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Abstract

Congestion control in packet-based networks is often realized by feedback protocols – in this

paper we assess the performance under a back-pressure mechanism that has been proposed

and standardized for Ethernet metropolitan networks. Relying on our earlier results for feed-

back fluid queues, we derive explicit expressions for the key perfomance metrics, in terms

of the model parameters, as well as the parameters agreed upon in the service level agree-

ment. Numerical experiments are performed to evaluate the main trade-offs of this model

(for instance the trade-off between the signaling frequency and the throughput). These can be

used to generate design guidelines. The paper is concluded by an elementary, yet powerful,

Markovian model that can be used as an approximative model in situations of large traffic

aggregates feeding into the system; the trade-offs and guidelines identified for the feedback

fluid model turn out to carry over to this more stylized model.
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1 Introduction

Over the past decades a broad variety of mechanisms has been proposed to control congestion in

packet networks. A well-known example is random early detection, as proposed in e.g. [4], where

incipient congestion is notified to the users by dropping packets (or by setting a bit in packet

headers); when the queue size exceeds a preset threshold, each arriving packet is dropped (or

marked) with a certain probability that depends on the buffer content and its evolution in the

recent past; for more insights into this type of schemes, see e.g. [5] and the early reference [13].

Similar feedback-based mechanisms have been proposed and standardized for congestion control

in Ethernet metropolitan networks. The back-pressure scheme defined in IEEE 802.3x [6], is intended

to provide flow control on a hop-by-hop basis by allowing ports to turn off their upstream link

neighbors for a period of time. For a full-duplex connection, this mechanism is based on a spe-

cial frame called pause frame in which the pause period is specified. The end-station (or router)

receiving the pause frame looks at the pause period, and does not transmit or attempt transmis-

sion for that amount of time. Alternatively, an ON/OFF pause message can be sent signaling the

beginning and end of the transmission pause phase. Importantly, this congestion control method

is usually implemented by using two thresholds, viz. a high threshold to detect the onset of a

congestion period, and a low threshold to detect its end. When the queue occupancy exceeds the

high threshold the PauseOn message is sent and transmission is temporarily stopped; when the

queue occupancy drops below the low threshold the PauseOff message is sent and consequently

transmission is resumed.

There are hardly any performance evaluation studies available on the above-described back-

pressure mechanisms for Ethernet congestion control. Previous works [8, 10, 12] predominantly

concentrated on the throughput gain which can be achieved. Recently, however, we have been

able to develop a rather detailed, and analytically tractable, model of the mechanism [9]. This

model belongs to the class of fluid models [1, 7], in which the steady-state distribution of the

buffer content is expressed in terms of the solution of a system of linear differential equations,

which, after imposing the proper boundary conditions, can be solved by standard techniques

from linear algebra. Models with a single threshold to signal both the onset and end of con-

gestion had been analyzed before, see e.g. [11], but it turned out that the analysis complicated

substantially due to the fact that we have two thresholds in our back-pressure model. The main

(mathematical) difficulties related to (i) the behavior of the storage level close to the thresholds,

and (ii) the generation of a sufficient number of boundary conditions to solve for the remaining

unknown constants; [9] provides us with a solution to these problems, resulting in a procedure

to numerically determine the steady-state buffer content distribution.

In [9] it was mentioned that the model presented (and solved) there could be relied on when

configuring the high and low thresholds, thus addressing a pivotal design criterion for the Eth-

ernet congestion avoidance scheme. We also remarked in [9] that the back-pressure scheme has

the attractive property that the signaling overhead (in terms of the number of pause messages
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sent per unit time) is lower than when using just one threshold (that detects both start and end

of congestion periods), but we did not systematically quantify this effect. Also, the reduction of

signaling overhead may be at the expense of a loss in throughput, or degraded performance in

terms of delay. The primary goal of the present paper is to demonstrate the effect of the thresh-

olds, and to obtain insight into the trade-offs mentioned above. In order to do so, we also derive

analytic formulas for the performance metrics of interest. In a substantial part of the paper we fo-

cus on the single-source model, that may be viewed as a benchmark model that provides useful

insights. Later in the paper we also introduce a model for the multiple-source case that indi-

cates that most of the effects observed in the single-source model carry over to considerably more

general settings.

The organization of this paper is as follows. Section 2 describes our fluid model, specializing to

the situation of just one source feeding into the queue. It also recapitulates the main results from

[9]. Then Section 3 presents derivations of the main performance metrics considered in this pa-

per: the throughput, the the mean packet delay, signaling frequency, and the mean transmission

time of a burst of packets. Here we note that packet delays are of crucial interest for streaming ap-

plications; these generate traffic with an ‘intrinsic duration and rate (which is generally variable)

whose time integrity must be preserved by the network’ [14] — think of telephony, streaming

video and audio. On the other hand, the transmission time, to be thought of as the time it takes

for bursts of packets (‘jobs’) to go through a node, is a main performance metric for elastic applica-

tions, such as email, file transfer, but also pictures or video sequences transferred for local storage

before viewing. Section 4 presents the numerical experiments that demonstrate how to evaluate

the trade-offs mentioned above, and presents a number of general guidelines. We also include in

Section 5 a model and corresponding numerical experiments that indicate that the main findings

carry over to the situation in which there is a substantial number of concurrent users. Section 6

concludes.

2 Model and preliminaries

In this section we describe the model of which we analyze a number of key performance metrics

in Section 3, and which we numerically assess in Section 4. To this end, we first define generator

matrices Q+ and Q− on the state space {1, 2}:

Q+ =

(

−p1 p1

p2 −p2

)

; Q− =

(

−m1 m1

m2 −m2

)

.

Also, we introduce traffic rate vectors r
+ = (rp, 0)

T and r
− = (rm, 0)

T, with rp > c and rm > c;

these should be thought of as rates at which traffic is generated, in that traffic flows into the

system at rate rℓi if a background process Xℓ(·), governed by generator matrix Qℓ, is in state i

(with ℓ ∈ {+,−}, and i ∈ {1, 2}). In other words, we identify the on-state with state 1 (‘burst’),

and the off-state with state 2 (‘silence’). The capacity of the buffer is assumed to be infinite (a

similar analysis can be done for the finite-buffer case, though).
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Figure 1: Schematic illustration of different regimes for the buffer content W (t).

In this paper we consider the model of [9], featuring the special case that the dimension of the

underlying sources is 2. In this feedback fluid model, the input stream alternates between two

‘modes’ (also referred to as ‘phases’). In one mode the input process behaves like a Markov fluid

source with generator Q+ and traffic rate vector r
+: when the background process is in state

i ∈ {1, 2} at time t, traffic is generated at a constant rate r+i , whereas the queue is drained at a

constant rate c. Similarly, in the other mode it behaves like a Markov fluid source with generator

Q− and traffic rate vector r
−.

The queueing process alternates between the two above-mentioned modes as follows. We first

introduce the indicator variable process I(·), taking values in {+,−}, which gives the current

mode of operation of the input source. It is important to note that whenever I(t) switches from

one mode to another, the background process X(t) stays in the same state; only its dynamics will

from that time onwards behave according to the other generator matrix. However, the rate at

which the fluid buffer receives fluid does change instantaneously from r+i to r−i (or vice versa),

when the background process X(t) is in state i at the switching instant. Which of the two modes

is currently valid at some time t depends on the behavior of the content process W (t) relative

to two thresholds, an upper threshold B1 and a lower threshold B2. The first mode (‘+’) applies

as long as W (t) has not reached the upper threshold B1 from below. As soon as that happens,

I(t) switches to the other mode (‘−’), until W (t) hits the lower threshold B2 from above, etc. The

queueing dynamics are illustrated by Fig. 1.

It is not hard to verify that the equilibrium condition of this model is

m2

m1 +m2
· rm < c,
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i.e., in the ‘−’-phase there should be a negative drift. We let

F ℓi (x) := P(I = ℓ,X = i,W ≤ x),

with x ≥ 0, i ∈ {1, 2}, and ℓ ∈ {+,−}, be the steady-state distribution of the workload W ,

jointly with the state of the background process X ∈ {1, 2}, and the phase I ∈ {+,−}. In [9]

we presented an algorithm to compute F ℓi (·), as follows. Let zℓ (ℓ ∈ {+,−}) be the non-zero

eigenvalue of the matrix Qℓ(Rℓ − cI)−1. It is easily verified that

z+ =
p2

c
−

p1

rp − c
, and z− =

m2

c
−

m1

rm − c
.

Notice that z− < 0 because of the stability condition. Then the analysis in [9] entails that 3 regimes

should be distinguished, cf. Fig. 1. More precisely, there are constants γℓj,i, δ
ℓ
j,i, ε

ℓ
j,i (with regime

j ∈ {1, 2, 3}, state i ∈ {1, 2}, and mode ℓ ∈ {−,+}), such that

F−
i (x) = 0, x ≤ B2;

F−
i (x) = γ−2,i + δ−2,ie

z−x + ε−2,ix, B2 < x ≤ B1;

F−
i (x) = γ−3,i + δ−3,ie

z−x, x > B1;

also

F+
i (x) = γ+

1,i + δ+1,ie
z+x, x ≤ B2;

F+
i (x) = γ+

2,i + δ+2,ie
z+x + ε+2,ix, B2 < x ≤ B1;

F+
i (x) = F+

i (B1), x > B1.

In [9] a procedure is detailed that enables us to compute these 10 constants, by introducing 10

linear constraints to be imposed on the parameters.

3 Performance metrics

In this section we derive (or recall) formulas for a number of performance metrics.

Throughput. We have the evident formula, already given in [9],

ϑ = rp · F
+
1 (∞) + rm · F−

1 (∞).

Alternatively, it is clear that the througput can be written as (realize that F+
1 (0) = 0)

ϑ = c · P(W > 0) = c
(

1 − F+
2 (0)

)

. (1)

Packet delays. The delayD is defined as the delay experienced by an arbitrary packet (in our model

an infinitesimally small ‘fluid particle’), and is hence a ‘traffic-average’. This performance metric
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is particularly relevant for streaming traffic, as argued in the introduction, due to its inherent

time-integrity requirements. The distribution of D was given in [9]:

P(D ≤ t) =
rpF

+
1 (tc) + rmF

−
1 (tc)

rpF
+
1 (∞) + rmF

−
1 (∞)

;

note that the denominator can be interpreted as the average amount of fluid that arrives per unit

of time, whereas the numerator is the fraction thereof that corresponds to a delay smaller than t.

The mean delay can be computed as

ED =

∫ ∞

0
P(D > t)dt =

∫ ∞

0

(

1 −
rpF

+
1 (tc) + rmF

−
1 (tc)

rpF
+
1 (∞) + rmF

−
1 (∞)

)

dt.

Signaling frequency. The signaling frequency is defined as the expected number of phase transi-

tions per unit time, and is a measure for the signaling overhead. With f ℓi (x) := dF ℓi (x)/dx, we

first observe that the expected number of upcrossings per unit time through level x is, reasoning

as in, e.g., [2, 15],

f+
1 (x) · (rp − c) + f−1 (x) · (rm − c); (2)

here the first (second) term reflects the number of upcrossings while in the ‘+’-phase (‘−’-phase).

Likewise the expected number of downcrossings per unit time is given by

f+
2 (x+) · c+ f−2 (x+) · c. (3)

As an aside we mention that, as argued in [2, 15], expressions (2) and (3) should match, since for

any level the mean number of upcrossings per unit time equals the mean number of downcross-

ings per unit time.

Relying on the above reasoning it is now directly seen that the expected number of phase-transitions

per unit time equals

ϕ := f+
1 (B1) · (rp − c) + f−2 (B2) · c = 2f+

1 (B1) · (rp − c) = 2f−2 (B2) · c;

here the f+
1 (B1) · (rp− c) term corresponds to the number of upcrossings per unit of time through

B1 while in (to be understood as ‘coming from’) the ’+’-phase, and the f−2 (B2) · c term to the

number of downcrossings per unit of time through B2 while in (i.e., coming from) the ’−’-phase.

It is further noted the last two equalities are due to the fact that the number of upcrossings per

unit time through B1 while in the ‘+’-mode should match the number of downcrossings per unit

time through B2 while in the ‘−’-mode.

Transmission and sojourn time. The next performance metric, T , is the transmission time of a burst,

i.e., the time it takes to put the entire burst into the buffer. Let fT (·) be the density of T . Consider

the event {T = x}. We list three useful properties:

• A first observation is that if x > B1/(rp − c), the system must have been in the ‘−’-phase

during at least part of the transmission time (as the buffer content grows at rate rp− c while

in the ‘+’-phase).
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• A second observation is the following. Suppose the elastic job enters the system when there

is y in the buffer. If x is larger than (B1 − y)/(rp − c) and the phase is ‘+’, then the phase

shifts from ‘+’ to ‘−’ during the transmission time.

• A third observation is that if the phase is ‘−’ upon arrival, the phase remains ‘−’ during the

entire transmission time.

It leads to the following expression, with f ℓ(·) the density of the buffer content seen by an arriving

job, intersected with being in the ℓ-phase, ℓ ∈ {+,−}:

fT (x) =

∫ max{B1−(rp−c)x,0}

0
p1e

−p1xf+(y)dy

+

∫ B1

max{B1−(rp−c)x,0}
exp

(

−p1 ·
B1 − y

rp − c

)

·m1 exp

(

−m1

(

x−
B1 − y

rp − c

))

f+(y)dy

+

∫ ∞

B2

m1e
−m1xf−(y)dy; (4)

the first term corresponds to the situation in which the queue was in the ‘+’-phase at the arrival

epoch of the burst, and remains in the ‘+’-phase during the transmission time, whereas in the

second term the queue makes a transition to the ‘−’-phase during the transmission time; in the

third term the queue was in the ‘−’-phase at the arrival epoch of the burst, and remains (automat-

ically) in the ‘−’-phase during the transmission time. From the density, the mean transmission

time ET can be computed.

It now remains to identify f+(y) and f−(y). As a burst enters while the source is in the off-state,

i.e., X = 2, and taking into account the different rates at which the source can transmit when

switching on,

f+(y) =
f+
2 (y)p2

∫∞
0 (f+

2 (x)p2 + f−2 (x)m2)dx
; f−(y) =

f−2 (y)m2
∫∞
0 (f+

2 (x)p2 + f−2 (x)m2)dx
.

The numerator of f+(y) is to be interpreted as the rate at which the source turns on while the

phase is ‘+’ and the buffer is y, whereas the denominator is the rate at which the source turns on,

irrespective of the phase and buffer content; the expression for f−(y) can be interpreted likewise.

We now see how the formulas change when we do not consider the time it takes before the burst

is stored in the buffer, but instead the time before the entire burst has left the queue, which we

will refer to as the sojourn time S. This random variable is most easily expressed in terms of its

Laplace transform. We have to distinguish between the same three cases as in (4). Regarding the

first term, observe that if the initial buffer level is y and the on-time is x, the entire burst has left

the queue after

x+
y + (rp − c)x

c
=
y

c
+
rpx

c

units of time. Regarding the second term, the amount of traffic in the buffer at the end of the

transmission time is

B1 + (rm − c)

(

x−
B1 − y

rp − c

)

,
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and hence the sojourn time is

x+
1

c

(

B1 + (rm − c)

(

x−
B1 − y

rp − c

))

=
rmx

c
+
rp − rm
rp − c

B1

c
+
rm − c

rp − c

y

c
.

Regarding the third term, then the sojourn time is

x+
y + (rm − c)x

c
=
y

c
+
rmx

c
.

We thus obtain

Ee−αS =

∫ ∞

0

∫ max{B1−(rp−c)x,0}

0
p1e

−p1xf+(y) exp
(

−α
(y

c
+
rpx

c

))

dydx

+

∫ ∞

0

∫ B1

max{B1−(rp−c)x,0}
exp

(

−p1 ·
B1 − y

rp − c

)

·m1 exp

(

−m1

(

x−
B1 − y

rp − c

))

f+(y)

exp

(

−α

(

rmx

c
+
rp − rm
rp − c

B1

c
+
rm − c

rp − c

y

c

))

dydx

+

∫ ∞

0

∫ ∞

B2

m1e
−m1xf−(y) exp

(

−α
(y

c
+
rmx

c

))

dydx.

By differentiating, inserting α := 0, and multiplying with −1, we obtain ES. The formulas do not

provide much additional insight, and we have decided to omit them here.

The transmission time and sojourn time are specifically meaningful in the case of elastic traffic.

Then we let the size of the elastic job (in, say, bits) be exponentially distributed with mean µ−1,

and choose p1 = µrp and m1 = µrm. In this situation, the amount of traffic to be sent has a fixed

distribution (viz. exponentially with mean µ−1). The mean sojourn time reads

ES =
1

c

∫ ∞

0
y(f+(y) + f−(y))dy +

1

µc
,

where the first term represents the mean amount of time needed to serve all traffic the tagged job

sees in the queue upon arrival, and the second term the time needed to serve the tagged job itself.

Multi-dimensional sources. The above results can be extended to sources with dimension higher

than 2 (and hence also to the situation of multiple sources), as the model of [9] presents the

steady-state distribution for any dimension of the underlying Markov fluid source; in fact, the

formulas for the throughput and the (packet-)delay distribution were already given in [9]. The

formula for the signaling frequency follows along the same lines as sketched above, by an up-

crossings/downcrossings argument, where all states should be taken into account in which B1

can be reached from below while being in the ‘+’-phase, as well as all states in which B2 can be

reached from above while being in the ‘−’-phase.

4 Numerical experiments

In this section we describe a number of experiments, that assess the impact of the model pa-

rameters on the performance. Four key metrics are considered, viz. (i) throughput, (ii) signaling
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frequency, (iii) expected (packet) delay (streaming traffic), (iv) expected transmission time (elastic

traffic). We then indicate how our model can be used in the design of the back-pressure system,

or, more specifically, when selecting suitable values for the thresholds. The last part of the sec-

tion addresses an alternative model that can be used in case of larger aggregates feeding into the

queue.

4.1 Experiments

Experiment I: Effect of the thresholds – streaming traffic. In this first experiment we study the effect of

the thresholds on the performance in case of streaming traffic. In [10] we found (for a consider-

ably more stylized model) that, for a given value of the upper threshold B1, the throughput was

maximized by choosing the lower threshold B2 as closely as possible to B1. What we did not ad-

dress in [10] is to what extent this affects the signaling frequency, packet delays, and transmission

times.

In this example we chose the following parameters, with c = 10:

Q+ = Q− =

(

−1 1

1 −1

)

; r
+ =

(

25

0

)

; r
− =

(

15

0

)

.

Remark that this situation is typical for a streaming user: when there is low (high, respectively)

congestion, it is allowed to transmit at a high (low) rate, but the generator matrices, i.e., Q+ and

Q−, are not affected by the level of congestion. In other words: a sample-path of the process

consists of a sequence of on- and off-times. The results are presented in Fig. 2. It is noted that the

mean buffer content and the mean packet delay can be easily translated in one another, noticing

that (due to Little’s formula) the mean buffer content equals the product of the throughput and

the mean packet delay. This motivates why we have chosen to show just the throughput and the

mean packet delay, and to leave out the mean buffer content; the reader can compute the mean

buffer content easily. We mention that in all our experiments the mean buffer content showed the

same qualitative behavior as the mean packet delay.

Consider the situation of a fixed value of B1, and compare the situations of (A) B2 < B1 and (B)

B2 = B1. From the graphs we will see that, compared to situation (B), under (A) the through-

put, signaling frequency, and mean packet delay are lower. In other words: there is a trade-off

between throughput on one hand, and signaling frequency and mean packet delay on the other

hand.

These trends can be explained as follows. First observe that epochs at which the buffer content is

B1 and the phase jumps from ‘+’ to ‘−’ are regeneration epochs, in that the process probabilistically

starts all over. Let time 0 be such a regeneration epoch, and let WA(t) be the workload process in

situation (A), andWB(t) the workload in situation (B). Then it is seen thatWA(t) ≤WB(t) sample-

path-wise, and hence P(WA = 0) ≥ P(WB = 0), and hence, according to (1), the throughput is

indeed lower under (A) than under (B). Likewise, it can be argued that regeneration cycles last

shorter under (B), and as there are two signals per regeneration period, the signaling frequency

9
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Figure 2: Effect of thresholds on streaming traffic.
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Figure 3: Effect of transmission rate rp on streaming traffic.

under (A) is lower than under (B). With a similar argumentation, it also follows that the mean

packet delay is lower under (A) than under (B).

Experiment II: Effect of the transmission rate – streaming traffic. In this experiment we study the

effect of the peak rate rp on the performance. In the service level agreement, typically the rp will

be specified. The effect of having a higher rp is the following. Observe that regeneration periods

become shorter when rp increases, and hence the signaling rate increases. Also (on a sample-

path basis) the workload process increases in rp, leading to a higher throughput and mean packet

delay. Hence, we see a similar effect as in Experiment I. Doubling the peak rate rp, though,

does clearly not lead to doubling the throughput. Remark that it may, at first glance, be slightly

counterintuitive that the performance in term of packet delay degrades when increasing rp, but

this effect is due to the fact that the buffer content increases. In the numerical experiment, we

use the parameters of Experiment I (except that we vary the value of rp). We chose B1 = 25 and
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Figure 4: Effect of multiplying rp and rm by factor α (α is such that the stability condition is

satisfied).

B2 = 10; the graphs are shown in Fig. 3.

We also include a related experiment here, where both rp and rm are multiplied by α (but α is

such that the stability condition remains fulfilled). Now the ‘+’-phase lasts shorter, while the

‘−’-phase lasts longer. Hence it can be argued that both the delay and throughput increase when

rp and rm grow, but it is not a priori clear what happens with the signaling frequency. The results

are presented in Fig. 4; it is seen that the signaling frequency shows non-monotone behavior in α.

Notice that the above insights are of interest for the user. The rp is the fastest rate he can transmit

at, whereas the rm can be regarded as some minimally guaranteed transmission rate. These are

rates that are agreed upon in the service level agreement. Clearly, the higher the transmission

rates, the more the customer will be charged. The figures may guide the user in choosing his rp

and rm, taking into account this trade-off.

Experiment III: Effect of the thresholds – elastic traffic. In this third experiment we study the effect

of the thresholds on the performance for the case of elastic traffic. We wonder if, in order to

maximize the throughput, just as in the case of streaming traffic, it is again optimal to chooseB2 =

B1; we are also interested in the impact of the choice of the thresholds on the other performance

metrics.

In this example we chose the following parameters, with c = 10:

Q+ =

(

−1 1

1 −1

)

; Q− =

(

−3
5

3
5

1 −1

)

; r
+ =

(

25

0

)

; r
− =

(

15

0

)

.

Remark that this situation is typical for an elastic user: when there is low (high, respectively)

congestion, it is allowed to transmit at a high (low) rate, but the generator matrices, i.e., Q+

and Q−, are now adapted too in order to reflect the fact that the burst lasts longer when the

transmission rate is reduced. A sample-path of the process is now a sequence of job sizes (i.e.,

measured in volume, in, say, bits — hence not time) and off-times (measured in time, to be inter-

preted as ‘read-times’). In this example the job sizes have an exponential distribution with mean

11
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Figure 5: Effect of thresholds on elastic traffic.

1/µ = rm/m1 = rp/p1 = 25; and the read-times have an exponential distribution with mean 1.

The numerical outcome is presented in Fig. 5.

Consider again the situation of a fixed value ofB1, and compare the situations of (A)B2 < B1 and

(B) B2 = B1. Under (A) regeneration cycles are longer than under (B), and hence the signaling

frequency is lower. We have not found, however, a sound argumentation that reveals in which

situation the throughput and packet delay are higher. Intuitively one would think that under (B)

throughput is higher, which is confirmed by the graphs. The expected sojourn time ES turns out

to have non-monotone behavior in this parameter setting; varying B2 has clearly impact on the

buffer content seen by an arriving job, but in a rather unpredictable way.

We mention that in this experiment the parameters are chosen such that the ‘mean drift’ while

being in the ‘+’-phase is positive, which implies that the upper threshold B1 will be reached

in a relatively short time (roughly equal to B1 − B2 divided by this mean drift). The case of a

negative ‘mean drift’ while being in the ‘+’-phase is less interesting, as it can then be argued that

the process will be in the ‘+’-phase most of the time, and the queue roughly behaves as a non-

feedback queue with generator Q+ and traffic rates r
+. In other words: in this case the value of

B1 has hardly any impact on the throughput.

Experiment IV: Effect of the transmission rate – elastic traffic. When rp increases (with µ held constant,

i.e., p1 increases as well), regeneration cycles become shorter, and hence the signaling frequency

increases. As could be intuitively expected also the throughput and expected sojourn time in-

crease, but again we lack a solid argumentation; see Fig. 6.

4.2 Design issues

Above we saw that there is a trade off between the signaling frequency and the throughput, and

it is the network provider’s task to balance these, according to his (subjective) preference. We

here sketch how such a decision is facilitated by our model. Figs. 7 and 8 depict the trade-off

between the throughput ϑ and the time between two subsequent signals ψ := 1/ϕ, for a given B1

by varying B2 ∈ [0, B1]; it provides us with a (decreasing) function ϑ = g(ψ) (see the left panels

in Figs. 7 and 8). The provider having objective function f(ϑ,ψ), increasing in both ϑ and ψ, is

12



0 20 40 60
9.5

9.6

9.7

9.8

9.9
Throughput

rp

0 20 40 60

0.04

0.045

0.05
Signaling Frequency

rp

0 20 40 60
7

7.2

7.4

7.6

7.8
Expected Sojourn Time

rp

Figure 6: Effect of varying rp and p1 while keeping their ratio fixed at rp/ p1 = 25.
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Figure 7: Trade-off between throughput ϑ and time between signals ψ (streaming traffic).

faced with the following optimization problem:

max
ϑ,ψ

f(ϑ,ψ) under ϑ = g(ψ).

Having identified the optimally achievable pair (ϑ⋆, ψ⋆), we can now reconstruct what the cor-

responding value B⋆
2 was. Clearly, a similar procedure can be set up with both B1 and B2 being

decision variables.

In Figs. 7-8 we graphically illustrate how to identify the optimum for the objective function

f(ϑ,ψ) = ξ1ϑ + ξ2ψ. Fig. 7 uses the parameters of Experiment I, whereas Fig. 8 uses the pa-

rameters of Experiment III; B1 is chosen equal to 25. The left panels show the trade-off between

ϑ and ψ, whereas the right panels show the value of the objective function (for several choices of

ξ1 and ξ2) as a function of B2. The right panel of Figs. 7-8 shows that in some of these examples

it turns out that the objective function is maximized by choosing B2 as small as possible (which
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Figure 8: Trade-off between throughput ϑ and time between signals ψ (elastic traffic).

underscores the use of having two different thresholds rather than one). Evidently, this result is

specific for the performance measures (ϑ and ψ) and the objective function chosen; other choices

may lead to a structurally different outcome (see the curves in Figs. 7-8 in which B2 should be

chosen close to 25).

5 A model for higher aggregation levels

The experiments in the previous section involved a single source, but the main findings carry over

to the situation with multiple sources. This can be validated in detail by redoing the numerical

computations, but we here take an alternative approach. This approach is simpler, and somewhat

less precise, but still capable of capturing the main trends.

Instead of having both a fluid content process (recorded by W (t)) and one or multiple sources

(recorded by X(t)), we model the buffer content (resulting from the ensemble of all sources) by

a birth-death-like process: during the ‘+’-phase the buffer content behaves as an M/M/1 queue

with arrival rate λ+ and departure rate µ+, whereas during the ‘−’-phase it behaves as an M/M/1

queue with arrival rate λ− (of traffic quanta of size, say, 1) and departure rate µ−. Thus, the rate

of change of the buffer is no longer determined by vectors r
− and r

+ and generator matrices Q−

and Q+ as before, but simply by birth-and-death parameters λ+, µ+, λ−, µ−. What remains the

same as before, is that these depend on the current mode (that is, ‘+’ or ‘−’), just as r and Q did

before. To analyze a given situation, we can tune the λ+, µ+, λ−, µ− (satisfying the equilibrium

condition λ− < µ−), so that they roughly match the first and second order characteristics of the

buffer dynamics. For this model we verify whether the trends, as observed in Section 4.1, still

apply.

Let τ+ be the duration of the ‘+’-phase, and τ− the duration of the ‘−’-phase. It is immediate (for
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instance from Wald’s theorem) that

Eτ− =
B1 −B2

µ− − λ−
.

The computation of Eτ+ is standard, but a bit more tedious. With ai denote the mean time until

B1 is reached, starting in i ∈ {0, . . . , B1 − 1}, it is evident that

(λ+ + µ+)ai = λ+ai+1 + µ+ai−1 + 1, (5)

for i = 1, . . . , B1 − 1; also λ+a0 = λ+a1 + 1 and aB1
= 0. With bi = ai+1 − ai, Eqn. (5) can be

rewritten as λ+bi = µ+bi−1 − 1, where b0 = −1/λ+. It is then easy to verify that

bi = −
(µ+)i

(λ+)i+1
−

(

1 −

(

µ+

λ+

)i
)/

(

1 −
µ+

λ+

)

=
1

λ+ − µ+

(

(

1

̺+

)i+1

− 1

)

,

with ̺+ := λ+/µ+, and realizing that −ai = bi + · · · + bB1−1 (use aB1
= 0),

Eτ+ = aB2
= −

B1−1
∑

j=B2

bj =
B1 −B2

λ+ − µ+
−

1

λ+

1

1 − ̺+

(̺+)B2−B1 − 1

(̺+)B2 − (̺+)B2−1
;

if λ+ > µ+, then this may be (roughly) approximated by (B1 −B2)/(λ
+ − µ+) (as could be ex-

pected), whereas if λ+ < µ+, then it roughly equals

1

µ+

1

(1 − ̺+)2

(

1

̺+

)B1

.

The signaling frequency equals ϕ = 2/(Eτ+ + Eτ−), by virtue of ‘renewal reward’. As is easily

verified, the mean time per cycle spent in state 0 is

Eτ+
0 =

(̺+)B1−B2 − 1

(̺+)B1 − (̺+)B1−1
,

so that the throughput is given by

ϑ =
Eτ+ − Eτ+

0

Eτ+ + Eτ−
·

1

µ+
+

Eτ−

Eτ+ + Eτ−
·

1

µ−
.

The thresholds B1 and B2 can be optimally selected by following a scheme similar to the one

sketched in Section 4.2. In Fig. 9 we consider an example that again focuses on the trade-off

between the throughput ϑ and the time between two consecutive signals ψ. We see the same

type of behavior as in the single-source case. The input parameters are λ+ = 7, µ+ = 5, λ− = 4,

µ− = 5, so that there is a positive drift during the ‘+’-phase. The thresholds are B1 = 25 and

B2 = 10.
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Figure 9: Trade-off between throughput ϑ and time between signals ψ for higher traffic aggrega-

tion model.

6 Concluding remarks

This paper addressed a methodology for resolving design issues in back-pressure-based control

mechanisms. Relying on a feedback fluid model [9], we derived closed form expressions (in

terms of the solution of certain eigensystems, and additionally a system of linear equations) for a

number of key performance metrics. It enables us to investigate in detail the trade-offs involved –

for instance the trade-off between throughput and the signaling overhead – and thus facilitates a

proper selection of the protocol’s design parameters (such as the values of the thresholds). It also

sheds light on the effect of changing the transmission rates. We also presented a more stylized

model, that is particularly useful when the input consists of a substantially larger aggregate of

users.
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