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Abdelghafour Es-Saghouani & Michel Mandjes ∗
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Abstract

In this paper we study two transient characteristics of a Markov-fluid-driven queue, viz., the
busy period and the covariance function of the workload process. Both metrics are captured in
terms of their Laplace transforms. Relying on sample-path large deviations we also identify
the logarithmic asymptotics of the probability that the busy period lasts longer than t, as
t→∞. Examples are included that illustrate the theory.

1 Introduction

Markov fluid models have been widely studied in a variety of application domains, with sig-
nificant contributions made in the areas of queueing theory, storage processes, communication
networking, insurance risk, etc., see for instance [2, 4, 12, 13, 17, 19]. A Markov-fluid-driven queue
is a storage system which is fed by a source whose transmission rate modulates between mul-
tiple values in a Markovian manner, and which is emptied at constant speed. Traditionally in
the literature emphasis was laid on computing steady-state characteristics of this class of queue-
ing systems — in particular the distribution of the stationary workload; see for a nice (recent)
literature overview for instance the introduction of [7] — whereas considerably less attention has
been paid to transient analysis. The main goal of the present paper is the analysis of two such
transient characteristics: (i) the distribution of the busy period, and (ii) the correlation function of
the workload process.

Let us first give a brief (non-exhaustive) account of the literature on transient analysis of Markov-
fluid-driven queues. Restricting themselves to the special case in which the Markov fluid source
is actually a superposition of on-off sources, Ren and Kobayashi [18] were able to convert the
partial differential equations [2, 12, 13] that govern the queue’s transient behavior, into a matrix

∗Both authors are with Korteweg-de Vries Institute for Mathematics, Plantage Muidergracht 24, 1018 TV Am-
sterdam, the Netherlands; {aessagho|mmandjes}@science.uva.nl. M. Mandjes is also with CWI, Amsterdam, the
Netherlands, and EURANDOM, Eindhoven, the Netherlands; part of this work was done while he was at Stanford
University, Stanford, CA 94305, US.
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equation in the Laplace domain. Roughly simultaneously a paper by Asmussen [3] appeared,
where the Laplace transform of the busy period was computed, mainly relying on martingale
techniques; the resulting transform is in terms of a matrix of probabilities, which are not given
explicitly, but are fixed points of a specific integral equation (which are proven to be unique).
Narayanan and Kulkarni [15] showed that the probability distribution of the first time the buffer
becomes empty (starting at an arbitrary positive level x), satisfies a system of partial differential
equations; furthermore, they show that its Laplace transform is a solution of a specific differential
equation. Barbot et al. [5] mainly focused on numerical issues: using the fact that the probability
distribution of the busy period obeys a certain backward differential equation, they proposed
an efficient numerical procedure. Finally, recent work by Ahn and Ramaswami [1] provides an
efficient (quadratically convergent) procedure for computing the Laplace transform of the busy
period, exploiting relations with so-called quasi-birth-death processes. To our best knowledge,
no results on the correlation function have been reported so far.

As said above, this paper focuses on the distribution of the busy period, as well as the workload’s
correlation function. More specifically, the main contributions are the following.

• Busy period. In the first place we adopt a new approach for computing the Laplace transform
of the busy period. This approach, some steps of which resonate elements of [1], first uses
elementary calculations to express the Laplace transform in terms of a number of auxiliary
transforms (as many as there are states with net buffer increase). Then an important role is
played by a lemma that provides us with a sufficient number of additional constraints in
order to uniquely determine these auxiliary transforms. The proof of this lemma is based
on a powerful result by Sonneveld [20], in conjunction with Geršgorin’s circle theorem, see
[14].

It is stressed that this new methodology has a number of attractive properties. Most of
the analysis is based on first principles; the above-mentioned lemma is the only technical
element. In addition, the analysis essentially carries over to the correlation function, see
below. Also, in special cases, such as the case of a two-state modulating Markov chain, the
analysis can be done explicitly, and the resulting transform can be inverted.

Then we focus on the logarithmic asymptotics of the tail distribution of the busy period.
It is shown that these can be written in terms of the minimum of the so-called cumulant
function (i.e., the asymptotic log-moment generating function) of the input process. The up-
per bound is elementary, viz. a direct application of the Gärtner-Ellis theorem. The lower
bound, on the contrary, is considerably more technical and relies on sample-path large de-
viations [6].

• Correlation function. With Q(t) denoting the buffer content at time t, the covariance func-
tion Cov(Q(0), Q(t)) is a measure of dependence between the workload at time 0, and the
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workload at time t (and the correlation function is defined as the covariance function di-
vided by

√
VarQ(0) VarQ(t)). Using the methodology that we developed for analyzing the

busy period, we uniquely characterize the covariance function by its Laplace transform.
Assuming that the workload was in stationarity at time 0, this has been done before in the
cases of compound Poisson input [16] and spectrally-positive Lévy input [9], but the case
of Markov-fluid input was not addressed yet. We do not restrict ourselves to the case that
Q(0) is distributed according to the workload’s equilibrium distribution; in fact, for any
initial distribution of phase-type the Laplace transform of Cov(Q(0), Q(t)) has a relatively
manageable form.

Again for the case of on-off Markov-fluid input, the correlation function can be determined
explicitly. Interestingly, its asymptotics are equal (up to a multiplicative constant) to those
of the tail distribution of the busy period — a property that was observed before in the case
of queues with spectrally-positive Lévy input [9].

The remainder of this paper is organized as follows. In Section 2 we describe our model and
recapitulate a number of known results on the steady-state workload distribution. In Section 3
we identify the Laplace transform of the busy period. Its logarithmic asymptotics are derived in
Section 4, invoking sample-path large deviations. In Section 5 we concentrate on the covariance
function of the workload process. Section 6 presents an example that illustrates the results ob-
tained in this paper. We draw conclusions and identify a number of open problems in Section 7.

2 Model and preliminaries

Let {X(t), t ≥ 0} be an irreducible continuous-time Markov process with finite state space E =
{1, 2, . . . , N}. This modulating Markov process drives a buffer in the following way: if it is in
state i, the buffer content changes at rate ri (which can be both positive and negative); there is
reflection at zero, meaning that if the buffer is empty, and the Markov process is in a state i with
ri < 0, then the buffer remains empty. We denote by {Q(t), t ≥ 0} the buffer content process (or:
workload process). The buffer size is assumed to be infinite, and hence Q(t) can attain any value
in [0,∞).
In order to avoid confusions in the notation, in the sequel the bold small letters will denote vec-
tors, and bold large letters will denote matrices. Let Λ = (λij)1≤i,j≤N be the intensity matrix (or:
rate matrix) of the Markov processX(t), with λi = −λii. Also, denote by π ≡ (π1, π2, . . . , πN )T its
invariant distribution (where the superscript T denotes the transpose); then πi is the stationary
probability that X(t) is in state i. Because of the above assumptions, this distribution exists and
is unique. Furthermore, let E + be the states i in E such that ri > 0 (‘up-states’), and E − the states
such that ri < 0 (‘down-states’); we assume for ease that ri 6= 0 for all i ∈ E . Define the traffic
rate matrix R = diag{r1, . . . , rN}. Let N+ be the number of up-states, and N− the number of
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down-states. For ease, we let the state-space of the modulating process X(t) be labeled such that
the first N+ states correspond to the up-states, whereas states N+ + 1 up to N correspond to the
down-states. In self-evident notation, we write

r ≡

(
r+

r−

)
.

This straightforward partition is used frequently in the paper.
The transient probabilities qi(t, x) := P(Q(t) ≤ x,X(t) = i) of the bivariate Markov process
(Q(t), X(t)), defined on [0,∞) × E , are known to satisfy a system of partial differential equa-
tions [12, 13], namely

∂

∂t
qi(t, x) + ri

∂

∂x
qi(t, x) =

∑
j∈E

λjiqj(t, x), ∀i ∈ E , x > 0.

It is also well-known that under the condition
N∑

i=1

riπi < 0, (1)

the workload process is stable, that is, ergodic. Moreover, there exists a stochastic vector (Q,X) to
which the process (Q(t), X(t)) converges in distribution as t→∞, and the stationary distribution
of (Q(t), X(t)), say q(x) ≡ (q1(x), . . . , qN (x))T, exists and satisfies

R
d
dx

q(x) = ΛTq(x).

As a solution to the above system one could try q(x) = eξxv, where ξ ∈ C and v is a N -
dimensional vector. Inserting this into the differential equation yields (ξR − ΛT)v = 0. A non-
trivial solution v exists if

det(ξR−ΛT) = 0. (2)

Sonneveld [20] showed that there are N eigenvalues ξj (counting multiplicities) satisfying Equa-
tion (2), of which N+ have negative real parts, one is zero, and N− − 1 have positive real parts.
If the eigenvalues ξj are simple then

q(x) = π +
N+∑
j=1

cj e
ξjx vj ; (3)

where (ξj ,vj) satisfy (ξjR − ΛT)vj = 0, and the constants cj , j = 1, . . . , N+ are determined
by the boundary conditions πi +

∑N+

j=1 cjv
j
i = 0 if ri > 0; if the eigenvalues are non-simple,

elementary results from the theory of linear differential equations entail that there are terms in
the above spectral expansion of the form cjx

`eξjxvj , with ` = 0, . . . , k−1, in case of an eigenvalue
of multiplicity of order k.
Finally, we mention that we let pi(x) denote the density corresponding to the distribution function
qi(x) and p(x) ≡ (p1(x), . . . , pN (x))T.
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3 Analysis of the busy period

In this section we determine the Laplace transform of the busy period. Denoting by P the re-
maining time till the buffer becomes empty, P := inf{t ≥ 0 : Q(t) = 0}, the Laplace transform of
the busy period is defined by

fi(s) := E
(
e−sP |Q(0) = 0, X(0) = i

)
. (4)

Realize that any busy period starts in a state i ∈ E +.
In our analysis, the following transforms play an important role: for i ∈ E , x ≥ 0, s ≥ 0, and
t > 0, define

ζ(s | x, i) := E(e−sP |Q(0) = x,X(0) = i);

fi(s, t) :=
∫ ∞

0
e−tx ζ(s | x, i)dx.

Furthermore, let ti ≡ ti(s) := (λi + s)/ri for i ∈ E +.

For now we will focus on the double transforms fi(s, t); later we explain how these relate to the
Laplace transforms of the busy period, i.e., the fi(s). Notice that when analyzing fi(s, t), we have
to consider both i ∈ E + and i ∈ E −; we deal with these cases separately.
Let us first consider i ∈ E +. It is evident that the busy period cannot end before a transition of
the modulating Markov process X(·). By virtue of the memoryless property of the exponential
distribution, one immediately obtains

fi(s, t) =
∑
k 6=i

λik

λi

∫ ∞

0
e−tx

∫ ∞

0
λie

−λiue−suζ(s | x+ riu, k)dudx.

After some algebra (change-of-variables and interchanging order of integrals) this reduces to

fi(s, t) =
∑
k 6=i

λik

λi + s− tri
(fk(s, t)− fk(s, ti)).

Now proceed with i ∈ E −. Then the busy period may end before the first transition of the mod-
ulating process. We obtain

fi(s, t) =
∑
k 6=i

λik

λi

∫ ∞

0
e−tx

∫ −x/ri

0
λie

−λiue−suζ(s | x+ riu, k)dudx

+
∑
k 6=i

λik

λi

∫ ∞

0
e−tx

∫ ∞

−x/ri

λie
−λiuesx/ridudx.

It is readily verified (again by a change-of-variable and in addition interchanging the order of the
integrals) that this reduces to

fi(s, t) =
∑
k 6=i

λik

λi + s− tri
fk(s, t)−

ri
λi + s− tri

.
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Summarizing, we have found that fi(s, t), i ∈ E is a solution of the following system

(−λi − s+ tri)fi(s, t) +
∑
k 6=i

λikfk(s, t) =
∑
k 6=i

λikfk(s, ti), i ∈ E +; (5)

(−λi − s+ tri)fi(s, t) +
∑
k 6=i

λikfk(s, t) = ri, i ∈ E −. (6)

Now consider equations (5) and (6). It is clear that if the auxiliary transforms fk(s, ti) would be
known, for (k, i) ∈ E × E +, then f(s, t) follow from Cramer’s rule:

fi(s, t) =
det (Λ + tR− sI | g(s), i)

det (Λ + tR− sI)
, i ∈ E ; (7)

where for i ∈ E , (Λ + tR− sI | g(s), i) is equal to the matrix (Λ + tR− sI) with its ith column
replaced by a vector g(s) defined by

gi(s) :=

{ ∑
k 6=i λikfk(s, ti), i ∈ E +

ri, i ∈ E −.
(8)

Therefore, it remains to identify the N ·N+ auxiliary transforms fk(s, ti), for (k, i) ∈ E × E +, and
s > 0 given.
Now first observe that inserting t = tj (for j ∈ E +) into the system (5)–(6), yields N+ · (N − 1)
linear equations for the fk(s, ti); realize that for t = ti we obtain a meaningless relation (that is,
0 = 0). In other words, we can express all fk(s, ti), for i ∈ E + and k ∈ E \ {i}, in terms of the N+

unknowns fj(s, tj), where j ∈ E +. Put differently, we have identified functions γkij(s) and σki(s)
such that

fk(s, ti) =
∑

j∈E +

γkij(s)fj(s, tj) + σki(s), i ∈ E +, k ∈ E \ {j}. (9)

Hence it remains to identify the fj(s, tj), for j ∈ E +; if we would know them we could rewrite
the vector g+(s) as

gi(s) =
∑

j∈E +

∑
k 6=i

λikγkij(s)fj(s, tj) +
∑
k 6=i

λikσki(s). (10)

With f+(s, t+) ≡ (f1(s, t1), . . . , fN+(s, tN+))T, the above means that we have, in self-evident no-
tation, constructed a matrix M(s) (square; of dimension N+) and a vector ω+(s) such that

g+(s) = M(s)f+(s, t+) + ω+(s); (11)

where the matrix M and the vector ω+ are given by

mij(s) :=
∑
k 6=i

λikγkij(s), i, j ∈ E +; (12)

ωi(s) :=
∑
k 6=i

λikσki(s), i ∈ E +. (13)
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As mentioned above, it remains to determine fj(s, tj), j ∈ E + for a given s > 0. This can be done
by using the following powerful lemma.

Lemma 3.1. For fixed s > 0, consider the equation det (Λ− sI + tR) = 0 for t ∈ C. There are N+

values of t with Re t > 0 satisfying this equation.

For a special choice of Λ and R the above lemma was proven in [14], but is readily checked that
the result carries over to general Λ and R (as long as Λ corresponds to an irreducible Markov
chain, and as long as the stability condition (1) is fulfilled). The proof is identical, and is based
on [20], and intensively uses Geršgorin’s circle theorem [10].

Fixing s > 0, realize that the transform (7) should have a finite norm for any t in the right half-
plane. Hence, for any t in the right half plane for which the denominator in (7) equals 0 (that is,
det (Λ + tR− sI) = 0), also the numerator should equal 0. From Lemma 3.1 we know that there
are, for any s > 0, exactly N+ such zeros in the right half-plane. Inserting these zeros into
the numerator of (7) and equating it 0, we obtain exactly N+ linear equations that determine
f+(s, t+). Using (11) we can now determine g(s), and using (7) also f(s, t).

We conclude this section by arguing that, knowing the gi(s), we have also identified the Laplace
transform of the busy period fi(s). This is seen as follows. Considering fi(s), with i ∈ E +,
straightforward arguments yield

fi(s) =
∑
k 6=i

λik

∫ ∞

0
e−λiu e−suE

(
e−sP |Q(0) = riu,X(0) = k

)
du

=
∑
k 6=i

λik

ri

∫ ∞

0
exp

(
−λi + s

ri
v

)
E
(
e−sP |Q(0) = v,X(0) = k

)
dv

=
∑
k 6=i

λik

ri
fk(s, ti) =

gi(s)
ri

.

The above findings are summarized in the following theorem.

Theorem 3.2. For s, t > 0,

f(s, t) = (Λ− sI + tR)−1 g(s),

with g−(s) ≡ r− and g+(s) given by (11) and obtained by solving

det (Λ− sI + τi(s)R | g(s), k) = 0,

for i = 1, . . . , N+; here τi(s), i = 1, . . . , N+, are, for s > 0 given, the N+ values of τ in the right
half-plane that satisfy det (Λ− sI + τR) = 0.
Furthermore, the Laplace transform of the busy period, starting in state i ∈ E +, is given by

fi(s) =
gi(s)
ri

, i = 1, . . . , N+. (14)
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4 Busy period asymptotics

In this section we derive the logarithmic asymptotics of the probability that, starting in an up-
state i, the busy period lasts longer than t, for t→∞. To this end, we define the cumulant function

Γ(ϑ) := lim
t→∞

1
t

log E(exp(ϑA(t))),

here A(t) :=
∫ t
0 rX(s)ds; notice that the cumulant function can be regarded as an asymptotic log-

moment generating function, and is, as a consequence, convex. Γ′(0) equals the drift
∑N

i=1 riπi,
which we assumed to be negative. Define by ϑ? the minimizer of Γ(ϑ); observe that necessarily
ϑ? > 0 and Γ(ϑ?) < 0.
We introduce the short notation Pi(·) := P(· |X(0) = i), and %i(t) := Pi(P > t |Q(0) = 0). We can
now state the main result of this section.

Theorem 4.1. For i ∈ E +

lim
t→∞

1
t

log %i(t) = Γ(ϑ?);

here ϑ? is the minimizing point of Γ(ϑ).

Proof. Let i ∈ E +. First we prove the upper bound. Evidently, we have

%i(t) ≤ P(A(t) > 0 |X(0) = i).

Now the Gärtner-Ellis theorem [8] immediately yields, with A[k] := A(k + 1)−A(k), that

lim sup
t→∞

1
t

log %i(t) ≤ lim sup
n→∞

1
n

log Pi

(
n−1∑
k=0

A[k] > 0

)
= − sup

ϑ≥0
(ϑ · 0− Γ(ϑ)) = inf

ϑ≥0
Γ(ϑ).

The infimum of Γ(ϑ) is attained at ϑ? as introduced above, which proves the upper bound.
We now proceed by proving the lower bound. For any δ ∈ (0, 1),

%i(t) ≥ Pi(∀u ∈ [0, δt] : X(u) = i; ∀s ∈ (δt, t] : A(s) > 0).

But using the conditional independence, the expression in the right-hand side of the previous
display equals

Pi(∀u ∈ [0, δt] : X(u) = i)Pi(A(s) > −riδt, ∀s ∈ (0, (1− δ)t]).
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The first factor of the above display is equal to e−λiδt. Now concentrate on the second factor, with
rmax := maxi∈E ri:

1
t

log Pi (A(s) > −riδt, ∀s ∈ (0, (1− δ)t]) =

=
1
t

log Pi (A (0, γ(1− δ)t) > −riδt, ∀γ ∈ [0, 1])

=
1
t

log Pi

(
A(0, γ(1− δ)t)

(1− δ)t
> −ri

δ

1− δ
, ∀γ ∈ [0, 1]

)
≥ 1
t

log Pi

(
A (0, dγ(1− δ)te)

d(1− δ)te
> −ri

δ

1− δ
+ rmax

1
(1− δ)t

, ∀γ ∈ [0, 1]
)

≥ 1
t

log Pi

(
A (0, dγ(1− δ)te)

d(1− δ)te
> −ri

2
δ

(1− δ)
, ∀γ ∈ [0, 1]

)
;

in the first inequality we use the fact that

A (0, γ(1− δ)t) = A (0, dγ(1− δ)te)−A (γ(1− δ)t, dγ(1− δ)te) ≥ A (0, dγ(1− δ)te)− rmax,

and the last inequality holds for all t > t? := 2rmax/(riδ).
The process An(γ) := n−1 ·A(0, dnγe), with γ ∈ [0, 1] and n := d(1− δ)te fits in the framework of
the sample-path large deviations principle in Example 2.5 of Chang [6]. As a consequence,

(1− δ) lim inf
t→∞

1
(1− δ)t

log Pi

(
A(0, dγ(1− δ)te)

d(1− δ)te
> −ri

2
δ

(1− δ)
, ∀γ ∈ [0, 1]

)
≥ −(1− δ) inf

f∈A o
I(f),

where I(·) is the ‘rate functional’:

I(f) :=
∫ 1

0
sup

ϑ
(ϑf ′(t)− Γ(ϑ))dt,

and A o is the interior of A , which is the set of paths of interest:

A :=
{
f ∈ AC([0, 1], (R, || · ||∞)) : f(γ) > −ri

2
δ

(1− δ)
, ∀γ ∈ [0, 1]

}
.

Here AC([0, 1], (R, || · ||∞)) is the space of absolutely continuous function f such that f(0) = 0,
equipped with the supremum norm topology, i.e.,

||f ||∞ = sup
t∈[0,1]

|f(t)|.

It is seen that the set A is open (and consequently A = A o), as follows. Since the functions
considered are absolutely continuous, thus continuous, over the closed interval [0, 1], any function
f attains a minimum at some point γf ∈ [0, 1]; as f ∈ A , we have that

f(γf ) > −ri
2

δ

(1− δ)
.
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Then consider the ball B(f, ε) around f with radius

ε :=
1
2

(
f(γf ) +

ri
2

δ

(1− δ)

)
> 0;

this ball is evidently contained in A , and hence A is open.
Then observe that the path f0 ≡ 0 is in A o = A . Hence

− inf
f∈A

I(f) ≥ −I(f0) = − sup
ϑ

(0− Γ(ϑ)) = Γ(ϑ?).

Summarizing, we have

lim inf
t→∞

1
t

log %i(t) ≥ lim inf
t→∞

1
t

log Pi(X(δt) = i)

+ lim inf
t→∞

1
t

log Pi (A(s) > −riδt, ∀s ∈ (0, (1− δ)t])

≥ −λiδ + (1− δ)Γ(ϑ?).

Now letting δ ↓ 0 yields the lower bound.

5 The covariance function of the workload process

In this section we analyze the Laplace transform of the covariance function of the workload pro-
cess Q(u). Let R(u) := Cov(Q(0), Q(u)) and γ(ϑ) be its Laplace transform, i.e.,

γ(ϑ) :=
∫ ∞

0
e−ϑuR(u)du =

∫ ∞

0
e−ϑu

[
E(Q(0)Q(u))− EQ(0)EQ(u)

]
du.

As an important special case, we later consider the situation that Q(0) is distributed according to
the stationary distribution (3). Then the correlation coefficient between Q(0) and Q(u) reads

Corr(Q(0), Q(u)) :=
Cov(Q(0), Q(u))√
VarQ(0) · VarQ(u)

=
E(Q(0)Q(u))− (EQ(0))2

VarQ(0)
,

using that the queue is still in equilibrium at time u.

In our derivation of the Laplace transform γ(ϑ), we condition on the state of the system at time
zero. More specifically, we throughout assume that the probability distribution of (Q(0), X(0)) is
given, and denote its density by p0(x) ≡ (p0

1(x), . . . , p
0
N (x))T, for x ≥ 0 and i ∈ E ; as indicated

above we will later specialize to the special case of p0(x) = p(x), with p(x) distributed according
to (3). In the sequel let T be an exponentially distributed random variable with parameter ϑ,
independently of the modulating process X(t). For s ≥ 0, t > 0, we also introduce

ηi(ϑ, s | x) := E
(
e−sQ(T ) |Q(0) = x,X(0) = i

)
;

`i(ϑ, s, t) :=
∫ ∞

0
e−txηi(ϑ, s | x)dx. (15)

10



For later use, define ϑi := ϑ + λi, and in addition the ‘derivatives’ of η(ϑ, s | x) and `(ϑ, s, t), for
i ∈ E :

η
(s)
i (ϑ, s | x) :=

∂

∂s
ηi(ϑ, s | x), `(s)i (ϑ, s, t) :=

∂

∂s
`i(ϑ, s, t), `

(s,t)
i (ϑ, s, t) :=

∂2

∂s∂t
`i(ϑ, s, t).

These functions will turn out to play a pivotal role in determining the Laplace transform of the
covariance function R(u). The following lemma relates η(ϑ, s | 0) and and `(ϑ, s, t).

Lemma 5.1. The vectors η(ϑ, s | 0) and `(ϑ, s, t) satisfy the following relation:

(tri − ϑ)`i(ϑ, s, t) +
∑
k∈E

λik`k(ϑ, s, t) = riηi(ϑ, s | 0)− ϑ

s+ t
, (16)

for i ∈ E . In addition,

ηi(ϑ, s | 0) =
∑
k 6=i

λik

ri
· `k
(
ϑ, s,

ϑi

ri

)
+

ϑ

sri + ϑi
, i ∈ E +; (17)

ηi(ϑ, s | 0) =
∑
k 6=i

λik

ϑi
· ηk(ϑ, s | 0) +

ϑ

ϑi
, i ∈ E −. (18)

Proof. First we stress that there are strong similarities between this proof and the steps used in
Section 3, when we determined the Laplace transform of the busy period.
Notice that for i ∈ E + the buffer cannot become empty before the first jump of the modulating
Markov process, whereas for i ∈ E − this is possible; we deal with the two cases differently. First
consider the case i ∈ E +. Then, conditioning on the jump epoch of the modulating Markov
process,

`i(ϑ, s, t) =
∫ ∞

0
e−tx

∫ ∞

0
ϑie

−ϑiu

{∑
k 6=i

λik

ϑi
ηk(ϑ, s | x+ riu) +

ϑ

ϑi
e−s(x+riu)

}
dudx

=
∑
k 6=i

λik

tri − ϑi

(
`k

(
ϑ, s,

ϑi

ri

)
− `k(ϑ, s, t)

)
+

ϑ

(s+ t)
(
sri + ϑi

) ;
the last equality followed after elementary calculus. The above relation can then be rewritten to

(tri − ϑi)`i(ϑ, s, t) +
∑
k 6=i

λik`k(ϑ, s, t) =
∑
k 6=i

λik`k

(
ϑ, s,

ϑi

ri

)
+

ϑ(tri − ϑi)
(s+ t)(sri + ϑi)

. (19)

Now consider the case i ∈ E −. Taking into account that the buffer can become empty before the
first jump of the modulating Markov process,

`i(ϑ, s, t) =
∫ ∞

0
e−tx

∫ ∞

0
ϑie

−ϑiu

{∑
k 6=i

λik

ϑi
ηk(ϑ, s | (x+ riu)+) +

ϑ

ϑi
e−s(x+riu)+

}
dudx

= −
∑
k 6=i

λik

tri − ϑi

{
`k(ϑ, s, t)−

ri
ϑi
ηk(ϑ, s | 0)

}
+

ϑ
(
(s+ t)ri − ϑi

)
(s+ t)ϑi

(
tri − ϑi

) ,
11



which can be written as

(tri − ϑi)`i(ϑ, s, t) +
∑
k 6=i

λik`k(ϑ, s, t) =
∑
k 6=i

λikri
ϑi

ηk(ϑ, s | 0) +
ϑ
(
(s+ t)ri − ϑi

)
ϑi(s+ t)

. (20)

Now let us evaluate ηi(ϑ, s | 0) further. First consider the case i ∈ E +; then the buffer immediately
becomes non-empty, and hence

ηi(ϑ, s | 0) =
∫ ∞

0
ϑie

−ϑiu

{∑
k 6=i

λik

ϑi
η(ϑ, s | riu, k) +

ϑ

ϑi
e−sriu

}
du

=
∑
k 6=i

λik

ri
· `k
(
ϑ, s,

ϑi

ri

)
+

ϑ

sri + ϑi
,

which proves (17). For i ∈ E − the buffer remains empty until the first jump, and hence

ηi(ϑ, s | 0) =
∫ ∞

0
ϑie

−ϑiu

{∑
k 6=i

λik

ϑi
· ηk(ϑ, s | 0) +

ϑ

ϑi

}
du

=
∑
k 6=i

λik

ϑi
ηk(ϑ, s | 0) +

ϑ

ϑi
,

which proves (18). Equation (16) is obtained by inserting (17)–(18) into (19)–(20).

We now explain how the transform `(ϑ, s, t) can be identified. Equation (16) can be rewritten in
matrix form:

(Λ− ϑI + tR) `(ϑ, s, t) = w(ϑ, s, t); (21)

here wi(ϑ, s, t) := riηi(ϑ, s | 0) − ϑ/(s+ t), for i ∈ E . In other words, assuming for the moment
that η(ϑ, s | 0) is known, application of Cramer’s rule leads to

`i(ϑ, s, t) =
det (Λ− ϑI + tR |w(ϑ, s, t), i)

det (Λ− ϑI + tR)
, i ∈ E . (22)

It is observed that, if we are able to determine η(ϑ, s | 0), then we have found `(ϑ, s, t). We now
identify N linear equations that enable us to compute η(ϑ, s | 0). Equation (18) already gives N−

equations, so that it remains to determine the other N+ linear equations. Since ϑ is fixed, using
Lemma 3.1 with ϑ instead of s, there are N+ values τi ≡ τi(ϑ) (i = 1, . . . , N+) in the right half-
plane satisfying det (Λ− ϑI + τiR) = 0. Since Equation (22) should give a finite norm for any
ϑ > 0, these N+ values τi ≡ τi(ϑ) should also satisfy

det (Λ− ϑI + τiR |w(ϑ, s, τi), k) = 0, i ∈ E +.

In other words: we have now obtained N linear equations; solving these yields η(ϑ, s | 0).

Above we developed a procedure for determining `(ϑ, s, t). Clearly `(ϑ, s, t) uniquely defines
η(ϑ, s | x), see (15). We now focus on how this procedure can be used to obtain an expression for
the Laplace transform γ(·) of the covariance function.

12



Theorem 5.2. For ϑ > 0,

γ(ϑ) =
1
ϑ
·
∑
i∈E

∫ ∞

0

[
EQ(0)− x

]
η

(s)
i (ϑ, 0 | x)p0

i (x)dx, (23)

where

EQ(0) =
∑
i∈E

∫ ∞

0
xp0

i (x)dx.

Proof. With Ex,i(·) := E(· | Q(0) = x,X(0) = i), conditioning on the state of the system at time 0
yields

ϑγ(ϑ) =
∫ ∞

0
ϑ e−ϑuR(u)du

=
∫ ∞

0
ϑ e−ϑu

(∑
i∈E

∫ ∞

0

[
xEx,i(Q(u))− EQ(0)Ex,i(Q(u))

]
p0

i (x)dx

)
du

=
∑
i∈E

∫ ∞

0

[
x− EQ(0)

](∫ ∞

0
ϑ e−ϑuEx,i(Q(u))du

)
p0

i (x)dx

=
∑
i∈E

∫ ∞

0

[
EQ(0)− x

]
η

(s)
i (ϑ, 0 | x)p0

i (x)dx,

where in the last equality we used the fact that η(s)
i (ϑ, 0 | x) = −

∫∞
0 ϑ e−ϑuEx,iQ(u)du.

Now we consider a number of special cases. If the density p0(x) is given by

p0
i (x) =

k∑
j=1

σij e
−ζjx, x ≥ 0, i ∈ E ; (24)

for constants σij and ζj > 0, then the Laplace transform γ(ϑ) is given by

γ(ϑ) =
1
ϑ
·
∑
i∈E

k∑
j=1

σij

[
`
(s,t)
i (ϑ, 0, ζj) + EQ(0)`(s)i (ϑ, 0, ζj)

]
. (25)

Formula (25) extends in a straightforward way to the case in which among the ζj there are pairs
of complex conjugates (with necessarily positive real parts). Importantly, this observation en-
tails that we have now identified the Laplace transform of the covariance function in case Q(0)
obeys the stationary workload distribution (3). Also the case of eigenvalues with multiplicity k
larger than 1 can be solved; then the density of the stationary workload has terms proportional
to xje−ζjx, with j = 0. . . . , k − 1, which is reflected in the appearance of higher order derivatives
of `i(ϑ, s, t) (in which s = 0 and t = ζj should be inserted) in the expression for γ(ϑ).
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6 Example

The following example illustrates the results of this paper. We concentrate on the two-state case,
and compute the busy-period distribution, as well as the covariance function. For α, β, λ and µ

positive, we denote

Λ :=

(
−λ λ

µ −µ

)
, r :=

(
α

−β

)
, π := ψ

(
µ

λ

)
, with ψ :=

1
λ+ µ

;

it is easily verified that π is the invariant distribution of Λ. We call the state space E = {+,−}.
The stability condition is satisfied if βλ > αµ, which in the sequel is assumed to hold true. The
pairs of eigenvalues-vectors of R−1ΛT are given by

ξ0 = 0, with v(0) =

(
1
1

)
; ξ+ =

αµ− βλ

αβ
, with v(+) =

(
λ/α

µ/β

)
;

note that ξ+ < 0. The stationary distribution of (Q ≤ x,X = ±) and its density are

P(Q ≤ x,X = +) = µψ (1− exp (ξ+x)) , p+(x) = −µξ+ψ exp(ξ+x);

P(Q ≤ x,X = −) = λψ

(
1− αµ

βλ
exp (ξ+x)

)
, p−(x) = −α

β
µξ+ψ exp(ξ+x).

(26)

The mean and variance of Q are finite and given by

EQ =
αµ(α+ β)

(λ+ µ)(βλ− αµ)
, VarQ = α2

(
β2

(βλ− αµ)2
− 1

(λ+ µ)2

)
.

Busy period. We first determine the distribution of the busy period P , as well as its tail asymp-
totics. The system (5)–(6) can be rewritten as, with fij(s) := fi(s, tj(s)), for , i, j ∈ {+,−},{

−(λ+ s− αt)f+(s, t) + λf−(s, t) = λf−+(s);
µf+(s, t)− (µ+ s+ βt)f−(s, t) = −β.

From the second equation we have, by instering t = (λ+ s)/α,

f−+(s) =
α

α(µ+ s) + β(λ+ s)
(µf++(s) + β) ,

and hence the vector g(s) is given by

g(s) =
(

λα (µf++(s) + β)
α(µ+ s) + β(λ+ s)

,−β
)T

.

To determine f++(s), we first compute the zeros of the determinant of (Λ + tR − sI) for given
s > 0:

τ±(s) =
1

2αβ
·
(
β(λ+ s)− α(µ+ s)±

√
[β(λ+ s) + α(µ+ s)]2 − 4αβλµ

)
,

14



and focus on the positive root τ+(s). It is clear that τ+(s) must also be a zero of the determinant
of (Λ + tR− sI | g(s),+). It can now be verified that

f++(s) =
β2

µα
· λ+ s− ατ+(s)
µ+ s+ βτ+(s)

, f−+(s) =
β

µ+ s+ βτ+(s)
.

The Laplace transform of P , starting off at buffer level 0 (so that the busy period necessarily starts
in +), is then given by

f+(s) =
1

2αµ

(
(α+ β)s+ (βλ+ αµ)−

√
[(α+ β)s+ (βλ+ αµ)]2 − 4αβλµ

)
.

This transform can be explicitly inverted, yielding the density of the busy-period; with, as intro-
duced in Section 4, %i(t) := Pi(P > t | Q(0) = 0), we have that the density of the busy period
equals

d
dt
%+(t) =

√
βλ

αµ
· I1
(

2
√
αβλµ

α+ β
t

)
· 1
t
exp

(
−αµ+ βλ

α+ β
t

)
;

here I1(x) is the modified Bessel function of the first kind. By differentiating f+(s) and inserting
s = 0 we can now find all moments of the busy-period P . The first moment is

E+(P |Q(0) = 0) = −f ′+(0) =
α+ β

βλ− αµ
.

The asymptotics of the density and the tail distribution are given by, as t→∞,

d
dt
%+(t) ∼ (βλ)1/4

(αµ)3/4

√
α+ β

2
√
π

· 1
t
√
t
exp

(
−

(
√
βλ−√

αµ)2

α+ β
t

)
,

%+(t) ∼ (βλ)1/4

(αµ)3/4

(α+ β)3/2

2
√
π(
√
βλ−√

αµ)2
· 1
t
√
t
exp

(
−

(
√
βλ−√

αµ)2

α+ β
t

)
; (27)

here ‘∼’ means that the ratio of both sides tends to 1 as t→∞.

Now consider a more specific example. Taking α = λ = µ = 1 and β = 2, we are in the setting
of [3, Section 9]. Then

f+(s) =
3(1 + s)−

√
9(1 + s)2 − 8
2

; E+(P ) = 3,

in agreement with the findings of [3]. We find, however, a number of new results:

d
dt
%+(t) =

√
2 · 1

t
e−t I1

(
2
√

2
3
t

)
, t > 0; %+(t) ∼

√
3(3 + 2

√
2)√

2
√

2 · π
· 1
t
√
t
e−

3−2
√

2
3

t, t→∞.

Now consider the logarithmic asymptotics of P+(P > t). The cumulant function is given by
Γ(ϑ) = log sp(Λ + ϑR), where sp(M) is the largest eigenvalue of the matrix M , see [11]. In our
example,

Γ(ϑ) = −(λ+ µ+ (β − α)ϑ)
2

+

√
((β + α)ϑ+ (µ− λ))2 + 4µλ

2
.
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Furthermore we have under our stability condition that Γ′(0) < 0, and Γ(·) attains its minimum
at

ϑ? =
λ− µ

β + α
+

√
λµ

αβ

β − α

α+ β
=

(
√
λα+

√
µβ)(

√
βλ−√

αµ)
√
αβ(α+ β)

> 0,

so that

Γ(ϑ?) = −
(
√
βλ−√

αµ)2

α+ β
< 0.

Hence, by virtue of Thm. 4.1, the decay rate of P+(P > t) is Γ(ϑ?), which agrees with the asymp-
totics given in (27).

Covariance function. Equations (16) are written as
−(λ+ ϑ− αt)`+(ϑ, s, t) + λ`−(ϑ, s, t) = αη+(ϑ, s | 0)− ϑ

s+ t
;

µ`+(ϑ, s, t)− (µ+ ϑ+ βt)`−(ϑ, s, t) = −βη−(ϑ, s | 0)− ϑ

s+ t
,

whereas (18) reads

η−(ϑ, s | 0) =
µ

µ+ ϑ
η+(ϑ, s | 0) +

ϑ

µ+ ϑ
.

The vector w(s, t) is given by

w(s, t) =
(
αη+(ϑ, s | 0)− ϑ

s+ t
,−βη−(ϑ, s | 0)− ϑ

s+ t

)T

.

Let us first compute the zeros of the determinant of (Λ + tR− ϑI), for given ϑ. We find

τ±(ϑ) =
1

2αβ

(
β(λ+ ϑ)− α(µ+ ϑ)±

√
[β(λ+ ϑ) + α(µ+ ϑ)]2 − 4αβλµ

)
;

let τ(ϑ) be the positive root. The procedure described in Section 5 now yields

η+(ϑ, s | 0) =
ϑ

s+ τ(ϑ)
λβ(s+ τ(ϑ)) + (ϑ+ µ)(βτ(ϑ) + λ+ µ+ ϑ)

(α(ϑ+ µ)(βτ(ϑ) + µ+ ϑ)− λµβ)
.

Then, due to Equation (17),

η−(ϑ, s | 0) =
ϑ

µ+ ϑ

(βτ(ϑ) + µ+ ϑ)(α(s+ τ(ϑ)) + µ) + λµ

(s+ τ(ϑ))(α(ϑ+ µ)(βτ(ϑ) + µ+ ϑ)− λµβ)
.

It now follows that

`+(ϑ, s, t) =

(
λβµ
µ+ϑ − α(βt+ µ+ ϑ)

)
η+(ϑ, s | 0) + ϑ

s+t(βt+ λ+ µ+ ϑ) + λβϑ
µ+ϑ

−αβt2 + [βλ− αµ+ ϑ(β − α)]t+ ϑ(ϑ+ λ+ µ)

`−(ϑ, s, t) =
(β(λ+ ϑ− αt)− α(µ+ ϑ)) η−(ϑ, s | 0) + ϑ

s+t(αs+ λ+ µ+ ϑ)
−αβt2 + [βλ− αµ+ ϑ(β − α)]t+ ϑ(ϑ+ λ+ µ)

.
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If the distribution of (Q(0), X(0)) is given we can then compute the Laplace transform of the
covariance function, by relying on Thm. 5.2. In the remainder of this example we consider the
situation that the system is in stationarity at time 0, and hence p0(x) is given by (26).
Since the formulae of the above functions are long and cumbersome, we prefer to treat a more
specific example: as in [3], we choose α = λ = µ = 1 and β = 2. Then we have

`
(s,t)
+ (ϑ, 0, ξ+) = 2

−8− 77ϑ+ 392ϑ2 + 549ϑ3 + 232ϑ4 + 32ϑ5 + (8 + 5ϑ+ ϑ2)
√

9(1 + ϑ)2−8
ϑ2(ϑ+ 2)(2ϑ+ 5)2

,

`
(s,t)
− (ϑ, 0, ξ+) = 2

−4− 39ϑ+ 267ϑ2 + 432ϑ3 + 208ϑ4 + 32ϑ5 + (4 + 3ϑ)
√

9(1 + ϑ)2−8
ϑ2(ϑ+ 2)(2ϑ+ 5)2

.

The Laplace transform ρ(ϑ) is given by

ρ(ϑ) =
−4− 37ϑ+ 15ϑ2(ϑ+ 3)(2ϑ+ 3) + (ϑ+ 4)

√
9(1 + ϑ)2 − 8

15ϑ3(ϑ+ 2)(2ϑ+ 5)
.

Clearly ρ(ϑ) is a well-defined function for ϑ ≥ 0, but from its expression we observe that ρ(ϑ) can
be continued analytically to the left up to the point ϑ̄ = −(

√
βλ−√αµ)2/(α+ β) = −1

3(
√

2− 1)2.
Around this branching point,

ρ(ϑ) ∼
4
√

2(4
√

2 + 18)

15
√

3
(

2
√

2
3 − 1

)3 (
2
√

2
3 + 1

)3 (
4
√

2
3 + 3

)√ϑ+
1
3
(
√

2− 1)2, asϑ ↓ ϑ̄.

Relying on standard techniques, we have, for t→∞,

r(t) ∼
4
√

2(2
√

2 + 9)

15
√

3π
(
1− 2

√
2

3

)3 (
2
√

2
3 + 1

)(
4
√

2
3 + 3

) · 1
t
√
t
exp

(
−3− 2

√
2

3
t

)
.

Notice that in this example the asymptotics of the busy-period distribution and the correlation
function coincide up to a constant factor; we have encountered the same proportionality property
for queues with spectrally-positive Lévy input in [9].

7 Concluding remarks

In this paper we have considered transient characteristics of a Markov-fluid-driven queue, viz.,
the busy period and the covariance function of the workload process, by studying their Laplace
transforms. In the case of the busy period we used sample-path large deviations to obtain its
logarithmic asymptotics.

We conclude by listing a number of open issues. In Thm. 4.1 we found the logarithmic asymp-
totics of tail distribution of the busy period. The results for the two-state case in Section 6, how-
ever, lead to the conjecture that, for i ∈ E +, there is a constant ω such that

Pi(P > t |Q(0) = 0) ∼ ω

t
√
t
etΓ(ϑ?).
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A similar relation can be conjectured for Cov(Q(0), Q(u)), as u → ∞, in view of the findings of
Section 6. In this case, however, not even the logarithmic asymptotics are known. It is not clear,
for instance if (and, if yes, how) sample-path large deviations [6] are of any help here. In fact,
it is not even clear a priori that Cov(Q(0), Q(u)) is positive and decreasing; in case of spectrally-
positive Lévy input these properties were shown relying on the concept of completely monotone
functions [9, 16].
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