the
λ-coiteration scheme, thereby extending the class of specifications defin-
able in Coq . We provide an instantiation of the theory for the coalgebra
of streams and show how some of the productive specifications violating
the guardedness condition of Coq can be formalised using our library.

1 Introduction

Coinduction is a method for proving properties of infinite objects such as streams
and infinite trees. It is dual to the usual approach of using induction both for
computation and reasoning and can be studied from a category theoretical [15] or
type theoretical point of view [10]. Coinduction provides a verification paradigm
for programs written in a lazy functional programming e.g. Haskell , and hence
it is is implemented in many theorem proving tools. Among the many tools used
for coinductive reasoning are the ones based on constructive type theory such as
Coq and Agda where coinductive types serve this purpose.

The invocation of coinductive types in these tools is quite similar (at least
on surface) to the functional programming syntax, these types are defined using
their constructors akin to the general recipe for defining algebraic data types.
However, type theories where termination is crucial for finite objects enforce sim-
ilar restriction for ensuring productivity1. These restrictions are syntactic tests
and will inevitably exclude some legitimate productive definitions. Thus not all
Haskell programs, even those describing total functions, are accepted in coin-
ductive type theories. Several workarounds exists such as [8] where topological
properties of fixed points are used or [4] advanced type theoretic techniques are
used.

One approach that is understudied is the direct formalisation of various cat-
egorical schemes from the theory of coalgebras. The present work indicates that
this is a relatively low-cost and generic approach and by formalising a single
? Research supported by the Netherlands Organisation for Scientific Research (NWO).
1 Productive functions are those functions on infinite objects that produce provably

infinite output.

scheme a large class of total functions can be programmed in coinductive type
theory. The scheme we choose is the λ-coiteration scheme of Bartels [2] which
is one in a family of schemes intended to expand the basic iteration scheme of
final coalgebras. This is a scheme i.e., it allows the formalisation of a class of
specifications (or Haskell -like programs) satisfying a specific syntactic form.

Coalgebraic semantics is so close to coinductive types that in many situa-
tions the proof techniques are identical, making coinductive reasoning merely
a translation of coalgebras. However in the case of intensional type theories
this is not the case. In intensional type theory the two objects being provably
equal does not entail that they are convertible. This restriction is necessary for
the decidability of type checking and although it is not a theoretical obstacle
for programming, it can be practically inconvenient. In particular formalising
category theory is susceptible of this inconvenience, as proving the uniqueness
of arrows in universal properties of limits adheres to extensional properties of
functions. The main workarounds for working extensionally in intensional type
theories, is to use setoids and work modulo an extensionally defined equality.
We will partly follow this through our use of bisimulation equivalence though
we will not directly use setoids because we still prefer to benefit from convenient
computational properties of intensional equality. The present work shows how
one may exploit the intensional equality to the maximum and meanwhile tackle
the difficulties through two important tools: (1) working (if necessary) modulo
bisimulation equivalence, (2) requiring the functors to satisfy some sort of exten-
sionality. Note that (1) is specific to coalgebras while (2) is applicable to general
categorical constructions.

We use the machinery of Coq proof assistant to present the formalisation,
but the article is applicable to other intensional incarnations of coinductive types
(such as Agda). Coinductive types themselves will only be used in Section 7 when
we instantiate the theory. Throughout the article we use a syntax loosely based
on Coq syntax, adapted for presenting in an article. In particular we use the
uncurried version of the functions when they are presented in mathematical
formulae. A complete Coq formalisation of the material in this paper can be
found in [14].

Related Work. Hancock and Setzer develop the weakly final coalgebra and
bisimulation for a very powerful functor capable of representing interactive IO
programs in intensional type theory [10]. Their work is formalised in Agda by
Michelbrink [13] but the latter formalisation uses inductive–recursive universe
which is beyond the CIC. Neither of [10, 13] study various definition schemes
but their work is so expressive that a development of schemes for their functor
would considerably extend the class of specifications definable in Coq . Our work
can be seen as a first step in the formalisation of [10, 13] in Coq while along
the way extending the class of definition for basic polynomial functors such as
streams.

The work by Bertot and Komendantskaya [4] and more recently in [5] uses
advanced type theoretic techniques to bypass the guardedness condition of Coq

for a larger class of functions than those covered by syntactic schemes, including
partial functions. Especially in [5] the stream functions that we define in Ex-
amples 1–4 (Section 7) are formalised in Coq by viewing them as functions on
natural numbers and using structural recursion.

2 Coinductive Types

The Coq proof assistant [6] is an implementation of the Calculus of Inductive
Constructions (CIC) extended with coinductive types. Coinductive types were
added to Coq by Giménez [9]. Their implementation follows the same philosophy
as that of inductive types in CIC, namely there is a general scheme that allows
for formation of coinductive types if their constructors are given, and if these
constructors satisfy a strict positivity condition. For example, the type of streams
of elements of a set A can be defined using 2 its constructor Cons as

CoInductive Streams (A : Set) : Set :=
| Cons : A → Streams A → Streams A.

From now on we shall use Aω to denote the type Streams A.
After a coinductive type is defined one can introduce its inhabitants and

functions into it. Such definitions are given by a cofixed point operator cofix .
This operator, when given a well-typed definition that satisfies a guardedness
condition, will introduce an inhabitant of the coinductive type. Assuming that
I is a coinductive type, when defining a function f : T −→ I this condition
requires each recursive occurrence of f in the body of f should be the immediate
argument of a constructor of some inductive or coinductive type [7, 9]. Finally
there is a reduction (in fact expansion) rule corresponding to the cofix operator
that allows the expansion of a cofixed point only when a case analysis of the
cofixed point is done.

Like other syntactic criteria, the guardedness condition of Coq excludes some
productive functions. An example is the function convolution on streams of num-
bers defined as:

(x :: xs)⊗ (y :: ys) := x · y :: (xs⊗ (y :: ys)) ⊕ ((x :: xs)⊗ ys) (2.1)

with ⊕ being the pointwise addition:

(x :: xs)⊕ (y :: ys) := x+ y :: xs⊕ ys

As evident from the name this function is very useful in formalisation of power
series as it corresponds to lazy computation of the coefficients of the convolution
product of two power series [12]. Moreover, symbolically it corresponds to the

2 Note that, as it is the case with algebraic and inductive data types, the type Stream

and its constructor Cons are defined simultaneously.

derivation of formal power series and plays an important role in the stream cal-
culus of [16]. We give a Coq formalisation of this function in Section 7. We do this
by developing λ-coiteration scheme of [3] that when applied to streams is com-
pletely definable in terms of cofix . This is due to the fact that the guardedness
condition captures the coiteration scheme of weakly final coalgebras [10]. How-
ever, we do not restrict ourselves to streams; we take a more generic approach
that is reusable for other similar functors.

3 Extensional Functors and Coalgebras

We are interested in endofunctors on Set3. For this we need a type of Set-functors
inhibiting a dependent pair4 of operations F : Set −→ Set (on objects) and
lFX,Y

: (X→Y)→F (X)→F (Y) (on arrows) satisfying the following properties
(ignoring the subscripts X, y in lF when there is no risk of confusion).

lF id : ∀X (x : F (X)), x = lF (λz.z) x.

lF compose : ∀XY Z (g :X→Y) (f :Y→Z) x,
(λz.lF f (lF g z)) x = lF (λz.f (g z)) x.

lF ext : ∀XY (f g :X→Y) x, (∀z, f z = g z) → lF f x = lF g x.

The first two conditions are standard functorial properties; while lF ext will
be very helpful in dealing with extensional properties of functor compositions.
We shall call a functor satisfying lF ext an extensional functor. Obviously if one
is working in a setting where functional extensionality holds i.e.,

∀XY (fg : X→Y), (∀z, fz = gz)→f = g , (Ext)

then all functors, in fact all operations on sets, are extensional. So in CIC +Ext
trivially all functors are extensional. But in CIC this is not the case. It is unclear
whether the assumption that all functors are extensional is a weaker axiom than
Ext, but we can prove that assuming extensionality of some specific functors is
tantamount to Ext in the presence of η which is the rule:

∀XY (f : X→Y), λz.(fz) = f . (η)

Proposition 1. Assume η. For a given set A the functor F (X) := XA is ex-
tensional if and only if all function X→A satisfy Ext.

Proof. (⇐) is trivial, for (⇒) assume lF ext and let f, g : A −→ A be given s.t.

∀z, fz = gz . (3.1)

Then by applying lFA,X
ext to f, g, x := λz.z : F (A) and (3.1) we have λz.fz =

λz.gz. Now by (η) we obtain f = g, so f and g satisfy Ext. ut
3 This is the type Set of Coq which corresponds to constructive sets and computations.

It can be identified with any of categorical models of type theory.
4 In fact these are formalised as module types in Coq (see [14].

It is well-known that CIC+η is weaker than CIC+Ext and hence the above
shows that F (X) := XA cannot be proven to be an extensional functor inside
CIC. On the other hand each functor composed of finite sums and products
seem to be extensional in CIC. In fact we can prove the following lemma in
CIC.

Lemma 1. (i) The constant functor, sending every set to a fixed set U an
each arrow to the identity on U is extensional.

(ii) The identity functor, identity on objects and arrows, is extensional.
(iii) Disjoint sum of two extensional functors obtained by case analysis on ar-

rows is extensional.
(iv) Product of two extensional functors obtained by pairing on arrows is ex-

tensional.
(v) Composition of two extensional functors obtained by composition on arrows

is extensional.

The proof can be found in [14] and ensures the extensionality of most polynomial
functions used in practice bar those based on exponential. In particular it holds
for functors used in Examples 1–4.

The main advantage of lF ext is that it eliminates the need for Ext without
having to resort to setoids functors and hence leaving us with a light weight
formalisation. This is in contrast with the formalisation of category theory in [11]
where setoids are used.

After this we define the notion of F -coalgebra for extensional functors as a
set together with a transition structure.

Record F coalg : Type :=
{ st : Set
; tr : st → F st
}.

Then we need to define the lifting of a relation R on the image of functor F ;
this will later be used to for expressing the commutativity of diagrams involving
the weakly final coalgebra.

Definition lRel(F) (S1 S2 : F coalg) (R : S1.st→S2.st→Prop)
(zx : F S1.st) (zy : F S2.st) : Prop :=

∃ x y, R x y ∧ zx = S1.tr x ∧ zy = S2.tr y.

4 Bisimulation

Bisimulation is the basic tool for studying the elements in a coalgebra. First we
recall the usual categorical definition of F -bisimulation [15]: given two sets X,Y
and a relation R ⊆ X × Y is a bisimulation between X and Y if there is a map

γ : R −→ F (R) s.t. both squares in this diagram commute (by πij we denote the
ith projection of a j-tuple):

X

αX

��

oo π12
R

γ

��

Y//
π22

αY

��
F (X) oo

Fπ12
F (R) F (Y)//

Fπ22

In CIC though, where we use dependent types for subsets, there is a dis-
tinction between a Prop-valued relation R : X→Y→Prop and the set of pairs
in {(x, y) ∈ X × Y |Rxy}. The latter is a set of dependent pairs also called a
Σ-type. Because we will be composing Σ-types built on a relation in Prop with
Σ-types built on other Σ-types we need to fix the notation. By {Σx : X,φ(x)}
we denote the set of elements of X satisfying φ : X→Prop, and by {Σx : X, f(x)}
we denote the set of elements X for which f(x) is inhabited (here f : X→Set is
an X-indexing of sets). We shall use variable R for Prop-valued and variable ρ
for Set-valued ones, i.e., ρ : X→Y→Set. Given a relation R (resp. ρ) we write
{Σ(R)} (resp. {Σ(ρ)} as a shorthand for {Σu : X×Y, R π12(u) π22(u)} (resp.
{Σu : X ×Y, ρ π12(u) π22(u)}). Note that an element of {Σ(R)} is a 3-tuple
consisting a pair from X × Y and a proof that they satisfy R hence we use πi3
to access to projections.

With the above notation an F -bisimulation for an extensional functor F will
be determined be the existence of γ : {Σ(R)}→F{Σ(R)}. Set theoretically this
is equivalent to γ : R→F (R) but in CIC the distinction is necessary. But this is
not the only discrepancy: The above diagram for bisimulation is an existential
statement. In order to formalise the existence of the γ in a way that can be
later used as a witness, in CIC we have to define the set of all F -bisimulations
between X and Y .

Following the above we define two predicates; first when a Prop-valued rela-
tion is bisimulation and second for a Set-valued relation:

Definition isF bisim (S1 S2 : F coalg) (R : S1.st→S2.st→Prop) : ={
Σγ : {ΣR}→F{ΣR}, ∀y : {ΣR},

lF π13 γ(y) = S1.tr (π13(y))
∧

lF π23 γ(y) = S2.tr (π23(y))
}
.

Definition isF σbisim (S1 S2 : F coalg) (ρ : S1.st→S2.st→Set) : ={
Σγ : {Σρ}→F{Σρ}, ∀y : {Σρ},

lF π13 γ(y) = S1.tr (π13(y))
∧

lF π23 γ(y) = S2.tr (π23(y))
}
.

We usually ignore the first two arguments of isF bisim and isF σbisim and
simply write isF bisim(R). Now we can define when a bisimulation is maximal.

Definition ismaxF bisim (S1 S2 : F coalg) (R : S1.st→S2.st→Prop) :=
isF bisim(R) ∧∀ρ, isσF bisim(ρ)→∀s1s2, ρ s1 s2→R s1 s2.

As we will see later the subtle occurrence of a Set-valued relation ρ is crucial
in the proof of the fact that bisimulation is closed under the composition.

It is well-known that the maximal bisimulation between any two F -coalgebras
exist [15]. In our theory we assume the existence of a maximal bisimulation. Later
on for each concrete functor we have to build a concrete relation which should
be proven to satisfy ismaxF bisim. This can always be built using as a coinductive
type [10], as we shall see for streams in Section 7.

It is known that for bisimulation to be closed under composition functor F
should satisfy some additional property, e.g. in [15] F is required to preserve
weak pullbacks. We require a similar albeit weaker restriction. First we define
the carrier set of the weak pullback of f : X −→ Z and g : Y −→ Z to be the
set WP(f, g) := {Σu : X × Y, f(π12(u)) = g(π22(u))}. Subsequently we require
that a function iwpF : WP(lF (f), lF (g)) −→ F (WP(f, g)) satisfying the following
property exist.

WP→F : ∀XY Z (f : X→Z) (g : Y→Z) (u : WP(lF (f), lF (g))),
lF π13 iwpF (u) = π13(u)

∧
lF π23 iwpF (u) = π23(u).

Evidently this is weaker than the assumption that F preserves weak pull-
backs because we only require the preservation of the pullback arrows, and even
then up to the existence of a one-way map iwpF which is not required to be
an isomorphism. In fact it seems that in CIC one cannot prove the stronger
assumption

WP(lF (f), lF (g)) = F (WP(f, g)) (4.1)

even for simple polynomial stream functor F (X) := B × X. The reason is
that (4.1) for streams would state the equality between a Σ-type and a non-
dependent pair of a set and another Σ-type and hence a proof would require
the commutativity of the two constructors of inductive types for pairing and
dependent pairing. This is impossible to do in CIC without additional axioms.
In contrast we can prove WP→F for stream functor; thus the relaxation in weak
pullback preservation condition is a necessity, in other words the stream functor
in CIC is a functor for which the bisimulation is closed under composition and
for which we cannot prove that it preserves weak pullbacks.

Given the above requirements, i.e., a maximal F -bisimulation between coal-
gebras S1 and S2 and a map iwpF satisfying WP→F we can develop a theory of
bisimulation. First we need the following properties 5.

Lemma 2. i) isF bisim(S1, S2, R) =⇒ isσF bisim(S1, S2, R).
ii) isF bisim(S, S,=), i.e., propositional equality is a bisimulation relation.

iii) isF bisim(S1, S2, R) =⇒ isF bisim(S2, S1, λxy.Ryx).
iv) isF bisim(S1, S2, R12) ∧ isF bisim(S2, S3, R23) =⇒

isσF bisim

(
S1, S3, λxz.{Σy,R12xy∧R23yz}

)
, i.e., bisimulation preserves com-

position.

5 This theorem and all the following ones are all formalised in Coq and available in [14].

The only technical part of the proof is part (iv). The relation R12◦R23 :=
λxz.{Σy,R12xy ∧ R23yz} is the counterpart of the set-theoretic composition
of two relations λxz.∃y,R12xy ∧R23yz. For the rest we follow the proof in [15],
defining the maps in the following diagram. Here X := WP(πR12

22 , πR23
22) i.e., the

weak pullback for πRij

22 : {Σ(Rij)} −→ S2 and π(1,2)3 is the function mapping a
3-tuple to its first two elements.

{Σ(R12◦R23)}

ı

��

π24

))

π14

uu
S1.st

S1.tr

��

oo π12 {Σ(R12)}

γ12

��

oo
π(1,2)3

X

X.tr

��

{Σ(R23)}

γ23

��

//
π(1,2)3

S3.st//π22

S3.tr

��
F (S1.st) oo

Fπ12
F{Σ(R12)} oo

Fπ(1,2)3
F (X) F{Σ(R23)}//

Fπ(1,2)3
F (S3.st)//

Fπ22

F{Σ(R12◦R23)}
��
F

Fπ12 ◦π(1,2)3 ◦ ı

ii

Fπ22 ◦π(1,2)3 ◦ ı

55

In this diagram is the map sending an element 〈s1, s2, φ12, s
′
2, s3, φ23, φ=〉 of

X to 〈s1, s3, s2, φ123〉, where φ’s are proof obligations and in particular φ= is a
proof that s2 = s′2. Likewise ı is the ‘inverse’ of and

ı〈s1, s3, s2, φ123〉 := 〈s1, s2, φ12, s2, s3, φ23, φrefl〉 .

The main part is defining a coalgebraic structure on X to obtain the transition
map X.tr. For this we use the map p : X −→WP(lF (πR12

22), lF (πR23
22)) defined as

p〈s1, s2, φ12, s
′
2, s3, φ23, φ=〉 := 〈γ12〈s1, s2, φ12〉, γ23〈s′2, s3, φ23〉, φlF 〉

where φlF is the proof that

lF (πR12
22)

(
γ12〈s1, s2, φ12〉

)
= lF (πR23

22)
(
γ23〈s′2, s3, φ23〉

)
,

and is obtained by φ= and the commutativity of the bisimulation diagrams for
{Σ(R12)} and {Σ(R23)}. Now taking X.tr := iwpF ◦ p we can prove that X.tr
is indeed a homomorphism of coalgebras i.e., the small squares in the above
diagram commute. Subsequently the entire diagram above commutes. Which
means F ◦X.tr ◦ ı is the map making {Σ(R12◦R23)} an F -bisimulation and
thus completing the proof.

Using Lemma 2 we can easily derive the following theorem.

Theorem 1. For any coalgebra S the maximal bisimulation on S is an equiva-
lence relation.

Theorem above is the main tool for a generic definition of bisimulation as an
extensional equality on coalgebras: due to our modular formalisation in CIC,

each time we instantiate the theory of this section with an extensional Set-functor
satisfying WP→F and a maximal bisimulation relation we get this theorem for free.

As a final remark we note that all the machinery based on weak pullbacks
and Σ-types is necessitated by the proof of transitivity which in turn is based on
Lemma 2.iv. In other words, the reflexivity and the symmetry of maximal bisim-
ulation holds for any extensional functor and for the weaker notion maximality
obtained by replacing isσF bisim by isF bisim in the definition of ismaxF bisim.

5 Weakly Final Coalgebras

Continuing the set-up so far we assume F is a weak pullback preserving exten-
sional functor so that the bisimulation theory of the previous section is derivable.
First we define when a coalgebra is weakly final :

Definition isF wfin (S0 : F coalg) := ∀ (S1 : F coalg),
{ΣunfldF : S1.st→S0.st,∀s1, S0.tr (unfldF s1) = lF unfldF (S1.tr s1)}.

If Ω satisfies the above property we call the maximal bisimulation on Ω
the bisimilarity and we denote it by ∼=. According to the above definition the
existence of a coalgebra homomorphism originating from any other coalgebra
is enough. For concrete functors S0.st can be taken to be a suitably chosen
coinductive type with S0.tr being the inverse of the constructors. Though, in each
concrete case we cannot prove the uniqueness of unfldF (S1) without assuming
Ext as an axiom. But fortunately we can prove the following property assuming
isF wfin(Ω) holds.

Ωunique : ∀ (S : F coalg) (f g : S.st→Ω.st),
∀s0, Ω.tr (f s0) = lF (f) (S.tr s0)) →
∀s0, Ω.tr (g s0) = lF (g) (S.tr s0)) → ∀s, f s ∼= g s.

Finally, we need another requirement that is needed when proving commu-
tativity of diagrams up to bisimilarity (cf. Section 6).

l
∼=
F ext : ∀X (f g : X→Ω.st) (y : F X),

(
∀ x, f(x) ∼= g(x)

)
→

lRel(F)

(
Ω,Ω,∼=, lF (f)(y), lF (g)(y)

)
.

Note that here we take as argument arbitrary set X which does not need to
have a coalgebraic structure. It allows us to use this property in more general
situations, e.g. in next section we use this on a bi-algebraic structure.

So far we have always used the (intensional)6 propositional equality to use
the commutativity of diagrams. However it is well-known that for weakly fi-
nal coalgebras the natural equality is the bisimilarity [10] which can be used
6 Propositional equality of CIC in the empty context is indistinguishable from the

intensional equality of the conversion rules of the type theory [1].

for proofs based on coinduction principle. The coinduction principle states that
maximal bisimulation is the equality. In CIC this may be stated as ‘the max-
imal bisimulation on weakly final coalgebra is propositional equality’, but it is
not provable. I.e., for concrete functors we cannot prove that ∼= and = coincide.
But given Theorem 1 we know that any weakly final coalgebra can be turned
into a setoid with a corresponding coinduction proof principle. And thus, finding
bisimulation will result in equality in that setoid. This enables us to translate
and verify in CIC the proofs by coinduction principle.

6 λ-Coiteration Scheme

Our theory so far has the coiteration scheme which is the existence of the arrow in
isF wfin. The scheme of λ-coiteration was developed in order to extend the class
of Haskell -like specifications beyond coiteration [3]. Our purpose is to develop
the λ-coiteration scheme inside CIC in the theory of previous sections.

First we sketch the scheme given in [3]. Let B, T be two extensional functors
and Ω be a weakly final B-coalgebra. Let Λ : TB=⇒BT be a natural transfor-
mation. Given a map g : X −→ BTX if the diagram below commutes then f is
called λ-coiterative arrow induced by g.

X

g

��

f // Ω.st

Ω.tr

��
BT (X)

BT (f)
// BT (Ω)

B(β)
// B(Ω)

Here β := π12(φ S0) where φ is a proof of isF wfin(Ω) and S0 the coalgebra
with carrier T (Ω) and transition function ΛΩ ◦T (Ω.tr) : T (Ω) −→ BT (Ω).

In [3] it is proven that if the ambient category possesses countable coproducts
then given g, Λ a unique λ-coiterative arrow exists. In CIC countable coprod-
ucts is an N-indexed family of sets and always exists (see H below) , and thus
we can prove the existence of λ-coiterative arrow for B and T without further
assumptions.

Our proof follows the one in [3] with some simple modifications with respect
to equality. For presenting the λ-coiterative arrow we need to formalise several
structures of [3] in CIC. The translation of these structures is straightforward.
Let H := λX.{Σj : N, {Σx : T j(X),>}} where T j is the recursively defined j-
th iteration of T and > is the universally true proposition. We can prove by
induction that T j is an extensional Set-functor. On the other hand for H we do
not need the extensionality and it seems that it is not provable either.

For each j and any set Y with y ∈ T j(Y) let

ıjY : T j(Y) −→ H(Y)
ıjY (y) := 〈j, y,>〉 .

Furthermore, for a sets Y,Z and N-indexed family of functions fj : T jY −→ Z
let [fj]∞0 : H(Y) −→ Z be

[fj]∞0 := λx.fπ13(x)(π23(x)) .

Next let χX := [ı(j+1)X]∞0 . We define the iteration of Λ recursively as:

Λ0
X = λx.x

Λj+1
X = λx : T j(TB(X)).ΛT (X)(lT j ΛX x) .

Finally let Λ∗X : HB(X) −→ BH(X) be

Λ∗X := [λx : T j(X). lB ıjX (ΛjX(x))]∞0 .

Now we can define the function making the above diagram commute.

Definition 1. Given Λ and g as above let S1 be the coalgebra with carrier H(X)
and the transition function

λx : H(X). lB χX
(
Λ∗T (X)(lH g x)

)
.

Let h := π12(φ S1) be the map given by weak finality of Ω (where φ is a proof
of isF wfin(Ω)). Then we define coitΛXg : X −→ Ω.st as

coitΛXg := λx : X. h
(
ı0X(x)

)
.

In our setting we should state the commutativity using bisimilarity.

Theorem 2. The map coitΛXg is the λ-coiterative arrow induced by g up to
bisimilarity, i.e.,

lRel(F)

(
Ω,Ω,∼=, Ω.tr

(
coitΛXg(x)

)
, lB β (lB (lT (coitΛXg) (g(x)))

)
.

The proof of Theorem 2 is quite technical and can be found in the Coq for-
malisation[14]. It follows to a great deal the paper proof in [3]. However working
in CIC results in some minor differences. As we mentioned above in CIC we
have H for free, on the other hand we have to explicitly assume that the functor
B is extensional and satisfies l∼=B ext. More technical difference is that for each j
we need a map !jX : T j(T (X)) −→ T (T j(X)) recursively defined as

!0X = λx.x

!(j+1)X =!jT (X) .

The role of this map is to replace the reasoning steps that rely on the inten-
sional equality T j(T (X)) = T (T j(X)). This is because although this equality
is provable in CIC as a propositional equality the two sides when considered

as types are not convertible7. Such non-convertibility would be an obstacle in
proving the commutativity of diagrams by naturality laws, which are otherwise
automatically proven by the conversion mechanism of Coq . As we mentioned
using !jX is a workaround that, although making proofs more tedious, works
suitably.

7 Streams

In this section we show that the the theory of Sections 3–6 can be instantiated
by the important case of streams, and hence the requirements that we put on
functors are reasonable. Note that in those section we did not use coinductive
types, while in this section we will use the coinductive types of Coq .

Fix a set B. Already from Lemma 1 we know that the stream functor defined
as F (X) := B×X with lB×X(f)〈b, x〉 = 〈b, f(x)〉 is an extensional functor. This
allows us to build the coalgebra B× coalg of the functor above with the obvious
components of the transition map:

hdS : S.st→B := λs.π12(S.tr(s)) , tlS : S.st→S.st := λs.π22(S.tr(s)).

Now we need a maximal bisimulation between any two B×-coalgebras. This
will be a coinductive type defined as:

CoInductive maxS1S2
B× bisim (s1 : S1.st) (s2 : S2.st) : Prop :=

| maxB× bisim0 : hdS1(s1) = hdS2(s2) → maxS1S2
B× bisim tl(s1) tl(s2) →

maxS1S2
B× bisim s1 s2.

Subsequently we can prove this lemma:

Lemma 3. Let S1, S2 be two B×-coalgebras. Then

ismaxB× bisim(S1, S2,max
S1S2
B× bisim)

Proof. The proof has two parts. First to prove thatmaxS1S2
B× bisim is a bisimulation

take
γ := λx.〈hdS1(π13(x)), 〈tlS1(π13(x)), tlS2(π23(x)), φ〉〉

where φ is a proof that

〈hdS1(π13(x)), tlS1(π13(x))〉 = S1.st(π13(x)) ,

〈hdS1(π13(x)), tlS2(π23(x))〉 = S2.st(π23(x)) .

In the second part for each ρ satisfying isσF bisim(ρ) and each s1, s2 for which
the set ρs1s2 is inhabited, we ought to build an element of the coinductive type
maxS1S2

B× bisim(s1, s2). That means we employ the constructor maxB× bisim0 and

7 Obviously there are two possible ways to define T j . No matter which of the two ways
we take we will always need !jX or its inverse.

use the facts that hdS1(s1) = hdS2(s2) and maxS1S2
B× bisim

(
tl(s1), tl(s2)

)
. Both of

these are provable using the commutativity of bisimulation for ρ. The latter also
uses the fact that

ρ tl1(s1) tl2(s2) 6= ∅ .
ut

Next we define the map iwpB× as follows (again φ’s are proof obligations).

iwpB×〈〈b0, s0〉, 〈b1, s1〉, φ01〉 := 〈b0, 〈s0, s1, φrefl〉〉 .

With this definition we can prove WP→B× and hence the ingredients of the bisim-
ulation theory are all supplied. This means that we get Theorem 1 for free.

At this point we focus on weakly final coalgebra of streams. Consider the
coinductively defined set Bw of streams over B introduced in Section 2. Taking
νB× := 〈Bω, 〈hdBω , tlBω 〉〉 to be the coalgebra of streams, it is easy to prove
that

isB× wfin(νB×)

holds: the witness is the unfold map for streams which is easily defined using
the cofix operator of Coq :

CoFixpoint unfldB× (S1 : B × coalg) (s1 : S1.st) : Bω :=
Cons hdS1(s1)

(
unfldB× S1 tlS1(s1)

)
.

Proving the uniqueness νB×unique needs the following lemma.

Lemma 4. Let be a B×-coalgebra. Then

i) unfldB× S s = Cons hdS(s) unfldB×
(
tlS(s)

)
.

ii) Let f : S.st −→ Bω be such that

∀s : S.st, f(s) = Cons hdS(s) f
(
tlS(s)

)
.

Then for all s in S we have

unfldB× S s ∼= f(s) .

Part (i) is trivial (see definition of unfldB×), while part (ii) uses constructor of
the coinductive type maxνB×νB×

B× bisim and the cofix operator of Coq to build the
bisimilarity [14].

Finally the proof of l∼=B× ext is a routine use of properties of ∼= as an equiva-
lence relation.

Then we can apply the scheme developed in the previous section to define
streams and functions on streams. We illustrate this by some examples. For
each example we mention which parameters for the λ-coiteration scheme should
be taken. All the choices for functor T in these examples are extensional by
Lemma 1. Each example contains a Haskell -like specification; applying Theo-
rem 2 and replacing the definition of lRel(F) enables us to derive the specifications
as a bisimilarity.

Example 1. For function convolution defined in Section 2 choose:

T := λX.X ×X
ΛX := λx.π14(x) + π34(x), 〈π24(x), π44(x)〉
g := λx : Bω ×Bω.〈hdBω

(
π12(x)

)
· hdBω

(
π22(x)

)
,

〈tlBω

(
π12(x)

)
, π22(x), π12(x), tlBω

(
π22(x)

)
〉〉 .

Then given two streams xs, ys we can define xs ⊗ ys as coitΛXg〈xs, ys〉. In
this case using Theorem 2 leads to the following bisimilarity for ⊗ which is the
counterpart of (2.1) in the intensional setting of Coq :

xs⊗ ys ∼= Cons
(
hdBω (xs) · hdBω (ys)

) (
tlBω (xs)⊗ ys ⊕ xs⊗ tlBω (ys)

)
Here xs⊕ ys := β〈xs, ys〉 can also be proven, by Lemma 4.(i), to satisfy

xs⊕ ys = Cons
(
hdBω (xs) + hdBω (ys)

) (
tlBω (xs) ⊕ tlBω (ys)

)
Note that for ⊕ we get an equality, which by Lemma 2.(ii) leads to a bisimilarity.

ut

Example 2. As a simpler example consider the stream of powers of two from [3]
specified as

pow := 1:: pow⊕ pow

As shown in [3] pow can be defined by λ-coiteration employing the same T and
Λ as in Example 1. We merely have to use a different g, this time a coalgebraic
structure on the unit set 1 = {∗}:

g := λx :1.〈1, 〈∗, ∗〉〉
pow := coitΛXg(∗)

ut

Example 3. The stream of natural numbers with the specification

nats := 0:: map λn.n+1 nats

is a well-known example of a stream definition not accepted by the guardedness
condition of Coq [9]. This is definable in Coq by taking:

T := λX.X ×BB ×X
ΛX := λx.〈π13(x)

(
π23(x)

)
, 〈π13(x), π33(x)〉〉

g := λx :1.〈0, 〈λn.n+1, ∗〉〉
nats := coitΛXg(∗)

ut

Example 4. The Fibonacci specification studied in [5] can also be defined using
the λ-coiteration scheme but the specification should be slightly unfolded as

fibs := 0:: ⊕3 (1, fibs, fibs) (7.1)

where ⊕3 is a ternary unfolding of ⊕:

⊕3(x0, x :: xs, y :: ys) := x0 + y :: ⊕3 (x, xs, ys)

We define this by taking

T := λX.B ×X ×X
ΛX := λx.〈π15(x) + π45(x), 〈π25(x), π35(x), π55(x)〉〉
g := λx :1.〈0, 〈1, ∗, ∗〉〉
fibs := coitΛXg(∗)

Again Theorem 2 gives us (7.1) up to bisimilarity. Furthermore we can prove
the following bisimilarity which corresponds to the specification used in [5] as a
definition of stream of Fibonacci numbers.

fibs ∼= Cons 0
(
Cons 1 (tlBω (fibs) ⊕ fibs)

)
.

Note that we are using ⊕ from Example 1. The proof of this bisimilarity is based
on the following properties of ⊕ and ⊕3.

⊕3 (x, xs, ys) ∼= (Cons x xs) ⊕ ys ;
xs⊕ ys ∼= ys⊕ xs .

We can prove both bisimilarities in two different ways [14], either by using
cofix to build an inhabitant of the coinductive type maxνB×νB×

B× bisim, or by explicitly
providing the bisimulation relations and using Lemma 3. In the latter case the
two bisimulation relations are given respectively by:

R1στ := ∃x xs ys, σ = ⊕3(x, xs, ys) ∧ τ = (Cons x xs)⊕ ys ;
R2στ := ∃xs ys, σ = xs⊕ ys ∧ τ = ys⊕ xs .

ut

As seen in these examples Theorem 2 provides the bisimilarity equation to
recover the specification that was used to forge the parameters T , Λ and g. In
general if we want to prove a bisimilarity in Coq we have several additional tools:

(i) using the properties of bisimilarities as an equivalence relations and perform
equational reasoning;

(ii) using ‘type theoretic coinduction’, i.e., using cofix and the constructors of
coinductive type of maxνB×νB×

B× bisim;

(iii) using conventional coinduction principle and explicitly providing a bisim-
ulation relation between the two sides of the bisimilarity.

We usually apply a combination of the above techniques, but each has charac-
teristics that make it suitable in specific contexts. For example (i) is especially
useful when dealing with bisimilarity as a setoid equality, and in combination
with other reasoning tools for setoids. Technique (ii) seems to be more suitable
for mechanisation as it follows the shape of specifications and leads to smaller
Coq proof scripts while (iii) is usually more verbose. On the other hand apply-
ing (ii) entails that one has to be wary of the guardedness condition as one is
using cofix operator of Coq , while in (iii) no guardedness check is performed.

As we see λ-coiteration scheme considerably extends the class of functions
definable in Coq , giving their behavioural equations for free. However, like all
syntactic schemes, there is limitation to this scheme, e.g. in [2] it is shown that a
specification for the stream of Hamming number is not accepted by this scheme.

8 Conclusions and Further Work

We have provided a modular theory of coalgebras in the intensional setting of
CIC which can be instantiated for specific functors built out of finite sums and
coproducts. Each instantiation will give us a theory of bisimilarity which can
then be used to build a setoid and work extensionally. Furthermore we showed
the usefulness of our coalgebraic setting by developing the λ-coiteration scheme
in it and thus extending the class of productive specifications definable in Coq .
We demonstrated this by an instantiation of our theory for streams and showed
some concrete specifications refused by the guardedness condition but accepted
using the λ-coiteration scheme in Coq .

Our work eases future coalgebraic developments in Coq . It is a good evi-
dence that once some technicalities with respect to dependent types are handled
most categorical schemes can be translated into intensional type theory. On the
other hand it shows that the schemes from category theory can provide suitable
workarounds for the restrictions of the guardedness condition without changing
the underlying type theory.

The future work would be to build a larger library of results on weakly final
coalgebras and developing more powerful definition schemes. Immediate would
be the the schemes obtained by adding monadic, pointedness and cofreeness
structure on the bi-algebraic nature of λ-coiteration [3]. The long-term chal-
lenge would be to extend the formalisation to the powerful functor of Hancock–
Setzer [10, 13] and investigating the various schemes there.

References

1. T. Altenkirch, C. McBride, and W. Swierstra. Observational equality, now! In
A. Stump and H. Xi, editors, Proc. of the ACM Workshop Programming Languages
meets Program Verification, PLPV 2007, Freiburg, Germany, Oct. 5, 2007, pages
57–68. ACM Press, 2007.

2. F. Bartels. Generalised coinduction. In A. Corradini, M. Lenisa, and U. Monta-
nari, editors, Proc. of 4th Workshop on Coalgebraic Methods in Computer Science,
CMCS’01, Genova, Italy, 6–7 Apr. 2001, volume 44(1) of Electron. Notes Theor.
Comput. Sci., pages 67–87. Elsevier Science Publishers, 2001.

3. F. Bartels. On Generalised Coinduction and Probabilistic specification Formats:
Distributive laws in coalgebraic modelling. PhD thesis, Vrije Universiteit Amster-
dam, 2004.

4. Y. Bertot and E. Komendantskaya. Inductive and coinductive components of core-
cursive functions in coq. In J. Adámek and C. Kupke, editors, Proceedings of the
Ninth Workshop on Coalgebraic Methods in Computer Science (CMCS 2008) Bu-
dapest, Hungary 4–6 April 2008, volume 203(5) of Electron. Notes Theor. Comput.
Sci., pages 25–47. Elsevier Science Publishers, June 2008.

5. Y. Bertot and E. Komendantskaya. Using structural recursion for corecursion.
Technical report, INRIA, Sept. 2008. http://hal.inria.fr/inria-00322331/

en/, [cited 23 Oct. 2008].
6. The Coq Development Team. The Coq Proof Assistant Reference Manual, Version

8.1. LogiCal Project, July 2006. http://coq.inria.fr/V8.1/refman/index.html,
[cited 23 Oct. 2008].

7. T. Coquand. Infinite objects in type theory. In H. Barendregt and T. Nipkow,
editors, Types for Proofs and Programs, International Workshop TYPES’93, Ni-
jmegen, The Netherlands, May 24–28, 1993, Selected Papers, volume 806 of Lecture
Notes in Comput. Sci., pages 62–78. Springer-Verlag, 1994.

8. P. Di Gianantonio and M. Miculan. A unifying approach to recursive and co-
recursive definitions. In H. Geuvers and F. Wiedijk, editors, Types for Proofs and
Programs: International Workshop, TYPES 2002, Berg en Dal, The Netherlands,
April 24–28, 2002. Selected Papers, volume 2646 of Lecture Notes in Comput. Sci.,
pages 148–161. Springer-Verlag, 2003.

9. E. Giménez. Un Calcul de Constructions Infinies et son Application a la Ver-
ification des Systemes Communicants. PhD thesis PhD 96-11, Laboratoire de
l’Informatique du Parallélisme, Ecole Normale Supérieure de Lyon, Dec. 1996.

10. P. Hancock and A. Setzer. Interactive programs and weakly final coalgebras in
dependent type theory. In L. Crosilla and P. Schuster, editors, From Sets and
Types to Topology and Analysis. Towards Practicable Foundations for Constructive
Mathematics, Proceedings of the workshop, 12–16 May 2003, Venice International
University, San Servolo, Venice, Italy., volume 48 of Oxford Logic Guides, pages
115–134. Oxford University Press, 2005.

11. G. Huet and A. Säıbi. Constructive category theory. In G. D. Plotkin, C. Stirling,
and M. Tofte, editors, Proof, Language, and Interaction, Essays in Honour of Robin
Milner, pages 239–276. The MIT Press, 2000.

12. D. E. Knuth. The Art of Computer Programming, Seminumerical Algorithms,
volume 2. Addison-Wesley, Reading, Massachusetts, 3rd edition, 1997. xiv+762pp.

13. M. Michelbrink. Interfaces as functors, programs as coalgebras - a final coalgebra
theorem in intensional type theory. Theoret. Comput. Sci., 360(1–3):415–439, 2006.

14. M. Niqui. http://www.cwi.nl/~milad/coalgebras [cited 23 Oct. 2008], Oct. 2008.
Files for Coq v. 8.2beta4.

15. J. J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoret. Comput.
Sci., 249(1):3–80, Oct. 2000.

16. J. J. M. M. Rutten. A coinductive calculus of streams. Math. Structures Comput.
Sci., 15(1):93–147, 2005.

