
How to Share Concurrent Wait-Free Variables

MING LI

University of Waterloo, Waterloo, Ontario, Canada

JOHN TROMP AND PAUL M. B. VITANYI

Centrum voor Wiskunde en lnformatica, Amsterdam, The Netherlands, and Universiteit van
Amsterdam, Amsterdam, The Netherlands

Abstract. Sharing data between multiple asynchronous users-each of which can atomically read and
write the data-is a feature that may help to increase the amount of parallelism in distributed
systems. An algorithm implementing this feature is presented. The main construction of an n-user
atomic variable directly from single-writer, single-reader atomic variables uses O(n) control bits and
O(n) accesses per Read/Write running in 0(1) parallel time.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles; B.4.3 [Input/Output
and Data Communications]: Interconnections (Subsystems); D.4.1 [Operating Systems]: Process
Management; D.4.4 [Operating Systems]: Communications Management

General Terms: Management

Additional Key Words and Phrases: Atomicity, concurrent reading and writing, multi-writer, shared
variable (register)

1. Introduction

Lamport [1986] has shown how an atomic variable-one whose accesses appear
to be indivisible-shared between one writer and one reader, acting asynchro
nously and without waiting, can be constructed from lower level hardware rather

M. Li was supported in part by the National Science Foundation under Grant OCR 86-06366 at Ohio
State University, by Office of Naval Research Grant N00014-85-K-0445 and Army Research Office
Grant DAAL03-86-K-0171 at Harvard University, and by NSERC Grant OGP-0036747 at York
University.

P. Vitanyi was supported in part by the European Union through NeuroCOLT ESPIRIT Working
Group No. 8556, and by NWO through NFI Project ALADDIN under Contract number NF 62-376.

J. Tromp was supported in part by NWO through NFI Project ALADDIN under Contract number
NF 62-376.
Authors' addresses: M. Li, Computer Science Department, University of Waterloo, Waterloo, Ont.,
N2L 301 Canada; e-mail: mli@math.uwaterloo.ca; J. Tromp and P. M. B. Vitanyi, Centrum voor
Wiskunde en Informatica, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands, e-mail:
tromp@cwi.nl and paulv@cwi.nl.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM}, Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and I or a fee.
© 1996 ACM 0004-5411/96/0700-0723 $03.50

Journal of the ACM, Vol. 43, No. 4, July 1996, pp. 723-746.

724 M. LI ET AL.

than just assuming its existence. There arises the question of the construction of
multi-user atomic variables of this type (see Vitanyi and Awerbuch [1986], on
which the current paper is partially based). In this paper, we will supply a
uniform solution to such problems, given Lamport's construction, and derive the
implementations by transformations from the specification.

1.1. INFORMAL PROBLEM STATEMENT AND MAIN RESULT. Usually, with asyn
chronous readers and writers, atomicity of operations is simply assumed or
enforced by synchronization primitives like semaphores. However, active serial
ization of asynchronous concurrent actions always implies waiting by one action
for another. In contrast, our aim is to realize the maximum amount of parallelism
inherent in concurrent systems by avoiding waiting altogether in our algorithms.
In such a setting, serializability is not actively enforced, rather it follows from the
way the executions of the algorithm by the various processes interact. Any one of
the references, say Lamport [1986] or Vitanyi and Awerbuch [1986] describes the
problem area in some detail. Peterson [1983] seems to be the first to precisely
identify the notion of wait-free concurrent read/write variables.

The point of departure is the solution of the following problem. (We keep the
discussion informal.) Consider two processors that are asynchronous and do not
wait for one another. A flip-flop is a Boolean variable that can be read by one
processor and written by the other. Suppose, one is given atomic flip-flops as
building blocks, and is asked to implement a k-bit atomic variable, that can be
written by one processor and read by the other. Of course, a buffer consisting of
k flip-flops suffices to hold such a value. If, however, the implementation allows
the reader to read and return the value held by the same buffer that the writer
may simultaneously access for writing, then either the writer or the reader might
do all of its accesses while the other is temporarily stopped halfway by the buffer.
The problem arises that a reader might obtain 1111000 from a buffer that a
writer is changing from 0000000 to 1111111. That is, the reader would obtain a
value consisting of half the new value and half the old one. Obviously, this
violates atomicity. The problem then is to design a protocol that provides
exclusive access to buffers without waiting. Correct implementations of atomic
multi-bit variables from single bits can be found in Peterson [1983], Lamport
[1986], Vidyasankar [1988], and Tromp [1989].

These atomic variables serve as the building blocks of our construction of an
n-user variable; a variable shared between n users each of which can atomically
execute both read and write operations.

At the outset, we state our main result:

THEOREM 1.1.1. An atomic n-user variable is implemented wait-free from O(n2)

atomic 1-reader 1-writer variables each with O(n) control bits. Moreover, it uses
O(n) accesses per Read/Write running in 0(1) parallel time.

Our notion of parallel time allows a set of accesses to different variables to
proceed in arbitrary order in one time-unit.

1.2. COMPARISON WITH RELATED WORK. The first version of our construction
was widely circulated in 1987 as the preprint [Li and Vitanyi 1987], followed by a
conference version [Li and Vitanyi 1989], testing by implementation, and a
preprint of the current version [Li et al., 1989]. Since 1987 the field has
blossomed to such an extent that we cannot survey it in detail. Therefore, we

How to Share Concurrent Wait-Free Variables 725

restrict ourselves to listing the related papers published before that time and the
most relevant later work, and compare our results in detail only with the best
existing ones we know of.

With this in mind, related constructions are given by Singh et al. [1994],
Kirousis et al. [1989], Burns and Peterson [1987], Newman-Wolfe [1987], Israeli
and Li [1987], and Haldar and Vidyasankar [1995] for the single-reader to
multi-reader case, and by Vitanyi and Awerbuch [1986], Peterson and Burns
[1987], Schaffer [1988], and Israeli and Shaham [1992] for the multi-reader to
multi-writer case. The latter problem, from multi-reader to multi-writer, is the
more difficult one. It is by now well-known that these constructions are difficult
and error-prone. Since it is by no means easy to find the errors, we point out that
the bounded control bit solutions in Vitanyi and Awerbuch [1986], Peterson and
Burns [1987], and Burns and Peterson [1987] are known to be incorrect as noted
in Peterson and Burns [1987], Schaffer [1988], and Haldar and Vidyasankar
[1992], respectively. The latter two provide corrected constructions, while Vitanyi
and Awerbuch [1986] is fixed using the (largely identical) method of Dwork and
Waarts [1992]. The unbounded solution in Vitanyi and Awerbuch [1986] is
correct and is used as a point of departure in the current paper.

Here, we present the first implementation of an n-user variable directly from
single reader variables. The algorithm uses O(n) accesses to single-reader
variables per operation, and each single-reader variable stores two copies of the
value of the constructed variable together with O(n) bits of control information.
Most other algorithms use multi-reader variables instead of single-reader ones,
making a direct comparison impossible. Still, an indirect comparison can be
made by combining an algorithm using multi-reader variables with an implemen
tation of a multi-reader variable from single-reader ones.

The multi-writer algorithm in Schaffer [1988] uses ®(n 2) accesses to multi
reader variables per operation, running in ® (n) parallel time.

Israeli and Li's important paper [Israeli and Li 1987] introduced the notion of
a bounded time-stamp system, which is a general mechanism for tracking the
order of events in a system. They developed an elegant theory of sequential
time-stamp systems, in which operations are totally ordered, as well as a system
with a limited amount of concurrency. A proper definition of concurrent
time-stamp system was introduced in Dolev and Shavit [1996]. Such a system can
be applied directly to solve the problem of implementing a multi-user variable
from multi-reader variables. Their technique yields an implementation using
® (n log n) accesses to (linear-sized) multi-reader variables per operation,
running in ®(log n) parallel time.

Implementing the multi-reader variables in single-reader single-writer vari
ables by known constructions, such as Singh et al. [1994], to obtain a multi-writer
variable implementation from single-reader single-writer variables, multiplies the
number of accesses per operation in the above constructions by a factor n.

More recent papers1 provide improved constructions for concurrent time
stamp schemes. The most economic of these constructions [Israeli and Pinhasov
1992] uses ® (n) accesses to (linear-sized) multi-reader variables per operation,
running in O (1) parallel time, and can be applied directly to the construction of

1 See, for example, Dwork and Waarts [1992], Israeli and Pinhasov [1992], Gawlick et al. [1992], and
Dwork et al. [1992].

726 M. LI ET AL.

a multi-writer variable. Compared to our construction, this still has the disadvan
tage of using multi-reader variables and having a higher conceptual complexity.

Bloom [1988] presented an elegant 2-writer construction. Herlihy [1988]
considers more powerful shared objects that have no wait-free implementations
from variables.

A more recent construction than ours [Israeli and Shaham 1992] presents a
direct solution that is optimal in space (logarithmic control bit complexity, see Li
and Vitanyi [1992]) as well as the number of variable accesses per read/write
(linear). They do not however achieve constant parallel time (to be defined in
the next section) and have a rather more complicated protocol.

We believe the construction presented here is relatively simple and transpar
ent. Both the problem of how to implement a multi-reader variable from
single-reader variables, and the problem of implementing a multi-writer variable
from multi-reader variables, are solved by simplifications of our main solution.

The basis of our proof-technique was developed in Awerbuch et al. [1988]. Our
model and terminology is based on Herlihy and Wing [1990], which defines and
motivates the notion of linearizability.

1.3. MULTI-USER VARIABLE CONSTRUCTION. In this section, we consider the
problem of constructing an n-user variable from single-reader variables and state
the correctness condition such a construction has to satisfy.

Throughout the paper, the n users are indexed with the set I = { 0, ... ,
n - 1}. The variable constructed will be called ABS (for abstract).

A construction consists of a collection of shared variables R;,j, i, j E I
(providing a communication path from user i to user j), and two procedures,
Read and Write. Both procedures have an input parameter i, which is the index of
the executing user, and in addition, Write takes a value to be written to ABS as
input. An implicit or explicit return statement ends the execution of both
procedures, in the case of Read having an argument that is taken to be the value
read from ABS.

A procedure contains a declaration of local variables and a body. A local
variable appearing in both procedures can be declared static, which means it
retains its value between procedure invocations. The body is a program fragment
comprised of atomic statements. Access to shared variables is naturally restricted
to assignments from Rj,i to local variables and assignments from local variables
to R;,j, for any j (recall that i is the index of the executing user). No other means
of interprocess communication is allowed. In particular, no synchronization
primitives can be used. Assignments to and from shared variables are called
writes and reads respectively, always in lowercase.

The space complexity of a construction is the maximum size, in bits, of a shared
variable.

The time complexity of the Read or Write procedure is the maximum number
of shared variable accesses in a single execution.

A parallel loop is a loop denoted as 'for j E I' and it is parallel in the sense
that its iterations2 can be executed in arbitrary order. Moreover, shared variables
accessed in different iterations of the parallel loop must be disjoint. The parallel
time complexity of the Read or Write procedure differs from the normal,

2 This is a slight abuse of the term, since the word iteration suggests sequential behavior.

How to Share Concurrent Wait-Free Variables 727

sequential one in that the cost of a parallel loop is the maximum, rather than the
sum, of the number of shared variable accesses in each of its iterations (we don't
consider the case of nested parallel loops in this paper). The total cost of the
procedure is then simply the sum of the costs of its parallel loops plus the
maximum number of remaining shared variable accesses.

A construction must satisfy the following constraint.

Wait-Freedom. Each procedure must be free from unbounded loops.

Given a construction, we are interested in properties of its executions, which
the following notions help formulate. A state is a configuration of the construc
tion, comprising values of all shared and local variables, as well as program
counters. Note that we need a somewhat liberal notion of program counter to
characterize the execution of a parallel loop. In between invocations of the Read
and Write procedure, a user is said to be idle, and its program counter has the
value 'idle'. One state is designated as initial state. All users must be idle in this
state.

A state t is an immediate successor of a state s if t can be reached from s
through the execution of a procedure statement by some user in accordance with
its program counter. Recall that n denotes the number of users of the con
structed variable ABS. A state has at least n immediate successors: If a user is
idle, it can invoke either the Read or Write procedure. And if it is within one of
these procedures, there is at least one atomic statement to be executed next
(possibly more during the execution of a parallel loop).

A history of the construction is a finite or infinite sequence of states t 0 , t 1 ,

t2 , ... such that t 0 is the initial state and t;+i is an immediate successor oft;.
Transitions between successive states are called the events of a history. With each
event is associated the index of the executing user, the relevant procedure
statement, and the values manipulated by the execution of the statement. Each
particular access to a shared variable is an event, and all such events are totally
ordered.

The (sequential) time complexity of the Read or Write procedure is the
maximum number of shared variable accesses in some such operation in some
history. Parallel time complexity is defined similarly, except that for each parallel
loop, we count not the sum of the time complexities of its iterations, but rather
their maximum.

An event a precedes an event b in history h, a <h b, if a occurs before b in h.
The subscript h is omitted when clear from context. Call a finite set of events of
a history an event-set. Then we similarly say that an event-set A precedes an
event-set Bin a history, A <1i B, when each event in A precedes all those in B.
We use a :::: b to denote that either a = b or a <. b. The relation <1i on
event-sets constitutes what is known as an interval order. That is, a partial order
satisfying the interval axiom a < b /\ c < d /\ c -I b =? a <. d. This
implication can be seen to hold by considering the last event of c and the earliest
event of b. See Lamport [1986] for an extensive discussion on models of time.

Of particular interest are the sets consisting of all events of a single procedure
invocation, which we call an operation. An operation is either a Read operation
or a Write operation. It is complete if it includes the execution of the (possibly
implicit) return statement of the procedure. Otherwise, it is said to be pending. A
history is complete if all its operations are complete. Note that in the final state

728 M. LI ET AL.

of a complete finite history, all users are idle. The value of an operation is the
value written to ABS in the case of a Write, or the value read from ABS in the case
of a Read.

The following crucial definition expresses the idea that the operations in a
history appear to take place instantaneously somewhere during their execution
interval. A more general version of this is presented and motivated in Herlihy
and Wing [1990]. To avoid special cases, we introduce the notion of a proper
history as one that starts with an initializing Write operation that precedes all
other operations.

Linearizability. A complete proper history h is linearizable if the partial order
< h on the set of operations can be extended to a total order which obeys the
semantics of a variable. That is, each Read operation returns the value written
by that Write operation which last precedes it in the total order.

Definition 1.3.1. A construction is correct if it satisfies Wait-Freedom and all
its complete proper histories are linearizable.

1.4. THE TAG FUNCTION. Although the definition of linearizability is quite
clear, it is convenient to transform it into an equivalent specification from which
the first algorithm can be directly derived. The idea behind the following lemma
was first expressed by Lamport [1986, Proposition 3] for the case of a single
writer. In Singh et al. [1994], the equivalent conditions given by Lamport's
proposition are in fact taken as the definition of linearizability (often called
atomicity in the register construction literature). The Atomicity Criterion of
Awerbuch et al. [1988] is the first generalization of Lamport's proposition to the
case of multiple readers and writers. A further generalization appears in
Anderson [1993] for the case of a variable having several fields which can be
written independently.

LEMMA 1.4.l. A complete proper history h is linearizable iff there exists a
function mapping each operation in h to a rational number, called its tag, such that
the following 3 conditions are satisfied:

Uniqueness. Different Write operations have different tags.

Integrity. For each Read operation there exists a Write operation with the same
tag and value, that it doesn't precede.

Precedence. If one operation precedes another, then the tag of the latter is at
least that of the former.

PROOF

:::} Let a complete proper history h be linearizable. Let < be the total order
extending <h according to the definition of linearizability. Assign to each
operation a tag which is the number of Write operations up to and including it in
<. This clearly satisfies Uniqueness. For each Read operation R, the Write
operation W that precedes it last in < has the same tag. Also, because < obeys
the semantics of a variable, W and R have the same value. From the facts that <
extends <h, W < R, and < is acyclic, we conclude that--, R <h W. So Integrity
is satisfied as well. Finally, for operations A < h B, we necessarily have A < B
and thus the tag of B is at least that of A.

How to Share Concurrent Wait-Free Variables

type I : 0 .. n - 1
shared : record

value : ABStype
tag : integer

end

procedure Write(i, v)
varj:J

t: integer
from : array[O .. n - 1] of shared

begin
for j E I do from[j] := Rj,;
select t such that ('v'j : t > from[j].tag) /\ t = i (mod n)
from[i] := (v,t)
for j E I do R;,j := from[i]

end

procedure Read(i)
var j,max: I

from : array[O .. n - 1] of shared
begin

end

for j E I do from[j] := Ri,i
select max such that 'v'j : from[max].tag 2:: from[j].tag
from[i] := from[max]
for j EI do R..;,i := from[i]
return from[i].value

729

FIG. 1. Construction 0.

{::: Suppose we are given a complete proper history h and a function tag
satisfying the three conditions, Using Uniqueness, totally order the Write
operations according to their tags. Next, we insert all Read operations in this
total order: for each Write operation in turn, insert immediately after it those
Read operations having the same tag, in some order extending <h. By Integrity,
the result is a total order < on all operations, that obeys the semantics of a
variable. It remains to show that < extends <h. Suppose A <h B are two
operations. By Precedence, A 's tag is at most that of B. If A 'stag is less than B's,
or A and B are Read operations with the same tag, then A < B follows from the
construction of <. In the remaining case, A and B have equal tags and at least
one of them is a Write operation. By Uniqueness, one is a Read operation, and
the other is the unique Write operation with the same tag. Finally, we use
Integrity to conclude that A is the Write, and B the Read operation. Thus, A <
B follows again from the construction of <. D

2. The Basic Unbounded Construction

Figure 1 shows Construction 0, which is the unbounded solution of Vitanyi and
Awerbuch [1986]. We present it here as an aid in understanding Construction 1,
and give only a sketchy proof.

The Write and Read procedures are given after the declaration of the type of
the shared variables R;,j· The initial state of the construction has all Ri,j

containing (0, 0).
The tag function called for in Lemma 1.4.1 is built right into this construction.

Each operation starts by collecting value-tag pairs from all users. In the third line

730 M. LI ET AL.

of either procedure, the operation picks a value and tag for itself. It finishes after
distributing this pair to all users. It is not hard to see that the three conditions of
Lemma 1.4.1 are satisfied for each complete proper history. Integrity and Prece
dence are straightforward to check. Uniqueness follows since tags of Write opera
tions of different users are not congruent modulo n, while tags of Write operations
of a single user strictly increase (based on the observation that each Ri,i.tag is
nondecreasing).

3. Solution Method

The only problem with Construction 0 is that the number of tags is infinite. With
a finite number of tags comes the necessity to reuse tags and hence to distinguish
old tags from new ones.

In Construction 1, we introduce a shooting mechanism to provide additional
aging information to the tags. At the start of an operation, a user sets up a fresh
"target" that gets "shot at" by Write operations. A tag issued by an operation is
considered old once its associated target has received sufficiently many shots.
The shooting mechanism also serves another purpose, which is that of approxi
mating a snapshot, an instantaneous picture of the state of a set of shared
variables. In Construction 0, an operation collects information on values and tags
of all users by reading their shared variables one after another, in arbitrary order
(the first line in either procedure). Since these read events are interleaved with
events of other users, in particular write events, the picture it obtains this way
may be very distorted. In Construction 1, with additional information to collect,
there is a need to limit the amount of distortion.

If, after the information-collecting period, the initially fresh target has received
too many shots, then the operation will abort, that is, terminate without executing
the remainder of the procedure. Aborting operations do not change or otherwise
make use of any tags and thus have very limited interaction with non-aborting
operations. The latter in turn obtain a good, if not instantaneous, picture of the
shared state. In fact, the picture is good enough to enable them to discriminate
old tags by inspection of the associated targets. This discrimination feature is
however not yet implemented in Construction 1. While it compares unbounded
tags as in Construction 0, it employs many additional unbounded counters that
we can prove certain properties about, showing that all unboundedness is
redundant. Thus, Construction 1 paves the way to our final, bounded, solution.

In Section 3.1, we discuss Construction 1 and in particular the shooting
mechanism, in more detail. Section 3.2 introduces some notational conventions.
The correctness proof is given in Section 3.3. Finally, Section 4 shows how
Construction 1 can be changed into an equivalent one using only bounded
counters.

3.1. CONSTRUCTION 1. Figure 2 shows the data-structure and procedures of
Construction 1. The Write procedure turns out to be an extension of the Read
procedure, which is why the two are more conveniently shown together. The line
indicated '(Read only)' is unique to the Read procedure, making the remaining
lines effectively unique to the Write procedure. The initial state of Construction
1 has 0 in all fields of all shared and static variables.

Let's look at the data structures used in the construction. The value and tag
fields have exactly the same function as in Construction 0. The prev field is used

How to Share Concurrent Wait-Free Variables

type I : O .. n - 1
shared : record

valu.e,prev : ABStype
tag : integer
SS : 0 .. 1
shoot,heal : array[O .. l][O .. n - l] of integer

end

procedure Read(i) / Write(i, v)
varj:I

t: integer
8: 0 .. 1
from,tmp : array(O .. n - 1] of shared
static me : shared

begin
s := 1- me.ss

s: for j EI do me.heal[s][j] := R;,;.shoot[s][i]
h: for j E I do R;,; := me
r: for j E I do from[j] := R;,i
t: for j EI do tmp[j] := R;,;

if 3j EI: tmp[j].shoot[s][i] - me.heal[s][j] ;::: 3
then return tmp[j].prev
select max such that 'T/j: from[max].tag ;::: from[j].tag
me.prev, me.value, me.tag, me.ss :=

me. value, from[max].valu.e, from[max]. tag, s
p: for j EI do R;,; :=me

(Read only) return me.value
for j E I,s E {0 .. 1} do

if me.shoot[s][j] - from[i].heal[s][i] < 6
then me.shoot[s][j]+ := 1

select t such that t - me.tag E {l, ... , n} At :: i (mod n)
me.value, me.tag := v, t

w: for j E I do R;,; := me
end

731

FIG. 2. Construction 1.

to remember values of former operations, which are used by aborting Read
operations. Two sets of heal counters, heal[O][O .. n - 1] and heal[l][O .. n - l],
are used to hold targets. The ss (shoot-selector) field selects which of the two sets
holds the target associated with the current value-tag pair. A second set is needed
since new operations must set up a target before they can compute a new tag.
Together with the heal counters, the shot counters, shoot[O .. 1][0 .. n - l],
implement the shooting mechanism. User j shoots at a target heal[s][O .. n - 1] of
user k by making his counter shoot[s][k] larger than the counter heal[s][j] of user k,
up to a maximum of 6.

Consider the procedures. The lines involving shared variable access are
identified by one of the characters s, h, r, t, p, and w, which are mnemonic
shorthands for setup, heal, read, test, propagate and write, respectively.

At the start of an operation, say a, user i sets up a new target in the available
heal counter set (1 - me .ss) by catching up with each user's shot counter. It
then writes out the target in line h so that the other users can start shooting it.
After collecting every one's data in line r, it proceeds to test in line t how many
times its target has been shot. More precisely, if some user has increased its shot
counter at least three times since it was previously read in line s, then a will
abort. For the sake of definiteness, let the j in the return statement be the

732 M. LI ET AL.

minimal index satisfying the condition of the test. It can be shown that a
completely "contains" an operation b of user j with the value tmp[j] .prev, as well
as a write operation w of user j that precedes or equals b. Thus, a can be
imagined to have occurred right before w or after b in a linearization, depending
on whether a is a Write or Read operation. If no user shot the target three times,
then user i sets max to an index of the largest visible tag. It then saves the old
value in prev, changes its value and tag to that of max, and associates its target
with the new value-tag pair. In line p, record me is written out. The purpose of
the Write operations propagating the value-tag pair of max is to ensure that
before any user can see the Write's new tag, all users will be able to see a tag (the
propagated one) which is at most n smaller. This fact will be used in Lemma
4.1.1 to show that outdated tags are easily recognized. The Read procedure ends
after line p by returning the value copied from max.

The Write procedure continues by shooting all visible targets, that is, increas
ing all its shot counters that are not already six ahead of their corresponding heal
counter. User i next chooses a tag unique to it which is larger than all visible
ones. This is paired with v, the argument of the Write procedure, and all is
written out in line w.

3.2. NOTATIONAL CONVENTIONS. The following notions are used in the proof.
Assume an arbitrary but fixed history. The mth nonaborting operation of user i is
denoted N'('. If a = N'(' then a +r denotes N'(' +r, that is, the rth next nonaborting
operation by user i following a, assuming it exists. If a = N'(', then a - r denotes
N'('-r, that is, the rth previous nonaborting operation by user i preceding a. Use
of this notation depends on the assumption that r < m. Since all shot counters
are initialized to 0, and increase at most by one per nonaborting Write operation,
the value assigned by an operation a to one of its shot counters provides a lower
bound on m. We'll use the notation only where it is justified on these grounds.

The events of an operation a involving shared variable access constitute up to
six events-sets, or phases:

a.s < a.h < a.r < a.t < a.p < a.w,

in accordance with the labeled lines of the Read and Write procedure. Aborting
operations consist of only the first four phases, while a nonaborting Read
operation has the first five. Then events in a phase a.c (cone of s, h, r, t, p, or
w) are denoted a.cj withj E /, and are called c-events.

For a shared variable read event e, define p-Last(e) to be the operation
containing the last p-event preceding e that accesses the same shared variable. If
such an event does not exist, then p-Last(e) is defined to be the nonoperation ..L.

For a an operation and exp an expression consisting of (symbolic or explicit)
constants and local variables, define exp@a as the final value of that expression
in the procedure invocation corresponding to a. Array indices i, j, k, s, t refer to
symbolic constants defined in the context, not to the local variables. Define

value@..L = prev@..L = tag@J.. = ss@..L = shoot[·][·]@l. = heal[·][·]@l. = 0,

in accordance with the initialization of the construction. Define exp@a. c (c one
of s, h, r, t, p, or w) as the value of the expression exp after completion of line c

How to Share Concurrent Wait-Free Variables 733

of the procedure invocation corresponding to a. By convention, the prefix me. is
omitted when exp is a field of me.

3.3. CORRECTNESS OF CONSTRUCTION 1. Construction 1 trivially satisfies
Wait-Freedom since all loops range over I = {O, ... , n - 1 }. Therefore, we
only need to prove correctness. That is, we must show that each complete proper
history is linearizable. By Lemma 1.4.1, this means we need to prove uniqueness,
integrity, and precedence. First, we need some preparatory claims.

CLAIM 3.3.1. All shared tag, heal and shot counters are nondecreasing in the
course of a history.

PROOF. A shared variable R;,j is changed only when me is written to it, in an
h-, p-, or w-event of user i, so a nondecreasing counter in the static local variable
me of user i implies a corresponding nondecreasing counter in R;,j for all j E I.
The me.shoot counters are only incremented and therefore nondecreasing.
Hence, so are the shared shot counters R; .j· Each heal counter me.heal[s][j] of
user i is only changed by assignment from Rj,;·shoot[s][i] and is thus also
nondecreasing. It remains to show that me.tag is nondecreasing. Consider the
new tag from[max].tag that is assigned to me.tag prior to line p. By the selection
of max, this is at leastfrom[i].tag which by lines hand r is just a copy of me.tag.
Thus, me.tag doesn't decrease in this assignment. In the other assignment, prior
to line w, me.tag only increases. D

COROLLARY 3.3.2. If event e writes veto a shared tag, heal, or shot counter, and
event f reads vr from the same shared counter, then e < f::} v1 2= ve and '1! < ve ::}
f <e.

COROLLARY 3.3.3. Let a < b be nonaborting operations by users i and j,
respectively. If b is a Read operation, then

tag@b::::: tag@a,

and if b is a Write operation, then

tag@b 2= tag@a + 1.

PROOF. By the selection of max, a < b, and corollary 3.3.2,
from[max].tag@b.p 2= from[i].tag@b.r 2= tag@a. For b a nonaborting Read
operation, tag@b = from[max].tag@b.p. For b a nonaborting Write operation,
tag@b ::::: tag@b.p + 1 = from[max].tag@b.p + 1. D

CLAIM 3.3.4. The differences tmpl/].shoot[s][i] - me.heal[s]U] and me.shoot[s]U]
- from[j].heal[s][i] between corresponding shot and heal counters as computed in
line t + 1 and line p + 3 are between 0 and 6 (inclusive).

PROOF. For each fixed i, j and s, 0 :s Rj,;.shoot[s][i] - R;,j·heal[s][j] :s 6 is
an invariant. It holds initially because of zero initialization. According to Claim
3.3.l, this invariant can be violated only if either user i assigns a value larger than
Rj,;-shoot[s][i] to R;,j·heal[s][j] in line h, or if user j writes a value larger than
R;,j·heal[s][j] + 6 to Rushoot[s][i] in line w. But user i only makes indirect
copies from Rj,i·shoot[s][i] (read in line s) to R;J·heal[s][j]. And user j only
increments Rushoot[s][i] (line p + 4) after seeing from[j] .heal[s][j] 2=

734 M. LI ET AL.

Rj,i·shoot[s][i] - 5 (line p + 3), in which the first term is at most R;,j·heal[s][j].
Thus, both cases give a contradiction and the invariant holds. This implies the
same bounds on the computed differences. 0

CLAIM 3.3.5. Let a be an operation by user i, and j be some index. Let either b
= p-Last(a.ri) and X = fromU]@a.ri, orb = p-Last(a.ti) and X = tmpU]@a.tj. Let
s = X.ss. Then

(1) X.prev = prev@b, s = ss@b

(2) if b = ..L then X.tag = 0
else tag@b.p :::; X.tag :::; tag@b

(3) for all k EI, X.heal[s][k] = heal[s][k]@b

(4) for all k EI, z E {O, 1}, if b = .l then X.shoot[z](k] 0
else shoot[z][k]@b.p:::; X.shoot[z][k] :::; shoot[z][k]@b

PROOF

(1) Only the p-events of user j change Rj,i·prev and Rj,i·ss.
(2) In case b = ..L, no tag has overwritten the initial 0. In case b ::f:. .l, the first

inequality follows directly from the definition of b and Corollary 3.3.2. For
the second, note that after b, the value of Rj,i·tag remains tag@b until b+ 1.p;
(if any), which by definition of b doesn't precede the reading of X.

(3) After b.p; (or from the start of history in case b = .l), the value of ss in user
j's me remains s at least until line p - 1 of b + 1 (if it exists). Hence, its
heal[s] counters remain unchanged until the next operation after b + 1.

(4) Analogous to item (2). D

CLAIM 3.3.6. Let a, b = a+ 1 be two nonaborting operations by user i.

(1) prev@b = value@a

(2) t/j E I, s E {O, 1} : shoot[s][j]@b :::; shoot[s][j]@a + 1
(3) If a and b are Write operations, then tag@b ~ tag@a + n.

PROOF

(1) Since b doesn't abort, and aborting operations don't change me. value,
prev@b = value@b.s = value@a.

(2) Similarly.
(3) Since tag@b = tag@a = i (mod n), their difference is a multiple of n, and

by Corollary 3.3.3, it is positive. 0

CLAIM 3.3.7. Let a be an aborting operation by user i, and let j be the minimal
index for which the abortion condition holds. Then there exists a nonaborting Write
operation wand a nonaborting operation b by user j, such that

a.sj < ws b < a.ti A tmp[j].prev@a = value@b.

PROOF. Let c = p-Last(a.ti), let b = c- 1, let w be the last Write among ...
b- 2, b- 1, band let d = w- 1 (recall Section 3.2 on notation). Then, d < w ':::5 b
< c.p < a.tj and by Claims 3.3.5 and 3.3.6, tmp[j].prev@a = prev@c =
value@b. Also, with s = 1 - ss@a, by (respectively) abortion of a and Claim
3.3.5 and Claim 3.3.6, and definition of w, and Claim 3.3.6,

How to Share Concurrent Wait-Free Variables 735

heal[s][j]@a + 3 s tmp[j].shoot[s][i]@a s shoot[s][i]@c

s shoot[s][i]@b + 1 = shoot[s][i]@w + 1 s shoot[s][i]@d + 2.

This shows that heal[s][j]@a < shoot[s][i]@d; hence, not d < a.sj. Combined
with d < w this yields a.sj < w. D

The following claim will be used in later sections.

CLAIM 3.3.8. If a is an operation by user i, and w 1, w2, w3 are nonaborting Write
operations by user k, such that

then a aborts.

PROOF. Lets = 1 - ss@a.t. Claim 3.3.4 shows that me.shoot[s][i]@w 1 .r -
from[i].heal[s][k] 2: 0 in line p + 3 of w1. Since these values do not change in
between, this also holds in line r of w 1• This and the assumption of the claim give

shoot[s][i]@w 1.r 2: from[i].heal[s][k]@w1.r = heal[s][k]@a. t.

According to the shooting mechanism, induction on m shows that shoot[s][i]
@wm 2: heal[s][k]@a.t + min(m, 6). Since w3 .w; -< a.tk> Corollary 3.3.2
implies

tmp[k].shoot[s][i]@a. t 2: shoot[s][i]@w 3 2: heal[s][k]@a. t + 3,

hence a aborts. D

LEMMA 3.3.9. Each complete proper history h of Construction 1 is linearizable.

PROOF. The proof is based on the tag lemma. We show that there is a
function r(), mapping each operation in h to a rational number, that satisfies
Uniqueness, Integrity, and Precedence. Let a be an operation by user i. If a
doesn't abort, then simply set r(a) = tag@a. Otherwise, if a aborts, let b be the
operation given by Claim 3.3.7. Now set r(a) = tag@b if a is a Read operation,
or set r(a) = tag@b - Ea, if a is a Write operation, where 0 < Ea < 1 is a
fraction unique to a.

Uniqueness. Let a and b be different Write operations by users i and j,
respectively. If either aborts, then its tag has a unique fractional part and is
therefore different from the other operation's tag. Suppose neither aborts.
Then r(a) = tag@a = i (mod n), and r(b) = tag@b = j (mod n). If i of. j,

then Uniqueness follows immediately. In case i = j, one Write operation must
precede the other, and Uniqueness follows from Corollary 3.3.3.

Integrity. For aborting Read operations, Integrity follows from Claim 3.3.7. The
value-tag pair that a nonaborting Read operation a copies must originate from
a nonaborting Write operation b. Clearly,, (a < b). Combined with the
definition of T, this proves Integrity.

Precedence. Consider two operations a -< b. We must show that r(a) s r(b).
If a aborts, then by Claim 3.3.7 and definition of T, there exists a j and a
nonaborting operation a' such that a' < a.t1 <band r(a) s r(a'), in which
case it would suffice to show Precedence for a' < b. So without loss of

736 M. LI ET AL.

generality we can assume that a doesn't abort. If b doesn't abort, then
Precedence follows from Corollary 3.3.3.

Suppose b aborts. By Claim 3.3.7, there exists a nonaborting Write operation w
and a nonaborting operation b' by some user j, such that a < b. sj < w -::::: b '.
By Corollary 3.3.3, tag@b' 2:: tag@w 2:: tag@a + 1 = T(a) + 1. Since 'T(b)
is either tag@b' - Eb or tag@b ', r(b) 2:: r(a) follows. D

4. Bounding the Counters

Having proven Construction 1 correct, we will make a correctness preserving
transformation that renders all variables essentially bounded, that is, that
subsequently allows us to replace them with bounded versions. The transforma
tion is based on three key lemmas. The first formalizes the idea that a tag, whose
target is seen to have been shot sufficiently many times, can be considered old,
and ignored in the selection of a maximum tag. The second shows that the
remaining, "live", tags are in a bounded range, which is the basis for bounding
the tags. Finally, the third shows that the perceived number of times a target is
shot is bounded both from below and above, which is the basis for bounding the
heal and shot counters.

4.1. OLD TAGS

LEMMA 4.1.1. Let a be a nonaborting operation by user i. Let j, k E /,and s =
from[j].ss@a.r. If

from[k].shoot[s][j]@a.r - from[j].heal[s][k]@a.r 2:: 6

(a sees 6 shots by k on j's target), then

from[k].tag@a.r > from[j].tag@a.r.

PROOF. Let b = p-Last(a.ri) and c = p-Last(a.rk)· Using in succession
Claim 3.3.5, the assumption of the claim, and Claim 3.3.5 again:

shoot[s][j]@c 2:: from[k].shoot[s][j]@a .r

2:.from[j].heal[s][k]@a.r + 6 = heal[s][k]@b + 6

This shows the existence of

where wm, 3 s m s 6 is the first nonaborting Write operation by user k such
that

shoot[s][j]@wm = heal[s][k]@b + m.

By Corollary 3.3.2, Claim 3.3.6, and the tag choice in Construction 1,

from[k].tag@a.r 2:: tag@w6 2:: tag@w4 + 2n

2:from[max].tag@w4.p + 2n + 1.

How to Share Concurrent Wait-Free Variables 737

If b = .l, then from[j].tag@a.r = 0 and the lemma follows immediately.
Otherwise, by Claim 3.3.5 and the tag choice in Construction 1,

from[j].tag@a.r :s; tag@b :s; from[max].tag@b.p + n.

Thus, to prove the lemma it suffices to show that

from[max].tag@w 4.p + 2n + 1 > from[max].tag@b.p + n. (1)

Claim 3.3.5 shows that s = ss@b = 1 - ss@b.t. Since b doesn't abort and by
definition of w3 ,

tmp[k].shoot[s][j]@b.tk < heal[s][k]@b + 3 = shoot[s][j]@w3.wj.

Hence, by Corollary 3.3.2, b.r-< b.tk < w3 .wj < w4 • Let Write operation w be
the originator of the tagfrom[max].tag@b.p. We have-. (b.r < w.w). Since w.p
< w.w and b.r < w4 , it must therefore be that w.p -< w4 • This shows

from[max].tag@w 4 .p:::::: tag@w.p:::::: tag@w - n = from[max].tag@b - n,

which immediately implies (1). 0

Definition 4.1.2. In the context of a Read or Write procedure, define

alive(j) = (\;/ k EI: from[k].shoot[s][j] - from[j].heal[s][k] < 6),

where s = from[j].ss

COROLLARY 4.1.3. For each nonaborting operation a, alive(max)@a.p.

This shows that the choice of max can be restricted to those j E I for which
alive()) holds.

4.2. RANGE OF ALIVE TAGS. The parameter m in the next lemma serves to
prepare for a later simplification of the construction, for the case of only one
writer.

LEMMA 4.2.1. Let a be a nonaborting operation by user i. Let j E I and s =
from[j].ss@a.r. Let 1 :5 m :s; n be the number of users with Write operations. If
alive(j)@a.r, then

from[max].tag@a.p - from[j].tag@a.p :5 lOmn.

PROOF. Assume, to the contrary, thatfrom[max].tag@a.p > from[j].tag@a.p
+ lOmn. Let W be the set of all nonaborting Write operations w such that
tag@w > from[j].tag@a.p /\-. (a.r-< w). Since a reads a tag that is more than
1 Omn greater than j's, and new tags are chosen in increments of at most n, we
must have I WI > 1 Orn. Therefore, some user, say k, has at least 11 operations,
say w0 < w 1 < · · · < w 10 , in W.

Let b = p-Last(a.rj). We claim that

from[j].heal[s][k]@w 1 :::::: heal[s][k]@b. (2)

Otherwise, Corollary 3 .3 .2 gives b =I= .l and w 0 -< w 1 . rj -< b. hk -< b. r k, from
which Corollary 3.3.2 and Claim 3.3.5 imply tag@w 0 :5 from[k].tag@b.r :s;

738 M. LI ET AL.

tag@b. p s from[j] .tag@a. p, contradictory to the definition of w 0 E W. As the
proof of Claim 3.3.8 shows, (2) implies shoot[s][j]@w 6 ~ heal[s][k]@b + 6.
On the other hand, the assumption alive(j)@a.r and Claim 3.3.5 give from[k].
shoot[s][j]@a.r < from[j].heal[s][k]@a.r + 6 = heal[s][k]@b + 6. Together,
using Corollary 3.3.2, these inequalities show that

If w9 .w; < a. tk, then Claim 3.3.8 would show that a aborts; hence, we must
instead have

in contradiction to the definition of w 10 E W. D

The lemma shows that all alive tags are from 1 Omn to 0 less than the
maximum. The following is an easy consequence:

COROLLARY 4.2.2. Let a be a nonaborting operation by user i. Let 1 s m :::;; n
be the number of users with Write operations. Let j, k E I such that alive(j)@a.r /\
alive(k)@a.r. Then

-1 Omn ::s from[k].tag - from[j].tag s 1 Omn.

4.3. BOUNDS ON PERCEIVED SHOTS

LEMMA 4.3.1. Let a be a nonaborting operation by user i. Let j, k E I, and s =
from[j].ss@a.r. Then

-4 :5from[k].shoot[s][j]@a.r - from[j].heal[s][k]@a.r :S 9.

PROOF. Assume, to the contrary, that the difference is outside { -4, ... , 9}.
We will reach the required contradiction by showing that the conditions of Claim
3.3.8 hold, implying that a aborts.

Let b = p-Last(a.rj) and c = p-Last(a.rk). In the first case, assume the
difference is under -4. Then, by Claim 3.3.5, s = ss@b and

heal[s][k]@b = from[j].heal[s][k]@a .r ~ from[k].shoot[s][j]@a .r + 5.

So b * ..L and b.sk read a shot counter from user k that's at least five greater
than what a read in a .rk. This shows the existence of

where w m, 1 ::::; m :5 5 is the first nonaborting write action by user k such that

shoot[s][j]@wm = from[k].shoot[s][j]@a.r + m.

Consequently, the conditions of Claim 3.3.8 hold:

a.hk < a.rk < w 2 < w4 < b.sk-< b.pi < a.rj-< a.tk.

This proves the first inequality of the lemma.
In the other case, assume the difference is over 9. Then, by Claim 3.3.5,

How to Share Concurrent Wait-Free Variables

shoot[s][j]@c ~ from[k].shoot[s][j]@a .r

~from[j].heal[s][k]@a.r + 10 = heal[s][k]@b + 10.

This shows the existence of

739

where Wm, 7 :5 m :5 10 is the first nonaborting Write operation by user k such
that

shoot[s][j]@wm = heal[s][k]@b + m.

Claim 3.3.4 shows that

from[j].heal[s][k]@w7.r ~ shoot[s]UJ@w7 - 6 = heal[s][k]@b + 1. (3)

By definition of b, a .rj < b + 1• Pi (taking b + 1 to be N} in case b = l.).
Equation (3) shows that b+ 1 must exist, and that b+ 1 < w7.rj, since after b.pi,
the value of ss in user j's me remains s at least until line p - 1 of b + 1 and its
heal[s] counters remain unchanged until the next operation after b+ 1• Thus

a.hk < a.rj < b+i.p; < w7.rj < Ws < w10.w; < a.rk < a.tk.

Again the conditions of Claim 3.3.8 hold. This proves the second inequality of
the lemma. D

4.4. EQUIVALENCE WITH BOUNDED COUNTERS. For notational convenience,
we introduce three binary operators e, EB, and 0:

Definition 4.4.1. For each pair of integers a, b, we have a e b, a E9 b, and
a 8 b uniquely defined by the equations

-4 :5 a e b < 10 /\a e b =a - b (mod 14)

-4 :s a E9 b < 10 /\a E9 b =a + b (mod 14)

-10n 2 :s a Gb < 10n2 + n /\a Gb =a -b (mod 20n2 + n).

Let Construction 2 be the result of replacing the selection of ma:x in Construc
tion 1

select max such that \r/ j : from[max].tag;:::: from[j].tag

with

select max EA such that \r/ j EA : from[ma:x].tag 0 from[j].tag 2:: 0

where A = {j E I : "ilk E I : from[k].shoot[z][j] 6 from[j].heal[z][k] < 6
where z = from[j].ss}
and of replacing the subtractions in line t + 1 and line p + 3 of Construction 1
with the e operation.

LEMMA 4.4.2. Each history of Construction 2 is a history of Construction 1.

740

type I : O .. n - 1
tagtype : -10n2 .. 10n2 + n - 1
shottype : -4 .. 9
shared : record

value,prev : ABStype
tag : tagtype
SS : 0 .. 1
shoot,heal : array[O .. lj[O .. n - l] of shottype

end

procedure Read(i) / Write(i,v)
varj:J

t: tagtype
s: 0 .. 1
from,tmp : array[O .. n - l] of shared
static me : shared

begin
s := 1 - me.ss
for j EI do me.heal[s][j] := Rj,;.shoot[s][i]
for j E I do R;,j := me
for j EI do from[j] := RJ,i
for j EI do tmp[j] := Rj,i
if 3j EI: tmp[j].shoot[s][i] e me.heal[s][j] ~ 3
then return tmp[j].prev

M. LI ET AL.

select max EA such that Vj EA: from[max].tag 8 from[j].tag ~ 0
where A= {j EI: Vk EI: from[k].shoot[zl[j] ejrom[j].heal[z][k] < 6

end

where z = from[j].ss}
me.prev, me.value, me.tag, me.ss :=

me.value, from[max].value,from[max] .tag, s
for j E I do R;,j := me
(Read only) return me.value
for j El,s E {0 .. 1} do

if me.shoot[s][j] 8 jrom[j].heal[s][i] < 6
then me.shoot[s][j]Ee := 1

select t E tagtype such that t 8 me.tag E {l, ... , n} /\ t = i (mod n)
me.value, me.tag := v, t
for j E I do R;,j := me

FIG. 3. Construction 3.

PROOF. By Corollary 4.1.3 and a simple reordering of terms, the selection of
max in Construction 1 gives, in each reachable state, the same new state as

select ma.x EA such that \:/ j EA : .from[max].tag - from[j].tag? 0

where A = {j E I : alive(j)};
which in turn gives, by Corollary 4.2.2 and Lemma 4.3.1, in each reachable state,
the same new state as the selection of max in Construction 2. By Claim 3.3.4, the
subtractions in line t + 1 and line p + 3 of Construction 1 give, in each reachable
state, the same new state as the 8 operations in Construction 2. D

COROLLARY 4.4.3. Each complete proper history of Construction 2 is linearizable.

We next consider our bounded solution, Construction 3, shown in figure 3. It is
identical to Construction 2 except for the type of tags and shot/heal counters, and
the way they are increased. Note that in the 4th to last line, the selection of t is
possible (and unique) because 20n 2 + n is a multiple of n. The initial state of

How to Share Concurrent Wait-Free Variables 741

Construction 3 has 0 in all fields of all shared and static variables, like
Constructions 1 and 2.

We prove Construction 3 correct using a proof method known as forward
simulation (see the excellent overview article [Lynch and Vaandrager 1995]).
Formally, a forward simulation from A to B is a relation f over the states of A
and the states of B that satisfies:

(1) Each initial state of A is related to an initital state of B.
(2) If A has a transition from state s to state s' by action a and s is related to

state t of B, then B has a transition by the same action a from state t to a
state t' related to s'. 3

As Lynch and Vaandrager [1995] show, the existence of such a relation implies
that the histories of A are indistinguishable from those of B-each (finite or
infinite) sequence of actions that A can take can also be taken by B. Our forward
simulation from Construction 3 to Construction 2 uses the following equivalence
relation:

Definition 4.4.4. A state s of Construction 3 is said to be equivalent to a state
u of Construction 2 if they are identical up to congruence of tags and shot/heal
counters, as follows. If tag3 is the value of some local or shared variable of type
tagtype in states, and tag2 is the value of that same variable in state u, then we
require tag3 = tag2 (mod 20n 2 + n). If shot3 is the value of some local or shared
variable of type shottype in state s, and shot2 is the value of that same variable in
state u, then we require shot3 = shot2 (mod 14). All other variables and program
counters in s and u must be identical.

THEOREM 4.4.5. Each complete proper history of Construction 3 is linearizable.

PROOF. We show that the equivalence relation defined above satisfies the
requirement of the forward simulation. It will then follow that each history of
Construction 3 is indistinguishable from a history of Construction 2. Since all
complete proper histories of Construction 2 are linearizable, and since lineariz
ability depends only on the precedence relation among the Read and Write
operations plus the values the Reads return, all complete proper histories of
Construction 3 are then also necessarily linearizable.

As to item 1, both constructions have a unique starting state in which all
variables are initialized to 0, hence these two states are equivalent.

Now, suppose Construction 3 has a transition from a state s to a state s' by
action a, and let s be equivalent to state u of Construction 2. We consider all
possibilities for the statement that action a corresponds to:

(1) If a is some statement that doesn't involve tag, heal, or shoot counters, then
Construction 2 has a transition with the same action a to to a state u'
equivalent to s'.

(2) If a is some statement that copies a tag, heal, or shoot counter, then also
Construction 2, which has identical copy statements, has a transition with the
same action a to to a state u' equivalent to s'.

3 This definition is slightly simplified from Lynch and Vaandrager [1995], where B can make
additional 'internal action' transitions, which we needn't consider.

742 M. LI ET AL.

(3) If a is the statement that tests if 3j EI: tmp[j].shoot[s][i] e me.heal[s][j]
~ 3, then the left-hand-side of the inequality is, by definition of e, the same
in the equivalent states s and u. Hence, Construction 2, which has an
identical statement, has a transition with the same action a to to a state u'
equivalent to s'.

(4) If a is the statement selecting max, then by definition of e, the quantities
from[k].shoot[z][j] e from[j].heal[z][k] are identical in states s and u;
hence, set A is identical in these states. Similarly, the quantity from[max].tag
0 from[j].tag is, by definition of 0, identical in states s and u. Since
Construction 2 has an identical statement, it follows that it has a transition
with the same action a to a state u' equivalent to s'.

(5) If a is the conditional shoot increment, then the quantity me.shoot[s][j] e
from[j].heal[s][i] is again identical in states s and u, and assigning
me.shoot[s][j] E9 1 to rne.shoot[s][j] gives a state equivalent to the one
Construction 2 reaches by assigning me.shoot[s][j] + 1 to the corresponding
unbounded variable.

(6) Finally, if a is the selection oft, then because n divides 20n2 + n, we can
define z uniquely as the number in { 1, ... , n} satisfying z = i - me. tag
(mod n) in both states and state u. Now in states, t is chosen such that t 0
me.tag== z, and in state u it is chosen such that t - me.tag= z, so again the
resulting states s' and u' are equivalent. 0

5. Complexity

First let's consider the time complexity of Construction 3. Since all shared
variable accesses occur in phases, each of which consists of n reads or writes in
parallel, the parallel time complexity of both the Read and Write operation is
bounded by the number of phases, which is clearly 0(1).

Next consider the space complexity of Construction 3, which is the size in bits
of the type shared. This can be split into two parts: the data size and the control
size.

The data size is 2 x sizeof (ABS). This factor 2 overhead can be traced back to
the use of single reader shared variables in our construction. In fact, the version
of Construction 3 using multi-reader variables can be easily modified to do away
with the prev data field (as sketched in the next section).

The control size concerns all the other fields in the shared variables. Note first
that from the values read from Rj,i• user i never uses any of the counters
heal[l - ss][k], where k =F i. Thus, in addition to the single counter heal[l -
ss][i], only a single heal counter set needs to be stored in Rj,i• of which the
missing first index is understood to be Rj,i·ss. Thus, line h will change in each
register R;,j only the heal[l - ss][j] field, and in line p, all heal counters in R;,j
are changed together with Ri,j·ss. This leads to a control size of

flog(20n 2 + n)l + 1 + (3n + l)flog 141s12n + o(n).

6. Subproblems

Construction 3 presents a solution to the problem of implementing a multi-user
variable from single-reader variables. Most other papers have considered the

How to Share Concurrent Wait-Free Variables 743

intermediate level of a single-writer multi-reader variable, which splits the
problem into two subproblems. We show that projections of our construction
yield solutions to those two subproblems with competitive complexity measures.

The first projection is obtained by collapsing the row of shared variables
R;, 0 , ..• , R;,1! - I into a single multi-reader variable R;. Each loop

for j E I do R;,i : = me

is replaced by the single write

R; :=me

while each read from Rj,i is replaced by a read from Ri. The result is a solution
to the problem of implementing a multi-user variable from single-writer multi
reader variables, since each of its histories corresponds to a history of Construc
tion 3 in which all writes of a parallel loop happen to be consecutive events. The
parallel time complexity is still constant, while the space complexity is
sizeof(shared) = 2 X sizeof(ABS) + 16n + o(n). (Increase of 4n is due to the fact
that now no heal counters can be omitted as was the case with the R;,j 's.) The prev
field can be made redundant by letting an aborting operation return tmp[j]. value
instead of tmp[j].prev. Claim 3.3.7 is adjusted accordingly to the statement a.sj <
w -::::: b /\ tmp[j]. value@a = value@b, proven by choosing b equal to c instead
of c - 1. The only modification needed to prove the Precedence part of Lemma
3.3.9 is that a' is chosen to be the Write from which tmp[j]. value@a originates,
as this Write ends with a single .w event that necessarily precedes a. tj. Otherwise,
the proof of correctness remains unchanged.

The second projection is more involved, but yields a large space savings.
Assume that only user 0 executes Write operations. Then all shoot counters of
the remaining users, as well as all heal counters heal[O .. 1][1 .. n - 1],
remain 0, and can therefore be omitted. The prev field of the Read-only users
will never be used and can also be omitted. Furthermore, 0 is easily seen to be
always alive and therefore user 0 needs neither heal counters nor the shoot
selector ss. User 0 also never aborts and can always choose max : = 0.

By Corollary 4.2.2, and because new tags are always chosen to be 0 (mod n),
only tags { - 1 On, - 9n, - Sn, ... , 9n, 1 On} ever occur, and n can be factored
out.

The result of removing all these redundancies is shown in Figure 4 as
Construction 4.

The space complexity (taking into account possible savings) turns out to be 2 x
sizeof (ABS) + Sn + o(n) for the shared variables of user 0, and sizeof (ABS) +
0(1) for the shared variables of the remaining users. This space complexity is
the same as that of K.irousis et al. [19S7] and, apart from the data field used in
the shared variables of Read only users, also the same as that of Peterson and
Burns [1987], Newman-Wolfe [19S7], and Singh et al. [1994].

7. Conclusion

Our construction shows that shared memory can be implemented, using replica
tion, from simple bounded memory cells, with only a small constant factor
increase in access time.

744

type I : O .. n - 1
type shared : record

value ,prev : ABS type
tag : -10 .. 10
SS : 0 .. 1
shoot : array[O .. l][O .. n - l] of -4 .. 9
heal : array [0 . .1][OJ of -4 .. 9

end

procedure Write(v)
varj:I

from : array[O .. n - l] of shared
static me : shared

begin

end

for j E I do from[j] := Rj,o
me.prev :=me.value
for j E I do Ro,; := me
for j E I,s E {0 .. 1} do .

if me.shoot[s][j] efrom[j].heal[s][O] < 6 then me.shoot[s][J](B := 1
me.value, me.tag:= v, (me.tag+ 11) mod 21 - 10
for j E I do Ro,i := me

procedure Read(i) (i = l..n - 1)
varj:I

s: 0 .. 1
from,tmp : array[O .. n - 1) of shared
static me : shared

begin

end

s := 1- me.ss
me.heal[s][O] := Ro,;.shoot[s][i]
R;o :=me
fo~ j E I do from[j] := R;,;
tmp[O] := Ro,;
if tmp[OJ.shoot[s][i] e me.heal[sj[O) ~ 3 then return tmp[O].prev
select max EA such that 'c/j EA: from[max].tag 8/rom[j].tag 2: 0
where A= {O} U {j EI: from[O).shoot[z][j] 6 from[j].heal[z][OJ < 6

where z = from[i].ss}
me.value, me.tag, me.ss := from[max].value,from[max].tag, s
for j E I do R;,j := me
return me.value

FIG. 4. Construction 4; Single- to multi-reader.

M. LI ET AL.

To this end, the unbounded solution of Vitanyi and Awerbuch [1986], for a
long time the only recognized correct solution, is refined by adding a powerful, in
itself unbounded, shooting mechanism. This mechanism allows slow, potentially
confused operations to safely abort, and allows the remaining operations to
interpret the unbounded timestamps of Vitanyi and Awerbuch as bounded
quantities. The end result follows by showing that the shooting mechanism itself
is easily bounded.

ACKNOWLEDGMENTS. We thank Amos Israeli and Leslie Lamport for fruitful
discussions. The numerous useful suggestions by the anonymous referees greatly
helped to improve the presentation.

How to Share Concurrent Wait-Free Variables 745

REFERENCES

ANDERSON, J. 1993. Composite registers. Dist. Comput. 6, 1993, 141-154.
AWERBUCH, B., KIROUSIS, L., KRANAKIS, E., AND VITANYI, P. M. B. 1988. A proof technique for

register atomicity. In Proceedings of the Bth Conference on Foundations of Software Technology and
Theoretical Computer Science. Lecture Notes in Computer Science, Vol. 338. Springer Verlag,
Heidelberg, Germany, pp. 286-303.

BLOOM, B. 1988. Constructing two-writer atomic registers. IEEE Trans. Comput. 37, 1506-1514.
BURNS, J. E., AND PETERSON, G. L. 1987. Constructing multi-reader atomic values from nonatomic

values. In Proceedings of the 6th ACM Symposium on Principles of Distributed Computing (Vancou
ver, B. C., Canada, Aug. 10-12). ACM, New York, pp. 222-231.

DOLEV, D., AND SHAVIT, N. 1996. Bounded concurrent time-stamp systems are constructible.
SIAM J. Comput., to appear.

DWORK, c., HERLIHY, M., PLOTKIN, s., AND w AARTS, 0. 1992. Time-lapse snapshots. In Proceed
ings of the lst Israel Symposium on Theory of Computing and Systems. pp. 154-170.

DWORK, C., AND WAARTS, 0. 1992. Simple and efficient bounded concurrent timestamping, or,
Bounded concurrent timestamp systems are comprehensible! In Proceedings of the 24th Annual
ACM Symposium on Theory of Computing (Victoria, B.C., Canada, May 4-6). ACM, New York, pp.
655-666.

GAWLICK, R., LYNCH, N., AND SHAVIT, W. 1992. Concurrent timestamping made simple. In
Proceedings of the lst Israel Symposium on Theory of Computing and Systems. pp. 171-183.

HALDAR, S., AND VIDYASANKAR, K., 1992. Counterexamples to a one writer multireader atomic
shared variable construction of Burns and Peterson. ACM Oper. Syst. Rev. 26, l, 87-88.

HALDAR, S., AND VmYASANKAR, K. 1995. Constructing !-writer multireader multivalued atomic
variables from regular variables. J. ACM 42, 1 (Jan.), 186-203.

HERLIHY, M. P. 1988. Impossibility and universality results for wait-free synchronization. In
Proceedings of the 7th Annual ACM Symposium on Principles of Distributed Computing (Toronto,
Ont., Canada, Aug. 15-17). ACM, New York, pp. 276-290.

HERLIHY, M. P., AND WING, J. 1990. Linearizabi!ity: A correctness condition for concurrent
objects. ACM Trans. Prog. Lang. Syst. 12, 3 (July), 463-492.

ISRAELI, A., AND LI, M. 1987. Bounded time-stamps. In Proceedings of the 28th IEEE Symposium
on Foundations of Computer Science. IEEE, New York, pp. 371-382.

ISRAELI, A., AND PINHASOV, M. 1992. A concurrent time-stamp scheme which is linear in time and
space. In Proceedings of the 6th International Workshop on Distributed Algorithms. Lecture Notes in
Computer Science, vol. 647. Springer-Verlag, Heidelberg, Germany, pp. 95-109.

ISRAELI, A., AND SHAHAM, A. 1992. Optimal multi-writer multi-reader atomic register. In Proceed
ings of the llth annual ACM Symposium on Principles of Distributed Computing (Vancouver, B. C.,
Canada, Aug. 10-12). ACM, New York, pp. 71-82.

KIROUSIS, L. M., KRANAKIS, E., AND VITANYI, P. M. B. 1987. Atomic multireader register. In
Proceedings of the 2nd International Workshop on Distributed Computing. Lecture Notes in Com
puter Science, vol. 312. Springer-Verlag, New York, pp. 278-296.

LAMPORT, L., 1986. On Interprocess Communication Parts I and II. Dist. Comput. 1, 77-101.
LI, M., AND VITANYI, P. M. B. 1988. A very simple construction for atomic multiwriter register.

Tech. Rep. TR 01-87. Aiken Comp. Lab., Harvard Univ. Nov.
LI, M., AND VITANYI, P. M. B. 1989. How to share concurrent asynchronous wait-free variables. In

Proceedings of the International Colloquium on Automata, Languages, and Programming. Lecture
Notes in Computer Science, vol. 372. Springer-Verlag, New York, pp. 488-505.

LI, M., AND VITANYI, P. M. B. 1992. Optimality of wait-free atomic multiwriter variables. Inf Proc.
Lett. 43, 107-112.

LI, M., TROMP, J., AND VITANYI, P. M. B. 1989. How to share concurrent wait-free variables, Tech.
Rep. CS-8916. CWI, Amsterdam, The Netherlands, April.

LYNCH, N. A., AND V AANDRAGER, F. W. 1995. Forward and backward simulations. Part I: Untimed
systems, lnf Comput. 121, 2, 214-233.

NEWMAN-WOLFE, R. 1989. A protocol for wait-free, atomic, multi-reader shared variables. In
Proceedings of the 6th Annual ACM Symposium on Principles of Distributed Computing (Vancouver,
B. C., Canada, Aug. 10-12). ACM, New York, pp. 232-248.

PETERSON, G. L. 1983. Concurrent reading while writing. ACM Trans. Prog. Lang. Syst. 5, 1 (Jan.),
46-55.

746 M. LI ET AL.

PETERSON, G. L., AND BURNS, J. E. 1987. Concurrent reading while writing II: The multiwriter
case. In Proceedings of the 28th IEEE Symposium on Foundations of Computer Science. IEEE, New
York, pp. 383-392.

SCHAFFER, R. 1988. On the correctness of atomic multi-writer registers, Tech. Rep. MIT/LCS/TM-
364. MIT Lab. for Computer Science, MIT, Cambridge, Mass., June.

SINGH, A. K., ANDERSON, J. H., AND GOUDA, M. G. 1994. The Elusive Atomic Register. f. ACM
41, 2 (Mar.), 311-339.

TROMP, J. 1989. How to Construct an Atomic Variable. In Proceedings of the 3rd International
Workshop on Distributed Algorithms. Lecture Notes in Computer Science, vol. 392. Springer-Verlag,
Heidelberg, Germany, pp. 292-302.

VIDYASANKAR, K. 1988. Converting Lamport's Regular Register to an atomic register. lnf Proc.
Lett. 28, 287-290.

VITANYI, P. M. B., AND AWERBUCH, B. 1986. Atomic shared register access by asynchronous
hardware. In Proceedings of the 27th IEEE Symposium on Foundations of Computer Science. IEEE,
New York, 1986, pp. 233-243. (Errata, Ibid.,1987)

RECEIVED APRIL 1989; REVISED NOVEMBER 1995; ACCEPTED FEBRUARY 1996

Journal of the ACM, Vol. 43, No. 4, July 1996.

