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tandem network

ABSTRACT

This paper considers importance sampling as a tool for rare-event simulation. The focus is on
estimating the probability of overflow in the downstream queue of a Jacksonian two-node
tandem queue - it is known that in this setting ‘traditional’ stateindependent importance-
sampling distributions perform poorly. We therefore concentrate on developing a state-
dependent change of measure, that we prove to be asymptotically efficient. More specific
contributions are the following. (i)We concentrate on the probability of the second queue
exceeding a certain predefined threshold before the system empties. Importantly, we identify an
asymptotically efficient importance-sampling distribution for any initial state of the system. (ii)
The choice of the importance-sampling distribution is backed up by appealing heuristics that are
rooted in large-deviations theory. (iii)) Our method for proving asymptotic efficiency is
substantially more straightforward than some that have been used earlier. The paper is
concluded by simulation experiments that show a considerable speed up.
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1 Introduction

Rare event analysis of queueing networks has been attracting continuous and growing
attention over the past decades. As explicit expressions are hardly available, one usu-
ally relies on asymptotic techniques to approximate small overflow probabilities. These
asymptotics, however, often lack error bounds, and consequently it is not always clear
whether their use is justified for given parameters. This explains why one often opts for
simulation methods instead.

The use of simulation for estimating rare event probabilities has an inherent problem: the
event under consideration occurs so rarely during the simulation, that it is extremely time
consuming to obtain a reliable estimate; a rule of thumb is that the number of occurrences
needed to obtain an estimate of a certain predefined accuracy is inversely proportional
to the probability of interest. Perhaps the most prominent remedy to this problem is im-
portance sampling (IS), i.e., simulating the system under a new probability measure, and
correcting the simulation output by means of likelihood ratios (which essentially capture
the likelihood of the realization under the old measure with respect to the new measure)
to retain unbiasedness. Evidently, it makes sense to choose an IS distribution which guar-
antees frequent occurrence of the event of interest. The choice of a ‘good” new measure
is rather delicate though. It should be chosen such that the above-mentioned likelihood
ratio tends to be small on the event of interest; choosing a ‘wrong’ new measure, one may
even end up with an estimator with infinite variance. We refer to, e.g., Heidelberger [9] for
more background on IS and its pitfalls.

‘Classical’ papers on the use of IS in queueing usually rely on a so-called ‘state-independent’
change of measure, i.e., for any state in the system the probabilistic law is changed in the
same manner. Usually, large deviations techniques are used to motivate the choice of the
new measure, and to prove that the resulting estimator has specific desirable properties
(such as bounds on the likelihood on the event of interest). In this respect we mention the
seminal paper by Parekh and Walrand [14], that focuses on the estimation of the probabil-
ity of overflow in a single queue, but also on the probability of the total queue population
in a network reaching some threshold. The new measure then corresponds to an unstable
queueing system; for instance in the case of a single M/M/1 system the arrival and service
rates should be swapped. A fundamental treatment of this change of measure, in fact even
for the multi-server queue GI/GI/m (where it is tacitly assumed that the service times
are light-tailed), was given by Sadowsky [15]. His main result is that the corresponding
estimator is asymptotically efficient (or: asymptotically optimal), which effectively means
that the variance of the estimator behaves roughly like the square of its first moment. In a
setting in which the overflow probability decays exponentially in the buffer size B, asymp-
totic efficiency means that the number of replications needed to obtain an estimator with
fixed relative error grows subexponentially fast with the ‘rarity parameter’ B.

Things complicate tremendously when looking at networks rather than one-node systems.
For the Jacksonian two-node tandem queue (that is, Poisson arrivals, exponential service
times at both queues), aiming at estimating the probability that the network population



exceeds a given threshold, [14] proposed to swap the arrival rate with the rate of the slowest
server — this makes, heuristically, sense, as the slowest server corresponds to the bottleneck
queue. In this case experimental results were not so encouraging as in the case of a single
queue, and the quality of the simulation results was strongly affected by the specific values
of the arrival and service rates. Later it was proved that this method is asymptotically
efficient for some parameter values, but has unbounded variance for other values, see [8]
and [2]. In fact, it was proven that no state-independent change of measure exists that is
asymptotically efficient for all parameter values.

It was realized that the main problem of state-independent IS schemes is that the transition
rates are changed in a ‘uniform manner’, i.e., irrespective of whether one of the queues is
empty or not. As a result it cannot be guaranteed that the likelihood ratio is bounded on
the event of interest, and therefore the IS scheme proposed in [14] performs poorly for
some parameter values. Some of the first attempts to solve this problem can be found in
[3] and [11], in which state-dependent IS schemes were proposed, i.e., IS distributions that
are not uniform over the state space. Dupuis et al. [7] were the first to prove asymptotic
efficiency for a state-dependent IS scheme for estimating overflow probabilities in a d-node
Jackson network.

Several important questions are, however, still open; let us from now on concentrate on the
two-node Jackson tandem network. In the first place, the majority of papers on this type
of networks deals with the probability that, starting in a situation with both queues empty,
the total network population exceeds a certain threshold. One may wonder, though, what
the impact of the starting state is on the IS scheme. Also, it is not a priori clear how to
change the simulation procedures if one is interested in the event of overflow in a specific
queue (rather than the total queue).

The main topic of the present paper concerns the development of an asymptotically effi-
cient IS algorithm for estimating the probability that the content of the downstream queue
exceeds a certain threshold B before the system becomes empty, starting in any initial state,
say x € Nx {0,...,B—1}.

The search for an appropriate change of measure greatly benefits from powerful large-
deviations based heuristics. We express the decay rate of the probability of our interest
in terms of so-called ‘cost functions’, that assign cost to paths; the ‘most likely path’ is
then defined as the ‘cheapest’ path from state z to the ‘overflow set’ N x {B,B + 1,...}
(that does not visit the origin). The intuition is that, conditional on the event that the
second queue indeed reaches B before the system gets empty, the trajectory of the Markov
process will be typically close to this most likely path. Then the idea is that knowledge
of the most likely path helps in finding a good change of measure. The shape of the most
likely path strongly depends on which of the two queues is the bottleneck (i.e., has the
lowest service rate). When it comes to proving asymptotic efficiency, the two cases have to
be dealt with differently. We remark that the most likely path can have a rather unexpected
shape; there are situations that, starting in a state « in which the second queue is non-
empty, this path is such that first the second queue becomes empty while the first queue
fills (to end up in some state (y, 0)), and then the first queue drains while the second queue



builds up. Another interesting observation is that the most likely path is not continuous
in the starting state x: two nearly identical initial states can reach the ‘overflow set” in an
entirely different manner. We also mention that a non-trivial technical issue we deal with
is the infinite state space, in that the process can attain any value in N x {0,..., B — 1}, cf.
[11]; this complication does not play a role when analyzing rare-event probabilities related
to the total network population.

We expect that the above-mentioned large-deviations heuristic can be rather helpful when
analyzing a broad class of networks; see also earlier results in [13] for the model that was
introduced in [17], in which the service rate of the first queue depends on the content of
the second queue.

The proof technique is essentially based on that of Dupuis et al. [7], but, as in De Boer
and Scheinhardt [4], we have managed to simplify the proofs considerably. The change of
measure is such that the most likely path is, roughly, followed (that is, with high probabil-
ity), with corrections for the regions near the axes. The proof of asymptotic efficiency then
relies on bounding the likelihood on the event of interest.

We end this section by detailing the structure of the paper. Model and preliminaries, as
well as a short overview on the basics of IS, are presented in Section 2. In Section 3 we
heuristically construct a state-dependent IS scheme for estimating the probability of our
interest; interesting corollary results are (i) the most likely path, and (ii) the corresponding
decay rate. In Section 4 we present a number of large-deviations properties of the system,
where the main result is the correctness of the decay rate that was heuristically derived
in the previous section. Section 5 shows that our IS scheme, after a minor adaptation that
deals with visits to the axes, is indeed asymptotically efficient. We conclude this paper
with supporting numerical results in Section 6, and conclusions in Section 7.

2 Model and preliminaries

We consider a two-node tandem Jackson network with Poisson arrivals at rate ) to the first
station. Each job receives service at the first station, after which it is routed to the second
station. After receiving service at the second station, the job leaves the system. Service
times at station ¢ have an exponential distribution with parameter ;, i = 1, 2. The waiting
rooms at both stations are assumed to be infinitely large.

Let Q(t) = {(Q1(t),Q2(t)),t > 0} be the joint queue-length process, as in [7] and [4],
from which we will borrow some more notation. Then it is clear that this is a continuous-
time Markov process, with possible jump directions v9 = (1,0), v1 = (—1,1) and vy, =
(0, —1) with corresponding transition rates A, ;11 and o respectively. The process Q(t) is
regenerative if we impose the stability condition A < min(yu1, pu2), which we will do from
now on.

The queue-length process can also be described by the embedded discrete time Markov
chain Q; = (Q1,j, Q2,;), where Q; ; is the number of jobs in queue i after the j-th transition.
Without loss of generality we will choose the parameters such that A + p1 + 2 = 1, so
that they also represent the transition probabilities of ); in the interior of the state space. To
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Figure 1: State space and transition structure for scaled process X (¢).

ensure that the same holds on the boundaries, we shall introduce socalled self-transitions
shortly, see below.

Our main interest is to estimate the probability that Q(t) (or equivalently, ;) reaches some
high level B in the second buffer before it returns to the origin, starting from any state.
Thereto, it will be convenient to also consider the scaled processes X (t) = Q(Bt)/B (in
continuous time) and X; = Q;/B (in discrete time). The advantage of these scalings is the
invariance of the state space for any B. In particular, our target probability is equivalent
to the probability that the second component of either the scaled process X; or the scaled
process X (t) reaches 1 before the process returns to the origin.

We introduce the following subsets of the state space

D := {(z1,22) 21 >0,0 <2 <1},
O = {(0,x22):0< a2 <1},

Oy = {(21,0): 21 >0},

e = {(x1,1): 21 > 0},

and denote the state space by D = DU, UO; U, (realize that we can exclude x5 > 1 from
the state space). Note that transition v, is impossible when queue £ is empty, i.e., when
X, € 0. We modify the process X to deal with this by allowing some self-transitions in
the following way, see also Figure 1:

[P)(X]url = Xj|Xj S 8k) = bk, fork =1,2. €))

Next, we introduce the stopping time 75, which is the first time that the process X; hits
level 1, starting from state x = (z1, x2), without visits to the origin:

Tp =1inf{k > 0: X, € 0., X; #0forj=1,...,k—1}, (2)

and we define 75 = oo if X hits the origin before 0.. It will also be convenient to let
IB(A”) be the indicator of the event 7 < oo for the path A* = (X;,j =0,...: Xo = ).
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Thus we can write the probability of our interest as
pp = BIp(A*) = P(7j < 00). ©)

It is clear that it is not efficient to estimate p%, via straightforward simulations when B
is large, due to the rarity of the event of interest. In order to reduce the simulation time
we will employ Importance Sampling (IS), i.e., we perform simulations under a new mea-
sure Q, which replaces the transition rates corresponding to v, vi, v2 by other values. In
particular, we will use a state-dependent IS scheme.

This means that the transition rates under the new measure Q may depend on the current
state z of the process; they will be denoted by A(z), ji1(r) and jiz(z) respectively.

The probability p%; can now also be expressed as

ph = EC[L(A")Ip(A")], (4)

where L(A") is the likelihood ratio (also known as Radon-Nikodym derivative) of the path
A”. Itis given by

= 140
L(A®) = jHO o [X)) )

where Y; = B(X,;41 — X;), unless X1 = X; in which case Y; = v, if X; € 0. Further-
more, P(Y}) is the stochastic kernel of the scaled process X; under the old measure, being
equal to A, p11 or py if j = 0, 1,2, respectively, and Q(Y;|X}) is the kernel under the new
measure, given by \(z), fi1 (z) or iz(z) when the current state is X; = z.

Definition 2.1. The IS scheme for p%, is called asymptotically efficient if

f i (OB ECIL(AT)[5(A”)]
i s log EQ[L(A*)Ig(A®)] —

(6)

In our case it is known that p%, decays exponentially in B, so that the exponential decay rate
is well defined, i.e.,

.1 .
Jim —logpi € (0,00).
As a result, (6) can be rewritten in the following form:

1 1
lim sup ElogE[L(A‘”)]B(Ax)] < QBILHéo B log p%.

B—oo

3 Optimal path and related change of measure

In order to find a good change of measure for IS simulations, the first step is usually to find
the most probable path to overflow, i.e., the way in which overflow most probably occurs,
conditional on its occurrence. In Section 3.1 we explain a method in which minimizing
certain ‘cost-functions’ leads to the most probable path and a good corresponding change



of measure, given by new (state-dependent) transition rates \(z), ji; () and fiz(z). Then,
we split the problem, since the minimization procedure gives different results in different
cases. In Section 3.2 we treat the case A < uo < p1, in which the second server is the
bottleneck, while Section 3.3 deals with the case A < p1 < 9, in which the first server
is the bottleneck. Beforehand, we would like to point out that the change of measure
mentioned above, denoted by tildes, is not the same as the asymptotically efficient change
of measure that will be introduced in Section 5 (denoted by bars), although it is closely
related.

3.1 Cost and structure of path to overflow

The typical path to overflow in the particular case that the origin is the starting point, has
already been identified for the d-node Jackson tandem network in [1], and hence also for
our tandem system. In that paper, the time-reversed process is used to find the shape of
the most probable path to overflow. This path to overflow was also obtained as a corollary
result in [13], and in this section we present a method similar to the one in [13] to find
the optimal path starting from any state = € D. The advantage of this method is that it
also provides a ‘good” change of measure, which ensures that most simulation runs under
this new measure will be close to the optimal path. This new measure will be the basis for
another change of measure, which is used in our (state-dependent) IS scheme, as presented
in Section 5. Another result of our method is the exponential decay rate of p%,, which will
be determined in Section 4, and which will play a crucial role in the proofs of asymptotic
efficiency of Section 5.

Before introducing our method we impose some restrictions on the path structures we con-
sider, leaving the proof that the typical path to overflow indeed satsifies these restrictions
to Section 4, see Lemma 4.4. We will only consider the following paths.

Property 3.1.

e Each path is a concatenation of subpaths, which are straight lines on any of the
subsets D, d; and d>, and the new measure stays constant along each subpath, i.e.,
5\(33) =\ fi1(x) = fu and fia(z) = fig, for any state = on the same subpath;

e Each path does not have more than one subpath in each subset if 115 < p1;

e Each path does not have more than two subpaths in each subset if j15 > j1.

With every path that satisfies Property 3.1 we associate a ‘cost’, the main idea (to be proved
in Section 4) being that the minimal cost of the path to overflow in the second bulffer,
starting from state x, can be interpreted as the decay rate of the probability of interest. Our
method is based on the family of cost functions I, defined by

- - oA
I()\\)\)::)\—)H—)\logx, (7)

see also [16, pages 14 and 20]. Note that the function (7) is convex and equals 0 at A=\
Intuitively, we can think of the value I()\ | \) as the cost we need to pay to let a Poisson
process with parameter \ behave like a Poisson process with parameter ), per time unit.

7



We will now explain our cost method in more detail in the following two examples. More
background can be found in the Appendix of [13].

Example 3.2. As an example, consider a straight path through the interior of the state
space, staying away from the boundaries, from some state  to another state y, where
xr1 > y1 and zo < yo. We then need to construct a new measure (5\, fi1, f12), such that
fi1 > fiz and A < ji;. This measure ensures that our path has constant north-west drift, or
in other words, due to the scaling, our path has a constant slope

fin — fio
o ==, (8)
A — 1y

The total cost of such a path, per unit time is

(X, fin, fig) == TN | )+ (i | ) + I(fia | pa)- 9

To find the cost per unit horizontal (vertical) distance, we need to divide this by the hori-
zontal speed X\ — [i; (vertical speed [i; — fi2). Thus, minimizing the cost of any straight path
from z to y in this case boils down to minimizing

H(S\a ﬂla /12)

fi1 — 2 (10)

(Y2 — x2)

over i1 and fis, such that A < i1 and fi1 > fis hold, as well as

- —x
)\:,u1+y1 !
Y2 — T2

(fix — fiz);
in addition, we should have that

Y2—T2 Y1 — T

1 — 2 N— iy

to guarantee that y is indeed the ending state of the path when it starts at x.
It is easily checked that the total cost (10) with ending state y = (0, 1) attains its minimum
when triplet (5\, fi1, f12) is a solution to

A= jir — £5(fin — fi2)

A i 4 i = A+ g+ e

N fiz = A pie (11)
A< jirand iy > fip

5‘7/117/]2 > 0.

The reason we have chosen the specific ending state (0, 1) is that it is the most frequent
ending state for our network. Notice also that if (), ji1, fi2) is the solution to (11) for some
starting state x, it also minimizes this system if we replace x by any state that belongs to
the straight line between z and y = (0, 1). &



Example 3.3. Let us now give an example for another type of path with starting state z € D
and ending state (0, 1), consisting of two (straight) subpaths. The first subpath belongs to
the interior and has north-west drift. The second part belongs to the vertical boundary and
has north drift. Thus, it may be denoted as (z1,72) — (0,22 + a~tz1) — (0,1), for same
slope a. Property 3.1 tells us that the new measure stays constant along each subpath, so
the total cost of such a path is

>

I(A, fur, fi2)

A — iz

I(\, i, j2
71%1 ( vﬂla#?)_’_( 1

o a . 1l—29y—a "21) ,
p1 — p2

where a = (ji; — fiz)/(A — fi1), see (8). The first term in the sum is the cost of the first
subpath under some new measure (5\, fi1, fi2) and the second term is the cost of the second
(vertical) subpath under some measure (X, i1, fiz). Optimizing this expression such that
A< 1, o < fi1, A< i and fig < fi1, for the case pp < p1, over all parameters marked
with tildes and hats, it is readily verified that the minimal cost of this path type is obtained

when the new measure is given by

(5‘7/21)/12) = (5‘7/21’[1’2) = (:U’Qvulu)‘))

i.e., by simply interchanging the arrival rate A and the service rate of the second station o
for both subpaths. ¢

By considering all possible path types we obtain the overal minimum cost, corresponding
to the most probable path, and the corresponding (state-dependent) change of measure ),
fi1 and jio. Finally, we also have

vz := minimal cost over all paths x — 4,

at our disposal. In Theorem 4.1 we will prove that this is in fact the exponential decay rate
of the probability p% as B — oo.

We now present the results of our minimum-cost-path method for both cases of the tandem
network.

3.2 Optimal path results for A < ps < 11y

When 115 < p11, the cost minimization starting in state x as outlined in the previous section
(in particular Example 3.3; see also the Appendix in [13] for more examples), yields the
following new measure after some calculations:

R (MQ?Hla)\)7 lf.’L'EAl,
(X, fu1, fi2) = < solution to (11), ifx € Ao, (12)
()\a,ulalu2)> if$€A3

Here 4;,i = 1,2, 3, is the following partition of the state space D, see also Figure 2:

Al = {w€D:xy< —m/aq +1},
Ay = {z€D:—x1/a1 +1< 23 < —axy +1}, (13)
As = {z € D:xy> —ayxy + 1},
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Figure 2: Partition of D and some optimal paths to overflow when py < ;.

with oy := (g1 —p2) /(1 —A). Note that the path considered in Example 3.3 in the previous
subsection is optimal for any starting state € A;, and the corresponding new measure
(exchanging A and p9) was earlier found by Parekh and Walrand [14] for the problem of
reaching a large total queue population. Also, we point out that the change of measure
is continuous in the state x, as can be verified by solving system (11) for = (o,0) and
x = (a;',0), yielding the solutions in the first and third lines of (12), respectively.

The corresponding path from starting state = (x1, z2) to some state on 0, is given by

(13131‘2) - (071'2 + aflxl) - (07 1)) ifx e Ala
(z1,12) — (0,1), ifr e A, (14)
(x1,m2) — (21 — 041_1.%'2, 1), if x € As.

The resulting cost 7, of the optimal path is given by:

(1 =21 —x2)7y, ifx e Ay,
Yo =1 —xI1 log@ — (1 —z2)log ’12—(;), ifx € As, (15)
0, if z € Ag,
where
Y= _10g i)
2

is the minimal cost of the path (0,0) — (0, 1).

We end this subsection with some interesting properties of the new measure defined in
(12), to be used later. Intuitively, it says that for any state x, the new measure ‘lies be-
tween’ the Parekh and Walrand measure where A and p are interchanged, and the nor-
mal” measure, where the parameters retain their original values. Moreover, the more jobs
are present in the system at time zero, either in queue 1 or in queue 2, the ‘less change of
measure” we need. This perfectly coincides with the structure of the most probable path,
see (14).

10



Lemma 3.4. When piy < pu1, the functions \(z), fi1 (x) and fiz(x) as defined in (12) are continuous
and differentiable, satisfying the following for any x € D.

NEONED Ofin () ON(x)
—= < >
(W) oxr1 — 0, or1 0, Oxa — O0xo

(Zl) 5\(.1‘) € P‘Mu2] and ﬂZ(x) € [)‘Hu2]'

(iii) v = maxX,cp Vo-

Proof. (i) We only need to consider x € A,, since otherwise all partial derivatives are zero.
Applying implicit differentiation to (11) one finds

OA() (1 — o) (pu (2) — fa(2))A(x)

Ox1 (1 —22)2A(z) + (1 — 21 — 22)2fin(2) + 23fin(z) ~

)

where the last inequality follows from the fact that fi;(x) > fi2(x). The other statements
follow similarly.

(ii) Tt follows from (12) that A(z) = g if € & and \(z) = \if = € A3, so applying the first
statement of this lemma one can find that A(z) € [\, uo). Using similar arguments one can
obtain the same bounds for iz (z).

(iii) We show that the partial derivatives with respect to x; and z, of ~, as given in (15)
are not positive. For x € A; U As this is obvious, while for « € A; it can be checked using
implicit differentiation, similar to the proof of the first statement. ]

Lemma 3.4 does not yield results on fi; (z) since they are not needed in the sequel, but it
may be interesting to note that /i1 (x) is not monotone. In fact, fi; (x) = p when z € A; and
when x € Ag, but also when z1 + x5 = 1, so it is also neither convex nor concave.

3.3 Optimal path results for A < p; < o

The new measure under which the path to overflow has minimal cost in terms of (7) is as

follows:
~ (/1117)‘7,“2)7 ifxEBla
(A, fi1, fi2) = { solution to (11), ifz € B, (16)
(N, pay 1), if r € Bs.
Again we partitioned the state space into three subspaces B;, i = 1, 2, 3 as follows, see also
Figure 3.
By = {xeD: f(xr) <0},
By = {xeD:f(x)>0and 22 < —asx; + 1}, (17)
By = {z€D:my>—aom + 1},

where o := (2 — p11)/(p2 — A) and

f(il)) := ~ + 21 log )\(Hf) ﬂ2(x)
M1

+ (1 —x2)log ——,
12

11
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Figure 3: Partition of D and some optimal paths to overflow when 1 < ps.

with A = \(z) and jiz = fio(2) being the solution to (11). The zero level curve of the func-
tion f(z) represents the boundary between subspaces B; and By, 3 is the unique solution
to f(0,22) = 0. Interestingly, for the current case the change of measure is not continu-
ous in states x that lie on this boundary (i.e., f(z) = 0), and the behavior on B; and B;
is entirely different. In particular, the change of measure on By has \(z) < jij(x) and
fi2(xz) < fu(z), as opposed to the first line of (16) where both inequalities are reversed.
This is also reflected in a different shape of the typical path from x = (21, z2) to 0.:

(x1,22) = (71 + azx2,0) — (a2,0) — (0, 1), if z € By,
(131,.I2) — (O, 1), if z € By, (18)
(x1,22) — (z1 — ay '@, 1), if x € Bs,

where a3 := (u2 — \)/(111 — A). Note that the last part of any path with starting state
x € By is just a special case of a path starting in B (in this case starting in (ag, 0)), but the
corresponding new measure on this line (i.e. the solution to system (11) for = (a2, 0)) can
be given explicitly as (j1, p2, A). This was already known from [13] for the path starting in
the origin.

The next result we give is v,, the cost of the optimal path in terms of (7):

v —x1log &, if z € By,
Ve =4 —x1 log@ — (1 — x2)log QZ—(;), ifx € By, (19)
(1 —a2)log 2, if z € Bs.

We end this subsection with the analogue of Lemma 3.4 in the case when f1; < 5. For this,
we first introduce z as the unique solution in the interval (0, 1) of the (essentially cubic)
equation

o(z) = At + a1 =) — | = 0)
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which follows from system (11) by taking (x1, z2) = (0,0). (The fact that there is a unique
solution immediately follows from ¢(0) = —oo, (1) = A+ u1 — /A1 > 0, and the fact
that ¢/(2) = 0 has just a single positive solution, viz. {/Au1/443.) In fact, — log z is the cost
of the vertical path (0,0) — (0,1) in the interior (i.e., in D), satisfying A = ji; (as opposed
to the vertical path following 9 in Example 3.3, where A < fi;). See also [12, Eqns. (30) and
(33)] and [13] for more details.

Lemma 3.5. When ju1 < pio, the functions \(z), fi1 (x) and fiz(x) as defined in (16) are continuous
and differentiable, except in states x with f(z) = 0. For any such = € D, these functions satisfy
the following.

ON(z) Ojiz(z) -0 OX(z) <0 and Opa() >0

ox1 Oxr1 — 7 Oxy — 0xo ’

(i) Mz) € [\, \/Au1/z] and fig(x) € [poz, 1] U po, where z is defined by (20).

()

<0,

(iii) v = maxX e p Vo-

Proof. To prove these facts we can use similar arguments as in the proof of Lemma 3.4.
An exception is the second statement, where the upper bound for A(z) and the lower
bound for fiz(x) is attained when z € d; (see the first statement), i.e., A(z) < \/Apu1/z and
fi2(x) > poz, where z is the unique solution of (20) in the interval (0, 1). O

Note that part (i) of Lemma 3.5 implies that the functions are monotone on B, U Bs, but
not on all D, due to the discontinuity on the boundary between B; and Bs.

4 Large deviations properties

The goal of this section is to formally prove that the cost of the optimal path to overflow
is equal to the exponential decay rate of p%, the probability of interest. We also illuminate
some important and interesting large deviations properties of the process X (¢).

Consider any absolutely continuous function ¢ : [0,00) — D, representing a path associ-
ated with the scaled process X (¢). Our first aim is to define a so-called local rate function
£(6(t), d(t)), which depends both on the position at time ¢ and on the time derivative (or

speed vector) ¢(t) at time ¢. To do so, we first define three auxiliary functions L;(y), where
the argument y should be interpreted as a speed vector:

Li(y) = Sup ((0,y) — gi(0)), i=0,1,2, (21)
where

90(0) = Ae" = 1)+ pa (7N — 1) + pa(e™ — 1),

g1(0) = A" = 1)+ pa(e”” - 1),

g2(0) = A" — 1)+ p (e — 1),

cf. [16, Eqn. (5.5)]. The second equality applies to J; and the third equality applies to 0.
The function g¢; (#) does not have a term with y;, because jumps of type v; from boundary
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0, are impossible, and likewise g2(#) does not have a term with 5. Finally let us define
the local rate function ¢ as:

LO((ZS(IL’))? if ¢(t) eDU ae;
Uo(1), (1) =14 [Lo@ L1 ]((t),  if o(t) € Oy, (22)
Lo ® La)(6(1)), i ¢(t) € D,

where

[Lo © Li](y) := inf{pLo(yo) + (1L — p)Li(y:) : 0 < p < 1, pyo + (1 — p)yi = y},

for i = 1,2, is the inf-convolution of the functions Ly and L;, the infimum being taken
over all values p and vectors yp and y; that satisfy the given conditions. Let us briefly
explain why we use this inf-convolution on the boundaries of the state space. Assume
that the scaled process X (t) follows a path ¢(t) € 0, such that d¢,/0t > 0 for ¢t € [0,T].
Hence, the first and second component of the vector y should be zero and strictly positive,
respectively. It is clear that the original (unscaled) jump process @Q(¢) can only increase
its second component when it is not on 0y, since jumps of type v; are not allowed on 0;.
Therefore, the inf-convolution provides a ‘mixture” of the functions Ly and L, supposing
that the process Q(t) spends a fraction of time p in the interior D and a fraction 1 — p on the
vertical constraint. Note that p must be such that ¢(¢) has speed y with positive increment
in the vertical direction and zero-increment in the horizontal direction, such that the scaled
process X (t) remains on 0;.

We are now ready to state the following theorem.

Theorem 4.1. The process X (t) satisfies a large deviations principle with local rate function (22),
ie.,

1 T .
gﬁBm%z—MAewmam%

where 7 = inf{t > 0 : ¢(t) € O, ¢(s) # 0,s € (0,t)} and the infimum is taken over all
absolutely continuous functions ¢ : [0;00) — D such that ¢(0) = x and T < oo.

Proof. The proof of this theorem is based on the results presented in [5]. Let us introduce a
process Z(t), which is the unconstrained version of X (¢), in other words Z(t) is allowed to
have negative values in both components. In addition we will assume that Z(0) = X (0) =
x € D. One can use [5, Thms. 3.2 and 3.4] to show that the map I' : Z(t) — X (t) exists and
Theorem 2.2 from the same paper to show that it is Lipschitz continuous. I' is known as the
Skorokhod map and the question whether it exists is known as the Skorokhod problem;
for more background we refer to [5].

Since the map I is Lipschitz continuous and the process Z(t) satisfies a large deviation
principle, see [16, Thm. 5.1], one can apply the contraction principle (see [16, Thm. 2.13])
and conclude that the process of our interest, X (¢), satisfies a large deviations principle

with local rate function ¢(¢(t), ¢(t)) defined by (22). O
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Using the local rate function ¢, as defined in (22), we can define the rate function of any
path ¢(t) = (¢1(¢), p2(t)) with ¢ € [0,T] for some T, as the integral of ¢ over time. The
following lemma shows that for paths that stay in one of the subsets D, 01, 0, this rate
function is minimal when the path is straight, with constant speed vector.

Lemma 4.2. For any T, consider an absolutely continuous path ¢(t) that remains in D (or in 0,
orin Qo) forall t € [0,T). Then,

T _
| to).90)ar = 7 (¢<0>, W) |

T
Equality holds only if $(t) is a constant, i.e., ¢(t) is a straight line,

Proof. The proof of this lemma can be found in [16, p. 87]; we mention that a related result
was established in [13, Lemma 4]. O

Now assume that ¢(t) € D, fort € (0,T) is a path between two states = and y. Lemma 4.2
tells us that the path ¢(¢) has minimal cost if the process X (¢) moves along a straight line
at constant speed. We can define a corresponding new measure as follows

A= X,
1 = 1 692701 , (23)
fis = poe

where 6 = (61,02) is the maximizer of (21) with ¢ = 1. In fact this is exactly the same
change of measure we would find using the cost minimization procedure from Section 3,
due to the immediate equality

£(¢(t)7¢(t)) - H(S‘vﬂlaﬂ2)' (24.)

This equality however, does not hold on the boundaries. Instead, when ¢(t) stays on 0; or
0s fort € [0,T], we have

£(¢(t)7 ¢(t)) < H<5‘7 /117 ﬂ?)v

where the new measure ), fi1, jip) is again defined as in (23). This is not difficult to see
since, e.g. for paths on 9;, we find for some p € [0, 1] that

U(1),d(t) = TAIN) + pI(fn| 1) + I (fiz|p2) < T(X, fin, fia)-
However, we can still show equality between local rate functions and cost functions on the
boundaries, but only for the optimal paths. To state this formally, let ®; (®2) be the set of
paths that travels a distance h > 0 along 0y (02) at constant speed during a time o1 (02),
ie.,

= {o(t) CO1:(0) = (0,23),9(01) = (0,23 + h)},

Py = {o(t) C 02: ¢(0) = (21,0), ¢(02) = (21 + h,0)},
for some z] and z5. Then we have the following relations between the rate function ¢
defined by (22) and the cost function I from the previous section, defined by (9):
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Lemma 4.3. (i) For paths in the interior D, we have

Uo(t), 6(1)) = I(A, fur, ).

(ii) For paths on the vertical boundary 0y, we have

inf / " U8, (8))dt = hinf TP T2).
0

peD) f1 — fi2

where the second infimum is taken over all N, fuy and fiy such that X < iy and fi1 > fia.

(iii) For paths on the horizontal boundary O, we have

nf 002 (1), d(t))dt = hinf X

1, fi2)
—

)

> >
=

where the second infimum is taken over all N, fuy and fiy such that X > iy and fig > [i1.

Proof. Statement (i) is the same as (24). We continue to prove statement (iii), the proof of
(ii) being identical. The restriction ¢(t) C 0 implies that d(t) = (¢1(t),0) for anyt € [0, 02].
The definition of the inf-convolution tell us that Avg + fijv1 + pfigvz = ¢(t). Hence we find
that p = fi1 /12 and qﬁl(t) =\ fi1, from which we can conclude that

I(AN) + I(ﬂl\/{l) + (fi1/fi2) I (fiz| p2)
A — iy .

o9 .
inf / (((t), d(t))dt = hin

0
Straightforward minimization shows that the latter equals % inf {I(\, fi1, fi2) /(X — fi1)}, be-
cause fiz = p2 and hence I(fiz|p2) = 0. O

The next lemma validates our choice in the previous section to consider only paths that
satisfy Property 3.1.

Lemma 4.4. The optimal path from any starting state x to O, does not have more than
e one subpath in each subset, if ps < p1,
o two subpaths in each subset, if ps > p.

Proof. Due to the one-to-one correspondence between the rate function of any path in
terms of the local rate function ¢ and the cost function I, see Lemma 4.3, the proof of this
lemma is similar to the proof of Lemma 5 in [13]. O

Theorem 4.5. The exponential decay rate of p%, equals the minimal cost derived in Section 3, i.e.,

.1 x

Jim —logpp =~

Proof. By virtue of Lemma 4.4, the optimal path can be represented as a concatenation
of k (at most 6) subpaths oM, ..., 6%, which stay on different subsets of the state space

(i.e., D, 1 and 3s). If we denote the starting time and position of the ith subpath by ¢(*)
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and z() = ¢ (t®) = ¢(=1)(¢()) respectively, with the convention that t() = 0,21 = ,
t(k“) = 7,2k € 9,, then we can write the decay rate identified in Theorem 4.1 as

t(1+1)

igf /O 0(p(t), (t))dt = it M)me / t), 69 (#))dt.

o) J (i)

Using Lemma 4.3 we can rewrite the last expression as follows:

(1) . ¢(k)

) I(A, i, o)
inf SRl O/ I oY e Wit R S a2
where in some of the terms we may need to replace the denominator \ — fi1 by i1 — fi2,
while also changing the prefactor to xé i) xé’), see Lemma 4.3. Using the fact that the

new measure (), i1, jiz) determines the shape of each subpath ¢(, and the shape of the

whole path ¢ as a consequence, we may also take the first infimum over 2, ... z(*),
rather than t(1) ... ¢t(*). Applying Lemma 4.3 to the last optimization problem we arrive
at
s IO\ i, o)
inf 7 li i\li inf :77 =
il gy 2 (Gt — 66l inf S2P
which completes the proof. O

5 Asymptotic efficiency

It is known from [13], where the starting state is the origin, that the new measures (12) and
(16) are not always asymptotically efficient. For example, when p» < 111, multiple visits of
the process Q)(t) to the horizontal axis (02) under the new measure (p2, 111, A) may cause
the likelihood ratio to become very large. We will “protect” the likelihood ratio by using
a specific measure around 0>, under which these visits become harmless. This approach
is similar to the one used in [7]. We will also introduce a protection strip along the lower
part of the vertical boundary 0; in the same manner, in the case when 11 < .

We again split the problem into two cases: in Section 5.1 we explain our method in de-
tail for the situation in which the second server is the bottleneck (A < po < p1), and in
Section 5.2 we treat the case in which the first server is the bottleneck (A < 1 < po9).

5.1 Asymptotically efficient scheme for i, < /1y

In order to construct an IS scheme that is provably asymptotically efficient we introduce a
function W (z), defined for any point x = (z1, x2) of the state space. This function will give
us an expression for a new measure (5\, fi1, fi2) in the same manner as it was done in [7].
Let us first introduce three intermediate functions W;(z),i = 1,2, 3:

Wi(z) = 27y, —9,
Wa(z) = Wi(z1,0/27) = 2Y(@,5/29) — 0, (25)
Ws(z) = 27— 30,
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where § is some small positive number, and +, is given by (15). In the next step we intro-
duce the function which is the minimum of these three functions, see also Figure 4:

W (x) := Wi(z) A Wa(x) A Wa(x).

Note that our particular choice of the functions W; ensures that the shapes of the areas
around the origin and J, on which W coincides with the functions W; are the same as they
were in [7]. The last step in the construction is a mollification procedure which makes the

Wi(x)

AN e

Figure 4: The function W (z) and the areas on which W (z) = W;,i = 1,2, 3 (case u2 < j1).

resulting function W (z) smooth. We do this by defining;:
3
W(z) := —elog Z e~ Wil@)/e (26)
i=1

where € is a ‘smoothness’ parameter; the larger € is chosen, the smoother the function W (z)
is. On the other hand, as ¢ — 0 we see that W (x) converges to the (non-smooth) function
The function W (z), and in particular its gradient, will play a main role in the representa-
tion of the state-dependent, asymptotically efficient new measure. However, before turn-
ing to this, we need some preliminaries, namely a relation between the gradients of the
functions W; and the measure from the previous sections, and some assumptions on the
parameters 0 and e.

Proposition 5.1. The gradients of the functions W;(x), i = 1,2, 3 can be represented as follows:

DWi(z) = 2<log X(Ax)’bgﬂ;(:)>v
A

DWy(x) = 2<log :\(301,5/27)’())’

DWs(z) = (0,0).

18



Proof. 1t is clear that DW;(z) = —2v(1,1) if x € A;. When « € Ay, DW,(z) can be repre-
sented in the following form:

DWi(z) = 2(log 5\)\ g ﬂQ(x)) — 2 (85\(56)/8351 aj\(x)/ax2>

(x) 2 z) | Ma)
_ g Ofiz(x)/0x1 Ofiz(x)/0x2
2(1 2) < fo(z) 1 ji(x) > .

Although we do not know A(x), i1 () and jig(z) explicitly, we can find their partial deriva-
tives with respect to 1 and x» by implicit differentiation of (11), see Lemma 3.4 for more
insight. After some elementary algebra we find that the sum of the last two vectors in the
previous expression equals zero, which proves the first statement. The other two state-
ments follow easily from the definitions of W5 and Ws. O

The parameters ¢ and € depend on B, and in the sequel we will need the following con-
ditions for their asymptotical behavior as B grows large. Note that these are the same
conditions as in [7] and [4].

Assumption 5.2. The parameters § = dp and € = ep are strictly positive and satisfy the following
limit conditions: as B — oo, (i) eg — 0, (ii) 6p — 0, (iii)) Begp — oo, (iv) eg/dp — 0.

We will now show how the new measure is constructed from the function W. We inherit
the following expression from [7, Prop. 3.2]:

Mp) = N(p)re /2,

fa(p) = N(p)pe P0/2, (27)
fia(p) = N(p)pge™ P22,

where
N(p) = [Me=®r0)/2 4 o= pan)/2 4 M26—<p7v2>/2] L H0)2, (28)

Here H(p) is a function known as the Hamiltonian, which we use to simplify the notation
and to enable the comparison with [7] and [4]. The vector p strongly depends on the
current state of the process and is in fact taken to be the gradient DW (z). We thus rewrite
(27) as

Mz) = Ae™ (PW(@)w0) /2 HDW(2))/2 29)

fii (@) = pie” PV @02 HDW@)/2 =5 — 1 9,
We like to mention that we can express the gradient DWW (x) as a weighted sum of vectors
DWy(x) at point z:

, B
o~ Wi()/=
DW (z) = ; pi(z) DWy(z), where py(z) = T3 Wi/

(30)

For the Hamiltonian we have the following results.

19



Lemma 5.3. For any xz, H(DW(z)) = H(DW3(x)) = 0 and H(DW>(z)) > 0.

Proof. The first and second claims are due to a direct computation:

H(DW1(z)) = 2log N(DWi(x))
— 2log [)\eflog(/\/;\(w)) 1 gy e~ los(Az(@)/n2)Hog(A/ (@) | M2610g(ﬁ2(1)/#2)]

— 2log [5\(90) + i () + ,12(96)] =0

and
H(DW3(z)) = —2log [A + pu1 + p2] = 0.

Finally, for the third case we have

H(DWy(z)) = 2log N(DWs(x))
- 2log {/\eflog()\/S\(xL(S/Z'y)) +M1€log(A/;\(x1,6/2'y))+M260:|

= —210g|: (331,5/2’}/) +M1m +M2:| .

To study the argument of the last logarithm, we consider the function ¢(z) := = + A1 /x +
2, for which we have ¢(\) = ¥ (u1) = 1. Also, ¢(x) is convex, so that for all possible
values of A(z1,0/27) in [\, p2] C [A, p1], one can conclude that ¢(A(z1,5/27y)) < 1. This
proves the last statement of this lemma. O

Clearly there is a difference between the new measures defined in Section 3 (indicated
by tildes) and in this section (indicated by bars). In fact it is not difficult to see that the
tirst one also follows from (27) if we replace W by W;. However, this change of measure
is not asymptotically efficient, while the other one is, due to the protection strips along
the boundaries, as we will prove in the remainder of this subsection. We start with some
lemmas that are similar to the ones in [4].

Lemma 5.4. The likelihood L(A) of a path A = (X;,j = 0,...,0) under the new measure (29)
satisfies
B
log L(A 5 Z Xj1 — X;)
j=0
2 1 0’—1
+ Z 5 Uk I{X Xj+1 S Bk} (31)
k=1 ]=0
1 o—1
-5 H(DW (X;)).
=0
Proof. The proof is the same as that of Lemma 1 in [4]. O
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Lemma 5.5. Consider the case py < p1. For any path A = (X;,j = 0,...,0) under the new
measure (29), the first term in (31) satisfies

SZ X1 — X;) — g(W(XU) ~W(Xo))| <
=0

for sufficiently large Be, where C'is some positive constant.

Proof. At first let us introduce the following representation

W o+ ) = W(z) + (DW(),y) + 3" H@y +lyPr(y)

where y = X1 — X is a one-step increment of the scaled process X, the matrix H(z) is
the Hessian matrix of the function W () and the function (y) satisfies lim, o7 (y) = 0.
After transferring two terms to the left hand side and taking the absolute value we find

| (W(z+y) — W(z) — (DW(z),y)| = %yTH(fr)y + ly*r(y)

1
< ST IHE @) Jyl + lyl r(v)
2 H (2)|Jmax + |y[* [7(¥)],

where ||H (2)||max is the maximum norm of the Hessian matrix, given by

IN

[ () [[max = max {h11(x), hiz(x), hoa(2)} ;

here

0’W (x)
8:61 8952

W (x)
856%

0’W (x)

0
hll(CC) = 695%

y hl ( ) hgg(ﬂ?) =

We now compute an upper bound for |h;1(z)| as an example; the two other terms can be
dealt with in the same manner. Using representation (30) one can write

3
O*W(x) _ . {Pk(a:)ywk(x) + L 3Wk($)] 7 >

0z? — 0z? ox1 o0x

where it follows from the definition of py(z) that

—Wi(x Wy (z oW, (x
Ipi () 1 k() i € it )/E< af:f L - 830(1 )>

o, ¢ S e Wile)/e

Since the second fraction turns out to be bounded as ¢ — 0, and the same holds for the
other terms in (32), we find that some positive constant Cy exists, such that

0*W (x)

e
Ox?

c .
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Due to similar bounds for the other second-order partial derivatives, and the simple fact
that |y| < v/2/B, we have for some positive constant Cy that

Co

[yI?1H (2)]lmax < B2

Finally, if we choose B large enough (and hence |y| small), we have for some positive
constant C3 that

C
Pl < 55

The statement of the lemma is a direct consequence of these two bounds. O

Lemma 5.6. Consider a two-node tandem Jackson network. For any sequence 0 g such that g — 0
(B — 00), and T, defined by (2), the following limit holds:

lim. % log E(e?575 | I5(A%) = 1) = 0.
Proof. Let us first give a sketch of the proof. This proof consist of three steps: (i) we bound
the length of any path from 0, to the origin; (ii) using time reversibility arguments we show
that the same bound applies to 7%; (iii) we show that the path of our interest is shorter (in
stochastic sense) than (7%|15(A%) = 1).

(i) Let o g be the length of the path from any state (B, «) to the origin, for any finite «; and
let w? be the length of the path from any state (z1,z2), such that 1 + 22 = B. Itis clear
that

1
B log Ee?278 = lim

. fpwBte — T l OpwB —
Blgnoo B—oco B + « log Fe Blgnoo B log Ee 07 (33)

where the last equality follows from the third statement of [4, Lemma 3].

(ii)) Now consider the time-reversed network, see [10, Thm. 1.12]. It is not difficult to check
that this is also a tandem queue, but with the first and second queue interchanged. The
length of a path in the original system from the origin to level B in the second queue,
without visits to the origin in the mean time, equals the length of a path from some state
(B, @) to the origin in the reversed system, given that it does not visit any state (B, -) in
between, hence

(r3115(A°%) = 1) <4 05
Combining the last statement with (33) we have
. 1 0T 0 : 1 Opo
_ - < - BOB _—
Blgr)noo B logE(e”278|Ig(A”) =1) < Blgr(lx) 5 log Ee 0, (34)

which is similar to the fourth statement of [4, Lemma 3], only there the exit boundary 0,
was different.
(iii) We use stochastic coupling to show that

(TEIp(A%) = 1) <y (r3|Ip(A°) =1). (35)
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To see this, we consider the (‘original’) process starting in the origin, and couple it to a
similar process starting in state . Then the above states that the time to overflow for the
original process, given that overflow happens before reaching the origin is stochastically
larger than the time to overflow for the coupled process, given that the original process
reaches overflow before the origin. Notice that the condition implies that also the coupled
process reaches overflow before the origin (since the queue lengths cannot be negative).
In other words, for any path with I5(A%) = 1, also I5(A%) = 1 must hold, but since the
opposite does not hold in general, we have {I5(A°) = 1} C {Ip(A*) = 1}. From this we
can conclude

(TBII5(A") =1) < (T515(A") = 1) . (36)

Using (34), (35) and (36) we can now write that for any state z € D,

. 1 93’7’z x 1 1 0 2 0
— — < _ BT, — —
ma logE(e”B7B|Ig(A%) = 1) ma logE(e”"2™B|Ig(A”) =1) =0, (37)
which completes the proof of the lemma. O

Theorem 5.7. When s < pq and Assumption 5.2 holds, the new measure in (29), with function
W based on (15), is asymptotically efficient.

Proof. We will roughly follow the proof of [4, Thm. 1], paying attention to some important
issues. First note that Lemma 5.3 provides an upper bound on the last term of the log-
likelihood expression in Lemma 5.4:

xr
TH—1

_% > H(DW(X;)) <0. (38)
Jj=0

In order to bound the second term in Lemma 5.4 we will prove a result similar to the third
statement of [7, Lemma B.1].

From Proposition 5.1 we know that (DWs(z), —v2) = (DW3(x), —v2) = 0 and also that
(DW1(x), —v2) = 2log(fia(x)/p2). Hence, applying (30), we have

(DW (z), —vs) = 2log (”Q(x)> pr(z) > 2log (’W)) e~ (Mi(@)-Wa(@)/e, (39)
2 K2

It is clear that Wi (x) — Wa(x) = 0 for any « € A; N0s, see (25). Also, Lemma 3.4 guarantees
that Wi (x) — Wa(x) decreases to 0 as  moves along the horizontal axis from (aq,0) to
(a7t,0). This immediately leads to 0 < Wy(z) — Wa(z) < § for any = € d». Now keeping
in mind that fiz(x) > X (see again Lemma 3.4) and hence log(fi2(z)/p2) > —v, we can write

)

(DW (z), —v2) > —2ve ™ =.
Using the same technique and keeping Lemma 3.4 in mind one can also show that

s
€

(DW (z), —v1) > —27e%,
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for any x € 0;. Using these two inequalities we obtain the same bound for the second term
in Lemma 5.4 as in [4]:

2 T5—1

1
S :5 Y (DW(X;), o) I{X; = Xj41 € O} < ve /575, (40)
k=1 7=0

To deal with the first term in Lemma 5.4, we first bound W (z) using (26):
W(z) < —elog (er(I)/E) = —¢clog (e(_2%+5)/(5)> =27, —0

and, using that Wy (z) > W;(x) — § and the monotonicity of v,
W(z) > —elog (e—wl(o:)/a 4+ e(-Wi(@)+6)/e 4 e—W3(9E)/5)

—elog (36(_2Vz+35)/5> = 27, — elog(3) — 30.

\Y

Using the same technique we obtain similar bounds for W ( Xz ):
—elog(3) — 30 < W(Xrz) < —0.

Using the three last inequalities and Lemma 5.5 we can derive an upper bound for the first
term in Lemma 5.4,

—Z DW (X)), Xyt~ X) < 2 (-2 +0(B) + 75, (1)

where 7(B) is such that limp_.», n(B) = 0.
Combining (38), (40) and (41) we can rewrite (31) in the following way

log(L(A)) < =By + Bn(B) + x(B)7g

where

C
= _5/6 _—
X(B) :=e™" + -

Now for any path A” we have:
1 1
5 108 E [L(A)I5(A")] = 5 1og(E [L(A)|[5(A7) = 1] P [I5(A%) = 1))
l B%ﬁ»Bn(B)JrX B)T% T\ _ T
< Blog( [ BlIg(AY) = }pg)
T T 1 T
= —+n(B)+ ElogE [eX(B) B|Ig(A*) = 1} + EIngB'

Using the fact that limp_. x(B) = 0 (see Assumption 5.2), Lemma 5.6 and Theorem 4.5
we conclude that:

1 1
lim sup B logE [L(A*)Ig(A")] < =27y, =2 Bh—1>noo B log p%,

B—oo

which completes the proof. O
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5.2 Asymptotically efficient scheme for ;1; < j1o

We would like to define a function based on the total cost function ~, in (19), analogous
to the function W in the previous section, see (26). Suppose we define the functions VZ(:L'),
i = 1,2, 3, in the same way as (25). In particular we would find Vi on By and By from (19)
as,

Vi(z) = 2Y@0— 6 €D (42)

. A
Vi(z) = —2zlog (/\x)

—2(1 — x2) log

R2T) 5 e B, (43)
K2

where (A(x), fi1(2), fiz(x)) is the solution to (11) if 2 € By. As a result, V;(z) would not be
smooth on the boundary between the sets By and B (see also the discussion above (18)),
and hence also the resulting mollified function would not be smooth. This would lead to
problems when we try to prove the analogue of Lemma 5.5, where we used continuity
and smoothness of 1 (z). Fortunately, the functions V; () and V() coincide on B since
they are equal on the boundary between B; and B and both functions do not depend on
their second argument (hence their gradients coincide). Hence, instead of using (42)-(43)
we prefer to work with a function V; defined as (43) on both B and B,. Mollifying this
function with functions V5 and V3 as in (26), will then provide a smooth function V.
To be more specific, we first define function V; (x), based on the second line of (19):
A@) pale)
\ )

Vi(z) = —2x1 log 2

—2(1 —xz9)log

where

5 - _ solution to (11) ifxz € B; U Bo,
A ’ ) = .
(A(@), fir (2), fra () { O . 1) 2 e By,

The function Vi (x) is an extension of the ‘cost” proposed by the solution of (11) to the set
B;. In other words, for any = € B; we replace the optimal cost (corresponding to the
first type of path in (18)) by the cost that corresponds to the (suboptimal) path that leads
straight from z to (0, 1). We proceed with the definitions of V»(x) and V3(x):

Va(z) = 2%,.5/29) — 0

where ~, is given in (19). In this way, the minimum of V; and V4 is attained by V; for
x € DBy (as before), and by V5 for € By (rather than by Vi as before); see also Figure 5,
where V(z) = Vi(x) A Va(z) A Va(z). The mollification procedure now ensures a smooth
transition from B to By for the function V' (z) defined as in (26). Another minor problem is
that the function V5 (z) is not smooth around (az, 0). Specifically for 5 < §/v2, the gradient
of V() is not continuous around the vertical line (z1, -) where the first component satisfies
f(z1,9/2y) = 0 with f(x) as defined in (17). Without going into details, we propose to
use any suitable mollification procedure to make V;(z) a smooth function, and from now
on we will treat V(z) as such. Thus, mollifying the functions Vj(z), i = 1,2,3, in the
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0 X _ 2 [e?) €1

log 11 /A

Figure 5: The function V() and the areas on which V(z) = V;,i = 1,2, 3 (case p1 < p2).

same manner as we did in (26), we obtain a smooth and continuous function V' (x). Based
on this function we define the new change of measure (\, i1, fiz) as in (29). As for the
gradient in these equations, we like to notice that even though the functions W;(z) and
Vi(z) for i = 1,2,3 are different, they have similar gradients. In other words, we can
replace DW;(z) by DV;(x) in Proposition 5.1 to obtain the shape of the gradients of the
functions Vj(x), i = 1,2, 3. We will use these gradients in the following proofs.

Turning to the asymptotic efficiency proof of this new change of measure, we first mention
that we can prove analogues of Lemmas 5.3, 5.4, 5.5 (using the smoothness of V') and 5.6
for our current case p1; < 9, as can be checked easily. Now we can proceed with the main
result of this subsection.

Theorem 5.8. When 11 < o and Assumption 5.2 holds, the new measure in (29) with function
V based on (19), is asymptotically efficient.

Proof. The proof is similar to that of Theorem 5.7, the main difference being the bound on
the second term of the decomposition of log L(A) in Lemma 5.4. For any x € 0, we have
<D‘/2, —U2> = <DV3, —1)2) =0 and <DV1, —v2> =2 Iog(/lg(x)/,u,g), SO

(DV(x), —v2) > 2log <“2(l’)> e~ (Vi) Va(@)/e.
K2

as in the previous case. For = (0,0) we have that
‘/1(07 0) - V2(0a 0) = ZIOg(l/Z) — 2.

Using the fact that the optimal cost v, for state x = (0, 3) is both equal to 7 (corresonding
to the path via state (a2, 0)) and to (1 — 3)log(1/z) (corresponding to the path along the
vertical axis), this can be rewritten as V;(0,0) — V5(0,0) = 281og(1/z). Also, the difference
Vi(z) — Va(x) decreases in 21 when x € 0s, see Lemma 3.5. Combining the above with the
fact that fia(x) > p2z (see Lemma 3.5) we obtain the following bound:

2510g(1/z)) ’

(DV (z), —v9) > 2log(z) exp (— °
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for any x € 0,.

Now let us consider the situation when = € 0,. Again (DV3(z),—v;) = 0 holds, and in
addition (DVa(x), —v1) = —2log & and (DVi(z), —v1) = 2log(A/A(z)) —2log(fia(z) /1) >
0, where the last inequality is due to the simple observation that \/Az/u1 > 2. Using (30)
we have

(DV (x), —v1) > (DVa(x), —v1) = —2log(p1/A)pa(x) > —2log (1 /A)el V() V@)=,
Since for any = € 0; we have V3(z) — Va(z) = —20, we conclude that
(DV (), —v1) > —2log(u1/N)e */=.

Analogously to the previous proof we now conclude that

1 1
lim sup ElogE [L(A*)Ip(A")] < =24, = 2Blim Elogp%,

B—oo

which completes the proof. O

6 Numerical results

We provide some supporting simulation results in this section. To simplify the imple-
mentation of the IS scheme, we introduce a slightly different new measure Q, defined as

follows:
Az) = AZ pi (@) e PWi(@)w0) /2 H(DWi(@)) /2 (44)
fiu(z) = uz-Zpk(m)e*DWk(”’)’””/?eH(DWkW?, i=1,2, (45)

where pj,(z) is defined by (30).
Theorem 6.1. Under Assumption 5.2,

(i) when po < p1, the measure Q in (44)—(45), with W defined by (26), is asymptotically
efficient.

(ii) when p1 < po, the measure Q in (44)—(45), with W' replaced by the function V' as defined in
Section 5.2, is asymptotically efficient.

Proof. (i) It is clear that the log-likelihood ratio for a transition of type vy from any state
under ) satisfies

log X(A) = logZpk ~(DWi(),00)/2 JE(DWi(2)) /2
T

IN

—Zpk )log e~ PWk@)v0)/2 — (DW (2), v0) /2,
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(0.6 B,0) (B,0)
B | ¢¥B PB RE B | ¥B PB RE
20 | 196 | 2.00-107°+2.74.10"8 7.01-107% | 20 | 192 | 1.29-1072+1.61-10"° | 6.38-10"%
50 | 1.98 | 3.12-10712+4.69-10~1% | 7.67-10"% || 50 | 1.96 | 3.95-10~5+5.37-10"8 | 7.20-10~*

Table 1: Simulation results; original state-dependent scheme

where the last inequality holds due to the fact that H(DW}(z)) > 0, thanks to Lemma 5.3,
and concavity of the logarithm (note that 3;_, px(z) = 1). It is obvious that we have
similar bounds for transitions v; and v. Summing these expressions over all steps of
sample path A = (Xj,j = 0...0) we will get the righthand side of expression (31), but
without the last term. Since the function W (z) stays the same, we may use the proof of
Theorem 5.7 to verify the statement of the current problem.

(ii) The second claim is proved analogously to the first claim. O

All simulations were performed under new measure QQ defined by (44)-(45) and the joint
queue-length process around the boundaries was modified according to (1).

Here we present results of dynamic IS simulations for the two-node Jackson tandem net-
work with initial parameters (A, p1, p2) = (0.1,0.55, 0.35). We restrict ourselves to the case
when the second buffer is the bottleneck (i.e., u2 < p1), since the optimal path and new
measure QQ are very similar for both cases when the initial state x lies in A U A3 (respec-
tively, Bo U Bs); only when = € Bj (for the case ;11 < p2), there is an interesting difference
with the other case (111 > p2), but the shape of the optimal path and corresponding new
measure are then very similar to the ones studied before in [13].

We have two different starting states: (0.6 B,0) and (B,0). Both belong to the most in-
teresting subspace A», see Figure 2, where the new measure is found as the solution to
system (11).

We performed three different types of IS simulations. At first we simulate the system based
on the asymptotic efficient state-dependent scheme obtained in Section 5, i.e., scheme (12)
with protection along the horizontal boundary. In these (and all further) simulations we
chose ¢ = 0.05 and 6 = —¢loge, as motivated in Remark 3.7 in [7]. Moreover, we always
performed 10° simulation runs, leading to comparable computation times in the order
of a few minutes; in fact these were approximately linear in the value of B, as could be
expected.

The results are presented in Table 1. The value g in the second column of each table (for
both panels) is the estimator of the right hand side of (6), without the limit, and is used as
an indication for the efficiency of the scheme. The obtained results are indeed good (that
is, close to 2), but it is mentioned that the computation time needed is considerable when
B grows large, due to the precalculation of the new measure Q for all states in As.

We tried to simplify the scheme to reduce the computation time, in the following way. We
divide the set Ay into a number of triangles D; of equal area, each having state (0, 1) as
one of the corners, the other corners being given by points on the horizontal axis between
(a2,0) and (a5 ', 0), at equal distances. In each of these subsets D; we use a separate,
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fixed, new measure, based on the solution of system (11) where x lies in the middle of
the two corners on the horizontal axis. In this way we only need to precalculate a few
new measures, rather than dozens for B = 50 and hundreds for B = 100. In Table 2 the
simulation results are given, when A, is divided into six subsets. Due to this precalculation
reduction it became possible to add the extra line (B = 100) in Table 2 (and Table 3).

(0.6 B,0) (B,0)
B | ¥B PB RE B | ¥B PB RE
20 | 195 | 2.00-107°4+3.04-10"8 7.77 1074 20 | 1.86 | 1.29-1072+2.28-10"° | 8.94-10~4
50 | 1.97 | 3.12-107124+6.11-10715 | 9.98.10~% 50 | 191 | 3.94-107°4+9.36-10"8 | 1.20-10"3
100 | 1.98 | 1.82-10723 £5.06-10726 | 1.41-1073 || 100 | 1.93 | 3.66-10"9 +£1.13-10"'1 | 1.57-103

Table 2: Simulation results; simplified scheme with six domains

As we can see, the variance of the estimator increases as a result of the simplification
of the original scheme (although the effect is relatively modest). This may be explained
by the following. Under the simplified scheme a path that starts to, say, the left of the
middle point of D; will at some point hit the boundary between D; and D;_, after which it
follows this boundary. Hence, when B grows large and therefore the sizes of (the unscaled
counterparts of) the D; also increase, the sample path will move back and forth between
two different changes of measure for a substantial period of time.

We also simulated the system using an even simpler scheme, getting rid of the set A,
altogether, expanding A; and A3 so that they meet at the line z; + 2 = 1. That is, we
simply used the measure Q = (u2, 11, A) when the total population of the system is less
than B and used no change of measure otherwise. Clearly, this method provides worse

(0.6 B,0) (B,0)
B | ¥B PB RE B | ¥p PB RE
20 | 1.86 | 2.00-107°4+7.30-10~8 1.87-1073 20 | 110 | 1.29-10"2+1.78-10~% | 7.02-103
50 | 1.91 | 3.12-10"124+1.67-10"14 | 2.73.-1073 50 | 1.18 | 3.67-10"5+4.34-10"% | 6.00-10"2
100 | 1.94 | 1.81-10723+1.59-10725 | 4.48-10~3 || 100 | 1.30 | 5.62-10"9+7.09-1079 | 6.40-10~1

Table 3: Simulation results; simplified scheme with two domains

results, as can be concluded from Table 3. Looking at the relative error or at the confidence
intervals, it is clear that this method is inferior to the ones presented above.

Finally, we tried a change of measure that replaces the original parameters on A; by a
simple linear interpolation between the values on A; and A3 (e.g., when po < py and
z € Ay welet A(z) = az)pz + (1 — a(x))A, where a(z) € [0,1] depends on the location
of z relative to A; and A3). Unfortunately, this approach gives only slightly better results
than those in Table 3, but much worse than those in Table 2.

7 Conclusions

In this paper we focused on the event that, starting from an arbitrary state, the second
queue in a two-node Jackson tandem network reaches overflow before the system becomes
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empty. The main focus is on the development of efficient simulation techniques for esti-
mating this probability. We have proposed a particular change of measure, motivated by
large-deviations arguments, and we have proved asymptotic efficiency of a subtly modi-
fied version (that differs close to the axes, and thus nicely controls the likelihood).

We strongly feel that the methods used in the current paper are applicable to other, more
complex queueing networks. For example, we expect that it can be applied to a so-called
‘slow-down network’, i.e., a tandem network with Poisson arrivals and exponential service
times, in which the first server decreases its speed as soon as the second buffer reaches
some prescribed utilization, see [17]. Such an analysis has recently been published in [6]
for a specific parameter setting, with the origin as starting state, but several issues remain
open (general parameter settings, general initial point, simplification of the asymptotic
efficiency proof).
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