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1. Introduction 

Lamport [1986] has shown how an atomic variable-one whose accesses appear 
to be indivisible-shared between one writer and one reader, acting asynchro
nously and without waiting, can be constructed from lower level hardware rather 
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than just assuming its existence. There arises the question of the construction of 
multi-user atomic variables of this type (see Vitanyi and Awerbuch [1986], on 
which the current paper is partially based). In this paper, we will supply a 
uniform solution to such problems, given Lamport's construction, and derive the 
implementations by transformations from the specification. 

1.1. INFORMAL PROBLEM STATEMENT AND MAIN RESULT. Usually, with asyn
chronous readers and writers, atomicity of operations is simply assumed or 
enforced by synchronization primitives like semaphores. However, active serial
ization of asynchronous concurrent actions always implies waiting by one action 
for another. In contrast, our aim is to realize the maximum amount of parallelism 
inherent in concurrent systems by avoiding waiting altogether in our algorithms. 
In such a setting, serializability is not actively enforced, rather it follows from the 
way the executions of the algorithm by the various processes interact. Any one of 
the references, say Lamport [1986] or Vitanyi and Awerbuch [1986] describes the 
problem area in some detail. Peterson [1983] seems to be the first to precisely 
identify the notion of wait-free concurrent read/write variables. 

The point of departure is the solution of the following problem. (We keep the 
discussion informal.) Consider two processors that are asynchronous and do not 
wait for one another. A flip-flop is a Boolean variable that can be read by one 
processor and written by the other. Suppose, one is given atomic flip-flops as 
building blocks, and is asked to implement a k-bit atomic variable, that can be 
written by one processor and read by the other. Of course, a buffer consisting of 
k flip-flops suffices to hold such a value. If, however, the implementation allows 
the reader to read and return the value held by the same buffer that the writer 
may simultaneously access for writing, then either the writer or the reader might 
do all of its accesses while the other is temporarily stopped halfway by the buffer. 
The problem arises that a reader might obtain 1111000 from a buffer that a 
writer is changing from 0000000 to 1111111. That is, the reader would obtain a 
value consisting of half the new value and half the old one. Obviously, this 
violates atomicity. The problem then is to design a protocol that provides 
exclusive access to buffers without waiting. Correct implementations of atomic 
multi-bit variables from single bits can be found in Peterson [1983], Lamport 
[1986], Vidyasankar [1988], and Tromp [1989]. 

These atomic variables serve as the building blocks of our construction of an 
n-user variable; a variable shared between n users each of which can atomically 
execute both read and write operations. 

At the outset, we state our main result: 

THEOREM 1.1.1. An atomic n-user variable is implemented wait-free from O(n2) 

atomic 1-reader 1-writer variables each with O(n) control bits. Moreover, it uses 
O(n) accesses per Read/Write running in 0(1) parallel time. 

Our notion of parallel time allows a set of accesses to different variables to 
proceed in arbitrary order in one time-unit. 

1.2. COMPARISON WITH RELATED WORK. The first version of our construction 
was widely circulated in 1987 as the preprint [Li and Vitanyi 1987], followed by a 
conference version [Li and Vitanyi 1989], testing by implementation, and a 
preprint of the current version [Li et al., 1989]. Since 1987 the field has 
blossomed to such an extent that we cannot survey it in detail. Therefore, we 
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restrict ourselves to listing the related papers published before that time and the 
most relevant later work, and compare our results in detail only with the best 
existing ones we know of. 

With this in mind, related constructions are given by Singh et al. [1994], 
Kirousis et al. [1989], Burns and Peterson [1987], Newman-Wolfe [1987], Israeli 
and Li [1987], and Haldar and Vidyasankar [1995] for the single-reader to 
multi-reader case, and by Vitanyi and Awerbuch [1986], Peterson and Burns 
[1987], Schaffer [1988], and Israeli and Shaham [1992] for the multi-reader to 
multi-writer case. The latter problem, from multi-reader to multi-writer, is the 
more difficult one. It is by now well-known that these constructions are difficult 
and error-prone. Since it is by no means easy to find the errors, we point out that 
the bounded control bit solutions in Vitanyi and Awerbuch [1986], Peterson and 
Burns [1987], and Burns and Peterson [1987] are known to be incorrect as noted 
in Peterson and Burns [1987], Schaffer [1988], and Haldar and Vidyasankar 
[1992], respectively. The latter two provide corrected constructions, while Vitanyi 
and Awerbuch [1986] is fixed using the (largely identical) method of Dwork and 
Waarts [1992]. The unbounded solution in Vitanyi and Awerbuch [1986] is 
correct and is used as a point of departure in the current paper. 

Here, we present the first implementation of an n-user variable directly from 
single reader variables. The algorithm uses O(n) accesses to single-reader 
variables per operation, and each single-reader variable stores two copies of the 
value of the constructed variable together with O(n) bits of control information. 
Most other algorithms use multi-reader variables instead of single-reader ones, 
making a direct comparison impossible. Still, an indirect comparison can be 
made by combining an algorithm using multi-reader variables with an implemen
tation of a multi-reader variable from single-reader ones. 

The multi-writer algorithm in Schaffer [1988] uses ®(n 2) accesses to multi
reader variables per operation, running in ® (n) parallel time. 

Israeli and Li's important paper [Israeli and Li 1987] introduced the notion of 
a bounded time-stamp system, which is a general mechanism for tracking the 
order of events in a system. They developed an elegant theory of sequential 
time-stamp systems, in which operations are totally ordered, as well as a system 
with a limited amount of concurrency. A proper definition of concurrent 
time-stamp system was introduced in Dolev and Shavit [1996]. Such a system can 
be applied directly to solve the problem of implementing a multi-user variable 
from multi-reader variables. Their technique yields an implementation using 
® (n log n) accesses to (linear-sized) multi-reader variables per operation, 
running in ®(log n) parallel time. 

Implementing the multi-reader variables in single-reader single-writer vari
ables by known constructions, such as Singh et al. [1994], to obtain a multi-writer 
variable implementation from single-reader single-writer variables, multiplies the 
number of accesses per operation in the above constructions by a factor n. 

More recent papers1 provide improved constructions for concurrent time
stamp schemes. The most economic of these constructions [Israeli and Pinhasov 
1992] uses ® (n) accesses to (linear-sized) multi-reader variables per operation, 
running in O ( 1) parallel time, and can be applied directly to the construction of 

1 See, for example, Dwork and Waarts [1992], Israeli and Pinhasov [1992], Gawlick et al. [1992], and 
Dwork et al. [1992]. 
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a multi-writer variable. Compared to our construction, this still has the disadvan
tage of using multi-reader variables and having a higher conceptual complexity. 

Bloom [1988] presented an elegant 2-writer construction. Herlihy [1988] 
considers more powerful shared objects that have no wait-free implementations 
from variables. 

A more recent construction than ours [Israeli and Shaham 1992] presents a 
direct solution that is optimal in space (logarithmic control bit complexity, see Li 
and Vitanyi [1992]) as well as the number of variable accesses per read/write 
(linear). They do not however achieve constant parallel time (to be defined in 
the next section) and have a rather more complicated protocol. 

We believe the construction presented here is relatively simple and transpar
ent. Both the problem of how to implement a multi-reader variable from 
single-reader variables, and the problem of implementing a multi-writer variable 
from multi-reader variables, are solved by simplifications of our main solution. 

The basis of our proof-technique was developed in Awerbuch et al. [1988]. Our 
model and terminology is based on Herlihy and Wing [1990], which defines and 
motivates the notion of linearizability. 

1.3. MULTI-USER VARIABLE CONSTRUCTION. In this section, we consider the 
problem of constructing an n-user variable from single-reader variables and state 
the correctness condition such a construction has to satisfy. 

Throughout the paper, the n users are indexed with the set I = { 0, ... , 
n - 1}. The variable constructed will be called ABS (for abstract). 

A construction consists of a collection of shared variables R;,j, i, j E I 
(providing a communication path from user i to user j), and two procedures, 
Read and Write. Both procedures have an input parameter i, which is the index of 
the executing user, and in addition, Write takes a value to be written to ABS as 
input. An implicit or explicit return statement ends the execution of both 
procedures, in the case of Read having an argument that is taken to be the value 
read from ABS. 

A procedure contains a declaration of local variables and a body. A local 
variable appearing in both procedures can be declared static, which means it 
retains its value between procedure invocations. The body is a program fragment 
comprised of atomic statements. Access to shared variables is naturally restricted 
to assignments from Rj,i to local variables and assignments from local variables 
to R;,j, for any j (recall that i is the index of the executing user). No other means 
of interprocess communication is allowed. In particular, no synchronization 
primitives can be used. Assignments to and from shared variables are called 
writes and reads respectively, always in lowercase. 

The space complexity of a construction is the maximum size, in bits, of a shared 
variable. 

The time complexity of the Read or Write procedure is the maximum number 
of shared variable accesses in a single execution. 

A parallel loop is a loop denoted as 'for j E I' and it is parallel in the sense 
that its iterations2 can be executed in arbitrary order. Moreover, shared variables 
accessed in different iterations of the parallel loop must be disjoint. The parallel 
time complexity of the Read or Write procedure differs from the normal, 

2 This is a slight abuse of the term, since the word iteration suggests sequential behavior. 
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sequential one in that the cost of a parallel loop is the maximum, rather than the 
sum, of the number of shared variable accesses in each of its iterations (we don't 
consider the case of nested parallel loops in this paper). The total cost of the 
procedure is then simply the sum of the costs of its parallel loops plus the 
maximum number of remaining shared variable accesses. 

A construction must satisfy the following constraint. 

Wait-Freedom. Each procedure must be free from unbounded loops. 

Given a construction, we are interested in properties of its executions, which 
the following notions help formulate. A state is a configuration of the construc
tion, comprising values of all shared and local variables, as well as program 
counters. Note that we need a somewhat liberal notion of program counter to 
characterize the execution of a parallel loop. In between invocations of the Read 
and Write procedure, a user is said to be idle, and its program counter has the 
value 'idle'. One state is designated as initial state. All users must be idle in this 
state. 

A state t is an immediate successor of a state s if t can be reached from s 
through the execution of a procedure statement by some user in accordance with 
its program counter. Recall that n denotes the number of users of the con
structed variable ABS. A state has at least n immediate successors: If a user is 
idle, it can invoke either the Read or Write procedure. And if it is within one of 
these procedures, there is at least one atomic statement to be executed next 
(possibly more during the execution of a parallel loop). 

A history of the construction is a finite or infinite sequence of states t 0 , t 1 , 

t2 , ... such that t 0 is the initial state and t;+i is an immediate successor oft;. 
Transitions between successive states are called the events of a history. With each 
event is associated the index of the executing user, the relevant procedure 
statement, and the values manipulated by the execution of the statement. Each 
particular access to a shared variable is an event, and all such events are totally 
ordered. 

The (sequential) time complexity of the Read or Write procedure is the 
maximum number of shared variable accesses in some such operation in some 
history. Parallel time complexity is defined similarly, except that for each parallel 
loop, we count not the sum of the time complexities of its iterations, but rather 
their maximum. 

An event a precedes an event b in history h, a <h b, if a occurs before b in h. 
The subscript h is omitted when clear from context. Call a finite set of events of 
a history an event-set. Then we similarly say that an event-set A precedes an 
event-set Bin a history, A <1i B, when each event in A precedes all those in B. 
We use a :::: b to denote that either a = b or a <. b. The relation <1i on 
event-sets constitutes what is known as an interval order. That is, a partial order 
satisfying the interval axiom a < b /\ c < d /\ c -I b =? a <. d. This 
implication can be seen to hold by considering the last event of c and the earliest 
event of b. See Lamport [1986] for an extensive discussion on models of time. 

Of particular interest are the sets consisting of all events of a single procedure 
invocation, which we call an operation. An operation is either a Read operation 
or a Write operation. It is complete if it includes the execution of the (possibly 
implicit) return statement of the procedure. Otherwise, it is said to be pending. A 
history is complete if all its operations are complete. Note that in the final state 
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of a complete finite history, all users are idle. The value of an operation is the 
value written to ABS in the case of a Write, or the value read from ABS in the case 
of a Read. 

The following crucial definition expresses the idea that the operations in a 
history appear to take place instantaneously somewhere during their execution 
interval. A more general version of this is presented and motivated in Herlihy 
and Wing [1990]. To avoid special cases, we introduce the notion of a proper 
history as one that starts with an initializing Write operation that precedes all 
other operations. 

Linearizability. A complete proper history h is linearizable if the partial order 
< h on the set of operations can be extended to a total order which obeys the 
semantics of a variable. That is, each Read operation returns the value written 
by that Write operation which last precedes it in the total order. 

Definition 1.3.1. A construction is correct if it satisfies Wait-Freedom and all 
its complete proper histories are linearizable. 

1.4. THE TAG FUNCTION. Although the definition of linearizability is quite 
clear, it is convenient to transform it into an equivalent specification from which 
the first algorithm can be directly derived. The idea behind the following lemma 
was first expressed by Lamport [1986, Proposition 3] for the case of a single 
writer. In Singh et al. [1994], the equivalent conditions given by Lamport's 
proposition are in fact taken as the definition of linearizability (often called 
atomicity in the register construction literature). The Atomicity Criterion of 
Awerbuch et al. [1988] is the first generalization of Lamport's proposition to the 
case of multiple readers and writers. A further generalization appears in 
Anderson [1993] for the case of a variable having several fields which can be 
written independently. 

LEMMA 1.4.l. A complete proper history h is linearizable iff there exists a 
function mapping each operation in h to a rational number, called its tag, such that 
the following 3 conditions are satisfied: 

Uniqueness. Different Write operations have different tags. 

Integrity. For each Read operation there exists a Write operation with the same 
tag and value, that it doesn't precede. 

Precedence. If one operation precedes another, then the tag of the latter is at 
least that of the former. 

PROOF 

:::} Let a complete proper history h be linearizable. Let < be the total order 
extending <h according to the definition of linearizability. Assign to each 
operation a tag which is the number of Write operations up to and including it in 
<. This clearly satisfies Uniqueness. For each Read operation R, the Write 
operation W that precedes it last in < has the same tag. Also, because < obeys 
the semantics of a variable, W and R have the same value. From the facts that < 
extends <h, W < R, and < is acyclic, we conclude that--, R <h W. So Integrity 
is satisfied as well. Finally, for operations A < h B, we necessarily have A < B 
and thus the tag of B is at least that of A. 
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type I : 0 .. n - 1 
shared : record 

value : ABStype 
tag : integer 

end 

procedure Write(i, v) 
varj:J 

t: integer 
from : array[O .. n - 1] of shared 

begin 
for j E I do from[j] := Rj,; 
select t such that ('v'j : t > from[j].tag) /\ t = i (mod n) 
from[i] := (v,t) 
for j E I do R;,j := from[i] 

end 

procedure Read(i) 
var j,max: I 

from : array[O .. n - 1] of shared 
begin 

end 

for j E I do from[j] := Ri,i 
select max such that 'v'j : from[max].tag 2:: from[j].tag 
from[i] := from[max] 
for j EI do R..;,i := from[i] 
return from[i].value 

729 

FIG. 1. Construction 0. 

{::: Suppose we are given a complete proper history h and a function tag 
satisfying the three conditions, Using Uniqueness, totally order the Write 
operations according to their tags. Next, we insert all Read operations in this 
total order: for each Write operation in turn, insert immediately after it those 
Read operations having the same tag, in some order extending <h. By Integrity, 
the result is a total order < on all operations, that obeys the semantics of a 
variable. It remains to show that < extends <h. Suppose A <h B are two 
operations. By Precedence, A 's tag is at most that of B. If A 'stag is less than B's, 
or A and B are Read operations with the same tag, then A < B follows from the 
construction of <. In the remaining case, A and B have equal tags and at least 
one of them is a Write operation. By Uniqueness, one is a Read operation, and 
the other is the unique Write operation with the same tag. Finally, we use 
Integrity to conclude that A is the Write, and B the Read operation. Thus, A < 
B follows again from the construction of <. D 

2. The Basic Unbounded Construction 

Figure 1 shows Construction 0, which is the unbounded solution of Vitanyi and 
Awerbuch [1986]. We present it here as an aid in understanding Construction 1, 
and give only a sketchy proof. 

The Write and Read procedures are given after the declaration of the type of 
the shared variables R;,j· The initial state of the construction has all Ri,j 

containing (0, 0). 
The tag function called for in Lemma 1.4.1 is built right into this construction. 

Each operation starts by collecting value-tag pairs from all users. In the third line 
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of either procedure, the operation picks a value and tag for itself. It finishes after 
distributing this pair to all users. It is not hard to see that the three conditions of 
Lemma 1.4.1 are satisfied for each complete proper history. Integrity and Prece
dence are straightforward to check. Uniqueness follows since tags of Write opera
tions of different users are not congruent modulo n, while tags of Write operations 
of a single user strictly increase (based on the observation that each Ri,i.tag is 
nondecreasing). 

3. Solution Method 

The only problem with Construction 0 is that the number of tags is infinite. With 
a finite number of tags comes the necessity to reuse tags and hence to distinguish 
old tags from new ones. 

In Construction 1, we introduce a shooting mechanism to provide additional 
aging information to the tags. At the start of an operation, a user sets up a fresh 
"target" that gets "shot at" by Write operations. A tag issued by an operation is 
considered old once its associated target has received sufficiently many shots. 
The shooting mechanism also serves another purpose, which is that of approxi
mating a snapshot, an instantaneous picture of the state of a set of shared 
variables. In Construction 0, an operation collects information on values and tags 
of all users by reading their shared variables one after another, in arbitrary order 
(the first line in either procedure). Since these read events are interleaved with 
events of other users, in particular write events, the picture it obtains this way 
may be very distorted. In Construction 1, with additional information to collect, 
there is a need to limit the amount of distortion. 

If, after the information-collecting period, the initially fresh target has received 
too many shots, then the operation will abort, that is, terminate without executing 
the remainder of the procedure. Aborting operations do not change or otherwise 
make use of any tags and thus have very limited interaction with non-aborting 
operations. The latter in turn obtain a good, if not instantaneous, picture of the 
shared state. In fact, the picture is good enough to enable them to discriminate 
old tags by inspection of the associated targets. This discrimination feature is 
however not yet implemented in Construction 1. While it compares unbounded 
tags as in Construction 0, it employs many additional unbounded counters that 
we can prove certain properties about, showing that all unboundedness is 
redundant. Thus, Construction 1 paves the way to our final, bounded, solution. 

In Section 3.1, we discuss Construction 1 and in particular the shooting 
mechanism, in more detail. Section 3.2 introduces some notational conventions. 
The correctness proof is given in Section 3.3. Finally, Section 4 shows how 
Construction 1 can be changed into an equivalent one using only bounded 
counters. 

3.1. CONSTRUCTION 1. Figure 2 shows the data-structure and procedures of 
Construction 1. The Write procedure turns out to be an extension of the Read 
procedure, which is why the two are more conveniently shown together. The line 
indicated '(Read only)' is unique to the Read procedure, making the remaining 
lines effectively unique to the Write procedure. The initial state of Construction 
1 has 0 in all fields of all shared and static variables. 

Let's look at the data structures used in the construction. The value and tag 
fields have exactly the same function as in Construction 0. The prev field is used 
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type I : O .. n - 1 
shared : record 

valu.e,prev : ABStype 
tag : integer 
SS : 0 .. 1 
shoot,heal : array[O .. l][O .. n - l] of integer 

end 

procedure Read(i) / Write(i, v) 
varj:I 

t: integer 
8: 0 .. 1 
from,tmp : array(O .. n - 1] of shared 
static me : shared 

begin 
s := 1- me.ss 

s: for j EI do me.heal[s][j] := R;,;.shoot[s][i] 
h: for j E I do R;,; := me 
r: for j E I do from[j] := R;,i 
t: for j EI do tmp[j] := R;,; 

if 3j EI: tmp[j].shoot[s][i] - me.heal[s][j] ;::: 3 
then return tmp[j].prev 
select max such that 'T/j: from[max].tag ;::: from[j].tag 
me.prev, me.value, me.tag, me.ss := 

me. value, from[ max].valu.e, from[max]. tag, s 
p: for j EI do R;,; :=me 

(Read only) return me.value 
for j E I,s E {0 .. 1} do 

if me.shoot[s][j] - from[i].heal[s][i] < 6 
then me.shoot[s][j]+ := 1 

select t such that t - me.tag E {l, ... , n} At :: i (mod n) 
me.value, me.tag := v, t 

w: for j E I do R;,; := me 
end 
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FIG. 2. Construction 1. 

to remember values of former operations, which are used by aborting Read 
operations. Two sets of heal counters, heal[O][O .. n - 1] and heal[l][O .. n - l], 
are used to hold targets. The ss (shoot-selector) field selects which of the two sets 
holds the target associated with the current value-tag pair. A second set is needed 
since new operations must set up a target before they can compute a new tag. 
Together with the heal counters, the shot counters, shoot[O .. 1][0 .. n - l], 
implement the shooting mechanism. User j shoots at a target heal[s ][O .. n - 1] of 
user k by making his counter shoot[s][k] larger than the counter heal[s][j] of user k, 
up to a maximum of 6. 

Consider the procedures. The lines involving shared variable access are 
identified by one of the characters s, h, r, t, p, and w, which are mnemonic 
shorthands for setup, heal, read, test, propagate and write, respectively. 

At the start of an operation, say a, user i sets up a new target in the available 
heal counter set ( 1 - me .ss) by catching up with each user's shot counter. It 
then writes out the target in line h so that the other users can start shooting it. 
After collecting every one's data in line r, it proceeds to test in line t how many 
times its target has been shot. More precisely, if some user has increased its shot 
counter at least three times since it was previously read in line s, then a will 
abort. For the sake of definiteness, let the j in the return statement be the 
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minimal index satisfying the condition of the test. It can be shown that a 
completely "contains" an operation b of user j with the value tmp[j] .prev, as well 
as a write operation w of user j that precedes or equals b. Thus, a can be 
imagined to have occurred right before w or after b in a linearization, depending 
on whether a is a Write or Read operation. If no user shot the target three times, 
then user i sets max to an index of the largest visible tag. It then saves the old 
value in prev, changes its value and tag to that of max, and associates its target 
with the new value-tag pair. In line p, record me is written out. The purpose of 
the Write operations propagating the value-tag pair of max is to ensure that 
before any user can see the Write's new tag, all users will be able to see a tag (the 
propagated one) which is at most n smaller. This fact will be used in Lemma 
4.1.1 to show that outdated tags are easily recognized. The Read procedure ends 
after line p by returning the value copied from max. 

The Write procedure continues by shooting all visible targets, that is, increas
ing all its shot counters that are not already six ahead of their corresponding heal 
counter. User i next chooses a tag unique to it which is larger than all visible 
ones. This is paired with v, the argument of the Write procedure, and all is 
written out in line w. 

3.2. NOTATIONAL CONVENTIONS. The following notions are used in the proof. 
Assume an arbitrary but fixed history. The mth nonaborting operation of user i is 
denoted N'('. If a = N'(' then a +r denotes N'(' +r, that is, the rth next nonaborting 
operation by user i following a, assuming it exists. If a = N'(', then a - r denotes 
N'('-r, that is, the rth previous nonaborting operation by user i preceding a. Use 
of this notation depends on the assumption that r < m. Since all shot counters 
are initialized to 0, and increase at most by one per nonaborting Write operation, 
the value assigned by an operation a to one of its shot counters provides a lower 
bound on m. We'll use the notation only where it is justified on these grounds. 

The events of an operation a involving shared variable access constitute up to 
six events-sets, or phases: 

a.s < a.h < a.r < a.t < a.p < a.w, 

in accordance with the labeled lines of the Read and Write procedure. Aborting 
operations consist of only the first four phases, while a nonaborting Read 
operation has the first five. Then events in a phase a.c (cone of s, h, r, t, p, or 
w) are denoted a.cj withj E /, and are called c-events. 

For a shared variable read event e, define p-Last( e) to be the operation 
containing the last p-event preceding e that accesses the same shared variable. If 
such an event does not exist, then p-Last( e) is defined to be the nonoperation ..L. 

For a an operation and exp an expression consisting of (symbolic or explicit) 
constants and local variables, define exp@a as the final value of that expression 
in the procedure invocation corresponding to a. Array indices i, j, k, s, t refer to 
symbolic constants defined in the context, not to the local variables. Define 

value@..L = prev@..L = tag@J.. = ss@..L = shoot[·][·]@l. = heal[·][·]@l. = 0, 

in accordance with the initialization of the construction. Define exp@a. c ( c one 
of s, h, r, t, p, or w) as the value of the expression exp after completion of line c 
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of the procedure invocation corresponding to a. By convention, the prefix me. is 
omitted when exp is a field of me. 

3.3. CORRECTNESS OF CONSTRUCTION 1. Construction 1 trivially satisfies 
Wait-Freedom since all loops range over I = {O, ... , n - 1 }. Therefore, we 
only need to prove correctness. That is, we must show that each complete proper 
history is linearizable. By Lemma 1.4.1, this means we need to prove uniqueness, 
integrity, and precedence. First, we need some preparatory claims. 

CLAIM 3.3.1. All shared tag, heal and shot counters are nondecreasing in the 
course of a history. 

PROOF. A shared variable R;,j is changed only when me is written to it, in an 
h-, p-, or w-event of user i, so a nondecreasing counter in the static local variable 
me of user i implies a corresponding nondecreasing counter in R;,j for all j E I. 
The me.shoot counters are only incremented and therefore nondecreasing. 
Hence, so are the shared shot counters R; .j· Each heal counter me.heal[ s ][j] of 
user i is only changed by assignment from Rj,;·shoot[ s ][i] and is thus also 
nondecreasing. It remains to show that me.tag is nondecreasing. Consider the 
new tag from[max].tag that is assigned to me.tag prior to line p. By the selection 
of max, this is at leastfrom[i].tag which by lines hand r is just a copy of me.tag. 
Thus, me.tag doesn't decrease in this assignment. In the other assignment, prior 
to line w, me.tag only increases. D 

COROLLARY 3.3.2. If event e writes veto a shared tag, heal, or shot counter, and 
event f reads vr from the same shared counter, then e < f::} v1 2= ve and '1! < ve ::} 
f <e. 

COROLLARY 3.3.3. Let a < b be nonaborting operations by users i and j, 
respectively. If b is a Read operation, then 

tag@b::::: tag@a, 

and if b is a Write operation, then 

tag@b 2= tag@a + 1. 

PROOF. By the selection of max, a < b, and corollary 3.3.2, 
from[max].tag@b.p 2= from[i].tag@b.r 2= tag@a. For b a nonaborting Read 
operation, tag@b = from[max].tag@b.p. For b a nonaborting Write operation, 
tag@b ::::: tag@b.p + 1 = from[max].tag@b.p + 1. D 

CLAIM 3.3.4. The differences tmpl/].shoot[s][i] - me.heal[s]U] and me.shoot[s]U] 
- from[j].heal[s][i] between corresponding shot and heal counters as computed in 
line t + 1 and line p + 3 are between 0 and 6 (inclusive). 

PROOF. For each fixed i, j and s, 0 :s Rj,;.shoot[s][i] - R;,j·heal[s][j] :s 6 is 
an invariant. It holds initially because of zero initialization. According to Claim 
3.3.l, this invariant can be violated only if either user i assigns a value larger than 
Rj,;-shoot[s][i] to R;,j·heal[s][j] in line h, or if user j writes a value larger than 
R;,j·heal[s][j] + 6 to Rushoot[s][i] in line w. But user i only makes indirect 
copies from Rj,i·shoot[s][i] (read in line s) to R;J·heal[s][j]. And user j only 
increments Rushoot[ s ][i] (line p + 4) after seeing from[j] .heal[s ][j] 2= 
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Rj,i·shoot[s][i] - 5 (line p + 3), in which the first term is at most R;,j·heal[s][j]. 
Thus, both cases give a contradiction and the invariant holds. This implies the 
same bounds on the computed differences. 0 

CLAIM 3.3.5. Let a be an operation by user i, and j be some index. Let either b 
= p-Last(a.ri) and X = fromU]@a.ri, orb = p-Last(a.ti) and X = tmpU]@a.tj. Let 
s = X.ss. Then 

(1) X.prev = prev@b, s = ss@b 

(2) if b = ..L then X.tag = 0 
else tag@b.p :::; X.tag :::; tag@b 

(3) for all k EI, X.heal[s][k] = heal[s][k]@b 

(4) for all k EI, z E {O, 1}, if b = .l then X.shoot[z](k] 0 
else shoot[z][k]@b.p:::; X.shoot[z][k] :::; shoot[z][k]@b 

PROOF 

(1) Only the p-events of user j change Rj,i·prev and Rj,i·ss. 
(2) In case b = ..L, no tag has overwritten the initial 0. In case b ::f:. .l, the first 

inequality follows directly from the definition of b and Corollary 3.3.2. For 
the second, note that after b, the value of Rj,i·tag remains tag@b until b+ 1.p; 
(if any), which by definition of b doesn't precede the reading of X. 

(3) After b.p; (or from the start of history in case b = .l), the value of ss in user 
j's me remains s at least until line p - 1 of b + 1 (if it exists). Hence, its 
heal[ s] counters remain unchanged until the next operation after b + 1. 

(4) Analogous to item (2). D 

CLAIM 3.3.6. Let a, b = a+ 1 be two nonaborting operations by user i. 

(1) prev@b = value@a 

(2) t/j E I, s E {O, 1} : shoot[s][j]@b :::; shoot[s][j]@a + 1 
(3) If a and b are Write operations, then tag@b ~ tag@a + n. 

PROOF 

(1) Since b doesn't abort, and aborting operations don't change me. value, 
prev@b = value@b.s = value@a. 

(2) Similarly. 
(3) Since tag@b = tag@a = i (mod n), their difference is a multiple of n, and 

by Corollary 3.3.3, it is positive. 0 

CLAIM 3.3.7. Let a be an aborting operation by user i, and let j be the minimal 
index for which the abortion condition holds. Then there exists a nonaborting Write 
operation wand a nonaborting operation b by user j, such that 

a.sj < ws b < a.ti A tmp[j].prev@a = value@b. 

PROOF. Let c = p-Last(a.ti), let b = c- 1, let w be the last Write among ... 
b- 2, b- 1, band let d = w- 1 (recall Section 3.2 on notation). Then, d < w ':::5 b 
< c.p < a.tj and by Claims 3.3.5 and 3.3.6, tmp[j].prev@a = prev@c = 
value@b. Also, with s = 1 - ss@a, by (respectively) abortion of a and Claim 
3.3.5 and Claim 3.3.6, and definition of w, and Claim 3.3.6, 
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heal[s][j]@a + 3 s tmp[j].shoot[s][i]@a s shoot[s][i]@c 

s shoot[s][i]@b + 1 = shoot[s][i]@w + 1 s shoot[s][i]@d + 2. 

This shows that heal[s][j]@a < shoot[s][i]@d; hence, not d < a.sj. Combined 
with d < w this yields a.sj < w. D 

The following claim will be used in later sections. 

CLAIM 3.3.8. If a is an operation by user i, and w 1, w2, w3 are nonaborting Write 
operations by user k, such that 

then a aborts. 

PROOF. Lets = 1 - ss@a.t. Claim 3.3.4 shows that me.shoot[s][i]@w 1 .r -
from[i].heal[s][k] 2: 0 in line p + 3 of w1. Since these values do not change in 
between, this also holds in line r of w 1• This and the assumption of the claim give 

shoot[s ][i]@w 1.r 2: from[i].heal[s ][k]@w1.r = heal[s ][k]@a. t. 

According to the shooting mechanism, induction on m shows that shoot[ s ][ i] 
@wm 2: heal[s][k]@a.t + min(m, 6). Since w3 .w; -< a.tk> Corollary 3.3.2 
implies 

tmp[k ].shoot[s ][i]@a. t 2: shoot[s ][i]@w 3 2: heal[s ][k]@a. t + 3, 

hence a aborts. D 

LEMMA 3.3.9. Each complete proper history h of Construction 1 is linearizable. 

PROOF. The proof is based on the tag lemma. We show that there is a 
function r( ), mapping each operation in h to a rational number, that satisfies 
Uniqueness, Integrity, and Precedence. Let a be an operation by user i. If a 
doesn't abort, then simply set r(a) = tag@a. Otherwise, if a aborts, let b be the 
operation given by Claim 3.3.7. Now set r(a) = tag@b if a is a Read operation, 
or set r(a) = tag@b - Ea, if a is a Write operation, where 0 < Ea < 1 is a 
fraction unique to a. 

Uniqueness. Let a and b be different Write operations by users i and j, 
respectively. If either aborts, then its tag has a unique fractional part and is 
therefore different from the other operation's tag. Suppose neither aborts. 
Then r(a) = tag@a = i (mod n), and r(b) = tag@b = j (mod n). If i of. j, 

then Uniqueness follows immediately. In case i = j, one Write operation must 
precede the other, and Uniqueness follows from Corollary 3.3.3. 

Integrity. For aborting Read operations, Integrity follows from Claim 3.3.7. The 
value-tag pair that a nonaborting Read operation a copies must originate from 
a nonaborting Write operation b. Clearly, ...., (a < b). Combined with the 
definition of T, this proves Integrity. 

Precedence. Consider two operations a -< b. We must show that r(a) s r(b). 
If a aborts, then by Claim 3.3.7 and definition of T, there exists a j and a 
nonaborting operation a' such that a' < a.t1 <band r(a) s r(a'), in which 
case it would suffice to show Precedence for a' < b. So without loss of 
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generality we can assume that a doesn't abort. If b doesn't abort, then 
Precedence follows from Corollary 3.3.3. 

Suppose b aborts. By Claim 3.3.7, there exists a nonaborting Write operation w 
and a nonaborting operation b' by some user j, such that a < b. sj < w -::::: b '. 
By Corollary 3.3.3, tag@b' 2:: tag@w 2:: tag@a + 1 = T(a) + 1. Since 'T(b) 
is either tag@b' - Eb or tag@b ', r(b) 2:: r(a) follows. D 

4. Bounding the Counters 

Having proven Construction 1 correct, we will make a correctness preserving 
transformation that renders all variables essentially bounded, that is, that 
subsequently allows us to replace them with bounded versions. The transforma
tion is based on three key lemmas. The first formalizes the idea that a tag, whose 
target is seen to have been shot sufficiently many times, can be considered old, 
and ignored in the selection of a maximum tag. The second shows that the 
remaining, "live", tags are in a bounded range, which is the basis for bounding 
the tags. Finally, the third shows that the perceived number of times a target is 
shot is bounded both from below and above, which is the basis for bounding the 
heal and shot counters. 

4.1. OLD TAGS 

LEMMA 4.1.1. Let a be a nonaborting operation by user i. Let j, k E /,and s = 
from[j].ss@a.r. If 

from[k].shoot[s][j]@a.r - from[j].heal[s][k]@a.r 2:: 6 

(a sees 6 shots by k on j's target), then 

from[k].tag@a.r > from[j].tag@a.r. 

PROOF. Let b = p-Last(a.ri) and c = p-Last(a.rk)· Using in succession 
Claim 3.3.5, the assumption of the claim, and Claim 3.3.5 again: 

shoot[s ][j]@c 2:: from[k ].shoot[s ][j]@a .r 

2:.from[j].heal[s][k]@a.r + 6 = heal[s][k]@b + 6 

This shows the existence of 

where wm, 3 s m s 6 is the first nonaborting Write operation by user k such 
that 

shoot[s][j]@wm = heal[s][k]@b + m. 

By Corollary 3.3.2, Claim 3.3.6, and the tag choice in Construction 1, 

from[k].tag@a.r 2:: tag@w6 2:: tag@w4 + 2n 

2:from[max].tag@w4.p + 2n + 1. 
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If b = .l, then from[j].tag@a.r = 0 and the lemma follows immediately. 
Otherwise, by Claim 3.3.5 and the tag choice in Construction 1, 

from[j].tag@a.r :s; tag@b :s; from[max].tag@b.p + n. 

Thus, to prove the lemma it suffices to show that 

from[max].tag@w 4.p + 2n + 1 > from[max].tag@b.p + n. (1) 

Claim 3.3.5 shows that s = ss@b = 1 - ss@b.t. Since b doesn't abort and by 
definition of w3 , 

tmp[k].shoot[s][j]@b.tk < heal[s][k]@b + 3 = shoot[s][j]@w3.wj. 

Hence, by Corollary 3.3.2, b.r-< b.tk < w3 .wj < w4 • Let Write operation w be 
the originator of the tagfrom[max].tag@b.p. We have-. (b.r < w.w). Since w.p 
< w.w and b.r < w4 , it must therefore be that w.p -< w4 • This shows 

from[max].tag@w 4 .p:::::: tag@w.p:::::: tag@w - n = from[max].tag@b - n, 

which immediately implies (1). 0 

Definition 4.1.2. In the context of a Read or Write procedure, define 

alive(j) = ( \;/ k EI: from[k].shoot[s][j] - from[j].heal[s][k] < 6), 

where s = from[j].ss 

COROLLARY 4.1.3. For each nonaborting operation a, alive(max)@a.p. 

This shows that the choice of max can be restricted to those j E I for which 
alive()) holds. 

4.2. RANGE OF ALIVE TAGS. The parameter m in the next lemma serves to 
prepare for a later simplification of the construction, for the case of only one 
writer. 

LEMMA 4.2.1. Let a be a nonaborting operation by user i. Let j E I and s = 
from[j].ss@a.r. Let 1 :5 m :s; n be the number of users with Write operations. If 
alive(j)@a.r, then 

from[max].tag@a.p - from[j].tag@a.p :5 lOmn. 

PROOF. Assume, to the contrary, thatfrom[max].tag@a.p > from[j].tag@a.p 
+ lOmn. Let W be the set of all nonaborting Write operations w such that 
tag@w > from[j].tag@a.p /\-. (a.r-< w). Since a reads a tag that is more than 
1 Omn greater than j's, and new tags are chosen in increments of at most n, we 
must have I WI > 1 Orn. Therefore, some user, say k, has at least 11 operations, 
say w0 < w 1 < · · · < w 10 , in W. 

Let b = p-Last(a.rj). We claim that 

from[j].heal[s][k]@w 1 :::::: heal[s][k]@b. (2) 

Otherwise, Corollary 3 .3 .2 gives b =I= .l and w 0 -< w 1 . rj -< b. hk -< b. r k, from 
which Corollary 3.3.2 and Claim 3.3.5 imply tag@w 0 :5 from[k].tag@b.r :s; 
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tag@b. p s from[j] .tag@a. p, contradictory to the definition of w 0 E W. As the 
proof of Claim 3.3.8 shows, (2) implies shoot[s][j]@w 6 ~ heal[s][k]@b + 6. 
On the other hand, the assumption alive(j)@a.r and Claim 3.3.5 give from[k]. 
shoot[s][j]@a.r < from[j].heal[s][k]@a.r + 6 = heal[s][k]@b + 6. Together, 
using Corollary 3.3.2, these inequalities show that 

If w9 .w; < a. tk, then Claim 3.3.8 would show that a aborts; hence, we must 
instead have 

in contradiction to the definition of w 10 E W. D 

The lemma shows that all alive tags are from 1 Omn to 0 less than the 
maximum. The following is an easy consequence: 

COROLLARY 4.2.2. Let a be a nonaborting operation by user i. Let 1 s m :::;; n 
be the number of users with Write operations. Let j, k E I such that alive(j)@a.r /\ 
alive(k)@a.r. Then 

-1 Omn ::s from[k ].tag - from[j].tag s 1 Omn. 

4.3. BOUNDS ON PERCEIVED SHOTS 

LEMMA 4.3.1. Let a be a nonaborting operation by user i. Let j, k E I, and s = 
from[j].ss@a.r. Then 

-4 :5from[k].shoot[s][j]@a.r - from[j].heal[s][k]@a.r :S 9. 

PROOF. Assume, to the contrary, that the difference is outside { -4, ... , 9}. 
We will reach the required contradiction by showing that the conditions of Claim 
3.3.8 hold, implying that a aborts. 

Let b = p-Last(a.rj) and c = p-Last(a.rk). In the first case, assume the 
difference is under -4. Then, by Claim 3.3.5, s = ss@b and 

heal[s ][k ]@b = from[j].heal[s ][k ]@a .r ~ from[k].shoot[s ][j]@a .r + 5. 

So b * ..L and b.sk read a shot counter from user k that's at least five greater 
than what a read in a .rk. This shows the existence of 

where w m, 1 ::::; m :5 5 is the first nonaborting write action by user k such that 

shoot[s][j]@wm = from[k].shoot[s][j]@a.r + m. 

Consequently, the conditions of Claim 3.3.8 hold: 

a.hk < a.rk < w 2 < w4 < b.sk-< b.pi < a.rj-< a.tk. 

This proves the first inequality of the lemma. 
In the other case, assume the difference is over 9. Then, by Claim 3.3.5, 
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shoot[s ][j]@c ~ from[k ].shoot[s][j]@a .r 

~from[j].heal[s][k]@a.r + 10 = heal[s][k]@b + 10. 

This shows the existence of 
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where Wm, 7 :5 m :5 10 is the first nonaborting Write operation by user k such 
that 

shoot[s ][j]@wm = heal[s ][k]@b + m. 

Claim 3.3.4 shows that 

from[j].heal[s][k]@w7.r ~ shoot[s]UJ@w7 - 6 = heal[s][k]@b + 1. (3) 

By definition of b, a .rj < b + 1• Pi (taking b + 1 to be N} in case b = l.). 
Equation (3) shows that b+ 1 must exist, and that b+ 1 < w7.rj, since after b.pi, 
the value of ss in user j's me remains s at least until line p - 1 of b + 1 and its 
heal[s] counters remain unchanged until the next operation after b+ 1• Thus 

a.hk < a.rj < b+i.p; < w7.rj < Ws < w10.w; < a.rk < a.tk. 

Again the conditions of Claim 3.3.8 hold. This proves the second inequality of 
the lemma. D 

4.4. EQUIVALENCE WITH BOUNDED COUNTERS. For notational convenience, 
we introduce three binary operators e, EB, and 0: 

Definition 4.4.1. For each pair of integers a, b, we have a e b, a E9 b, and 
a 8 b uniquely defined by the equations 

-4 :5 a e b < 10 /\a e b =a - b (mod 14) 

-4 :s a E9 b < 10 /\a E9 b =a + b (mod 14) 

-10n 2 :s a Gb < 10n2 + n /\a Gb =a -b (mod 20n2 + n). 

Let Construction 2 be the result of replacing the selection of ma:x in Construc
tion 1 

select max such that \r/ j : from[max].tag;:::: from[j].tag 

with 

select max EA such that \r/ j EA : from[ma:x].tag 0 from[j].tag 2:: 0 

where A = {j E I : "ilk E I : from[k].shoot[z][j] 6 from[j].heal[z][k] < 6 
where z = from[j].ss} 
and of replacing the subtractions in line t + 1 and line p + 3 of Construction 1 
with the e operation. 

LEMMA 4.4.2. Each history of Construction 2 is a history of Construction 1. 
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type I : O .. n - 1 
tagtype : -10n2 .. 10n2 + n - 1 
shottype : -4 .. 9 
shared : record 

value,prev : ABStype 
tag : tagtype 
SS : 0 .. 1 
shoot,heal : array[O .. lj[O .. n - l] of shottype 

end 

procedure Read(i) / Write(i,v) 
varj:J 

t: tagtype 
s: 0 .. 1 
from,tmp : array[O .. n - l] of shared 
static me : shared 

begin 
s := 1 - me.ss 
for j EI do me.heal[s][j] := Rj,;.shoot[s][i] 
for j E I do R;,j := me 
for j EI do from[j] := RJ,i 
for j EI do tmp[j] := Rj,i 
if 3j EI: tmp[j].shoot[s][i] e me.heal[s][j] ~ 3 
then return tmp[j].prev 

M. LI ET AL. 

select max EA such that Vj EA: from[max].tag 8 from[j].tag ~ 0 
where A= {j EI: Vk EI: from[k].shoot[zl[j] ejrom[j].heal[z][k] < 6 

end 

where z = from[j].ss} 
me.prev, me.value, me.tag, me.ss := 

me.value, from[max].value,from[max] .tag, s 
for j E I do R;,j := me 
(Read only) return me.value 
for j El,s E {0 .. 1} do 

if me.shoot[s][j] 8 jrom[j].heal[s][i] < 6 
then me.shoot[s][j]Ee := 1 

select t E tagtype such that t 8 me.tag E {l, ... , n} /\ t = i (mod n) 
me.value, me.tag := v, t 
for j E I do R;,j := me 

FIG. 3. Construction 3. 

PROOF. By Corollary 4.1.3 and a simple reordering of terms, the selection of 
max in Construction 1 gives, in each reachable state, the same new state as 

select ma.x EA such that \:/ j EA : .from[max].tag - from[j].tag? 0 

where A = {j E I : alive(j)}; 
which in turn gives, by Corollary 4.2.2 and Lemma 4.3.1, in each reachable state, 
the same new state as the selection of max in Construction 2. By Claim 3.3.4, the 
subtractions in line t + 1 and line p + 3 of Construction 1 give, in each reachable 
state, the same new state as the 8 operations in Construction 2. D 

COROLLARY 4.4.3. Each complete proper history of Construction 2 is linearizable. 

We next consider our bounded solution, Construction 3, shown in figure 3. It is 
identical to Construction 2 except for the type of tags and shot/heal counters, and 
the way they are increased. Note that in the 4th to last line, the selection of t is 
possible (and unique) because 20n 2 + n is a multiple of n. The initial state of 
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Construction 3 has 0 in all fields of all shared and static variables, like 
Constructions 1 and 2. 

We prove Construction 3 correct using a proof method known as forward 
simulation (see the excellent overview article [Lynch and Vaandrager 1995]). 
Formally, a forward simulation from A to B is a relation f over the states of A 
and the states of B that satisfies: 

( 1) Each initial state of A is related to an initital state of B. 
(2) If A has a transition from state s to state s' by action a and s is related to 

state t of B, then B has a transition by the same action a from state t to a 
state t' related to s'. 3 

As Lynch and Vaandrager [1995] show, the existence of such a relation implies 
that the histories of A are indistinguishable from those of B-each (finite or 
infinite) sequence of actions that A can take can also be taken by B. Our forward 
simulation from Construction 3 to Construction 2 uses the following equivalence 
relation: 

Definition 4.4.4. A state s of Construction 3 is said to be equivalent to a state 
u of Construction 2 if they are identical up to congruence of tags and shot/heal 
counters, as follows. If tag3 is the value of some local or shared variable of type 
tagtype in states, and tag2 is the value of that same variable in state u, then we 
require tag3 = tag2 (mod 20n 2 + n ). If shot3 is the value of some local or shared 
variable of type shottype in state s, and shot2 is the value of that same variable in 
state u, then we require shot3 = shot2 (mod 14). All other variables and program 
counters in s and u must be identical. 

THEOREM 4.4.5. Each complete proper history of Construction 3 is linearizable. 

PROOF. We show that the equivalence relation defined above satisfies the 
requirement of the forward simulation. It will then follow that each history of 
Construction 3 is indistinguishable from a history of Construction 2. Since all 
complete proper histories of Construction 2 are linearizable, and since lineariz
ability depends only on the precedence relation among the Read and Write 
operations plus the values the Reads return, all complete proper histories of 
Construction 3 are then also necessarily linearizable. 

As to item 1, both constructions have a unique starting state in which all 
variables are initialized to 0, hence these two states are equivalent. 

Now, suppose Construction 3 has a transition from a state s to a state s' by 
action a, and let s be equivalent to state u of Construction 2. We consider all 
possibilities for the statement that action a corresponds to: 

(1) If a is some statement that doesn't involve tag, heal, or shoot counters, then 
Construction 2 has a transition with the same action a to to a state u' 
equivalent to s'. 

(2) If a is some statement that copies a tag, heal, or shoot counter, then also 
Construction 2, which has identical copy statements, has a transition with the 
same action a to to a state u' equivalent to s'. 

3 This definition is slightly simplified from Lynch and Vaandrager [1995], where B can make 
additional 'internal action' transitions, which we needn't consider. 
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(3) If a is the statement that tests if 3j EI: tmp[j].shoot[s][i] e me.heal[s][j] 
~ 3, then the left-hand-side of the inequality is, by definition of e, the same 
in the equivalent states s and u. Hence, Construction 2, which has an 
identical statement, has a transition with the same action a to to a state u' 
equivalent to s'. 

(4) If a is the statement selecting max, then by definition of e, the quantities 
from[k].shoot[z][j] e from[j].heal[z][k] are identical in states s and u; 
hence, set A is identical in these states. Similarly, the quantity from[max].tag 
0 from[j].tag is, by definition of 0, identical in states s and u. Since 
Construction 2 has an identical statement, it follows that it has a transition 
with the same action a to a state u' equivalent to s'. 

(5) If a is the conditional shoot increment, then the quantity me.shoot[ s ][j] e 
from[j].heal[s][i] is again identical in states s and u, and assigning 
me.shoot[s][j] E9 1 to rne.shoot[s][j] gives a state equivalent to the one 
Construction 2 reaches by assigning me.shoot[ s ][j] + 1 to the corresponding 
unbounded variable. 

(6) Finally, if a is the selection oft, then because n divides 20n2 + n, we can 
define z uniquely as the number in { 1, ... , n} satisfying z = i - me. tag 
(mod n) in both states and state u. Now in states, t is chosen such that t 0 
me.tag== z, and in state u it is chosen such that t - me.tag= z, so again the 
resulting states s' and u' are equivalent. 0 

5. Complexity 

First let's consider the time complexity of Construction 3. Since all shared 
variable accesses occur in phases, each of which consists of n reads or writes in 
parallel, the parallel time complexity of both the Read and Write operation is 
bounded by the number of phases, which is clearly 0(1). 

Next consider the space complexity of Construction 3, which is the size in bits 
of the type shared. This can be split into two parts: the data size and the control 
size. 

The data size is 2 x sizeof (ABS). This factor 2 overhead can be traced back to 
the use of single reader shared variables in our construction. In fact, the version 
of Construction 3 using multi-reader variables can be easily modified to do away 
with the prev data field (as sketched in the next section). 

The control size concerns all the other fields in the shared variables. Note first 
that from the values read from Rj,i• user i never uses any of the counters 
heal[l - ss][k], where k =F i. Thus, in addition to the single counter heal[l -
ss ][i], only a single heal counter set needs to be stored in Rj,i• of which the 
missing first index is understood to be Rj,i·ss. Thus, line h will change in each 
register R;,j only the heal[l - ss][j] field, and in line p, all heal counters in R;,j 
are changed together with Ri,j·ss. This leads to a control size of 

flog(20n 2 + n)l + 1 + (3n + l)flog 141s12n + o(n). 

6. Subproblems 

Construction 3 presents a solution to the problem of implementing a multi-user 
variable from single-reader variables. Most other papers have considered the 
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intermediate level of a single-writer multi-reader variable, which splits the 
problem into two subproblems. We show that projections of our construction 
yield solutions to those two subproblems with competitive complexity measures. 

The first projection is obtained by collapsing the row of shared variables 
R;, 0 , ..• , R;,1! - I into a single multi-reader variable R;. Each loop 

for j E I do R;,i : = me 

is replaced by the single write 

R; :=me 

while each read from Rj,i is replaced by a read from Ri. The result is a solution 
to the problem of implementing a multi-user variable from single-writer multi
reader variables, since each of its histories corresponds to a history of Construc
tion 3 in which all writes of a parallel loop happen to be consecutive events. The 
parallel time complexity is still constant, while the space complexity is 
sizeof(shared) = 2 X sizeof(ABS) + 16n + o(n). (Increase of 4n is due to the fact 
that now no heal counters can be omitted as was the case with the R;,j 's.) The prev 
field can be made redundant by letting an aborting operation return tmp[j]. value 
instead of tmp[j].prev. Claim 3.3.7 is adjusted accordingly to the statement a.sj < 
w -::::: b /\ tmp[j]. value@a = value@b, proven by choosing b equal to c instead 
of c - 1. The only modification needed to prove the Precedence part of Lemma 
3.3.9 is that a' is chosen to be the Write from which tmp[j]. value@a originates, 
as this Write ends with a single .w event that necessarily precedes a. tj. Otherwise, 
the proof of correctness remains unchanged. 

The second projection is more involved, but yields a large space savings. 
Assume that only user 0 executes Write operations. Then all shoot counters of 
the remaining users, as well as all heal counters heal[O .. 1][1 .. n - 1], 
remain 0, and can therefore be omitted. The prev field of the Read-only users 
will never be used and can also be omitted. Furthermore, 0 is easily seen to be 
always alive and therefore user 0 needs neither heal counters nor the shoot
selector ss. User 0 also never aborts and can always choose max : = 0. 

By Corollary 4.2.2, and because new tags are always chosen to be 0 (mod n), 
only tags { - 1 On, - 9n, - Sn, ... , 9n, 1 On} ever occur, and n can be factored 
out. 

The result of removing all these redundancies is shown in Figure 4 as 
Construction 4. 

The space complexity (taking into account possible savings) turns out to be 2 x 
sizeof (ABS) + Sn + o(n) for the shared variables of user 0, and sizeof (ABS) + 
0( 1) for the shared variables of the remaining users. This space complexity is 
the same as that of K.irousis et al. [19S7] and, apart from the data field used in 
the shared variables of Read only users, also the same as that of Peterson and 
Burns [1987], Newman-Wolfe [19S7], and Singh et al. [1994]. 

7. Conclusion 

Our construction shows that shared memory can be implemented, using replica
tion, from simple bounded memory cells, with only a small constant factor 
increase in access time. 
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type I : O .. n - 1 
type shared : record 

value ,prev : ABS type 
tag : -10 .. 10 
SS : 0 .. 1 
shoot : array[O .. l][O .. n - l] of -4 .. 9 
heal : array [0 . .1 ][OJ of -4 .. 9 

end 

procedure Write(v) 
varj:I 

from : array[O .. n - l] of shared 
static me : shared 

begin 

end 

for j E I do from[j] := Rj,o 
me.prev :=me.value 
for j E I do Ro,; := me 
for j E I,s E {0 .. 1} do . 

if me.shoot[s][j] efrom[j].heal[s][O] < 6 then me.shoot[s][J](B := 1 
me.value, me.tag:= v, (me.tag+ 11) mod 21 - 10 
for j E I do Ro,i := me 

procedure Read(i) (i = l..n - 1) 
varj:I 

s: 0 .. 1 
from,tmp : array[O .. n - 1) of shared 
static me : shared 

begin 

end 

s := 1- me.ss 
me.heal[s][O] := Ro,;.shoot[s][i] 
R;o :=me 
fo~ j E I do from[j] := R;,; 
tmp[O] := Ro,; 
if tmp[OJ.shoot[s][i] e me.heal[sj[O) ~ 3 then return tmp[O].prev 
select max EA such that 'c/j EA: from[max].tag 8/rom[j].tag 2: 0 
where A= {O} U {j EI: from[O).shoot[z][j] 6 from[j].heal[z][OJ < 6 

where z = from[i].ss} 
me.value, me.tag, me.ss := from[max].value,from[max].tag, s 
for j E I do R;,j := me 
return me.value 

FIG. 4. Construction 4; Single- to multi-reader. 

M. LI ET AL. 

To this end, the unbounded solution of Vitanyi and Awerbuch [1986], for a 
long time the only recognized correct solution, is refined by adding a powerful, in 
itself unbounded, shooting mechanism. This mechanism allows slow, potentially 
confused operations to safely abort, and allows the remaining operations to 
interpret the unbounded timestamps of Vitanyi and Awerbuch as bounded 
quantities. The end result follows by showing that the shooting mechanism itself 
is easily bounded. 
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