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Abstract

With (Qt)t denoting the stationary workload process in a queue fed by a Lévy input process (Xt)t, this
paper focuses on the asymptotics of rare event probabilities of the type P(Q0 > pB, QTB > qB), for given
positive numbers p, q, and a positive determinstic function TB .

- We first identify conditions under which the probability of interest is dominated by the ‘most de-
manding event’, in the sense that it is asymptotically equivalent to P(Q > max{p, q}B) for B large,
where Q denotes the steady-state workload. These conditions essentially reduce to TB being sub-
linear (i.e., TB/B → 0 as B →∞)

- A second condition is derived under which the probability of interest essentially ‘decouples’, in
that it is asymptotically equivalent to P(Q > pB)P(Q > qB) for B large. For various models
considered in the literature this ‘decoupling condition’ reduces to requiring that TB is superlinear
(i.e., TB/B →∞ as B →∞). Notable exceptions are two ‘heavy-tailed’ cases, viz. the situations in
which the Lévy input process corresponds to an α-stable process, or to a compound Poisson process
with regularly varying job sizes, in which the ‘decoupling condition’ reduces to TB/B2 → ∞. For
these input processes we also establish the asymptotics of the probability under consideration for
TB increasing superlinearly but subquadratically.

We pay special attention to the case TB = RB for some R > 0; for light-tailed input we derive intuitively
appealing asymptotics, intensively relying on sample-path large deviations results. The regimes obtained
have appealing interpretations in terms of most likely paths to overflow.
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1 Introduction

Lévy processes are widely used to model various real-life phenomena, for instance in finance and net-
working, see e.g. [14, 16]. In the literature special attention is paid to two intimately related subjects:
fluctuation theory for Lévy processes (predominantly focusing on the analysis of the distribution of the
maximal value attained by a Lévy process with negative drift), and to queues fed by Lévy input (studying
the probabilistic properties of the workload).
Assuming that the Lévy process does not make negative jumps (i.e., the Lévy process is spectrally-positive),
the Laplace transform of the steady-state workload Q has been known for over four decades, and is re-
ferred to as the (generalized) Pollaczek-Khinchine formula [20]; see also [5] for more background. In
addition, the asymptotics of P(Q > B) (B large) have been identified, in various regimes. Asymptotically
exact results for the light-tailed case (or: Cramér case) are presented in [4], cf. also [11], whereas the heavy-
tailed case was covered by e.g. [2]; it is furthermore noted that there is also an intermediate case, cf. e.g.
[13].
Substantially less attention has been paid to the analysis of transient characteristics of Lévy-driven queues.
Again for the case of spectrally-positive Lévy input, in principle the full transient distribution is known,
as we have an explicit expression for the double transform

F (q, α) :=
∫ ∞

0

e−qtE(e−αQt | Q0 = x)dt,

with Qs denoting the workload at time s > 0, and x ≥ 0; see e.g. [12]. In order to get a handle on the
transient distribution, one may use inversion techniques. Note however that essentially two inversions
then need to be performed: one to obtain E(e−αQt | Q0 = x) from F (q, α), and one to obtain the transient
distribution P(Qt ≤ · | Q0 = x) from E(e−αQt | Q0 = x). We remark that [9] uses the double transform
mentioned above to analyze the covariance function r(t) := Cov(Q0, Qt); more specifically, it is proved
that r(·) is positive, decreasing, and concave, and in addition its asymptotics (for large t) are determined.

In this paper we choose an alternative approach to analyze transient workload probabilities. We concen-
trate on probabilities of the type

ΠB := P(Q0 > pB,QTB
> qB),

which we analyze asymptotically, as B → ∞. Here p and q are two positive constants, and TB is a given
positive function of B. It is stressed that we do not impose the assumption that the Lévy input process,
say (Xt)t, be spectrally-positive.
Interestingly, the shape of the function TB essentially dictates the asymptotics of ΠB . More specifically,
our paper makes the following contributions.

(i) Our first contribution is the identification of conditions under which

ΠB ∼ P(Q > max{p, q}B), (1)

or, in other words, the most demanding requirement determines the asymptotics (here ‘∼’ means
that the ratio of the left-hand side and right-hand side converges to 1). These conditions essentially
boil down to requiring that TB is sublinear, that is TB/B → 0 as B → ∞. The idea behind this
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property is that the most demanding requirement essentially implies the other requirement with
overwhelming probability, as B →∞.

(ii) A second contribution is the identification of a condition on TB such that

ΠB ∼ P(Q > pB)P(Q > qB). (2)

If P(Q > B) decays (roughly) like e−B (exponential decay), exp(−Bα) with 0 < α < 1 (Weibullian
decay), B− log B (which could be called ‘lognormal decay’), then this ‘decoupling condition’ reduces
to TB/B →∞. If P(Q > B) roughly looks likeB−α (polynomial decay), however, then the condition
reads TB/B

2 →∞; we have this type of decay in two relevant ‘heavy-tailed’ cases, viz. the situations
in which the Lévy input process corresponds to an α-stable process, and to a compound Poisson
process with regularly varying job sizes.

(iii) For the two ‘heavy-tailed’ scenarios mentioned above, we determine the asymptotics of ΠB for TB

increasing superlinearly but subquadratically; in this case the rare event under consideration is es-
sentially due to a single big jump (whereas in the superquadratic case two big jumps are needed,
leading to asymptotics (2)).

(iv) We pay special attention to the linear case, that is, TB = RB for some R > 0. For light-tailed input
we derive intuitively appealing logarithmic asymptotics. If R is small (that is, fulfilling an explicit
criterium in terms of p, q, and the characteristics of the Lévy process (Xt)t, then we have asymptotics
as in (1). If this condition does not apply, two cases are possible: for large R the most likely scenario
is that the buffer drains, remains empty for a while, and starts building up relatively short before
R (in this case the asymptotics look like the decoupled asymptotics (2)), and for moderate R the
buffer remains (most likely) non-empty between 0 and R. These three regimes are in line with those
identified in e.g. [8] for Gaussian input, [15] for exponential on-off input, as well as [19, Section
11.7] in the setting of an M/M/1 queue. The proofs of our ‘trichotomy’ rely intensively on large-
deviations techniques, e.g., sample-path large deviations results [1].

The structure of the paper is as follows. In Section 2 we introduce the model, and present a number of
preliminaries, such as a useful lemma taken from [8]. In Section 3 we address contributions (i) and (ii).
Section 4 is devoted to the situation in which P(Q > B) decays polynomially, that is, contribution (iii).
Finally, contribution (iv) is covered by Section 5. Section 6 contains a short summary, discussion, and
directions for future research.

2 Notation and preliminaries

In this paper we consider a queue fed by a Lévy process (Xt)t, emptied at a constant rate C > 0; recall
that Lévy processes are stochastic processes with stationary independent increments [14]. Assume that
E(X1) = % < C, to ensure that the stationary workload exists.
More formally, the steady-state buffer-content process {Qt : t ≥ 0} is given through

Qt = sup
s≥0

(A(t− s, t)− Cs), (3)
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where A(s, t) := Xt −Xs for s ≤ t.

As mentioned in the introduction, this paper focuses on analyzing transient characteristics of the buffer-
content process. We define

ΠB := P (Q0 > pB,QTB
> qB) .

In this paper the primary focus lies on the asymptotics of ΠB as B → ∞, for given p, q > 0 and some
function TB that tends to ∞ as B →∞.
We finish this section with two general lemmas that are used later in the paper. Directly from (3) it can be
found that

ΠB = P (∃s ≥ 0, t ≥ 0 : A(−s, 0)− Cs > pB,A(TB − t, TB)− Ct > qB) . (4)

The following lemma, featuring a reduction property proven in [8], formalizes the evident property that
the start of the busy period in which TB is contained (corresponding to time, say, TB − t?), cannot take
place before the start−s? of the busy period in which 0 is contained, but also not in the interval (−s?, 0]. In
order words: the only two options are that both busy periods start at the same epoch (then t? = TB + s?),
and that the busy period in which 0 is contained ends before TB (then t? ∈ [0, TB)). It means that in (4) we
can restrict ourselves to a subset of s, t ≥ 0.

Lemma 2.1. Let

E := {(s, t) : s ≥ 0, t ∈ [0, TB) ∪ {TB + s}}.

Then

ΠB = P (∃(s, t) ∈ E : A(−s, 0)− Cs > pB,A(TB − t, TB)− Ct > qB) .

We finally state a weak law of large numbers, which holds due to the fact that Xt is integrable.

Lemma 2.2. For any δ > 0,

lim
t→∞

P
(
Xt

t
< %− δ

)
= lim

t→∞
P
(
Xt

t
> %+ δ

)
= 0.

3 General results

In this section we prove two general results. The first says that (1) holds under the plausible condition that
TB/B → 0; in the sequel we call this the short time-scale regime. The second identifies a condition under
which the asymptotic decoupling (2) holds; notably, as mentioned in the introduction, this condition does
not necessarily reduce to TB/B →∞. We refer to the latter regime as the long time-scale regime.

3.1 Short time-scale regime

In this subsection we prove our result for the short time-scale regime; as before Q denotes the stationary
workload. It consists of two cases: the case p > q which holds under the condition TB/B → 0 as B →∞,

and the case q > p which holds under Assumption 3.1. We stress that later in this paper we will show that
both in heavy-tailed scenarios and in light-tailed scenarios Assumption 3.1 is fulfilled as long as TB/B → 0
as B →∞.
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Assumption 3.1. One of the following two properties hold:

(i) The sequence TB is such that, for all η > 0,

lim sup
B→∞

P(∃t ∈ (0, TB) : Xt − Ct > ηB)
P(Q > qB)

= 0.

(ii) The sequence TB is such that, for all η > 0, P(Q > qB + ηTB) ∼ P(Q > qB) as B →∞.

Theorem 3.2. Case p > q: If TB/B → 0 as B →∞, then

ΠB ≡ P(Q0 > pB,QTB
> qB) ∼ P(Q > pB).

Case q > p: Under Assumption 3.1,

ΠB ≡ P(Q0 > pB,QTB
> qB) ∼ P(Q > qB).

Proof. First consider the case p > q. We are left to prove that

lim inf
B→∞

P(Q0 > pB,QTB
> qB)

P(Q > pB)
≥ 1.

This is proven as follows. Fix ε > 0. Let B be sufficiently large such that (p− q)B > (C − %+ ε)TB (which
is possible due to TB/B → 0 and p > q). Then

P(Q0 > pB,QTB
> qB) ≥ P(Q0 > pB) · P(XTB

> (%− ε)TB).

This is evidently true if TB is bounded, and if it is not, then due Lemma 2.2 we have that for any δ > 0 and
for B large enough P(XTB

> (%− ε)TB) > 1− δ. The stated follows by letting δ ↓ 0.
Now focus on q > p, first under Assumption 3.1.(i). Now it suffices to prove that, as B →∞, we have that
P(Q0 < pB,QTB

> qB) = o(P(Q > qB)). Let TB be the event that Qt > 0 for all t ∈ (0, TB). First observe
that, with η := q − p > 0,

P(Q0 < pB,QTB
> qB,TB) ≤ P(XTB

> ηB + CTB) ≤ P(∃t ∈ (0, TB) : Xt − Ct > ηB),

which is o(P(Q > qB)) due to Assumption 3.1.(i). Also,

P(Q0 < pB,QTB
> qB,T c

B) ≤ P(QTB
> qB,T c

B) ≤ P(∃t ∈ (0, TB) : A(TB − t, TB)− Ct > qB),

which is also o(P(Q > qB)), again by Assumption 3.1.(i).
Again consider the case q > p, but now under Assumption 3.1.(ii). It is clear that it suffices to show that
lim infB→∞ΠB/P(Q > qB) ≥ 1. For each positive N ,

ΠB ≥ P(Q0 > qB +NTB , QTB
> qB) ≥ P(Q > qB +NTB) · P(XTB

> (C −N)TB).

Now observe that, by assumption, P(Q > qB +NTB) ∼ P(Q > qB) as B → ∞. Moreover, for each ε > 0
there exists an N0 such that, for each N ≥ N0, it holds that P(XTB

> (C − N)TB) ≥ 1 − ε for sufficiently
large B. Thus, as B →∞,

P(Q > qB +NTB) · P(XTB
> (C −N)TB) ∼ P(Q > qB) · P(XTB

> (C −N)TB),

which is larger than (1− ε)P(Q > qB). The stated follows by letting ε ↓ 0. This completes the proof.
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Remark 3.3. The case p = q. The case p = q should be handled with care; it is readily checked from the
proof of Thm. 3.2 that the argumentation for q > p works for q ≥ p under Assumption 3.1.(ii), but not
under Assumption 3.1.(i).
Let us now check how Assumption 3.1.(ii) relates to the condition TB/B → 0. In case that P(Q > B) decays
(roughly) polynomially (i.e., P(Q > B) ∼ KB−ζ), then Assumption 3.1.(ii) indeed reduces to TB/B → 0
as B →∞. It is noted, however, that if P(Q > B) decays (roughly) exponentially, then Assumption 3.1.(ii)
reads TB → 0.
We now argue that Assumption 3.1.(ii) is, in the case p = q, ‘minimal’ if P(Q > B) decays exponentially, in
the sense that lim infB→∞ TB = M > 0 leads to lim supB→∞ΠB/P(Q > pB) < 1, as follows. Consider for
instance the case that (Xt)t corresponds to (standard) Brownian motion. Decompose ΠB into Π(1)

B + Π(2)
B ,

where TB is defined in the proof of Thm. 3.2 and

Π(1)
B := P (Q0 > pB,QTB

> pB,TB) , Π(2)
B := P (Q0 > pB,QTB

> pB,T c
B) .

First observe

Π(2)
B ≤ P(Q0 > pB,∃t ∈ [0, TB ] : A(t, TB − t) > pB + Ct)

= P(Q0 > pB) · P(∃t ∈ [0, TB ] : A(t, TB − t) > pB + Ct) ≤ (P(Q > pB))2 = o(P(Q > pB)).

Regarding Π(1)
B , first recall that P(Q > B) = e−2CB . We find

Π(1)
B ≤ P(Q0 > pB,Q0 +XTB

> pB + CTB) =
∫ ∞

pB

P(XTB
> pB + CTB − x) · 2Ce−2Cxdx

=
∫ ∞

0

P(XTB
> CTB − y) · 2Ce−2C(y+pB)dy = P(Q+XTB

> CTB) · P(Q > pB).

Since lim infB→∞ TB = M > 0, we have that lim supB→∞ P(Q +XTB
> CTB) < 1, and as a consequence

that lim supB→∞Π(1)
B /P(Q > pB) < 1, and therefore also lim supB→∞ΠB/P(Q > pB) < 1. This shows that

Assumption 3.1.(ii) is ‘minimal’ for the case p = q. ♦

3.2 Long time-scale regime

The main goal of this section is to prove our result for the long time-scale regime. A crucial role is played
by the following assumption. Recall that Q denotes the stationary workload.

Assumption 3.4. The sequence TB is such that, for all η > 0,

lim sup
B→∞

P(Q > ηTB)
P(Q > pB) · P(Q > qB)

= 0.

In the next sections we relate this assumption to the behavior of TB asB →∞. It turns out that depending
on the driving Lévy process being heavy-tailed or light-tailed, various regimes need to be distinguished.

Theorem 3.5. Under Assumption 3.4, it holds that

ΠB ≡ P(Q0 > pB,QTB
> qB) ∼ P(Q > pB) · P(Q > qB).
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Proof. Let us start by establishing the lower bound. By definition,

P(Q0 > pB,QTB
> qB) = P(∃s ≥ 0 : A(−s, 0) > pB + Cs,∃t ≥ 0 : A(TB − t, TB) > qB + Ct).

The probability in the right-hand side of the previous display majorizes

P(∃s ≥ 0 : A(−s, 0) > pB + Cs,∃t ∈ (0, TB) : A(TB − t, TB) > qB + Ct)

= P(∃s ≥ 0 : A(−s, 0) > pB + Cs) · P(∃t ∈ (0, TB) : A(TB − t, TB) > qB + Ct)

= P(Q > pB) · P(∃t ∈ (0, TB) : A(−t, 0) > qB + Ct).

We observe that it is left to prove that

P(∃t > TB : A(−t, 0) > qB + Ct)
P(Q > qB)

→ 0 (5)

as B →∞. Let us consider the numerator of (5). It is trivial that

P(∃t > TB : A(−t, 0) > qB + Ct)

= P
((

sup
t>TB

A(−t,−TB)− C(t− TB)
)

+A(−TB , 0) > qB + CTB

)
= P (Q−TB

+A(−TB , 0) > qB + CTB) .

Now Assumption 3.4 implies that P(Q > ηTB)/P(Q > qB) → 0 for all η > 0, and hence CTB > qB for B
sufficiently large. It means that the previous display is majorized by

P (Q−TB
+A(−TB , 0) > 2CTB) ,

for B large enough. We now distinguish between Q−TB
being either smaller or larger than 1

2CTB :

P
(
Q−TB

+A(−TB , 0) > 2CTB , Q−TB
<

1
2
CTB

)
+ P

(
Q−TB

+A(−TB , 0) > 2CTB , Q−TB
>

1
2
CTB

)
, (6)

Realize that Q−TB
and A(−TB , 0) are independent, and that Q−TB

is distributed as the steady-state work-
load Q. Expression (6) is therefore bounded from above by

P
(
A(−TB , 0)− CTB >

1
2
CTB

)
+ P

(
Q >

1
2
CTB

)
≤ P

(
∃t ≥ 0 : A(−t, 0)− Ct >

1
2
CTB

)
+ P

(
Q >

1
2
CTB

)
= 2P

(
Q >

1
2
CTB

)
.

Now (5) follows from applying Assumption 3.4 once more.
We now proceed by establishing the upper bound. In view of Lemma 2.1, we can split the probability of
interest on the basis of the queue having been empty in (0, TB) or not, thus obtaining

P(Q0 > pB,QTB
> qB,T c

B) + P(Q0 > pB,QTB
> qB,TB). (7)
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The first of the probabilities in (7) equals

P(∃s ≥ 0 : A(−s, 0) > pB + Cs,∃t ∈ (0, TB) : A(TB − t, TB) > qB + Ct)

= P(∃s ≥ 0 : A(−s, 0) > pB + Cs) · P(∃t ∈ (0, TB) : A(TB − t, TB) > qB + Ct)

≤ P(∃s ≥ 0 : A(−s, 0) > pB + Cs) · P(∃t ≥ 0 : A(−t, 0) > qB + Ct) = P(Q > pB) · P(Q > qB).

The second of the probabilities in (7) equals

P(∃s > 0 : A(−s, 0) > pB + Cs,A(−s, TB) > qB + C(TB + s))

≤ P(∃s > 0 : A(−s, TB) > qB + C(TB + s)) = P(∃s > TB : A(−s, 0) > qB + Cs).

Above we saw that P(∃s > TB : A(−s, 0) > qB + Cs) ≤ 2P(Q > CTB/2) for B sufficiently large. The
upper bound now immediately follows from applying Assumption 3.4.

4 Heavy-tailed Lévy input

In this section we focus on the situation that the tail distribution of Q decays essentially polynomially.

Assumption 4.1. For an ζ,K > 0,

P(Q > qB) ·Bζ → K,

as B →∞.

Let us first check what Assumptions 3.1 and 3.4 look like in this situation.

• Consider Assumption 3.1.(ii). As has been noticed in Remark 3.3, this assumption is valid under
TB/B → 0 as B →∞.

• Now consider Assumption 3.4. It is readily checked that under Assumption 4.1 this does not reduce
to TB/B →∞, but to TB/B

2 →∞.

We here mention that, interestingly, Assumption 3.4 does reduce to requiring that TB/B → ∞ for
B → ∞ in a number of specific situations in which the tail distribution of Q decays subexponen-
tially (but faster than polynomially); this is for instance the case when P(Q > B) roughly decays as
exp(−Bα) for α ∈ (0, 1) (Weibullian decay), and also when it decays as B− log B (which is a tail that
resembles that of the lognormal distribution).

The above observations indicate that, for P(Q > B) behaving as B−ζ , the situations that are left to inves-
tigate are those in which TB is between linear and quadratic. In this section we analyze this case.
As a first observation, we notice that Lemma 2.1 entails that we can decompose ΠB into

P

(
∃s ≥ 0, ∃t ∈ [0, TB ] : A(−s, 0)− Cs > pB, A(TB − t, TB)− Ct > qB

∨ ∃s ≥ 0 : A(−s, 0)− Cs > pB, A(−s, TB)− C(s+ TB) > qB

)
= P(E1) + P(E2)− P(E1 ∩ E2),

where

E1 := {∃s ≥ 0, ∃t ∈ [0, TB ] : A(−s, 0)− Cs > pB, A(TB − t, TB)− Ct > qB},
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E2 := {∃s ≥ 0 : A(−s, 0)− Cs > pB, A(−s, TB)− C(s+ TB) > qB}.

The following two lemmas are useful in our proofs.

Lemma 4.2. The following three statements hold:

(i) for any B > 0,

P(E1) = P(Q > pB) · P

(
sup

t∈[0,TB ]

(Xt − Ct) > qB

)
;

(ii) for ε ∈ (0, 1), if TB →∞ as B →∞, then P(E2) ∼ p1(B) + p2(B), where

p1(B) := P(Q > pB) · P (XTB
> CTB + (q − p)B)

p2(B) := P (Q > qB + (C − %)TB + ε(TB +B)) · P (XTB
∈ [%TB − ε(TB +B), CTB + (q − p)B]) ;

(iii) if TB = RB2 for some R > 0, then under Assumption 4.1 we have P(E1 ∩ E2) = o(P(E1)) as B →∞.

Proof. Claim (i) follows directly from the independence of the increments of (Xt)t. Now concentrate on
Claim (ii). To make the notation a bit lighter, we write T instead of TB throughout this proof. Observe that

P(E2) = P (Q0 > max{pB, qB + CT −XT })

= P (Q0 > max{pB, qB + CT −XT }, XT > CT + (q − p)B)

+ P (Q0 > max{pB, qB + CT −XT }, XT ≤ CT + (q − p)B)

= P(Q0 > pB)P(XT > CT + (q − p)B) + P(E21),

where E21 := {Q0 > qB +CT −XT , XT ≤ CT + (q − p)B}. We first consider P(E21). Let ε ∈ (0, 1). Then

P(E21) = P(E211) + P(E212), (8)

with

E211 := {Q0 > qB + CT −XT , XT ∈ [%T − ε(T +B), CT + (q − p)B]}

E212 := {Q0 > qB + CT −XT , XT < %T − ε(T +B)}.

Observe that

P(E212) ≤ P (Q0 > qB + (C − %)T + ε(T +B), XT < %T − ε(T +B))

= P (Q > qB + (C − %)T + ε(T +B)) P (XT < %T − ε(T +B))

= o (P (Q > qB + (C − %)T )) (9)

as B →∞, because

P (XT < %T − ε(T +B)) = P
(
XT

T
< %− ε(T +B)

T

)
≤ P

(
XT

T
< %− ε

)
→ 0

9



due to Lemma 2.2. We also have that P(E211) equals

P (Q0 > qB + CT + max{ε(T +B)− %T,−XT }, XT ∈ [%T − ε(T +B), CT + (q − p)B])

+ P (qB + CT −XT < Q0 ≤ qB + (C − %)T + ε(T +B), XT ∈ [%T − ε(T +B), CT + (q − p)B])

= P (Q0 > qB + CT + max{ε(T +B)− %T,−XT }, XT ∈ [%T − ε(T +B), CT + (q − p)B])

= P (Q0 > qB + (C − %)T + ε(T +B), XT ∈ [%T − ε(T +B), CT + (q − p)B])

= P (Q0 > qB + (C − %)T + ε(T +B)) P (XT ∈ [%T − ε(T +B), CT + (q − p)B]) . (10)

Upon combining (8) with (9) and (10), we have established Claim (ii).
Finally consider Claim (iii). Let δ ∈ (0, 1

2 ) and ε > 0. We have

P (E1 ∩ E2) = P
(
E1 ∩ E2, XT ≥ (%+ ε)T + T 1−δ

)
+ P

(
E1 ∩ E2, XT ≤ (%+ ε)T + T 1−δ

)
≤ P

(
Q0 > pB, XT ≥ (%+ ε)T + T 1−δ

)
+

P

(
Q0 > qB + (C − %− ε)T − T 1−δ, sup

t∈[0,T ]

(XT −XT−t − Ct) > qB

)
= P (Q > pB) P

(
XT ≥ (%+ ε)T + T 1−δ

)
+

P
(
Q > qB + (C − %− ε)T − T 1−δ

)
P

(
sup

t∈[0,T ]

(Xt − Ct) > qB

)
. (11)

Since T = RB2 and δ ∈ (0, 1
2 ), for some constant K̄ > 0,

P
(
XT ≥ (%+ ε)T + T 1−δ

)
≤ P

(
sup
t≥0

(Xt − (%+ ε)t) ≥ T 1−δ

)
∼ K̄(T 1−δ)−ζ = o(B−ζ);

use Assumption 4.1. We thus conclude that

P (Q > pB) P
(
XT ≥ (%+ ε)T + T 1−δ

)
= o(P(E1)).

We also have

P
(
Q > qB + (C − %− ε)T − T 1−δ

)
∼ P (Q > (C − %− ε)T ) = O(B−2ζ) = O(P(E1));

P

(
sup

t∈[0,T ]

(Xt − Ct) > qB

)
≤ P

(
sup
t≥0

(Xt − Ct) > qB

)
= P(Q > qB) → 0

as B →∞, which in view of (11) implies that P (E1 ∩ E2) = o(P(E1)). This completes the proof of (iii).

Lemma 4.3. Under Assumption 4.1, for each R > 0, as B →∞,

P

(
sup

t∈[0,RB2]

(Xt − Ct) > B

)
∼ P(Q > B).

Proof. It clearly suffices to establish the lower bound. We have

P

(
sup

t∈[0,RB2]

(Xt − Ct) > B

)
≥ P(Q > B)− P

(
sup

t>RB2
(Xt − Ct) > B

)
. (12)

10



Also, with Q, as before, denoting a random variable that is distributed as the stationary workload, and
which is independent of XRB2 ,

P
(

sup
t>RB2

(Xt − Ct) > B

)
= P

(
XRB2 + sup

t>RB2
(Xt −XRB2 − C(t−RB2)) > B + CRB2

)
= P(XRB2 +Q > B + CRB2) ∼ P(XRB2 +Q > CRB2).

Now realize that P(Q > CRB2) is asymptotically (B →∞) proportional to B−2ζ by Assumption 4.1, and

P(XRB2 > CRB2) = P(XRB2 − (%+ ε)RB2 > (C − %− ε)RB2)

≤ P
(

sup
t>0

(Xt − (%+ ε)t) > (C − %− ε)RB2

)
∼ ǨB−2ζ ,

for some positive constant Ǩ (again by Assumption 4.1), so that P(XRB2 + Q > CRB2) is roughly pro-
portional to B−2ζ as well, as follows from basic properties of regularly varying distributions. The stated
is now a direct consequence of (12) and the fact that P (Q > B) is asymptotically proportional to B−ζ .

We now present two propositions that, for the case that TB is at least linear but slower than quadratic,
express the asymptotics of ΠB in terms of the asymptotics of P(Q > B), viz. Prop. 4.4 for the case q ≥ p

and Prop. 4.6 for the case p > q. Corollaries 4.5 and 4.7 summarize the findings so far.

Proposition 4.4. Let q ≥ p.

(i) If lim infB→∞ TB/B ≥ R for some R > 0 and TB/B
2 → 0 as B →∞, then

ΠB ∼ P(Q > qB + (C − %)TB); (13)

(ii) If TB = RB2 for some R > 0, then

ΠB ∼ P(Q > pB)P(Q > qB) + P (Q > (C − %)TB) . (14)

Proof. To prove Claim (i), it suffices to show P(E1) = o(P(E2)). From Lemma 4.2.(i) it immediately follows
that P(E1) ≤ P(Q > pB)P(Q > qB). As, for q ≥ p, p1(B) = o(p2(B)), we also have, by letting ε ↓ 0 in
Lemma 4.2.(ii), P(E2) ∼ P(Q > qB + (C − %)TB). It also holds that

P(Q > pB)P(Q > qB) = o(P(Q > qB + (C − %)TB))

as B →∞. This completes the proof of Claim (i).
Now consider Claim (ii). If TB = RB2, then, following Lemmas 4.2 and 4.3,

P(E1) = P(Q > pB)P

(
sup

t∈[0,TB ]

(X(t)− Ct) > qB

)
∼ P(Q > pB)P(Q > qB)

and

P(E2) ∼ P (Q > pB + (C − %)TB) ∼ P (Q > (C − %)TB) ,

as B → ∞. Since P(E1) = O(P(E2)), it now suffices to recall that due to Lemma 4.2.(iii) it holds that
P(E1 ∩ E2) = o(P(E1)). We thus establish Claim (ii).

11



The following corollary is an immediate consequence of Thms. 3.2, 3.5, and 4.4, Remark 3.3 and Lemma
4.3.

Corollary 4.5. Let q ≥ p.

(i) If TB/B → 0 as B →∞, then ΠB ∼ Kq−ζB−ζ ;

(ii) If T = RB for some R > 0, then ΠB ∼ K(q + CR)−ζB−ζ ;

(iii) If TB/B →∞ and TB/B
2 → 0 as B →∞, then ΠB ∼ K(CTB)−ζ ;

(iv) If TB = RB2 for some R > 0, then ΠB ∼
(
K2(pq)−ζ + (CR)−ζ

)
B−2ζ ;

(v) If TB/B
2 →∞ as B →∞, then ΠB ∼ K2(pq)−ζB−2ζ .

We now switch to the case q < p.

Proposition 4.6. Let q < p.

(i) If TB = RB with R ≤ (p− q)/B, then ΠB ∼ P(Q > pB);

(ii) If lim infB→∞ TB/B > (p− q)/C and TB/B
2 → 0 as B →∞, then ΠB ∼ P(Q > qB + (C − %)TB);

(iii) If T = RB2 as B →∞ for some R > 0, then ΠB ∼ P(Q > pB)P(Q > qB) + P (Q > (C − %)TB).

Proof. We only consider Claim (i); the other claims can be proven as the corresponding statements in
Prop. 4.4. Notice that

P(Q > pB) · P(XTB
> %TB + (C − %+ (q − p)/R)TB) ∼ P(Q > pB),

due to the weak law of large numbers (Lemma 2.2); the probability p2(B) corresponds to two rare events
(use C − % + (q − p)/R < 0), such that p2(B) = o(p1(B)). As a consequence, Lemma 4.2.(ii) entails that
P(E2) ∼ P(Q > pB). Combining this with Lemma 4.2.(i), we conclude that P(E1) = o(P(E2)). This implies
ΠB ∼ P(Q > pB), which completes the proof of (i).

Corollary 4.7. Let q < p.

(i) If TB/B → 0 as B →∞, or T = RB with R ≤ (p− q)/C, then ΠB ∼ Kp−ζB−ζ ;

(ii) If TB = RB for R > (p− q)/C, then ΠB ∼ K(q + CR)−ζB1−ζ ;

(iii) If TB/B →∞ and TB/B
2 → 0 as B →∞, then ΠB ∼ K(CTB)−ζ ;

(iv) If TB = RB2 as B →∞ for some R > 0, then ΠB ∼
(
K2(pq)−ζ + (CR)−ζ

)
B−2ζ ;

(v) If TB/B
2 →∞ as B →∞, then ΠB ∼ K2(pq)−ζB−2ζ .

In the remainder of this section we consider two special cases: (A) α-stable input, and (B) compound
Poisson input with polynomially decaying job size distribution.
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(A) α-stable input. Let Xt be an α-stable Lévy process [18] with α ∈ (1, 2) and β ∈ (−1, 1]. We use the
notation

B(α, β) :=
Γ(1 + α)

π

√
1 + β2 tan2(πα/2) sin

(πα
2

+ arctan (β tan (πα/2))
)
.

Then, due to [17], Assumption 4.1 is valid with

K =
B(α, β)

Cα(α− 1)
,

and ζ = α− 1. Hence the theory developed earlier in this section can be applied.

(B) Compound Poisson input with polynomially decaying job sizes. Consider a Poissonian arrival stream (with
rate λ) of i.i.d. jobs. Let the distribution of the jobs obey P(Jr > x) ∼ κx−ζ , for positive ζ, κ, where Jr

denotes the residual job length:

P(Jr > x) =
1

EJ

∫ ∞

x

P(J > y)dy.

Note that % = λ · EJ. Then [6, 7]

P(Q > x) ∼ %

C − %
κx−ζ .

Conclude that again Assumption 4.1 (and hence the theory of this section) applies, with an obvious value
for K.

5 Light-tailed input

In this section we derive the logarithmic asymptotics of ΠB as B → ∞, for the case of light-tailed input.
We impose the following assumption.

Assumption 5.1. With

β? := inf{β : E
(
e−βX1

)
<∞},

assume that β? < 0. Let ϕ(ϑ) := log E exp(−ϑX1), and assume that there exists ϑ? ∈ (β?, 0), such that ϕ(ϑ?) +
Cϑ? = 0.

We first recall in Prop. 5.2 a result that is a special case of [11, Thm. 4], which states that the tail probabilities
of the steady-state workload decay essentially exponentially. Bearing in mind Assumption 3.4, this means
that Thm. 3.5 holds when TB/B →∞. In Lemma 5.5 we will show that Assumption 3.1 applies if TB/B →
0 as B →∞, and hence the case TB/B → 0 is covered by Thm. 3.2.
The above means that the only case left to analyze is the linear case, and therefore the rest of this section
concentrates on TB = RB for some R > 0. It turns out that three intuitively appealing regimes can be
distinguished (small R, moderate R, large R); at the end of this section we provide more insight in these
regimes.
In the following proposition, we let Q denote the stationary workload of a Lévy-driven queue, i.e., let Q
be distributed as supt>0(Xt − Ct).
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Proposition 5.2. Under Assumption 5.1 it holds that

lim
B→∞

1
B

log P(Q > B) = ϑ?. (15)

Remark 5.3. We give here an alternative proof of the upper bound associated with the above result, as it
provides interesting additional insight, and the proof technique will be used again in the proof of Lemma
5.5. Importantly, we obtain the uniform upper bound P(Q > B) ≤ eϑ?B .

Under the assumption % < C, evidently the queueing system is stable under the measure P. We will now
perform a change of measure, with which we associate Q, under which overflow occurs with probability
1, by application of an exponential twist ϑ?. Under the light-tailed assumption, we have that the Laplace
exponent ϕ(ϑ) ofXt is well defined and characterized through, with σ2 > 0 and a measure Πϕ(·) such that∫
(0,∞)

min{1, x2}Πϕ(dx) <∞,

ϕ(ϑ) = −ϑ%+
1
2
ϑ2σ2 +

∫
(0,∞)

(e−ϑx − 1 + ϑx1(0,1))Πϕ(dx).

It is now a matter of straightforward calculations to show that ϕ̄(ϑ) := ϕ(ϑ + ϑ?) − ϕ(ϑ?) is a Laplace
exponent as well. Under Q, the Lévy process has Laplace exponent ϕ̄(ϑ); from the convexity of ϕ(·)
it is concluded that (in self-evident notation) EQX1 = −ϕ̄′(ϑ?) > %, so that the system under the new
measure is indeed unstable. (One can check that under Q the drift has increased to %−ϑ?σ2, the Brownian
term remains unchanged, whereas the measure Πϕ̄(dx) is given through the exponentially twisted version
e−ϑ?xΠϕ(dx)).
Suppose one would compute P(supt>0Xt − Ct > B) by simulating under Q. There is the fundamental
equality, with I denoting the indicator function of the event {supt>0Xt − Ct > B}

P
(

sup
t>0

Xt − Ct > B

)
= EQ(LI),

cf. [3, Thm. XIII.3.2], where L denotes the likelihood ratio (to be understood as a Radon-Nikodým deriva-
tive) of the value of the Lévy process under P with respect to Q; it is a standard result that at time t this
likelihood ratio equals eϑ?Xt exp(ϕ(ϑ?)t). Let τB be defined as the first epoch at which Xt exceeds B + Ct

(which is a stopping time); as I = 1 with Q-probability 1, we thus obtain

P
(

sup
t>0

Xt − Ct > B

)
= EQe

ϑ?XτB eϕ(ϑ?)τB = EQe
ϑ?XτB e−Cϑ?τB .

As by definition XτB
≥ B + CτB , we thus find that P(Q > B) ≤ eϑ?B . ♦

In the next lemma we relate the decay rate ϑ? to the large deviations rate function, defined through I(r) :=
supϑ≥0 (ϑr − ϕ(−ϑ)), and an associated variational problem.

Lemma 5.4. It holds that

−ϑ? = inf
r>C

I(r)
r − C

. (16)

Proof. Let the minimizer in the right-hand side of (16) be r?, satisfying (r − C)I ′(r) = I(r). Define in
addition ϑ(r) := arg supϑ≥0(ϑr − ϕ(−ϑ)), so that I(r) = ϑ(r)r − ϕ(−ϑ(r)). Noticing that ϑ(r) satisfies
r + ϕ′(−ϑ) = 0, we find that

I ′(r) = ϑ′(r)r + ϑ(r) + ϑ′(r)ϕ(−ϑ(r)) = ϑ(r).
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¿From the facts that ϑ? solves ϕ(ϑ?) + Cϑ? = 0 and

ϑ(r?)r? − ϕ(−ϑ(r?)) = I(r?) = (r? − C)I ′(r?) = (r? − C)ϑ(r?),

we conclude that −ϑ(r?) = ϑ?, we proves the claim.

As indicated in the beginning of this section, like in the heavy-tailed case, in this light-tailed case we again
have that Assumption 3.1 is valid if TB/B → 0 as B → ∞. This is proven in the following lemma. We
recall that it entails that the only case left to analyze is the linear case, that is, TB = RB for some R > 0.

Lemma 5.5. Under Assumption 5.1, Assumption 3.1.(i) applies if TB/B → 0 as B →∞.

Proof. Let Q(ϑ) be the Lévy process obtained after exponentially twisting the original Lévy process with
twist ϑ < 0, as in Remark 5.3. In a similar fashion, it follows that

P(∃t ∈ (0, TB) : Xt − Ct > qB) ≤ EQ(ϑ)e
ϑ(B+CτB)eϕ(ϑ)τB ,

where τB is the minimum of TB and the first epoch at whichXt−Ct exceedsB (which is a stopping time).
It then follows that for all ϑ < 0, bearing in mind that τB ≤ TB = o(B),

lim sup
B→∞

1
B

log P(∃t ∈ (0, TB) : Xt − Ct > qB) ≤ lim sup
B→∞

(
ϑ+ ϑC

τB
B

+ ϕ(ϑ)
τB
B

)
= ϑ.

This entails that P(∃t ∈ (0, TB) : Xt − Ct > qB) decays superexponentially:

lim sup
B→∞

1
B

log P(∃t ∈ (0, TB) : Xt − Ct > qB) ≤ inf
ϑ<0

ϑ = −∞.

Combining this with Prop. 5.2, the stated follows.

¿From now on we just consider the case that TB = RB. The next proposition shows that for small R the
decay rate of interest equals the decay rate of the ‘most binding event’, cf. Thm. 3.2. We denote

R̄ := max
{
p− q

C − %
,
q − p

r? − C

}
.

Proposition 5.6. If R < R̄, then

lim
B→∞

1
B

log ΠB = max{p, q}ϑ?.

Proof. First suppose p > q > 0. The upper bound follows immediately from Prop. 5.2:

lim sup
B→∞

1
B

log ΠB ≤ lim sup
B→∞

1
B

log P(Q0 > pB) = pϑ?.

Now consider the lower bound, which we establish by applying the lower bound of a sample-path large-
deviations result. We here rely on de Acosta [1, Thm. 5.1], which can be applied to obtain

lim inf
B→∞

1
B

log ΠB ≥ −I(f), (17)
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for any f ∈ A , where

I(f) :=
∫ ∞

−∞
I(f ′(τ))dτ.

and the set of paths A is given by

A := {f : ∃(σ, τ) ∈ E : −f(−σ) ≥ Cσ + p, f(R)− f(R− τ) ≥ Cτ + q} .

Now consider the continuous path f? through the origin that has slope r? between −p/(r?−C) and 0 and
slope % elsewhere; clearly

I(f) :=
∫ 0

−p/(r?−C)

I(f ′(τ))dτ =
p

r? − C
· I(r?) = −pϑ?.

Claim 1 now follows from the observation that f? ∈ A , as

−f
(
− p

r? − C

)
=

pr?

r? − C
=

pC

r? − C
+ p,

and, by virtue of R < (p− q)/(C − %),

f(R)− f

(
− p

r? − C

)
= %R+

pr?

r? − C
> C

(
R+

p

r? − C

)
+ q.

Claim (2) can be proven along the same lines. The upper bound is identical, and in de lower bound we
again use Theorem 5.1 of [1], but now with a path f? that has slope r? between R− q/(r? −C) and R and
% elsewhere. The stated follows after checking that this path is in A if R < (q − p)/(r? − C).

In the sequel we use the following lemma extensively, see [10, Lemma 1.2.15].

Lemma 5.7. For any finite integer M ,

lim
n→∞

1
n

log

(
M∑
i=1

αi,n

)
= max

i=1,...,M

(
lim

n→∞

1
n

logαi,n

)
.

Proposition 5.8. If R > R̄, then

lim
B→∞

1
B

log ΠB = pϑ? + max {qϑ?,−ψ(R)} , where ψ(R) := R · I
(
C +

q − p

R

)
.

Proof. First we establish the upper bound, which consists of five steps.

STEP I. The probability of interest ΠB can be decomposed as Π(1)
B + Π(2)

B , with

Π(1)
B := P(Q0 > pB,QRB > qB, ∀t ∈ (0, RB) : Qt > 0),

Π(2)
B := P(Q0 > pB,QRB > qB, ∃t ∈ (0, RB) : Qt = 0).

STEP II. We first observe that we can bound Π(2)
B as follows:

Π(2)
B = P(Q0 > pB,∃t ∈ (0, RB) : A(RB − t, RB)− Ct ≥ qB)

= P(Q0 > pB)P(∃t ∈ (0, RB) : A(RB − t, RB)− Ct ≥ qB)

≤ P(Q0 > pB)P(∃t ≥ 0 : A(RB − t, RB)− Ct ≥ qB) = P(Q > pB)P(Q > qB),
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and hence

lim
B→∞

1
B

log Π(2)
B ≤ lim

B→∞

1
B

log P(Q > pB) + lim
B→∞

1
B

log P(Q > qB) = (p+ q)ϑ?. (18)

STEP III. Now let us focus on Π(1)
B ; in this scenario the busy period in which R is contained starts at the

same epoch as the busy period in which 0 is contained. Hence

Π(1)
B = P(∃s ≥ 0 : A(−s, 0)− Cs > pB, A(−s,RB)− C(RB + s) > qB).

Let ε > 0 be picked arbitrary; let M be some natural number, whose value we specify later. Then Π(1)
B is

majorized by

M−1∑
k=0

P

(
∃s ≥ 0 :

A(−s, 0)− Cs ∈ ((p+ kε)B, (p+ (k + 1)ε)B];
A(−s,RB)− C(RB + s) > qB

)
+ P(∃s ≥ 0 : A(−s, 0)− Cs > (p+Mε)B). (19)

Now the k-th term in the summation of the previous display is bounded from above by

P(∃s ≥ 0 : A(−s, 0)− Cs > (p+ kε)B) × P(A(0, RB)− CRB > (q − (p+ (k + 1)ε))B),

which we call ζ(k)
B . Due to Prop. 5.2 and Cramér’s theorem,

lim
B→∞

1
B

log ζ(k)
B = (p+ kε)ϑ? −R · I

(
C +

q − p− (k + 1)ε
R

)
.

We have now found that (19) is not larger than

M−1∑
k=0

ζ
(k)
B + P(Q > (p+Mε)B),

and therefore, due to Lemma 5.7,

lim
B→∞

1
B

log Π(1)
B ≤ max

{
max

k=0,...,M−1

{
(p+ kε)ϑ? −R · I

(
C +

q − p− (k + 1)ε
R

)}
, (p+Mε)ϑ?

}
.

STEP IV. We now study how gk := (p + kε)ϑ? − R · I(∆k/R) behaves when varying k, with ∆k :=
CR + q − p − (k + 1)ε. Because of the convexity of I(·), we see that gk is concave in k. This means
that proving g1 ≤ g0 also yields that maxk=0,...,M−1 gk = g0. To this end, first observe that, owing to the
convexity of I(·) and using that ∆1 < ∆0,

g0 − g1 = −εϑ? +R

(
I

(
∆1

R

)
− I

(
∆0

R

))
≥ −εϑ? + (∆1 −∆0)I ′

(
∆1

R

)
= −ε

(
I ′
(

∆1

R

)
+ ϑ?

)
.

Now recall that ϑ? = −I ′(r?), and that I ′(·) is increasing. It follows that g1 ≤ g0 if ∆1 < r?R, which is true
under R > (q − p)/(r? − C) and ε sufficiently small. We conclude, noting that we can take M arbitrarily
large,

lim
B→∞

1
B

log Π(1)
B ≤ g0 = pϑ? −R · I

(
C +

q − p− ε

R

)
. (20)
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STEP V. By letting ε ↓ 0 in (20), applying the upper bound on the decay rates of both Π(1)
B and Π(2)

B , and
Lemma 5.7 once more, we have

lim
B→∞

1
B

log ΠB ≤ pϑ? + max
{
qϑ?,−R · I

(
C +

q − p

R

)}
.

This completes the upper bound.

The lower bound follows again from sample-path large-deviations arguments [1].

• Let us first consider the case that

qϑ? > −R · I
(
C +

q − p

R

)
. (21)

Condition (21) implies that R ≥ q/(r? − C), as can be seen as follows. Supposing R < q/(r? − C),
and recalling that we have R > (q − p)/(r? − C), it would follow that

R · I
(
C +

q − p

R

)
<

q

r? − C
I(r) = −qϑ?,

which is a contradiction; note that we also used that C + (q − p)/R > %.

Using that we know that (21) impliesR ≥ q/(r?−C), it can be seen that the path f? through the origin
that has slope r? between −p/(r? −C) and 0, and also between R− q/(r? −C) > 0 and R, and slope
% elsewhere, is indeed feasible (that is, lies in A ). It is also readily verified that I(f?) = −(p + q)ϑ?,

as required.

• Now suppose that (21) does not hold. Define f? as the path through the origin with slope r? between
−p/(r?−C) and 0, slope C+(q− p)/R between 0 and R, and slope % elsewhere. It is easily seen that
this path is feasible and, by applying the definition of I(·),

I(f?) = −pϑ? +R · I
(
C +

q − p

R

)
,

as desired.

This concludes the proof of the lower bound.

Lemma 5.9. For all R > R̄, we have that ψ(R) is increasing. In addition we have that ψ(R̄) ≤ −qϑ?.

Proof. Observe, recalling that I ′(r) = ϑ(r), that

ψ′(R) = −q − p

R
· ϑ
(
C +

q − p

R

)
+ I

(
C +

q − p

R

)
.

First consider the case p > q, such that R̄ = (p− q)/(C − %). It then holds that C + (q − p)/R̄ = %, so that

ψ′(R̄) = −q − p

R
· I ′(%) + I(%) = 0,

due to I(%) = I ′(%) = 0. We are done if we can prove that ψ′(R) increases for R ≥ R̄. To this end, we
compute ψ′′(R); it is easily verified that I ′(r) = ϑ(r) entails that

ψ′′(R) =
(q − p)2

R3
I ′′
(
C +

q − p

R

)
,
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which is indeed non-negative because of the convexity of I(·).
We now consider the case q ≥ p, i.e., R̄ = (q − p)/(r? − C). It then holds that C + (q − p)/R̄ = r?, so that

ψ′(R̄) = (c− r?) · I ′(r?) + I(r?) = 0,

see the proof of Lemma 5.4. Again, we are done if we can prove that ψ′(R) increases for R ≥ R̄, which
follows in the same fashion as above.
We finally consider ψ(R̄). In case p > q, this equals 0, which is evidently below −qϑ?. In case q ≥ p, we
have

ψ(R̄) =
q − p

r? − C
I(r?) = −(q − p)ϑ? ≤ −qϑ?.

This completes the proof.

The following claim is an immediate consequence of the previous lemma.

Corollary 5.10. There is a unique solution (larger than R̄) to ψ(R) = −qϑ?, say Ř. For all R ∈ (R̄, Ř) we have
ψ(R̄) ≤ −qϑ?, for all > Ř we have ψ(R̄) > −qϑ?.

Application of Props. 5.6, 5.8 and this corollary immediately lead to the following theorem.

Theorem 5.11. (i) For R ≤ R̄ we have

lim
B→∞

1
B

log ΠB = max{p, q}ϑ?.

(ii) For R ∈ (R̄, Ř) we have

lim
B→∞

1
B

log ΠB = pϑ? − ψ(R).

(iii) For R ≥ Ř we have

lim
B→∞

1
B

log ΠB = (p+ q)ϑ?.

Summarizing, we have identified the decay rate of Π(B), and found three regimes for R. This could be
dealt with explicitly, in that we presented closed-form expressions for the decay rate, as well as for the
critical values of R that separate three regimes, which could be anticipated in view of earlier work, see e.g.
[8, 15] and [19, Section 11.7]. The three regimes have an appealing intuitive explanation.

• For small values of R, the ‘tightest’ of the events {Q0 > pB} and {QRB > qB} will essentially imply
the other, thus leading to the decay rate max{p, q}ϑ?.

• Then there is an intermediate range of values of R for which both {Q0 > pB} and {QRB > qB} are
tight, but that the time epochs 0 and RB lie in the same busy period with overwhelming probability.
The decay rate pϑ? represents the requirement that pB has to be exceeded at time 0, and then CRB+
(q − p)B traffic has to be generated in the next RB time units, leading to the contribution −ψ(R).
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• Finally, for large R still both events are tight, but now they occur in different busy periods with
overwhelming probability, so that the joint probability effectively decouples (thus leading to the
decay rate (p+ q)ϑ?).

Theorem 5.11 has made this heuristic rigorous. We finish this section with an example.

Example 5.12. Consider the Brownian case, that is, ϕ(ϑ) = −%ϑ + 1
2ϑ

2. It is easy to derive that I(a) =
1
2 (a− %)2 and ϑ? = −2(C − %). The solution Ř (larger than R̄) of qϑ? = −ψ(R) is

Ř =
(
√
p+

√
q)2

(C − %)
,

in line with Prop. 5.1 of [8]. ♦

6 Discussion and concluding remarks

In this paper we analyzed the asymptotics of ΠB forB large. We showed that for TB increasing sublinearly,
the asymptotics reduce to those of the most demanding event, cf. (1). We also identified a criterion under
which the event become asymptotically independent (‘decoupling’), cf. (2). The latter criterion reduces to
TB/B →∞ in many situations, a notable exception being the case that P(Q > B) decays polynomially (in
which case the condition is TB/B

2 →∞).
While this paper gives a fairly complete picture of all possible regimes, a number of special cases are still
open. For instance when P(Q > B) looks like exp(−Bα) for some α ∈ (0, 1), or like B− log B , the above
mentioned criterion for decoupling is TB/B →∞, but remains unclear what happens when TB = RB for
some R > 0. It is expected that delicate analysis is needed to obtain the asymptotics in these situations.
Another topic for future research concerns the exact asymptotics for the light-tailed case and TB = RB.
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