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Abstract

We show that the M fewer than N (N is the real data sample size, M denotes
the size of the bootstrap resample; M/N → 0, as M → ∞) bootstrap approximation
to the distribution of the trimmed mean is consistent without any conditions on the
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the normal approximation fails to be consistent if the population distribution F has
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1 Introduction

The trimmed mean is a well known estimator of a location parameter, the main reason
for applying it in statistics is robustness. The centre of a distribution is often estimated
by the sample mean or the sample median. However, it is well known that the sample
mean is sensitive to outliers and thus not robust. On the other hand, the sample
median is robust against outliers but not very efficient if the underlying distribution is,
for instance, normal. An estimator showing intermediate behavior, and which includes
both the sample mean and sample median, is the trimmed (sample) mean (cf. [9], [11]).
Compared with robust M -estimates of maximum likelihood type, the trimmed mean
not only has the same asymptotic variance but also is easy to compute.

The limit distribution of the trimmed mean for an arbitrary population distribution
was found by Stigler [12]. Specifically he has shown that in order for the trimmed mean
to be asymptotically normal, it is necessary and sufficient that the sample is trimmed at
sample quantiles for which the corresponding population quantiles are uniquely defined.
His result was extended to the case of slightly trimmed mean (when the fraction of
trimmed data is vanishing when N gets large) by Csörgő et.al [5].
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In two recent papers by Gribkova and Helmers [6]–[7] the validity of the one-term
Edgeworth expansion for a (Studentized) trimmed mean and bootstrapped trimmed
mean were established and simple explicit formulas of the first leading terms of these
expansions were obtained. Using these expansions the second order correctness of the
M out of N bootstrap approximation (N being the real data sample size, M denotes the
size of the bootstrap resample) was obtained, provided the trimmed mean is properly
defined and a local smoothness condition near the quantiles where the trimming occurs
is satisfied. We also assume a relation between M and N , as min(M, N) gets large.

In this article we prove that, without any smoothness condition on the underlying
population distribution function F , the distribution of the bootstrapped trimmed mean
tends to the same limit as the distribution of the trimmed mean, whenever both the
M out of N bootstrapped trimmed mean and the trimmed mean are properly normalized
and M/N → 0, as M → ∞. This implies that the M fewer than N bootstrap
approximation is always consistent for the trimmed mean when data are i.i.d., including
non smooth cases, with ’gaps’ in the underlying distribution, i.e. intervals of positive
length near the quantiles where the trimming occurs with F -measure zero, when the
normal approximation and the Efron’s naive (i.e. M = N) bootstrap approximation do
not work.

Some general results concerning the M fewer than N bootstrap with replacement
and without replacement can be found in [2]. In the present article we establish that the
M fewer than N bootstrap with replacement works for the case of trimmed means, also
when the ordinary Efron bootstrap fails. Our main result – Theorem 1 – supplements
the very general Theorem 2 in Bickel, Gotze and van Zwet [2]. Our proof of Theorem 1
is relatively simple: it is based on approximating the trimmed mean and its M fewer
than N bootstrap counterpart by sums of i.i.d. Winsorized random variables.

Theorem 1 presents a new example, useful in statistical practice, where the M fewer
than N bootstrap with replacement works, while Efron bootstrap fails. We discuss
an application of Theorem 1 by constructing a M ¿ N -bootstrap confidence interval
for the parameter µ(α, β) – the population trimmed mean (cf.(1.3)) – in section 3.
A numerical example is given in Section 5.

We refer to [2] for some other realistic examples of M fewer than N bootstrap success
and ordinary bootstrap failure. A possible alternative way to prove assertion (ii) of our
Theorem 1 would consist of checking the general assumptions of Theorem 2 of [2] for
the special case of the trimmed mean.

Consider a sequence X1, X2, . . . of independent and identically distributed (i.i.d.)
real-valued random variables (r.v.) with common distribution function (df) F , and let
X1:N ≤ · · · ≤ XN :N (N = 1, 2, . . . ) be the order statistics corresponding to a sample
X1, . . . , XN of size N from F .

Let F−1(u) = inf{x : F (x) ≥ u}, 0 < u ≤ 1, denotes the left-continuous inverse
function of the df F and put F−1

N to be the inverse of FN , the empirical distribution of
(X1, . . . , XN ).

Define two versions of the trimmed mean by

TN(1)
=

1
([βN ]− [αN ])

[βN ]∑

i=[αN ]+1

Xi:N , TN(2)
=

1
β − α

∫ β

α
F−1

N (u) du, (1.1)

where 0 < α < β < 1 are any fixed numbers, [·] represents the greatest integer function.
Note that TN(1)

is the natural definition of a trimmed mean; and TN(2)
(the ’plug-in
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version’ of a trimmed mean) — only slightly different from the classical TN(1)
— is very

useful in a bootstrap context, in particular, it enables us to obtain the second order
correctness property for the M out of N bootstrap for a (Studentized) trimmed mean
TN(2)

(cf. [7]).
Let X∗

1 , . . . , X∗
M be a bootstrap resample of the size M = M(N) from the empirical

df FN based on the first N original observations X1, . . . , XN ; F ∗
M denotes the bootstrap

empirical df , and X∗
1:M ≤ · · · ≤ X∗

M :M — the corresponding order statistics. Here and
throughout this article we use the shorthand notation M , omitting its argument N .

Define the M out of N bootstrap counterparts of the trimmed means by:

T ∗N,M(1)
=

1
([βM ]− [αM ])

[βM ]∑

i=[αM ]+1

X∗
i:M , T ∗N,M(2)

=
1

β − α

∫ β

α
(F ∗

M )−1(u) du, (1.2)

where α and β are same as in (1.1).
It is well known that both versions of the trimmed mean can be used as statistical

estimators of the location parameter

µ(α, β) =
1

β − α

∫ β

α
F−1(u) du, (1.3)

the population trimmed mean. The bootstrap counterpart of the parameter µ(α, β) is
given by µN (α, β) = 1

β−α

∫ β
α F−1

N (u) du = TN(2)
.

Let us introduce the ν-th (0 < ν < 1) quantile of of F , FN and (F ∗
M ): ξν = F−1(ν),

ξνN :N = F−1
N (ν), ξ∗νM :M = (F ∗

M )−1(ν), and note that the following simple relations
are valid:

TN(2)
= cα,N

(
TN(1)

− ξαN :N

)
+ TN(1)

− cβ,N

(
TN(1)

− ξβN :N

)
,

T ∗N,M(2)
= cα,M

(
T ∗N,M(1)

− ξ∗αM :M

)
+ T ∗N,M(1)

− cβ,M

(
T ∗N,M(1)

− ξ∗βM :M

)
, (1.4)

with cν,κ = νκ−[νκ]
(β−α)κ = O (1/κ ), where κ = N, M and ν = α, β. Since ξνN :N and

TN(j)
, j = 1, 2, are bounded uniformly in N with probability one (a.s.) as N →∞ and

in view of (1.4)
N1/2(TN(2)

− TN(1)
) → 0, a.s., as N →∞. (1.5)

Moreover, since ξ∗νM :M , ν = α, β, and T ∗N,M(j)
, j = 1, 2 are bounded uniformly with

P ∗-probability of the order 1−O(M−c), for every c > 0, a.s. [P], (cf. [7]),

M1/2(T ∗N,M(2)
− T ∗N,M(1)

) →P ∗ 0, a.s., as min(N,M) →∞. (1.6)

Here and throughout this paper P ∗ denotes bootstrap probability measure having dis-
crete mass points Xi:N with atoms 1/N , and E∗ denotes the corresponding expectation.

The relations (1.5) – (1.6) imply that the limit distributions of both versions of the
trimmed mean, given by (1.1), are identical; the same remark is valid for the corre-
sponding bootstrap counterparts. Therefore, we will use in the sequel with impunity
the following shorthand notation:

TN = TN(j)
, T ∗N,M = T ∗N,M(j)

, j = 1, 2.

Our results on the limit distributions and the M fewer than N bootstrap correctness
will be proved for the trimmed mean given as TN(2)

and its bootstrap counterpart
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T ∗N,M(2)
; but in view of the previous remarks these results are also valid for TN(1)

, and
its bootstrap counterpart T ∗N,M(1)

.
We conclude this section by noting that the second order asymptotic properties (one-

term Edgeworth expansions) of two versions of the trimmed mean and the corresponding
bootstrap counterparts are different, and that TN(2)

is the more appropriate definition
of a trimmed mean in a bootstrap context (cf. Gribkova and Helmers [7]).

2 The asymptotic distribution of TN and T ∗
N,M and the

M ¿ N bootstrap consistency

Following Stigler [12] we define two quantities

A = sup{x : F (x) ≤ α} − F−1(α) ; B = sup{x : F (x) ≤ β} − F−1(β) ,

which are both equal to zero if and only if the inverse function F−1 is continuous at the
two points α and β.

Define auxiliary r.v.’s Yi, having distribution function G(x):

Yi =





Xi + A, Xi ≤ ξα,

Xi, ξα < Xi ≤ ξβ,

Xi −B, ξβ < Xi.

G(x) =





F (x−A), x < ξα + A,

F (x), ξα + A ≤ x < ξβ,

F (x + B), ξβ ≤ x,

(2.1)

i = 1, . . . , N . Define the inverse function G−1(u) = inf{x : G(x) ≥ u} and note that
this function is continuous at the points α and β. Define α and β-th quantiles of G:

ηα = G−1(α) = ξα + A ; ηβ = G−1(β) = ξβ . (2.2)

Let us introduce r.v.’s Yi Winsorized outside (ηα, ηβ], in other words

Wi = ηα ∨ (Yi ∧ ηβ) , i = 1, . . . , N , (2.3)

where a ∧ b = min(a, b) and a ∨ b = max(a, b), the corresponding quantile function is

Q(u) = ηα ∨ (G−1(u) ∧ ηβ) .

Define

µW =
∫ 1

0
Q(u) du, σ2

W =
∫ 1

0
(Q(u)− µW )2 du, (2.4)

the first two central moments of Wi. Note that µ(α, β) = 1
β−α

∫ β
α G−1(u) du . (cf. (1.3))

Let (Z1 , Z2 , Z3) be a normally distributed N (O,C) random vector with zero expec-
tation and the covariance matrix

C =




α(1− α) α(ηα − µW ) −α(1− β)
α(ηα − µW ) σ2

W (1− β)(ηβ − µW )
−α(1− β) (1− β)(ηβ − µW ) β(1− β)


 (2.5)

Define a r.v.

Z = (β − α)−1
(
−Amax(0, Z1) + Z2 + B max(0, Z3)

)
, (2.6)
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with expectation EZ = (
√

2π(β − α))−1
( −A(α(1− α))1/2 + B(β(1− β))1/2

)
(cf. Stigler [12]). Using (2.6) and the covariance matrix (2.5) we easily obtain
the second moment of the r.v. Z: EZ2 = (β − α)−2

{
A2 α(1−α)

2 + σ2
W + B2 β(1−β)

2

−Aα(ηα − µW ) +B(1− β)(ηβ − µW )−AB α(1−β)
π

(√
β−α

α(1−β) − arctg
(√

β−α
α(1−β)

))}
.

Let FZ denotes the df of the r.v. Z. We will suppose that the following condition
of the non degeneracy is satisfied: ηα 6= ηβ (i.e., ξα + A is not an atom of the df F with
probability mass at least (β − α); note that this equivalent to assuming σW > 0).

The following Theorem is our main result, which consist of two parts: first of all
a version of the classical theorem by Stigler [12] on the asymptotic distribution of the
trimmed mean, and secondly the M fewer than N bootstrap analogue of that theorem.

Theorem 1. Suppose that σW > 0. Then

(i) sup
x∈R

∣∣∣P
(
N1/2(TN − µ(α, β)) ≤ x

)− FZ(x)
∣∣∣ −→ 0 , as N →∞ ;

(ii) sup
x∈R

∣∣∣P ∗(M1/2(T ∗N,M − TN ) ≤ x
)− FZ(x)

∣∣∣ −→ 0 , as M →∞ , M/N → 0 ,

in P -probability. Moreover,

(iii) if (M log log N)/N → 0, as M →∞, then the relation (ii) is valid a.s. [P ].

The proof of Theorem 1 is relegated to the Section 4. Note that the first relation
(i) is nothing but the result by Stigler [12]. Nevertheless, we will give a short proof of
Stigler’s Theorem as our proof is slightly different from one given in [12]; it is based
on the stochastic approximation which was also used in [6]-[7] — a sum of i.i.d. Win-
sorized r.v.’s.. Note also that the representation of the limit r.v. Z (but not the limit
distribution itself) differs from one given in [12].

It is clear from our proof of the relations (ii)–(iii) in Theorem 1 (cf. Section 3) that
the condition M/N → 0 is necessary for the convergence to the limit distribution only
when the gaps A or/and B are not equal to zero. However, when A = B = 0, the limit
distribution is the normal one under the sole condition that N ∧M →∞.

We should also note that the condition σW > 0 imposed in Theorem 1 is not needed
for the convergence in (i)–(iii) (cf. proof of Theorem 1). However, if ηα = ηβ, then FZ

can be discontinuous and the convergence in (i)–(iii) is not uniform anymore (cf. [12]).
However, this exceptional case does not seem to be interesting in statistical applications.

The following corollary is a direct consequence of Theorem 1.

Corollary 1. Suppose that σW > 0, then

(i) sup
x∈R

∣∣∣ P ∗(M1/2(T ∗N,M − TN ) ≤ x
)−P

(
N1/2(TN − µ(α, β)) ≤ x

)∣∣∣ −→ 0,

in P−probability, as M →∞, M/N → 0 .

(ii) Relation (i) is valid a.s. [P ], as M →∞, if (M log log N)/N → 0.

Inference on trimmed means using the normal approximation will be invalid when
gaps are present near the quantiles where the trimming occur, for instance, when one
has to deal with grouped data (cf. Stigler [12]). The M fewer than N bootstrap ap-
proximation, however, also works when normality fails, provided only that at ηα there
is not an atom with mass at least β − α of the distribution F .
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Theorem 1 and its corollary cover a case where the classical bootstrap is not consis-
tent , but the M fewer than N bootstrap is consistent, without assuming any (smooth-
ness) condition on the underlying distribution of the observations. We note that in a
way Theorem 1 belongs to the third case of the three cases distinguished in Bickel and
Sakov [3].

The question remains how well the M fewer than N bootstrap approximation ap-
proximates the true distribution in finite samples; the rate of convergence might be quite
slow and will depend on the choice of M . The authors intend to pursue this matter
elsewhere.

3 Some applications

Since the limit distribution of N1/2(TN − µ(α, β)) has a non zero expectation EZ in
general case, it is natural to estimate the parameter µ(α, β) by TN −N−1/2ÊZ (cf. (3.1)
below). The asymptotic bias EZ depends on the unknown quantities A and B (cf. (2.6))
and we need a consistent estimate of EZ. Fortunately, we can apply the M fewer than N
bootstrap procedure for this purpose. Define

ÊZ = M1/2E∗(T ∗N,M − TN ), σ̂2
N,M = M

(
E∗(T ∗N,M − TN )2

)− ÊZ
2
. (3.1)

The following result means the consistency of these M fewer than N bootstrap estima-
tors of the expectation and the variance of the limit distribution FZ .

Proposition 1. Suppose that σW > 0, then

ÊZ − EZ −→ 0 , σ̂2
N,M/Var(Z) −→ 1 , (3.2)

in P−probability, as M →∞, M/N → 0. Moreover, relations (3.2) are valid a.s. [P ],
as M →∞, (M log log N)/N → 0.

The proof of the Proposition 1 is relegated to the Section 4. Note that both E∗(T ∗N,M )

and σ̂2
N,M can be easily computed using Monte Carlo.

We now apply our results to construct a confidence interval for the parameter µ(α, β).
We suppose that ξα+A 6= ξβ, that is the natural (in the context of estimating) condition
of absence of degeneracy is satisfied. Take any p > 0 close to zero. Then we obtain the
following asymptotic M fewer than N bootstrap confidence interval for the population
trimmed mean:

TN −
t̂(1− p

2
) + ÊZ
√

N
≤ µ(α, β) ≤ TN −

t̂ p
2

+ ÊZ
√

N
, (3.3)

with the coverage probability close to 1 − p, where t̂γ (γ = p
2 , (1 − p

2)) are the γ-th
quantiles of the df of M1/2(T ∗N,M −E∗(T ∗N,M )), which can be computed by Monte Carlo
method.

As a consequence of Theorem 1 and Proposition 1 we obtain the following result for
a Studentized trimmed mean:

Corollary 2. Suppose that σW > 0, then

sup
x∈R

∣∣∣P
(
N1/2(TN − µ(α, β)) ≤ σ̂N,M x

)
− FZ(σ̂N,M x)

∣∣∣ −→ 0, (3.4)
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in P -probability, as M →∞, M/N → 0.

To obtain the corresponding confidence interval based on the Studentized statistic,
we need the M fewer than N bootstrap counterpart of (3.4). This can be established
with the aid of the double bootstrap procedure, where we estimate σ̂N,M using the
bootstrap resamples of size m << M from the bootstrap empirical df F ∗

M . However,
to obtain the double bootstrap approximation one will need extensive Monte Carlo
simulations.

4 Proofs

In this section we prove Theorem 1 and Proposition 1 stated in section 2.

Proof of Theorem 1. First we prove the relation (i). Rewrite TN in terms of Yi:N –
the order statistics corresponding to the sample Y1, . . . , YN , with the empirical df GN .
Define the binomial r.v.’s Nν = ]{i : Xi ≤ ξν} = ]{i : Yi ≤ ην} , ν = α, β. Let
ηνN :N = G−1

N (ν) denotes the ν-th sample quantile, ν = α, β. Then we can write

(β − α)TN = −A
Nα − αN

N
I{Nα≥αN} + (β − α)TN (Y ) + B

βN −Nβ

N
I{Nβ≤βN}, (4.1)

where IE denotes the indicator of the event E, and (β−α)TN (Y ) = −αN−[αN ]
N ηαN :N +

1
N

∑[βN ]
i=[αN ]+1 Yi:N + βN−[βN ]

N ηβN :N . Consider an average of i.i.d. r.v.’s Wi: WN =
1
N

∑N
i=1 Wi = Nα

N ηα + 1
N

∑Nβ

i=Nα+1 Yi:N + N−Nβ

N ηβ, with EWN = µW (cf. (2.4)).
We have

(β − α)(TN (Y )− µ(α, β))− (WN − µW )

=− αN − [αN ]
N

(ηαN :N − ηα) +
βN − [βN ]

N
(ηβN :N − ηβ) + Sα,N − Sβ,N , (4.2)

where with ν = α, β and Sν,N = sign(Nν−[νN ])
N

∑Nν∨[νN ]
i=([νN ]∧Nν)+1(Yi:N − ην), sign(0) = 0.

Obviously N1/2 |Sν,N | ≤ |Nν−[νN ]|
N1/2

(∣∣ ηνN :N − ην)
∣∣ ∨ ∣∣ YNν :N − ην)

∣∣).
Since |Nν−[νN ]|

N1/2 is bounded in probability and ηνN :N − ην → 0, YNν :N − ην → 0
(because the inverse G−1 of the df of Yi is continuous at the points α and β), we obtain
the following relation

N1/2(β − α)(TN (Y )− µ(α, β)) = N1/2(WN − µW ) + oP (1) (4.3)

Define random variables Z1,N = Nα−αN
N1/2 , Z2,N = N1/2(WN −µW ), Z3,N = βN−Nβ

N1/2 .
Then relations (4.1), (4.3) together imply

N1/2(β − α)(TN − µ(α, β)) = −A ( 0 ∨ Z1,N ) + Z2,N + B ( 0 ∨ Z3,N ) + oP (1).

The random vector (Z1,N , Z2,N , Z3,N ) has zero expectation and covariance matrix C for
each N , and the Central Limit Theorem for sums of i.i.d. r.v.’s implies (i).

We will prove the relations (ii) and (iii) simultaneously, and our proof is based on
the same arguments adapted to the bootstrap world. Let us introduce the auxiliary
r.v.’s

Y ∗
i =





X∗
i + A, X∗

i ≤ ξα,

X∗
i , ξα < X∗

i ≤ ξβ,

X∗
i −B, ξβ < X∗

i .

(4.4)

7



i = 1, . . . ,M , which represents a bootstrap resample from Y1, . . . , YN . Let Y ∗
i:M denote

the corresponding order statistics, η∗νM :M – the ν-th bootstrapped quantile, ν = α, β.
Denote M∗

ν = ]{i : X∗
i ≤ ξα, i = 1, . . . ,M}, ν = α, β. Then we can rewrite T ∗N,M

in terms of Y ∗
i:M

(β − α)T ∗N,M = −A
M∗

α − αM

M
I{M∗

α≥αM} + (β − α)T ∗N,M (Y ) + B
βM −M∗

β

M
I{M∗

β≤βM},
(4.5)

where (β − α)T ∗N,M (Y ) = −αM−[αM ]
M η∗αM :M + 1

M

∑[βM ]
i=[αM ]+1 Y ∗

i:M + βM−[βM ]
M η∗βM :M .

First we write

M1/2(β − α)(T ∗N,M (Y )− TN ) = M1/2(β − α)(T ∗N,M (Y )− TN (Y )) + RN,M , (4.6)

where

RN,M = M1/2(β − α)(TN (Y )− TN )

= M1/2A max( 0,
Nα − αN

N
)−M1/2B max( 0,

βN −Nβ

N
)

(4.7)

(cf. (4.1)). Note that νN−Nν

N1/2 (ν = α , β) is bounded in probability, and as (M/N)1/2

tends to zero, RN,M tends to zero in probability, this fact will be use to prove (ii).
Moreover, note that νN−Nν

(log log N N)1/2 is bounded a.s. and if ((M log log N)/N)1/2 tends to
zero, RN,M tends to zero a.s. [P ], what we will used to prove (iii).

Consider Y ∗
i Winsorized outside of (ηαN :N , ηβN :N ] : W ∗

i = ηαN :N ∨ (Y ∗
i ∧ ηβN :N ),

i = 1, . . . , M , and put N∗
ν = ]{i : Y ∗

i ≤ ηνN :N , i = 1, . . . , M}, ν = α β. Define the
average W

∗
N,M , its expectation is equal to E∗W ∗

N,M = [αN ]
N ηαN :N + 1

N

∑[βN ]
i=[αN ]+1 Yi:N +

N−[βN ]
N ηβN :N . Then for the first term at the r.h.s. of (4.6) we have

(β − α)(T ∗N,M (Y )− TN (Y ))− (W ∗
N,M − E∗W ∗) =

− αM − [αM ]
M

(η∗αM :M − ηαN :N ) +
βM − [βM ]

M
(η∗βM :M − ηβN :N ) + (S∗α,M − S∗β,M )

(4.8)

where for ν = α β S∗ν,M = sign(N∗
ν−[νM ])
M

∑N∗
ν∨[νM ]

i=([νM ]∧N∗
ν )+1(Y

∗
i:M − ηνN :N ), and we have

the following estimate

M1/2
∣∣S∗ν,M

∣∣ ≤ |N∗
ν − [νM ]|
M1/2

(∣∣∣ η∗νM :M − ηνN :N )
∣∣∣ ∨

∣∣∣ Y ∗
N∗

ν :M − ηνN :N )
∣∣∣
)

. (4.9)

Since |N∗
ν−[νM ]|
M1/2 is bounded in P ∗−probability a.s. [P ] and η∗νM :M−ηνN :N → 0, Y ∗

N∗
ν :M−

ηνN :N → 0 (because the inverse function G−1 is continuous at the points α and β
(cf. Gribkova & Helmers (2007))), we obtain

M1/2(β − α)(T ∗N,M − TN )

=M1/2(W ∗
N,M − E∗W ∗

N,M )−A max
(
0,

M∗
α − αM

M1/2

)
+ B max

(
0,

βM −M∗
β

M1/2

)

+ RN,M + R∗
N,M , (4.10)
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where R∗
N,M tends to zero in P ∗−probability a.s. [P ] (cf. (4.8), (4.9)) and RN,M as in

(4.7).

Define r.v.’s Z∗1,M = N∗
α−αM

M1/2 , Z∗2,M = M1/2(W ∗
N,M − E∗W ∗

N,M ), Z∗3,M =
βM−N∗

β

M1/2 .
Then relation (4.10) implies

M1/2(β − α)(T ∗N,M − TN ) = −A max
(

0,
(
Z∗1,M +

M∗
α −N∗

α

M1/2

))
+ Z∗2,M

+B max
(

0,
(
Z∗3,N +

N∗
β −M∗

β

M1/2

))
+RN,M + R∗

N,M .
(4.11)

The random vector (Z∗1,M , Z∗2,M , Z∗3,M ) tends in the bootstrap distribution to N (O, C),
where C is the covariance matrix given by (2.5), when M → ∞ (cf. Bickel & Freed-
man [1]), the remainder term RN,M + R∗

N,M tends to zero in P ∗-probability on a set
with P -probability 1 − ε, for any ε > 0, when M/N → 0, as M → ∞, and it tends to
zero a.s. [P ], when (M log log N)/N → 0 , as M →∞ (cf. arguments below (4.7)).

It remains to note that conditionally on X1, . . . , XN the r.v.’s |M∗
ν −N∗

ν |, ν = α, β,
have the binomial distribution with parameters

( |Nν−[νN ]|
N ,M

)
respectively, and an

application of Chebyshev inequality directly yields |M∗
ν−N∗

ν |
M1/2 = |Nν−[νN ]|

N M1/2+oP ∗(1) =
|Nν−[νN ]|

N1/2

(
M
N

)1/2 + oP ∗(1), whereas the latter quantity tends to zero in P ∗-probability
on a set with P -probability 1 − ε, for any ε > 0, when M/N → 0, as M → ∞ (which
implies (ii)), and a.s. [P ] when (M log log N)/N → 0, as M →∞ (which implies (iii)).
The theorem is proved.

Proof of Proposition 1. We begin our proof with relation (4.10), which directly yields

M1/2(β − α)E∗
(
T ∗N,M − TN

)
= −AE∗

(
max

(
0,

M∗
α − αM

M1/2

))

+B E∗
(
max

(
0,

βM −M∗
β

M1/2

))
+ RN,M + E∗

(
R∗

N,M

)
,

(4.12)

where RN,M → 0 in P−probability when M →∞, M/N → 0, whereas this convergence
is a.s. [P ], if M log log N/N → 0 (cf. proof of Theorem 1).

Next we note that R∗
N,M → 0 in P ∗−probability a.s. [P ] when N ∧ M → ∞.

Since the r.v. R∗
N,M is uniformly integrable (cf. [4]) because it has a finite variance

(in P ∗−measure) a.s. [P ], we can conclude that E∗
(
R∗

N,M

) → 0 a.s. [P ] as N ∧
M → ∞. Finally, we note that the r.v.’s M∗

α−αM

M1/2 and
βM−M∗

β

M1/2 tend in the bootstrap
distribution to the r.v.’s Z1 and Z3 respectively, in P−probability when M → ∞,
M/N → 0, and a.s. [P ], if M log log N/N → 0. It remains to note that the function

f(x) = max(0, x) is continuous and since r.v.’s M∗
α−αM

M1/2 and
βM−M∗

β

M1/2 have the finite
variances a.s. [P ], they are uniformly integrable. Thus, we can conclude that (cf.
(4.12)) M1/2E∗

(
T ∗N,M − TN

) −→ EZ, in P−probability when M →∞, M/N → 0, and
a.s. [P ], if M log log N/N → 0, M →∞.

The proof of the second relation in (3.2) is similar. The proposition is proved.

5 A numerical example

In this section we supplement our results by some simulations. We consider an example,
where the underlying distribution is the uniform one on the set S = [−9,−5]∪ [−4, 4]∪
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[23, 27] with the density f(x) = 1/16, x ∈ S, and f(x) = 0, x ∈ R \ S.
Take α = 1 − β = 0.25, then the population trimmed mean µ(α, β) = 0 (cf. (1.3)),

ξα = −5, ηα = −4, ξβ = ηβ = 4, A = 1, B = 19. We produce the sample of size
N = 1000 of the underlying r.v. K = 106 times, and compute the value of N−1/2(TN −
µ(α, β)) in each case. As result we obtain a Monte Carlo sample of size K for this r.v.
Then given a sample of size N from the initial df , we perform the bootstrap simulations
and obtain the Monte Carlo samples of size 105 for the r.v. M−1/2(T ∗N,M − TN ), with
M = N = 1000, M = N/5 = 200 and M = N/20 = 50.

Finally, we obtain a Monte Carlo sample from the distribution of r.v. Z using K
independent realizations of the normal distributed random vector (Z1, Z2, Z3) with given
covariance matrix C (cf. (2.5)), and applying formula (2.6) to obtain a value of Z.

In Figure 1 the graphs of the empirical densities are presented. We plot a histogram
(step-line) corresponding the Monte Carlo sample of N−1/2(TN − µ(α, β)). Then we
plot graph of density, corresponding to the normal r.v. N(a, σ2), where a and σ2 are
computed as the empirical average and the empirical variance derived from the Monte
Carlo sample of N−1/2(TN − µ(α, β)). Finally, we plot three histograms (smoothed by
splines), corresponding to the Monte Carlo samples of the limit r.v. Z and bootstrap
r.v.’s M−1/2(T ∗N,M − TN ), with M = N = 1000 and M = N/20 = 50.
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Figure 1: Behavior of the densities.
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Figure 2: Deviations of the df ’s

In Figure 2 we plot a graph of the deviation: df FZ minus exact df of the r.v.
N−1/2(TN − µ(α, β))), where FZ (the df of the limit r.v. Z) as well as the exact df are
produced on the basis of the corresponding Monte Carlo samples. Moreover, we plot
the graphs of the deviations: df of the r.v. M−1/2(T ∗N,M − TN ) minus exact df , where
M1 = N = 1000, M2 = N/5 = 200, M3 = N/20 = 50.

The simulations confirm and illustrate our result that the normal approximation
as well as the naive (when M = N) bootstrap are not valid for the trimmed mean in
general situation when the inverse F−1 of the population df has the jumps at the points
α and/or β, and we can see also that the M fewer than N bootstrap rectifies the failure
of the classical Efron’s bootstrap.

Take 1 − p = 0.95 be our nominal confidence level. Then we obtain the follow-
ing results on the confidence interval for the parameter µ(α, β) = 0 in our simula-
tions: TN = 0.0101, the 95-percentage confidence interval based on the exact df –
[−1.2717, 0.4736] , obtained by Monte Carlo using 106 samples of size 1000. And
with M = N = 1000, M = N/5 = 200, M = N/20 = 50 respectively, we obtain
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estimates TN − N−1/2ÊZ equal to −0.0307, −0.1008 and −0.1444, the corresponding
M fewer than N bootstrap 95-percentage confidence intervals given by (3.3)) are :
[−0.8148, 0.4487], [−1.1343, 0.4592] and [−1.3368, 0.4510], their estimated coverage
probabilities are 0.8590, 0.9290, 0.9490, respectively.

We remark that if F−1 is continuous at the points α and β (that is A = B – the iff
condition for asymptotic normality of the trimmed mean [12]), then G ≡ F , Yi = Xi,
i = 1, . . . , N , (cf. (2.1)), and Y ∗

j = X∗
j , j = 1, . . . , M (cf. (4.4)), the limit distribution

in Theorem 1 is the normal one with asymptotic variance (β − α)2σ2
W (cf. (2.4), (2.5));

in this case the plug-in estimate of the asymptotic variance (cf. [6], [7]) is consistent as
well as its M out of N (M , N vary independently, N ∧M →∞) bootstrap version. So,
the M out of N bootstrap works like normality works under the Stigler’s iff condition,
both for trimmed mean and Studentized trimmed mean, as N ∧M →∞.

To conclude this paper we note also that a completely different way of approximat-
ing df of the trimmed mean accurately is to use saddlepoint approximations. These
approximations will presumably work better in the far tail of the distribution in com-
parison with the M fewer than N bootstrap approximation considered in the present
paper. Recently these saddlepoint approximations were established for the trimmed
mean and the Studentized trimmed mean under suitable conditions. We refer to [10]
for more details.
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