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Performance analysis of differentiated resource-
sharing in a wireless ad-hoc network

ABSTRACT
In this paper we model and analyze a relay node in a wireless ad-hoc network; the capacity
available at this node is used to both transmit traffic from the source nodes (towards the relay
node), and to serve traffic at the relay node (so that it can be forwarded to successor nodes).
Clearly, when a specific node is used more heavily than others, it is prone to becoming a
performance bottleneck. In this paper we consider the situation that the relay node obtains a
share of the capacity that is m times as large as the share that each source node receives. The
main performance metrics considered are the workload at the relay node and the average
overall flow transfer time, i.e., the average time required to transmit a flow from a source node
via the relay node to the destination. Our aim is to find expressions for these performance
metrics for a general resource-sharing ratio m, as well as a general flow-size distribution. The
analysis consists of the following steps. First, for the special case of exponential flow sizes we
analyze the source-node dynamics, as well as the workload at the relay node by a fluid-flow
queueing model. Then we observe from extensive numerical experimentation over a broad set
of parameter values that the distribution of the number of active source nodes is actually
insensitive to the flow-size distribution. Using this remarkable (empirical) result as an
approximation assumption, we obtain explicit expressions for both the mean workload at the
relay node and the overall flow transfer time, both for general flow-size distributions.
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Abstract

In this paper we model and analyze a relay node in a wireless ad-hoc network; the capacity
available at this node is used to both transmit traffic from the source nodes (towards the
relay node), and to serve traffic at the relay node (so that it can be forwarded to succes-
sor nodes). Clearly, when a specific node is used more heavily than others, it is prone to
becoming a performance bottleneck. In this paper we consider the situation that the relay
node obtains a share of the capacity that is m times as large as the share that each source
node receives.

The main performance metrics considered are the workload at the relay node and the
average overall flow transfer time, i.e., the average time required to transmit a flow from a
source node via the relay node to the destination. Our aim is to find expressions for these
performance metrics for a general resource-sharing ratio m, as well as a general flow-size
distribution.

The analysis consists of the following steps. First, for the special case of exponential flow
sizes we analyze the source-node dynamics, as well as the workload at the relay node by
a fluid-flow queueing model. Then we observe from extensive numerical experimentation
over a broad set of parameter values that the distribution of the number of active source
nodes is actually insensitive to the flow-size distribution. Using this remarkable (empirical)
result as an approximation assumption, we obtain explicit expressions for both the mean
workload at the relay node and the overall flow transfer time, both for general flow-size
distributions.
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1 Introduction

Recent developments in wireless communication technology have opened up the
possibility of operating ad-hoc networks. These networks have the key feature that
they can be deployed instantly without a fixed infrastructure or pre-advanced con-
figuration. The underlying communication technology is usually based on shared
medium access (e.g.,  802.11), i.e., neighboring nodes share the same radio ca-
pacity. In more detail, considering a given relay node, this means that the capacity
available at this node is used both to transmit traffic from the source nodes (towards
the relay node), and to serve traffic at the relay node (so that it can be forwarded to
successor nodes). In the standard protocol every source node gets the same share
of the capacity as the relay node. This explains why in case a certain node is used
as a relay node more heavily than other nodes, this node is likely to become a
performance bottleneck.

The present paper investigates a family of resource-sharing policies that grant a
larger share of the available capacity to the relay node. We do so be considering a
fluid-flow model of a single relay node that is fed by multiple source nodes. Source
nodes become active at random time instances and start transmitting flows (where
individual packets are approximated by fluid) to a destination via the relay node;
after a source node has transmitted its flow to the relay node it becomes inactive.
The ‘resource-sharing ratio’ m indicates the share of the overall capacity  that the
relay node obtains relative to the share that is allocated to each of the source nodes.
More precisely, if n source nodes are active, then the relay node obtains service rate
m/(m + n) while each source node receives service rate /(m + n). If the aggregate
rate of traffic flowing into the relay node exceeds the service rate of the relay node,
work is backlogged at the relay node in a buffer (of infinite size). It is stressed
that the relay node can only claim its full share /(m + n) if either the number of
active source nodes exceeds m (that is, n ≥ m), or if the relay node is backlogged.
Otherwise the relay node is allocated a share /2, while each source node obtains
/(2n) (and hence the buffer remains empty). An important consequence of these
allocation rules is that the system is work-conserving.

A special case of the above-mentioned model is the standard situation in which the
relay node gets the same share as each source node, i.e., m = 1, which was treated
in detail in [3, 17]. The analysis in these papers relies heavily on the fact that for
m = 1 the resource sharing only depends on the number of active source nodes,
and not on the current buffer content; this is in contrast with the case of general
m, where knowledge of both the number of active sources as well as the current
level are needed in order to determine the rate allocation, as pointed out above. It
turned out that for m = 1 the behavior of the source nodes can be related to a //1
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Processor Sharing-queue with state-dependent service-rates; it is well-known that
this model exhibits insensitivity to the flow-size distribution (apart from its mean).
In [3, 17] the authors derive explicit expressions for the workload at the relay node
and the overall flow transfer time, i.e., the time required to send a flow from a
source node via the relay node to a destination.

1.1 Contribution

This paper presents analytical expressions for a number of performance metrics of
the fluid model for general m ∈ (0,∞). It is stressed once more that this general
case is significantly more difficult than the special case m = 1 of [3, 17] due to
the fact that the resource sharing between the source nodes and the relay node is
influenced by the workload at the relay node, and it is not solely determined by the
number of active source nodes as is the case for m = 1.

In our analysis we first address the case of exponentially distributed flow-sizes. As
the resource sharing is influenced by the workload at the relay node, the number of
active source nodes itself does not constitute a Markov chain. However, the model
falls within the class of so-called ‘fluid queues with feedback’ (or: ‘feedback fluid-
queues’), as introduced in e.g., [16]. Using the theory developed there, we derive
the joint distribution of the number of active source nodes and the workload at the
relay node. In addition, we provide an analysis of the overall flow transfer time.

For the case of generally distributed flow-sizes we cannot rely on the framework
developed in [16], as the exponentiality assumptions imposed there are crucial. For
generally distributed flow sizes, however, we empirically observed the remarkable
property that the distribution of the number of active source nodes is insensitive
to the flow-size distribution (apart from its mean) for any general resource-sharing
ratio m ∈ (0,∞) (i.e., not just for m = 1). This insensitivity claim is supported
by a sizeable set of simulation experiments, corresponding to a broad range of
parameters settings, including combinations of heavy load, a highly variable flow-
size distribution, and a large resource-sharing ratio m. We consider the observed
insensitivity as a highly surprising fact, since (for m > 1) the process describing
the number of active source nodes does not fulfill the usual criteria for insensitivity
(where we remark that for m ∈ [0, 1] the insensitivity can be proven in a relatively
elementary way).

By using the (conjectured) insensitivity as an approximation assumption, and by
relating the workload of the total system to the workload in an appropriate //1-
queue, we derive insightful closed-form expressions for the mean workload at the
relay node. In particular, we show that the mean workload at the relay node for gen-

3



eral flow-size distributions is proportional to the mean workload for exponentially
distributed flow-sizes; here the associated multiplicative factor is independent of
the system parameters (including m), apart from the Coefficient of Variation of the
flow-size distribution. In addition, we present an approximation for the overall flow
transfer time for general flow-size distributions. The resulting expressions allow for
easy numerical evaluation and are thoroughly validated by simulations of the fluid
model.

1.2 Literature

Notably, just a rather limited number of studies consider the flow-level analysis of
ad-hoc networks, focusing on metrics such as the transfer time of a flow (typically
consisting of multiple data packets). These metrics are particularly interesting for
elastic flows, as for this type of traffic they relate more naturally to the perceived
quality of end-users than packet-level statistics (such as packet delays). For flow-
level performance studies of a single-hop ad-hoc network, we refer to e.g., [9, 15].
More specifically, in [15] a closed-form expression for the mean flow-transfer time
is obtained by considering the system as a Processor Sharing queue with state-
dependent service rates.

As mentioned before, [3, 17] study the present fluid model for the special case that
m = 1. The focus of [20] was on the validation of the fluid model for m ≥ 1;
by system simulations incorporating all details of the  802.11e ireless 

technology (see, e.g., [11]) it was demonstrated that the fluid model accurately
captures the resource sharing amongst source nodes and a common relay node. In
[2] the fluid model for m = 1 is analyzed in the special case of regularly varying
(that is, heavy-tailed) flows. The tail asymptotics of the overall flow transfer time
are derived by sample-path arguments; it is proven that the tail behaves roughly
as the residual flow size. In [19] a versatile infinite-state Markov reward model is
proposed to investigate the impact of different resource-sharing strategies for expo-
nentially distributed flow-sizes. The authors numerically compute the performance
measures such as the distribution of the number of active source nodes and the
workload at the relay node; they do not study flow-level performance measures,
e.g., flow-transfer times.

1.3 Outline

The outline of this paper is as follows. Section 2 describes our model in full detail
and introduces the performance metrics that are analyzed in this paper. In addition,
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it presents a number of preliminary results on the total workload in the ad-hoc
network, which are exploited later. The model is analyzed in Section 3 for the
special case of exponentially distributed flow-sizes and in Section 4 for generally
distributed flow-sizes.

For the case of exponentially distributed flow-sizes we derive the joint distribution
of the number of active source nodes and the buffer workload in Section 3.1, relying
on the concept of fluid queues with feedback. Furthermore, we obtain the mean
workload at the relay node (Section 3.2) and the mean overall flow transfer time
(Section 3.3) to transmit a flow from source node to a destination via the relay node.
In Section 4 the analysis is extended to the case of generally distributed flow-sizes.
A crucial step in this analysis is played by our claim that the source-node behavior
is insensitive to the flow-size distribution apart from its mean for general m, see
Section 4.1. This result is then used to obtain the mean workload (Section 4.2) at
the relay node and the mean overall flow transfer time (Section 4.3). Section 4.4
presents a calculation scheme that is useful to evaluate all the expressions involved.

Section 5 presents an extensive numerical validation of the analyses of the earlier
sections. The scenarios considered are introduced in Section 5.1. Numerical results,
validating the performance formulae for exponentially distributed flows-sizes, are
given in Section 5.2. For generally distributed flow-sizes we present empirical ev-
idence of the insensitivity claim in Section 5.3 (for a broad set of parameters, in-
cluding extreme situations), as well as validation of the performance formulae in
Section 5.4. Finally, Section 6 concludes this paper.

2 Model and performance metrics

Section 2.1 describes the model in more detail. Section 2.2 presents some prelimi-
nary analysis, in particular a relation between the total workload in the system and
the workload in an //1-queue. Section 2.3 introduces the performance metrics.

2.1 Fluid model

We consider a network with a large number of source nodes which may become
active and transfer flows of data (files) to destinations via a common relay node,
see Figure 1. Flow transfers are initiated according to a Poisson process with rate λ
(‘flow arrival rate’). Flow sizes (in terms of fluid or bits) are distributed according
to distribution F with mean f , second moment f2 (assumed to be finite), and Coef-
ficient of Variation (o) F , i.e., 2

F := Var(F) /(�F)2 = f2/ f 2 − 1. Let Nt denote
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Fig. 1. Network model.

the number of active source nodes at time t and Wt the workload at the relay node
at time t.

The total transmission capacity of the system is denoted by  and it is shared among
the active source nodes and the relay node. If the aggregate rate of traffic flowing
from the source nodes to the relay node exceeds the rate out of the relay node,
traffic is stored in a buffer of infinite size which is served by the relay node in a
-fashion.

The resource-sharing ratio between the relay node and the source nodes is denoted
by m, i.e., the relay node obtains capacity m/(Nt +m) if Nt ≥ m sources are present
or if the buffer of the relay node is backlogged, i.e., Wt > 0. Otherwise, the relay
node and the set of active source nodes each obtain half the capacity (/2), i.e., the
aggregate input rate at the relay node is equal to the output rate. The source nodes
always equally share the capacity not used by the relay node. Observe that the entire
capacity  is always used if there is work in the system, so that the system is work-
conserving. The resource sharing between the source nodes and the relay node is
summarized in Table 1. The column ‘drift’ indicates the sign of the net input rate
into the buffer at the relay node, i.e., it indicates whether the buffer content increases
(+), decreases (−) or remains constant (0). Notice from Table 1 that the resource
sharing at epoch t depends on both Nt and Wt. Figure 2 presents a sample-path
example of the resource sharing in case m = 2.
Table 1
Resource sharing between source nodes and relay node.

Number of Wt = 0 Wt > 0

active sources source relay drift source relay drift

Nt < m /2Nt /2 0 /(m + Nt) m/(m + Nt) –

Nt = m /2Nt /2 0 /(m + Nt) m/(m + Nt) 0

Nt > m    /(m + Nt) m/(m + Nt) +

Observe that in our model a flow may be present (and receive service) at both the
source node and the relay node: at flow initiation the source node immediately
starts transmitting fluid to the relay node and parts of the flow may be present at
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Fig. 2. Example of resource sharing for allocation m = 2.

both source and relay node. At some point in time the source node transmits the last
(infinitesimally small) ‘particle’ of the flow to the relay node, and then the source
node becomes inactive; this epoch is referred to as the ‘arrival of the last particle
at the relay node’-epoch, or alternatively as the ‘source-departure’-epoch. In case
the relay node is not backlogged, this last particle will be served instantly and the
flow transfer is completed. If the relay node is backlogged, the last particle suffers
an additional delay before the flow transfer time from source node to destination is
completed.

2.2 Total workload of the system

The total workload Wtotal in our model, i.e., the sum of the workloads at the source
nodes and the relay node, can be related to the workload in an //1-queueing
system by making the following observations:

(1) Each flow is served essentially twice; once by the source node to transmit the
flow to the relay node, and once by the relay node to forward the flow to the
destination node.

(2) The overall system is work-conserving, i.e., the total service rate of the system
is always  if there is work in the system.

As an aside, we remark that these observations immediately lead to the stability
criterion 2ρ < 1, with ρ := f /.

Now it easily seen that the following lemma holds.

Lemma 1 �Wtotal corresponds to the virtual waiting-time in an //1-queue with
service requirement distribution F with first moment 2 f / and second moment
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4 f2/
2. Then,

�Wtotal =

(
2ρ

1 − 2ρ

)
· 1

2
(2

F + 1)
2 f


=

(
2ρ

1 − 2ρ

)
· (2

F + 1)
f

. (1)

Proof The expression for �Wtotal follows directly from the Pollaczek-Khintchine
mean value formula.

2.3 Performance metrics

The main performance metrics of interest are the steady-state buffer workload
Wbuffer at the relay node and the overall flow transfer time Doverall, i.e., the time
required to completely transfer a flow from source node to destination. The overall
flow transfer time is the sum of two other performance metrics: (i) the time (Dsource)
a source requires to completely transfer a flow to the relay node, and (ii) the delay
at the relay node (D∗buffer) experienced by the last particle of the flow (the asterisk
indicates that the performance measure relates to the last particle of a flow).

3 Analysis for exponentially distributed flow-sizes

This section presents an analysis of the model for the special case of exponentially
distributed flow-sizes, which allows for a detailed analysis of the mean performance
metrics. First, in Section 3.1 we derive the joint distribution of the number of active
source nodes and the workload at the relay node at an arbitrary epoch. Next, this
result is used in Section 3.2 to determine the workload at the relay node at the arrival
epoch of the last particle of a flow. Finally, based on the results obtained in Sections
3.1 and 3.2, we present in Section 3.3 an approximation for the mean delay �D∗buffer
of the last particle of a flow that added to with the mean delay �Dsource yields the
mean overall flow transfer time �Doverall.

3.1 Joint distribution of the number of source nodes and the buffer workload

The source-node dynamics of the model of Section 2.1 does not constitute a Markov
chain; the transition rates depend on both the number of active source nodes Nt and
on the buffer workload Wt, or, more precisely, whether Wt is positive or not. Put
differently, there is feedback from the buffer content to the source behavior, in that
information on the buffer content is needed to describe the source-node dynamics.
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Thus the stationary joint distribution of the number of source nodes and the buffer
workload can be obtained by modeling it as a so-called feedback fluid-queue, anal-
ogously to [16]. This distribution is obtained in two steps: first we consider the
simplified fluid model without feedback (i.e., the source nodes evolve indepen-
dently of the buffer content), and then the obtained results are translated in terms of
the model with feedback. An extensive treatment of this derivation is presented in
Appendix A; below we restrict ourselves to an excerpt.

First we consider the fluid-queue without feedback, i.e., the relay node always ob-
tains share m of the capacity; let N̄t and W̄t respectively denote the number of active
source nodes and buffer workload at epoch t in this model (in the sequel all quanti-
ties with bars ‘¯’ relate to the model without feedback). Observe that N̄t constitutes
a Markov chain and has generator matrix Q̄ (as given in (A.1) in the Appendix).
Further, let R̄ be a diagonal matrix where R̄n is the net input rate into the relay
node if n sources are active, i.e., R̄n := (n − m) /(n + m). We define the stationary
distribution of (N̄t, W̄t) as

Fn(x) := lim
t→∞

�
(
W̄t ≤ x; N̄t = n

)
= �

(
W̄ ≤ x; N̄ = n

)
.

To facilitate the analysis we here assume that a maximum nmax is imposed on the
number of source nodes that may be simultaneously active; flows that are initiated
if already nmax other source nodes are active are blocked. Observe however that if
one chooses nmax sufficiently large (which we will do in the sequel), this will not
have any significant impact on the model.

The buffer workload has to satisfy the Kolmogorov forward equations

−→
F ′(x)R̄ =

−→
F (x)Q̄′.

The spectral expansion of the solution is given by

−→
F (x) =

nmax∑

j=0

a j
−→v j exp(z jx)

where (z j,
−→v j) is an eigenvalue-eigenvector pair, i.e., a scalar and vector that solve

z j
−→v jR̄ = −→v jQ̄. For details on how to obtain the coefficients a j see Appendix A.

Clearly, �(W̄ ≤ x) =
∑

n Fn(x). For stability we assume that the average net input
rate is negative, i.e.,

∑
n ωnR̄n < 0, where ω denotes the distribution of N̄, i.e.,

ωn := Fn(∞).

The joint distribution of the workload and number of sources present for the fluid
model with feedback follows from the corresponding distribution of the without
feedback, by the crucial observation that both models behave identically during
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busy periods, see [16]. Then the joint distribution Gn(x) of (N,W) for the model
with feedback is found after some sort of rescaling the distribution Fn(x) of (N̄, W̄):

Gn(x) =
Fn(x) −∑

k Fk(0)
1 −∑

k Fk(0)
�(W > 0) + �(W = 0; N = n). (2)

For the derivation of the probabilities �(W > 0) and �(W = 0; N = n) in (2) we
refer to Appendix A. The stationary distribution π of the number of active source
nodes N follows from (2) as

πn = Gn(∞). (3)

Let πa (πd) denote the stationary distribution of the active number of source nodes
present at a flow-arrival epoch (left behind at a source-departure epoch, which co-
incides with the arrival epoch of the last particle of a flow at the relay node). Then
we have the following result.

Lemma 2 π, πa and πd are identical.

Proof π = πa follows directly from the -property. πd = πa as Nt is a birth-
death process and the number of up-crossings of level n balances the number of
down-crossings of level n.

3.2 Flow transfer time and the buffer workload

This subsection first explains how to compute �Dsource, and then provides two ex-
pressions for �Wbuffer, one of them being based on the theory developed in Sec-
tion 3.1. Finally it addresses the expected workload �W∗

buffer at the relay node at the
epoch that a last particle of a flow arrives at the relay node, by considering the sum
of the mean workload �Wbuffer present at flow initiation and the mean workload
increase �∆Wbuffer at the buffer of the relay node during a flow transfer.

3.2.1 Expected flow transfer time �Dsource

The expected number of active source nodes is given by

�N =

∞∑

n=0

nπn (4)
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(which we can approximate by
∑nmax

n=0 nπn, but as we had chosen nmax large these
expressions effectively coincide). The flow transfer time follows from Little’s law:

�Dsource = �N/λ (5)

(or, more precisely, �N/(λ(1 − πnmax)), but again this will not give a substantially
different answer if nmax is chosen sufficiently large).

3.2.2 Expected buffer workload at an arbitrary moment

The expected buffer workload �Wbuffer at the relay node upon flow arrival can be
obtained in two manners which are both presented below: in the first place by rely-
ing on the workload distribution, i.e., Expression (2), and in the second place as a
direct application of Lemma 1.

Buffer workload at an arbitrary moment, using the workload distribution. Ob-
serve that π−1

n Gn(x) is the workload distribution conditional on n source nodes being
active. Then, the expected conditional buffer workload is obtained by

�[Wbuffer|N = n] = π−1
n

∫ ∞

0
xdGn(x)

= π−1
n

1
1 −∑

i Fi(0)
�(W > 0)

nmax∑

j=0, j,n+

a j(−→v j)n

z j
,

see Appendix A. Hence, the expected unconditional buffer workload is:

�Wbuffer =
1

1 −∑
i Fi(0)

�(W > 0)
nmax∑

n=0

nmax∑

j=0, j,n+

a j(−→v j)n

z j
. (6)

Buffer workload at an arbitrary moment, using the relation between the model
and the workload in the corresponding //1 -queue. We define Wsources as
the aggregate workload at all active source nodes, and Wtotal and Wbuffer as in re-
spectively Section 2.2 and 3.2. Recall that work at a source node still needs to be
served twice, i.e., by the source node and relay node. Then,

Wtotal = Wsources + Wbuffer. (7)

Observe that Wtotal does not depend on the resource-sharing ratio m; in fact, it does
not even depend on the service discipline as long as it is work-conserving.

As �Wtotal is given by (1) with 2
F = 1, we are left to derive �Wsources. This follows

due to the memoryless property of the exponential distribution of the flow sizes. The
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expected amount of work at an active source node (i.e., the residual of the flow)
equals 2 f /. Furthermore the expected number of source nodes simultaneously
active is given by Expression (4). Hence

�Wsources = �N · 2 f /,

and the expected workload at the buffer of the relay node is:

�Wbuffer =

(
2ρ

1 − 2ρ
− �N

)
· 2 f /. (8)

Remark 3 Relation between Expressions (6) and (8) for�Wbuffer. It is interesting
to note that Expression (6) depends on all the eigenvalue-eigenvectors (z j,

−→v j) for
j = {0, .., nmax}; on the other hand Expression (8) depends just through �N on the
normalized eigenvector that corresponds to the zero eigenvalue, cf. Expressions (4)
and (3). Due to the implicitness of the eigenvalue-eigenvector pairs (z j,

−→v j) and
corresponding constants a j, it is not a priori obvious from these expressions that
they match. ♦

3.2.3 Buffer workload at the arrival epoch of the last particle of a flow at the relay
node

In this section we derive the expected buffer workload �W∗
buffer at the epoch that the

last particle of a flow arrives at the relay node. Note that the mean buffer workload
on flow initiation coincides with the mean workload at an arbitrary epoch ().
Hence, W∗

buffer can be obtained using the following relation:

�W∗
buffer = �Wbuffer + �∆Wbuffer, (9)

where ∆Wbuffer denotes the buffer increase during the transfer time Dsource of an
arbitrary flow.

We are left to derive �∆Wbuffer. Let ∆Wtotal denote the increase in workload in the
total system during the flow transfer time Dsource by a source node, and let ∆Wsources

denote the increase (which may be negative) of the aggregate workload of all source
nodes during Dsource. By (7) we evidently have the following relation:

∆Wtotal = ∆Wsources + ∆Wbuffer. (10)

Lemma 4 �∆Wbuffer = �∆Wtotal.

Proof We have to prove that �∆Wsources = 0, i.e., the expected amount of work at
the source nodes present upon arrival of a flow coincides with the amount present
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at the corresponding source-departure epoch. This property follows directly from
two observations. First, due to Lemma 2, the expected number of source nodes at
the flow-initiation epoch equals the expected number of source nodes at the epoch
of the arrival of the last particle of a flow at the relay node. Second, the expected
residual flow-sizes at these instances coincide due to the memoryless property of
the exponentially distributed flow-sizes.

Lemma 4 and Relation (10) lead to the following proposition.

Proposition 5 The expected increase of the buffer workload �∆Wbuffer during the
transfer time Dsource of a flow is given by

�∆Wbuffer = (�N + 1) · 2 f / − �N/λ. (11)

Proof Due to Lemma 4 we are left to compute �∆Wtotal during the flow transfer
time (with mean �Dsource) of a tagged flow. The input into the total system is the
result of initiations of new flows (including the tagged flow) which arrive at rate λ,
each bringing along an amount of work with expected value 2 f / (cf. Lemma 1).
The expected number of arrivals (including the tagged flow) is λ�Dsource + 1, and
consequently the expected input into the total system is (λ�Dsource + 1) · 2 f /.

The expected output is �Dsource, as is readily verified by the following two obser-
vations. First, the total system is non-empty during the flow transfer time Dsource as
at least the tagged flow is served during Dsource. Second, the total system is work-
conserving and serves at rate . Writing the expressions in terms of �N using (5)
proves the lemma.

Notice that the expected workload �W∗
buffer of Expression (9), which is the sum of

Expressions (8) and (11), only depends on the resource-sharing ratio m via �N.
Recall that �N is given by Expression (4) that can be determined by Expressions
(2) and (3).

An interesting result follows from rewriting Expressions (8) and (11) in terms of
�N and considering their ratio. It turns out that, remarkably, the proportionality
constant does not depend on m.

Corollary 6 The expected workload increase �∆Wbuffer at the relay node during a
flow transfer is proportional to the expected workload �Wbuffer at flow arrival:

�∆Wbuffer =
1 − 2ρ

2ρ
�Wbuffer,
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and Expression (9) can be written as

�W∗
buffer =

1
2ρ
�Wbuffer.

3.3 Mean delay �D∗buffer of the last particle and mean overall flow transfer time
�Doverall

At the moment that the source node has transmitted the full flow into the relay node,
the last fluid particle enters the buffer at the relay node, and then the source node
becomes inactive. In this subsection we present an approximation for the expected
buffer delay �D∗buffer of this last particle.

Recall that the last particle does not experience any buffer delay if the buffer is
empty. In case the buffer is non-empty, the buffer delay D∗buffer of the last particle
is the time required by the relay node to serve the amount of work W∗

buffer present
upon arrival of that last particle. Recall from Section 2.1 that during D∗buffer the relay
node uses the entire resource-sharing ratio m. Hence, during D∗buffer the behavior of
the system behaves as the model without feedback presented in Appendix A.1.

Conditional buffer delay of the last particle at the relay node. Let Yn(τ) denote
the conditional buffer delay, i.e., the time required by the relay node with resource-
sharing ratio m to serve an amount τ of fluid if initially n source nodes are active.
Here we again assume that there is a maximum nmax imposed on the number of
source nodes that may be simultaneously active, as in Section 3.1. Let Q̄ denote the
generator matrix without feedback as in (A.1) and M(s) := −Q̄ + sR where

R := diag
{

1,
m

m + 1
,

m
m + 2

, · · · , m
m + nmax

}
.

Proposition 7 The expected conditional time required to serve an amount τ of
fluid, if initially n source nodes are active, is given by

�Yn(τ) = A(n,0)τ +

nmax∑

j=1

A(n, j)

s j
es jτ −

nmax∑

j=1

A(n, j)

s j
(12)

where s j denote the eigenvalues of R−1Q̄. The constants A(n, j) follow from the partial-
fraction expansion of

sφn(s) =
det M−n(s)
det M(s)

.

where M−n(s) is defined as M(s) with the n-th column replaced by
−→
1 .
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Proof See Appendix B.

In Expression (12) the eigenvalues s j for j ≥ 1 are negative, and hence �Yn(τ) is
approximately linear in τ.

Approximation of the buffer delay. We now use Proposition 7 to approximate the
buffer delay experienced by the last particle of the flow. By definition the expected
buffer delay �Yn(τ) of the last particle can be expressed as

�D∗buffer =

nmax∑

n=0

πd
n

∫ ∞

0
�Yn(τ)w∗n(τ)dτ,

where w∗n(τ) is the probability density function of the amount of work at the buffer
at a source-departure epoch leaving behind n source nodes, and πd coincides with
π (due to Lemma 2). Unfortunately, we do not have the density function w∗n(τ).

If one assumes, however, that �Yn(τ) is linear in τ, the conditional buffer delay
roughly looks like

∫ ∞

0
�Yn(τ)w∗n(τ)dτ ≈ �Yn(�W∗

buffer). (13)

Then we obtain the following approximation for the expected delay D∗buffer of the
last particle.

Approximation 8 The buffer delay of the last particle can be approximated by

�D∗buffer ≈
nmax∑

n=0

πn�Yn
(
�W∗

buffer
)
. (14)

Remark 9 Special case m = 1. As mentioned earlier, the special case m equals 1
was studied in [3]. For exponential flow-sizes and m = 1 and nmax → ∞ a closed-
form expression for the equivalent of (12) is available, namely Expression (33) of
[6]. It is seen that Expressions (33) of [6] and (12) are very similar in nature, in the
sense that both expressions consist of a linear term and in addition a term that is
exponentially decaying in τ. ♦

Now we have derived expressions for all the parts of the main performance metric
from the user perspective: the mean expected overall flow transfer time �Doverall is

�Doverall = �Dsource + �D∗buffer (15)

where �Dsource is given by (5) and �D∗buffer is approximated by (14).
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4 Analysis for general flow-size distributions

This section treats the analysis the performance metrics for generally distributed
flow-sizes. The analysis presented in this section borrows elements from the ap-
proach followed in the previous section for the case of exponentially distributed
flow-sizes.

Our analysis relies heavily on knowledge of the stationary distribution of the num-
ber of active source nodes, together with the expected residual flow-sizes at the
source nodes. In Section 4.1 we present an approximation assumption that states
that the distribution of the number of active source nodes is insensitive to the flow-
size distribution, and we also state two (related) properties concerning the expected
residual flow-sizes at the source nodes. (These claims will be thoroughly assessed
in Section 5.3.) The approximation assumption relates to a general resource-sharing
ratio m ≥ 0, and we use it to derive the mean workload at the relay node in Sec-
tion 4.2. In Section 4.3 we then consider the buffer delay of the last particle of a
flow, which, together with earlier results, enables us to compute the mean overall
flow transfer time. Finally, Section 4.4 presents an overview of all the expressions
required to evaluate the performance metrics, in the form of a calculation scheme.

4.1 Steady-state behavior of the active source nodes

By extensive simulations of the fluid model, for m ≥ 0, we observed the striking
property (i) that the source-node behavior (in terms of the distribution of the num-
ber of active source nodes) is insensitive to the flow-size distribution, i.e., only the
mean flow-size plays a role. In addition, our simulations revealed that the system
exhibits two other characteristics that are closely related to insensitive systems, i.e.,
(ii) the residual flow-sizes at the source nodes are very well approximated by the
‘usual’ excess life distribution as known from renewal theory, and (iii) the residual
flow-sizes are nearly independent of the number of active source nodes. The nu-
merical evidence for these claims is presented in detail in Section 5.3 (see Figures
5–8). We assessed the properties for wide ranges of the parameter settings including
(extremely) heavy loads, various flow-size distributions, and high resource-sharing
ratios. The simulations indicate that the claim (i) is exact, whereas claims (ii) and
(iii) seem to hold as a very accurate approximation; in fact it took a huge number
of replications to show that those statements were not exact. This motivates the use
of the three properties (i)–(iii) as approximation assumptions.

Let us now formally state the approximation assumptions. As mentioned above,
convincing support is provided by the extensive simulation results, to be presented
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in Section 5.3, but it is noted that in Remark 11 we formally prove that for the
special case m ∈ [0, 1] the assumption holds true.

Assumption 10

(i) The stationary distribution of the number of active source nodes is insensitive
to the flow-size distribution apart from its mean and is given by Expression
(3).

(ii) The expected residual flow-size �[Fr] of a flow at a source node coincides
with the expected residual flow-size of a renewal process, i.e.,

�[Fr] = (1/2)(2
F + 1) · f =

f2

2 f
. (16)

(iii) The number of active source nodes Nt and their expected residual flow-sizes
�[Fr] are independent.

Properties as those mentioned in Assumption 10 are well-known to hold for sta-
tionary symmetric queues, cf., e.g., Kelly [12], Cohen [7], Bonald and Proutière
[4], and more recently the work of Zachary [23]. However, the service discipline
of our model is not symmetric; the requirement that the service rate only depends
on Nt is not fulfilled as the service rate also depends on the workload Wt at the
buffer of the relay node. We would therefore like to stress that the (empirically ob-
served) insensitivity of Assumption 10.(i) is a highly remarkable property: to the
authors’ best knowledge there are no results on other insensitive queueing-systems
that do not have a symmetric service-discipline. It is a subject for further research
to formally prove this insensitivity.

Remark 11 Insensitivity of the source-node behavior for m ∈ [0, 1]. For m ∈
[0, 1] the relay node obtains a service rate less than or equal to the share that each
active source node obtains. Therefore, the relay node always obtains its entire share
m if there is work in the system; consequently, the resource sharing only depends on
the number of active sources (and no information on the buffer content is needed).

Hence, the behavior of the source nodes is described by a Processor Sharing queue
with state-dependent service rates n/(n + m) if n source nodes are active. This
model is a special case of the so-called Generalized Processor Sharing queue de-
scribed by Cohen in [7] for which he presented a joint stationary probability/density
function of the number of active sources nodes N and their residual service require-
ments. Via this result we obtain the distribution of the number of source nodes

πn = (1 − ρ)m+1 · ρn
n∏

k=1

m + k
k

.

In [7] it was shown that the stationary distribution is insensitive to the flow-size dis-
tribution and that it is independent of the residual flow-sizes. Further, [7] establishes
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that the residual flow-sizes are distributed according to the excess life distribution
from renewal theory, see e.g. Expression (16), and that the residual flow sizes and
the number of active source nodes are independent. ♦

4.2 Mean buffer workload

For the expected buffer workload �Wbuffer we use the relation �Wtotal = �Wsources +

�Wbuffer. The mean total workload �Wtotal is given by (1), and �Wsources follows
from Assumption 10 and equals

�Wsources = �N · �[Fr]. (17)

We obtain the following expression for the expected workload in the buffer.

Lemma 12 Under Assumption 10,

�Wbuffer =

(
2ρ

1 − 2ρ
− �N

)
· (2

F + 1) f /. (18)

Note that Expression (18) coincides with Expression (8) as 2
F = 1 for exponen-

tially distributed flow-sizes. Corollary 13 results from considering the ratio of Ex-
pressions (18) and (8).

Corollary 13 Under Assumption 10, the buffer workload in case of general flow-
size distribution relates to the workload in case of exponential flow-size distribu-
tion, with the same mean f , in the following manner. In self-evident notation,

�Wbuffer =
(2

F + 1)
2

�Wexp
buffer. (19)

The important implication of relation (19) is that it entails that the expected buffer
workload for general flow-size distributions is proportional to the expected buffer
workload for exponential flow-sizes. It is stressed that the proportionality con-
stant just includes the o, and, importantly, that this factor is independent of the
resource-sharing ratio m (but recall that, evidently, �Wexp

buffer does depend on m).

Using Expression (9), the mean buffer workload �W∗
buffer at the arrival of the last

particle is the sum of �Wbuffer and the mean workload increase �∆Wbuffer. The latter
is derived in Section 3.2, and observe that the derivation is independent of the flow-
size distribution, i.e., Expression (11) holds for general flow-size distributions. As
a consequence, imposing Assumption 10, �N is still given by (4).
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4.3 Mean buffer delay of the last particle in case of general flow-size distributions

For the mean buffer delay �D∗buffer of the last particle we use Approximation (14)
which is derived in Section 3.3, although the approximation is derived assuming
exponentially distributed flow-sizes. This procedure is motivated by considering
the two ways in which the flow-size distribution has impact on the buffer delay.

• First, it affects the buffer workload W∗
buffer seen by the last particle, but recall that

this effect could (under Assumption 10) be captured, and resulted in Expression
(11), see the remarks at the end of Section 4.2.

• The second effect is on the transient behavior during buffer delay D∗buffer where the
resource sharing depends on the number of active source nodes and their resid-
ual flow sizes. Recall that during the entire D∗buffer the relay node continuously
obtains ratio m, which is, importantly, a symmetric service-discipline (therefore
corresponding to an insensitive invariant distribution). Small flows have a small
delay anyway, whereas long jobs will see a number of source nodes that is (by
approximation) distributed according to this invariant. This argumentation sug-
gests that the impact of the distribution of the flow-sizes remains limited.

4.4 Calculation scheme of the performance metrics for general flow-sizes

In order to facilitate easy evaluation of all performance metrics involved, we present
in Table 2 an overview of the expressions required to calculate the performance
metrics. For each performance metric we state the equation number of the corre-
sponding expression in this paper, which other expressions are required to calculate
this expression, and how the expression was derived (where w is an abbreviation
of ‘fluid-queue with feedback’).

5 Numerical results

This section serves three goals: (i) to numerically illustrate the behavior of the sys-
tem as described in Section 2.1 (or, more particularly, to assess the impact of the
ratio m under various loads, and for various flow-size distributions), (ii) to provide
empirical evidence for Assumption 10, and (iii) to validate the approximations pro-
posed in the previous sections. Section 5.1 introduces the scenarios and the param-
eter settings used in the numerical examinations. Section 5.2 presents results for
exponentially distributed flow-sizes and general resource-sharing ratios (cf. Sec-
tion 3). Numerical support of Assumption 10 is provided in Section 5.3. Finally,
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Table 2
Performance metrics calculation scheme for general flow-size distributions.

Performance corresponding required derived by

metric expression expressions

�N (4) (2) w, Conj. 10

�Dsource (5) (4) w, Conj. 10

�Wbuffer (19) (4) w, Conj. 10 or Expr. (7)

�∆Wbuffer (11) (4) Expr. (7)

�W∗buffer (9) (19), (11) Expr. (7)

�D∗buffer (14) (9), (12) Laplace transforms

�Doverall (15) (5), (14) Expr. (7)

Section 5.4 focuses on the performance metrics for general flow-size distributions
(cf. Section 4).

5.1 Validation scenarios

The analytical expressions were evaluated by Matlab. Simulations of the fluid-
model were performed by a simulator which was built in Delphi.

We assume a system capacity  = 5 bit/s and an average flow size f of 0.12 bits.
The average file size of 0.12 bits in the model corresponds to files of 10 packets of
each 1500 ytes in an actual communication system (cf. [3, 20]). For the flow-size
distributions we used Deterministic, Erlang-4, Exponential and Hyper-Exponential
(with balanced means – see e.g. [21] – and a oefficient of ariation (o) of 2,
4, and 16). The resource-sharing ratio m is varied over the values {0, 1, 2, 3, 5, 10}.
The load ρ is varied from very low loads (0.024) up to almost saturation (0.48), by
varying the flow-initiation rate λ; recall that, for stability, ρ < 1

2 is required. Finally,
the maximum number of active source nodes nmax is set to 20, which is chosen so
large that it effectively means that there is no blocking.

Sufficiently many replications have been simulated in order to obtain small confi-
dence intervals. In all experiments the confidence interval’s half-width divided by
the estimate should be below 5%. We remark that this ratio is only close to 5% for
high loads and high o (i.e., o= 16), in the other cases the ratio is usually well
below 1%.
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Fig. 3. Exponential flow-sizes. Left: �Dsource. Right: �Wbuffer.

5.2 Results for exponentially distributed flow-sizes

This section presents numerical results for exponentially distributed flow-sizes.
Figure 3 presents the mean flow transfer time �Dsource (left graph) and the buffer
workload �Wbuffer (right graph) for different values of resource-sharing ratio m as
a function of the load. Recall that the results are exact for exponentially distributed
flows; therefore we do not compare these results with simulations. The graphs il-
lustrate the influence of resource-sharing ratio m: a small ratio m implies that the
source nodes obtain a large share of the capacity resulting in short flow transfer
times �Dsource for the source nodes. On the other hand for small ratios m the relay
node obtains a small share of the capacity which results in a larger mean buffer
workload �Wbuffer.

Figure 4 presents the approximation of the mean buffer delay �D∗buffer (left graph)
and the mean overall flow transfer time �Doverall (right graph). Approximation (14)
of the buffer delay performs very well: it is close to the simulation results. The
right graph shows the overall performance �Doverall. The small error between the
analysis and simulation results is solely due to the approximation of the buffer delay

Fig. 4. Exponential flow-sizes. Left: �D∗buffer. Right: �Doverall.
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�D∗buffer, as �Dsource is exact. Also, the graph illustrates that the �Doverall improves
for increasing m. Observe that the curves of �Doverall for different values of m are
close to each other for ρ < 0.4; this indicates that the trade-off between �Dsource

and �D∗buffer is more or less balanced for these regimes.

5.3 Numerical evidence for Assumption 10

Recall that Assumption 10 consists of three parts, which we will validate sepa-
rately. For m ∈ [0, 1] these results can be proven, see Remark 11; in this section we
therefore focus on m > 1.

To validate part (i) of the assumption (i.e., the distribution of the source nodes is
insensitive to the flow-size distribution), we compare the stationary distribution of
the number of active source nodes obtained by simulations of the fluid model (for
various flow-size distributions) with the exact results for the exponential flow-size
distribution. Figures 5, 6 and 7 show the results for high loads ρ ∈ {0.38, 0.48}
and resource-sharing ratio m ∈ {2, 5, 10}. We observe that the distributions from
simulation and the analysis coincide for all ranges, i.e., the analytically obtained
probability of n active source nodes falls within each of the confidence intervals of
the simulated probability, for all flow-size distributions. These results offer strong
support for the first part of Assumption 10 for all loads and resource-sharing ra-
tios. Observe also the remarkable shapes of the stationary distribution; in particular
consider the shape for high load and high resource-sharing ratio in Figure 7.

Figure 8 presents numerical results for the second part of Assumption 10 (i.e., the
expected residual flow-size at a source node coincides with the expected residual
excess flow-size from renewal theory). The numerical results from the simulation
and the analysis are very close together, although the proposed mean residual flow-

Fig. 5. Distributions of the number of source nodes for ratio m = 2 for different flow-size
distributions. Left: λ = 16, ρ = 0.38. Right: λ = 20, ρ = 0.48.
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Fig. 6. Distributions of the number of source nodes for ratio m = 5 for different flow-size
distributions. Left: λ = 16, ρ = 0.38. Right: λ = 20, ρ = 0.48.

Fig. 7. Distributions of the number of source nodes for ratio m = 10 for different flow-size
distributions. Left: λ = 16, ρ = 0.38. Right: λ = 20, ρ = 0.48.

size distribution given by Expression (16) is not always within the confidence in-
terval of the mean residual flow-sizes at the source nodes as obtained from our
simulations. For scenarios with a high load and a flow-size distribution with o

Fig. 8. Residual flow-sizes at the source nodes for different flow-size distributions. Left:
m = 5. Right: m = 10.
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Fig. 9. Flow transfer time �Dsource for general flow-size distributions. Left: m = 2. Right:
m = 5.

> 1 we observe that the simulated mean residual flow size is slightly larger than
the analytical value. In summary, the curves are very close together, and it seems
justified to use the claimed as an approximation assumption.

The third part of Assumption 10 deals with the independence of the number of ac-
tive source nodes and their residual flow-sizes. This assumption is mainly required
to support Expression (17), i.e., �Wsources = �N ·�[Fr]. Therefore we directly sam-
pled �Wsources, �N, and �[Fr] from simulations; there we observed that both sides
of Expression (17) match (up to a high level of precision), and the same applies to
the mean residual flow size �[Fr] (which follows from Expression (16)) and the
directly sampled value.

5.4 Results for general flow-size distributions

This section focuses on the validation of the analysis for general flow-size distri-
butions. We do so by comparing the output of our calculation scheme with esti-
mates obtained from fluid simulations. We present the main performance metrics
for general flow-size distributions and general resource-sharing ratio m. Each graph
in Figures 9–12 shows the performance metrics as a function of the load for vari-
ous flow-size distributions. In each graph the resource-sharing ratio m is fixed: left
m = 2 and right m = 5. The effects of the load and resource-sharing ratio on the
performance metrics are similar to the results for the exponential case of Section
5.2 and will not be discussed again.

Figure 9 presents the results for the mean flow transfer time �Dsource. Note that,
due to the (empirically observed) insensitivity of the distribution of the number of
active source nodes, the curves coincide for the different flow-size distributions;
the deviations between analysis and simulations are overall less than a percent, for
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Fig. 10. Buffer workload �Wbuffer for general flow-size distributions. Left: m = 2. Right:
m = 5.

Fig. 11. Buffer delay �D∗buffer for general flow-sizes distributions. Left: m = 2. Right:
m = 5.

o = 16 less than two percent. The mean buffer workload is shown in Figure 10.
Recall that, under Assumption 10, the analysis should be exact for both �Dsource

and �Wbuffer. At this point we see that, for high o’s, the analysis overestimates
�Wbuffer, as is illustrated by the numerical results.

Figure 11 shows the approximation of the delay �D∗buffer of the last particle. It is
observed that the resulting curves are close to the results of the fluid-model sim-
ulations. This strengthens the explanation in Section 4.3 that, although the ana-
lytical derivation of the expected conditional delay �Yn(τ) relies on exponentially
distributed flow-sizes, the flow-size distribution hardly affects the outcome. As a
result, the approximation �D∗buffer gives a good approximation for general flow-
sizes. Finally, Figure 12 presents the results for the mean overall flow transfer time
�Doverall. As it is the sum of the exact �Dsource and the (accurately) approximated
�D∗buffer, it implies that the overall flow transfer time has a remarkably good fit.
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Fig. 12. Overall flow transfer time �Doverall for general flow-size distributions. Left: m = 2.
Right: m = 5.

6 Concluding remarks and further research

In this work we presented a method to analyze the impact of the resource-sharing
policy in a wireless ad-hoc network. We considered a setting where source nodes
transmit flows to destinations via a common relay node. We obtained explicit ex-
pressions for the means of a number of performance metrics, such as the transfer
time of a flow and the workload at the relay node.

The source-node behavior does not constitute a Markov chain (for m > 1), but,
when assuming exponential flow-sizes, the joint distribution of the number of active
source nodes and the workload can be analyzed using feedback fluid queues. We
claim the remarkable fact that the obtained stationary distribution of the number of
active source nodes is even valid for generally distributed flow-sizes, as we argue
that the source-node behavior is actually insensitive to the flow-size distribution
(apart from its mean); the latter claim is supported through extensive simulation
experiments. Under this insensitivity claim we derived a number of expressions
(some of them being exact, others approximations) for the performance metrics
under consideration. Again by simulation it was shown that these expressions are
highly accurate over a broad set of parameter values.

Further research includes the generalization to include state-dependent capacity n

and resource-sharing ratio mn which is seen in real communication systems, see,
e.g., [20]. Another possible extension concerns service-based o-differentiation
where source nodes can obtain different shares of the capacity based on the prior-
ities of their services; these priorities can even be dynamically adjusted based on
the advertized buffer content per node. Another interesting topic for future research
relates to models with multiple hops. This introduces so-called ‘hidden nodes’, and
as a result there is not a single resource  shared by all nodes, but multiple resources
shared by non-disjoint subsets of nodes.
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A Analysis of source-node behavior for exponentially distributed flow-sizes

This section presents a more comprehensive analysis of the results presented in
Section 3.1, i.e., the stationary distribution of the number of active source nodes
and the buffer workload.

We assume that flow-sizes are exponentially distributed with mean f . The source-
node behavior of the model of Section 2.1 is not an autonomous process; the tran-
sition rates depend on both the number of active source nodes Nt and on whether
the buffer workload Wt is positive or not. Hence, Nt does not constitute a Markov
chain as it requires feedback of the workload Wt, e.g., see [16].

We analyze the source-node behavior analogously to [16]. First we analyze the
fluid-queue without feedback, i.e., the system in which the relay node is always
allotted a share m/(n+m) of the capacity (when there are n source nodes transmit-
ting); random variables (and other quantities) corresponding to the model without
feedback are denoted with a bar ‘ − ’ on top. Now, N̄t constitutes a Markov chain
and the joint distribution of (N̄t, W̄t) is derived in terms of a system of linear differ-
ential equations as in the seminal studies on fluid queues [1, 13]. The result without
feedback is extended to the case with feedback by the important observation that
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the behavior during busy periods of both models coincide. Finally, the joint distri-
bution (Nt,Wt) of the model with feedback follows from rescaling the distribution
(N̄t, W̄t) of the model without feedback. In the following we make this procedure
precise.

A.1 Fluid-queue without feedback

First, we consider the model of Section 2.1 without feedback, i.e., the relay node
always obtains its entire resource-sharing ratio m. We introduce W̄t as the buffer
workload at time t for a system without feedback. Consequently, N̄t does not depend
on W̄t, and therefore N̄t constitutes a Markov chain with generator matrix Q̄, given
through

Q̄(i, j) :=



λ if j = i + 1,

i/((m + i) f ) if j = i − 1,

0 otherwise.

(A.1)

where the diagonal elements are such that the rowsums are 0. For technical reasons
we first assume that the resource-sharing ratio m is non-integer; the case of integer
values of m is explained at the end of this section.

Let R̄ be a diagonal matrix where R̄n is the net input rate into the relay node, i.e., if
n sources are active then

R̄n =
n − m
n + m

.

Denote by D (U) all states with negative (positive) drift, i.e., R̄n < for all n ∈ D and
R̄n > 0, for all n ∈ U. Let Q̄DD, Q̄UU be submatrices obtained by partitioning of Q̄
according to the ‘up states’ and ‘down states’.

We define the stationary distribution of (N̄t, W̄t) as

Fn(x) := lim
t→∞

P(W̄t ≤ x; N̄t = n) = P(W̄ ≤ x; N̄ = n).

For the analysis we assume that a maximum nmax is imposed on the number of
source nodes that may be simultaneously active; flows that are initiated if already
nmax other source nodes are active are blocked. The buffer workload satisfies the
Kolmogorov forward equations

−→
F ′(x)R̄ =

−→
F (x)Q̄′. The spectral expansion of the
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solution is given by

−→
F (x) =

nmax∑

j=0

a j
−→v j exp(z jx)

where (z j,
−→v j) is an eigenvalue-eigenvector pair, i.e., a scalar and vector that solve

z j
−→v jR̄ = −→v jQ̄. Clearly, �(W̄ ≤ x) =

∑
n Fn(x). Further, let ω denote the stationary

distribution of N̄t without feedback, hence ωn = Fn(∞). For stability we assume
that the average net input rate is negative, that is,

∑
n ωnR̄n < 0. As our generator

matrix Q̄ corresponds to a birth-death chain, all eigenvalues z j are real [22].

Following Mitra [18], the number of negative eigenvalues n+ in a stable system
(i.e.,

∑
n ωnR̄n < 0) is equal to the number of states with positive drift, i.e., n+ =

nmax − dme; exactly one eigenvalue has value zero and the remaining eigenvalues
are positive. In the remainder we label the eigenvalues z j such that z j < 0 for
j ∈ {0, . . . , n+ − 1}, zn+

= 0, and z j > 0 for j ∈ {n+ + 1, . . . , nmax}.

The coefficients a j are calculated as follows. When z j > 0, then a j = 0 as the
distribution function should be in [0, 1]. The other coefficients a j are computed
from Fi(0) = 0 for all up states i. Further observe that

ω =

−→v n+

〈−→v n+
,
−→
1 〉
,

where 〈·, ·〉 denotes the (standard) inner product. For computationally efficient nu-
merical schemes, see e.g. [14].

Elwalid and Mitra [8] presented explicit expressions for a number of quantities
related to the busy and idle periods of the workload at the relay node. A busy (idle)
period is the period during which the workload at the relay node is positive (zero).
A busy period starts when the system is empty and Nt becomes larger than m by a
flow initiation. A busy period ends when the buffer becomes empty, and then Nt is
in a state in D.

Denote by
−→̄
P the distribution of N̄ at the end of the busy period. Then, due to

Expression (5.9) of [8],

−→̄
P =

1〈−→
FD(0)Q̄DD,

−→
1
〉−→FD(0)Q̄DD.

Note that the (i, j) entry of −(Q̄DD)−1 is the mean time spent in state j by Nt, if the
process started in state i, before leaving the set D, see e.g. [10]. Then, the mean idle
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period �Ī is given by

�Ī =

〈
−−→̄P(Q̄DD)−1,

−→
1
〉
. (A.2)

The mean busy period �B is obtained from
∑

i∈D Fi(0) = �Ī/(�B̄ + �Ī) :

�B̄ = �Ī · 1 −∑
n∈D Fn(0)∑

n∈D Fn(0)
.

Remark 14 Integer-valued resource-sharing ratio m. If the resource-sharing ra-
tio m has an integer value, state m has zero drift, or, more precisely, Rm = 0. There-
fore R is singular. In this situation the Kolmogorov forward equations consist of
nmax differential equations and 1 supplementary algebraic equation. This algebraic
equation results from the state with drift zero and hinders obtaining the eigenvalue-
eigenvector pairs. Observe that the state with zero drift does not influence the work-
load distribution and is basically redundant. In Appendix A.1 of [18], Mitra pro-
poses how to reduce the dimension of the system of differential equations by 1 to
(obtain a proper system), by eliminating the redundant algebraic equation. Further,
it is proven that the eigenvalues of the reduced form coincide with the original form
and it is shown how the eigenvectors of the original system are obtained from the
reduced system. ♦

A.2 Fluid queue with feedback

Here we consider the model of Section 2.1 which includes feedback of the workload
Wt at the relay node. As remarked before, the number of source nodes no longer
constitutes a Markov chain. We are interested in the stationary buffer workload
denoted by Gn(x) := �(W ≤ x; N = n). Let random variable B (I, respectively)
denote a busy (idle) period in the system with feedback, and

−→
P the distribution of

N at the end of a busy period.

Note that the distributions
−→
P and

−→̄
P are identical, and also the busy periods B and

B̄ have the same distribution. Hence,

�(W ≤ x; N = n|W > 0) = �(W̄ ≤ x; N̄ = n|W̄ > 0).

As a consequence, the stationary distribution Gn(x) of the buffer workload and num-
ber of source nodes is

Gn(x) = �(W̄ ≤ x; N = n|W̄ > 0)�(W > 0) + �(W = 0; N = n)

=
Fn(x) −∑

k Fk(0)
1 −∑

k Fk(0)
�(W > 0) + �(W = 0; N = n). (A.3)
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To complete (2) we require expressions for �(W > 0) and �(W = 0; N = n). Here
�(W > 0) follows from

�(W > 0) =
�B

�I + �B
.

Also

�I =

〈
−−→P(QDD)−1,

−→
1
〉
,

cf. Equation (A.2), where QDD is the square generator matrix of dimension n+ for
the states with downwards drift in case Wt = 0, i.e.,

QDD(i, j) :=



λ if j = i + 1,

/2 if j = i − 1,

0 otherwise.

Further, �(W = 0; N = n) corresponds to the n-th element of −−→P(QDD)−1. Finally,
the stationary distribution π of the number of active source nodes Nt follows from
Equation (A.3), as πn = Gn(∞).

B Proof of Proposition 7

This proof is essentially along the lines of [5]. Recall that Yn(τ) denotes the condi-
tional buffer delay, i.e., the time required by the relay node with resource-sharing
ratio m to serve an amount of work τ if n other jobs are present upon the start. By
φn(s) we denote the Laplace transform of �Yn(τ), i.e.,

φn(s) =

∫ ∞

0
e−sτ�Yn(τ)dτ.

We obtain an expression for φn(s) by conditioning on the next possible event,
namely: flow arrival, source departure of one of the n source nodes, or the relay
node completes the service of amount τ. First we define νn := λn + µn, with

λn := λ 1{n < nmax}; µn :=


f
n

m + n
.
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Then we obtain the following expression:

φn(s) =

∫ ∞

0
e−sτ

∫ ∞

τ·m+n
m

νne−νntτ · m + n
m

dtdτ +

∫ ∞

0
e−sτ

∫ τ·m+n
m

0
νne−νnt

{
t +

λn

νn
�Yn+1

(
τ − m

m + n
t
)

+
µn

νn
�Yn−1

(
τ − m

m + n
t
)}

dtdτ.

After elementary algebra, this is rewritten as the following system of linear equa-
tions:

1
s

= −λnφn+1(s) +

( m
m + n

s + νn

)
φn(s) − µnφn−1 (s) , (B.1)

or, in matrix notation,
−→
1 = s ·M(s)

−−−→
φ(s) where M(s) := −Q̄ + sR with Q̄ as in (A.1)

and

R := diag
{

1,
m

m + 1
,

m
m + 2

, · · · , m
m + nmax

}
.

It is readily verified that the equation detM(s) = 0 coincides with det(R−1Q − sI) =

0. In other words: the roots of detM(s) = 0 are the eigenvalues of R−1Q. As Q is
singular, one of the eigenvalues of R−1Q is 0, say s0. Further, a straightforward ap-
plication of ‘Geršgorin’ yields that all eigenvalues s0, . . . , snmax are real, non-positive
and unique.

The Laplace transform φn can be solved from the linear system by applying Cramer’s
rule to s~φ (s) = (M(s))−1~1, i.e.,

sφn(s) =
detM−n(s)
detM(s)

. (B.2)

where M−n(s) is defined as M(s) with the n-th column replaced by ~1. The denom-
inator of the right-hand side of (B.2) is a polynomial of degree nmax + 1 in s. The
above considerations entail

sφn(s) =
A(n,0)

s
+

nmax∑

j=1

A(n, j)

s − s j

where the constants A(n, j) follow from the partial-fraction expansion at s0, . . . , snmax .
Then,

φn(s) =
A(n,0)

s2 +

nmax∑

j=1

A(n, j)

s j

1
s − s j

−
nmax∑

j=1

A(n, j)

s j

1
s
.
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Finally, inverting the individual parts gives the desired result:

�Yn(τ) = A(n,0)τ +

nmax∑

j=1

A(n, j)

s j
es jτ −

nmax∑

j=1

A(n, j)

s j
.

34


