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State-dependent importance sampling for a slow-
down tandem queue

ABSTRACT
In this paper we investigate an advanced variant of the classical (Jackson) tandem queue, viz. a
two-node system with server slow-down. The slow-down mechanism has the primary objective
to protect the downstream queue from frequent overflows, and it does so by reducing the
service speed of the upstream queue as soon as the number of jobs in the downstream queue
reaches some pre-specified threshold. To assess the efficacy of such a policy, techniques are
needed for evaluating overflow metrics of the second queue. We focus on the estimation of the
probability of the following rare event: overflow in the downstream queue before exhausting the
system, starting from any given state in the state space. Due to the rarity of the event under
consideration, naïve, direct Monte Carlo simulation is often infeasible. We therefore rely on the
application of importance sampling to obtain variance reduction. The principal contribution of
this paper is that we construct an importance sampling scheme that is asymptotically efficient. In
more detail, the paper addresses the following issues. (i) We rely on powerful heuristics to
identify the exponential decay rate of the probability under consideration, and verify this result
by applying sample-path large deviations techniques. (2) Immediately from these heuristics, we
develop a proposal for a change of measure to be used in importance sampling. (3) We prove
that the resulting algorithm is asymptotically efficient, which effectively means that the number
of runs required to obtain an estimate with fixed precision grows subexponentially in the buffer
size. We stress that our method to prove asymptotic efficiency is substantially shorter and more
straightforward than those usually provided in the literature. Also our setting is more general
than the situations analyzed so far, as we allow the process to start off at any state of the state
space, and in addition we do not impose any conditions on the values of the arrival rate and
service rates, as long as the underlying queueing system is stable.
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jective to protect the downstream queue from frequent overflows, and it does so by reducing
the service speed of the upstream queue as soon as the number of jobs in the downstream
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1 Introduction

There is a vast body of literature on Jacksonian networks, and in particular tandem queues. Being
applicable in a broad range of domains, such as communication networks, manufacturing, and
logistics, they have been subject of intensive research for over fifty years. Owing to its special
features, particularly the fact that its steady-state distribution is of product-form, various perfor-
mance metrics could be analyzed explicitly.
Changing the model slightly, often means that the product-form is lost, and that the analysis
becomes cumbersome. One such a variant of the classical Jacksonian tandem queue is the the two-
node system with server slow-down, also known as a system with backpressure. This mechanism
is designed to offer the second (or: downstream) queue some sort of protection against frequent
overflows: as long as the number of jobs in the downstream queue is larger than some pre-
specified threshold the server of the first (or: upstream) queue slows down, and it returns to its
normal speed when the number of jobs in the second queue drops below the threshold again. For
this model only partial results are available, see e.g. [20]. It is noted that the slow-down model
is of significant practical interest, as a related mechanism has been proposed e.g. in the design of
Metro Ethernet [12, 16].

Lacking explicit formulas for the queue’s steady-state distribution, several alternative approaches
can be pursued. In this paper we highlight two such approaches: we asymptotically characterize
the probability of interest (when the buffer size of the downstream queue grows large, and the
value of the threshold is scaled accordingly), but emphasis lies on the development of efficient
simulation techniques, based on importance sampling (IS). It is noted that due to the rarity of
the event under consideration, naı̈ve, direct Monte Carlo simulation is often infeasible. The idea
of IS is to simulate the system under a different probability distribution (often referred to as the
‘new measure’), under which the event of interest occurs more frequently. After correcting the
simulation output by means of likelihood ratios, an unbiased estimate is obtained. We refer to
e.g. [10] for an introduction to IS and its background.
The asymptotics that we present in this work rely on powerful heuristics developed in [15], that
identify the exponential decay rate associated to the probability under consideration as the so-
lution of a, relatively easy, convex programming problem. The correctness of the heuristics is
then proven by applying techniques known as sample-path large-deviations [6, 19]. Importantly,
this procedure also reveals the so-called typical path to overflow: given that the rare event occurs,
then with overwhelming probability this happens by a path ‘close to’ the typical path. Having
this path at our disposal, the next step is to use this knowledge in designing IS algorithms.
When developing efficient IS schemes, various complications arise. The most important of these
is that state-independent new measures, which often worked well in the case of a single queues
[17, 18], usually fail for networks that are intrinsically more complex, see for instance [2, 9] for
the case of the ordinary Jacksonian tandem model. It was concluded that the class of state-
independent IS is not sufficiently rich to construct asymptotically efficient new measures, ex-
plaining the increasing interest in state-dependent IS schemes. An early reference on such state-
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dependent schemes, in the context of a certain class of queueing networks, is [3], but an analytic
proof of efficiency properties was lacking there. Later such proofs for related new measures were
given in, e.g., [8].
Let us now consider this paper’s contributions in more detail. The primary goal is to analyze
the probability of overflow in the downstream (‘protected’) queue, before the system idles, start-
ing off from any given state. Special cases of this problem were already studied in [7, 13]. These
papers exclusively consider the case of starting in the origin, which is substantially more straight-
forward to address. In [13] a ‘pseudo-state-dependent’ IS scheme was proposed for estimating
the overflow in the second queue. Its asymptotic efficiency, for a limited set of initial parameters,
was concluded, but just on the basis of empirical evidence. In [7] a provably asymptotically ef-
ficient new measure was proposed; as mentioned above, the analysis was restricted to the case
that the system started empty, and in addition certain assumptions on the model parameters (i.e.,
arrival rate at the upstream queue, and service rates) were imposed. Our paper therefore gener-
alizes [7, 13], in that all initial states are allowed, and that there are no assumptions on the values
of the arrival rate and service rates, as long as the underlying queueing system is stable. An
important additional contribution is that our proof of asymptotic efficiency is rather elementary
and short, compared to that in [7].
It is mentioned that there are several technicalities related to the way the new measure should
be constructed close to the axes, and close to the slow-down threshold. We considered a similar
technique for the ordinary two-node Jacksonian tandem model in [15]. The approach followed
there, however, could not be directly applied in the current model. The main complication lies in
the discontinuity of the transition structure along the slow-down threshold. As a consequence,
the typical paths to overflow can have a rather complex structure. In addition, the way the new
measure should be constructed close to the threshold is non-trivial.
We like to stress that the focus on this paper lies on the analytic aspects of the problem, that is,
the analysis of the decay rate and the proof of asymptotic efficiency. We decided to refrain from
including numerical experiments in this paper, as these form a topic of research in their own
right. This is due to the fact that it is still a rather nontrivial step from an asymptotically efficient
procedure, as the one presented here, to an actual, efficient implementation of the algorithm. It
is noted that several aspects that we did not mention above play a crucial role: it matters for
instance very much whether a new measure requires computation ‘on the fly’ of new transition
rates, or whether they can be precomputed. These issues we plan to address in forthcoming work.
The paper in structured as follows. The basics of IS are recapitulated in Section 2.1, whereas a
model description is given in Section 2.2. Then, after having heuristically identified the shapes
of the most probable path to overflow, we present in Section 3 IS schemes for estimating the
probability of interest; as a by-product we find the corresponding exponential decay rate. The ex-
planation of how sample-path large-deviations techniques are used to rigorize these findings, we
leave to the Appendix. In Section 4 we slightly modify the IS schemes designed in Sections 3.4 –
3.6 and prove the asymptotic efficiency of the resulting scheme. We end the paper with some
conclusions in Section 5.
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Let us finish this introduction with a few words on the person in honor of whom this workshop
has been organized, Reuven Rubinstein. Reuven has played a pivotal role at the interface of the
simulation community and the applied probability. Relying on his unsurpassable intuition, he
succeeded now and again to fuel the applied probabilists with new revolutionary ideas. We do
recognize the crucial role ‘intuition’ plays in the design of ‘good’ simulation techniques – the
present paper is very much in that spirit: it describes how heuristics can be transformed into
provably efficient methods. We hope Reuven’s beautiful contributions to the area will continue
after his retirement.

2 Preliminaries

In this section we present a short overview on the main concepts in importance sampling, and
we introduce our model.

2.1 Importance sampling

As we mentioned in the introduction, estimating small probabilities through direct, naı̈ve, simu-
lations is often infeasible, due to the rarity of the event involved; the simulation effort needed to
obtain an estimate of given precision could be prohibitively large. We therefore have to use vari-
ance reduction techniques, and in this paper we focus on importance sampling (IS). IS performs
simulations of the system under a new measure, which guarantees more frequent occurrence of
the event of interest. After weighing the simulation output with the appropriate likelihood ratios
(keeping track of the likelihood of the realization under the original measure with respect to the
new measure), we obtain an unbiased estimator. The focus lies on state-dependent IS schemes, that
is, schemes in which the new measure may depend on the current state of the system.
Let us now give a generic description of IS, as well as the concept of asymptotic efficiency. To
this end, consider a family of rare events {AB}, in the probability space (Ω,F, P); here B is the
so-called ‘rarity parameter’. To estimate P(AB) via IS simulations one need to generate sam-
ples under a new probability measure Q, with respect to which P is absolutely continuous. The
probability P(AB) can now alternatively be expressed as

P(AB) = EQ[LI], (1)

where I is an indicator function and L is the likelihood ratio (also known as Radon-Nikodým
derivative) of a realization (‘path’) ω:

L =
dP
dQ

(ω). (2)

We see that we can sample under Q, say n times, obtain observations (L1, I1), . . . , (Ln, In), and
construct the unbiased estimator of P(AB) by n−1 ·

∑n
i=1 LiIi.

Clearly some alternative measures Q perform better than others, in terms of the variance of the
resulting estimator. Therefore the following concept has been introduced.
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Definition 2.1. The IS scheme for P(AB) is called asymptotically efficient if

lim inf
B→∞

log EQ[L2I]
log P(AB)

≥ 2. (3)

If, in addition, the probability of the {AB} decays exponentially in B, i.e.,

lim
B→∞

1
B

log P(AB) ∈ (−∞, 0),

the definition of asymptotic efficiency reduces to

lim sup
B→∞

1
B

log EQ[L2I] ≤ 2 lim
B→∞

1
B

log P(AB).

Notice that EQ[L2I] = E[LI], so the above criterion can alternatively be written as

lim sup
B→∞

1
B

log E[LI] ≤ 2 lim
B→∞

1
B

log P(AB). (4)

2.2 Slow-down tandem queue

In this subsection we describe the two-node slow-down network. At the first node (or: station)
jobs arrive according to a Poisson process of rate λ. Each job receives service at the first station,
after which it is routed to the second one. After receiving service at the second node, the job leaves
the system. Service times at the second station have an exponential distribution with parameter
µ2. At the first node, however, the service speed depends on the content of the second queue:
normally, service times at the first station have an exponential distribution with parameter µ1, but
if the number of jobs in the second queue exceeds some pre-specified threshold (the ‘slow-down
threshold’) than the parameter of the exponential distribution changes to µ+

1 , where µ+
1 < µ1.

When the system ‘stabilizes’, that is, the number of jobs in the second queue drops again below
the slow-down threshold, the service rate of the first station returns to its original value µ1.
For convenience we choose the parameters such that λ + µ1 + µ2 = 1, without loss of generality
(and thus λ+µ+

1 +µ2 < 1). The waiting rooms at both stations are assumed to be infinitely large.
Let Q(t) = {(Q1(t), Q2(t)), t ≥ 0} be the joint queue-length process, which is regenerative if we
impose that it is stable, see [14] for more insights into this issue. Our main interest is to estimate
the probability of reaching some high level B in the second queue before it returns to the origin,
starting from any given state. Note that in our model the slow-down threshold scales with B,
that is, the threshold has value θB in the remainder of this paper, for some θ ∈ (0, 1).
The queue-length process can also be recorded at jump epochs, and then it is described by the
embedded discrete time Markov chain Qj = (Q1,j , Q2,j), where Qi,j is the number of jobs in queue
i after the j-th transition. We define the possible jump directions of the process Qj via vectors
v0 = (1, 0), v1 = (−1, 1), and v2 = (0,−1), with corresponding jump rates λ, µ1 (or µ+

1 ) and µ2

respectively.
For convenience we will also consider the so-called scaled processes X(t) = Q(Bt)/B (in continu-
ous time) and Xj = Qj/B (in discrete time). The advantage of these scalings is the ‘invariance’ of
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the state space for any B. More specifically, our target probability is equivalent to the probability
that the second component of either the scaled process Xj or the scaled process X(t) reaches 1
before the process visits the origin. We introduce the following subsets of the state space, with
x := (x1, x2):

D := {x : x1 > 0, 0 < x2 < θ}, ∂1 := {(0, x2) : x2 > 0}, ∂2 := {(x1, 0) : x1 > 0},
D+ := {x : x1 > 0, θ ≤ x2 < 1}, ∂+

1 := {(0, x2) : x2 ∈ [θ, 1)}, ∂θ := {(x1, θ) : x1 > 0},
∂e := {(x1, 1) : x1 > 0}.

The full state space is D̄ ∪ D̄+, where D̄ := D ∪ ∂θ ∪ (∂1 \ ∂+
1 ) ∪ ∂2 and D̄+ := D+ ∪ ∂e ∪ ∂+

1 ∪ ∂θ.
Note that the transition vk is impossible when queue k is empty, i.e., when Xj ∈ ∂k. We modify
the process Xj to deal with this by allowing some self-loop transitions in the following way (see
also Figure 1): for k = 1, 2,

P(Xj+1 = Xj |Xj ∈ ∂k) = µk, P(Xj+1 = Xj |Xj ∈ ∂+
1 ) = µ+

1 /(λ + µ+
1 + µ2). (5)

-
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Figure 1: State space and transition structure for the scaled process Xj .

Next, we introduce the stopping time τx
B , which is the first time that the process Xj hits level 1,

starting from state x = (x1, x2), without any visits to the origin:

τx
B = inf{k > 0 : Xk ∈ ∂e, Xj 6= 0 for j = 1, . . . , k − 1}, (6)

and we define τx
B = ∞ if Xj hits the origin before ∂e. It will also be convenient to let IB(Ax) be

the indicator of the event τx
B < ∞ for the path Ax = (Xj , j = 0, . . . : X0 = x). Thus we can write

the probability of our interest as

px
B := EIB(Ax) = P(τx

B < ∞). (7)
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3 State-dependent importance sampling

In order to find a ‘good’ new measure for IS simulations, the first step is usually to find the ‘most
probable path to overflow’, i.e., the way in which overflow most probably occurs, conditional
on its occurrence. In Subsections 3.1-3.3 we explain a method in which minimizing certain ‘cost-
functions’ leads to the most probable path and a good corresponding new measure, given by
new (state-dependent) transition rates λ̃(x), µ̃1(x) and µ̃2(x) below the slow-down threshold and
λ̃+(x), µ̃+

1 (x), µ̃+
2 (x) above it. Also, the minimal cost itself will be shown to be the decay rate of

px
B as B →∞, which will play a pivotal role in the asymptotic efficiency proofs later.

The results of the minimization procedure are presented in three different subsections, since they
are different, depending on the parameters settings. In Subsection 3.4 we treat the case µ2 <

µ+
1 < µ1 in which the second server is always the bottleneck, Subsection 3.5 deals with the case

µ+
1 ≤ µ2 < µ1 in which either the first or the second server is the bottleneck, and in Subsection 3.6

we describe the case µ+
1 < µ1 ≤ µ2, in which the first server is always the bottleneck. Beforehand

we would like to point out that the new measure mentioned above and denoted by tildes, is not
exactly the same as the asymptotically efficient new measure that will be introduced in Section 4
(denoted by bars), although it is closely related.

3.1 Path to overflow

The typical path to overflow in the very special case that the origin is the starting state and θ ∈
{0, 1}, has already been identified in [1]. In that paper the time-reversed process is used to find
the shape of the most probable path to overflow. In the more general setting that θ ∈ [0, 1], but
again with the origin as the only starting state, the path to overflow was obtained in [13]. In this
section we present a method similar to the one in [13] to find the optimal path starting from any
state x ∈ D̄ ∪ D̄+. The advantage of this method is that it provides us insight into the typical
behavior conditional on observing the rare event under consideration; our choice for the new
measure (which we prove to be asymptotically efficient) will be inspired on it.
Before introducing our method we state a property that says that, when searching the typical
path to overflow, we can restrict ourselves to a (small) subset of all feasible paths. We leave the
proof that this typical path satisfies these restrictions for the Appendix.

Property 3.1. We only consider paths that satisfy the following:

(i) Each path is a concatenation of subpaths, which are straight lines on any of the subsets
D,D+, ∂1\∂+

1 , ∂+
1 and ∂2, and the measure stays constant along each subpath, i.e., λ̃(x) = λ̃,

µ̃1(x) = µ̃1, µ̃2(x) = µ̃2, λ̃+(x) = λ̃+, µ̃+
1 (x) = µ̃+

1 and µ̃+
2 (x) = µ̃+

2 , for any state x on the
same subpath;

(ii) each path does not have more than two subpaths in each subset if µ+
1 < µ1 ≤ µ2, and more

than one subpath per subset otherwise.
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With every path that satisfies Property 3.1 we associate a ‘cost’, the main idea being that the
minimal cost of the path to overflow in the second queue starting from state x is the decay rate of
the probability of interest (see Section 3.3). Our method is based on the family of cost functions
I , defined by

I(λ̃ | λ) = λ− λ̃ + λ̃ log
λ̃

λ
; (8)

see also [19], p. 14, 20. Note that the function (8) is convex and equals 0 at λ̃ = λ. Intuitively, the
value I(λ̃ | λ) is the cost we need to ‘pay’ per time unit to let a Poisson process with parameter λ

behave like a Poisson process with parameter λ̃.
In the following we will explain our cost method in some detail. More background can be found
in Section 3.1 of [15] and in the Appendix of [13].

3.2 Example

As a leading example, we here consider a path consisting of two linear pieces, through the inte-
rior of the state space, staying away from the boundaries, from some state x to another state y,
where x1 ≥ y1 and x2 < θ < y2 (the last condition meaning that the path crosses the slow-down
threshold). We focus on computing the typical path that connects x with y (and in particular the
point where it crosses the threshold), and the corresponding new measure.
To this end, we construct new measures (λ̃, µ̃1, µ̃2) and (λ̃+, µ̃+

1 , µ̃+
2 ), such that µ̃1 > µ̃2, λ̃ ≤ µ̃1,

µ̃+
1 > µ̃+

2 and λ̃+ ≤ µ̃+
1 . Under these measures our path consists of two linear subpaths and each

of them has a constant north-west drift. In other words: below the slow-down threshold our path
has a constant slope −α, with

α =
µ̃1 − µ̃2

µ̃1 − λ̃
, (9)

while above the threshold it has a constant slope −α+, with

α+ =
µ̃+

1 − µ̃+
2

µ̃+
1 − λ̃+

. (10)

Below the slow-down threshold, the cost of this path is, per unit time,

I(λ̃, µ̃1, µ̃2) = I(λ̃ | λ) + I(µ̃1 | µ1) + I(µ̃2 | µ2). (11)

To find the cost per unit horizontal (vertical) distance, we need to divide this cost by the horizontal
speed µ̃1 − λ̃ (vertical speed µ̃1 − µ̃2). Similar expressions apply for the costs per unit time and
unit distance, when the process is above the slow-down threshold. Thus, minimizing the cost of
any path that consists of two straight subpaths (one strictly below the threshold and one above
it) from x to y in this case boils down to minimizing

(θ − x2)
I(λ̃, µ̃1, µ̃2)

µ̃1 − µ̃2
+ (y2 − θ)

I(λ̃+, µ̃+
1 , µ̃+

2 )
µ̃+

1 − µ̃+
2

, (12)
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over λ̃, µ̃1, µ̃2, λ̃+, µ̃+
1 and µ̃+

2 , such that λ̃ ≤ µ̃1, µ̃1 > µ̃2, λ̃+ ≤ µ̃+
1 and µ̃+

1 > µ̃+
2 hold, as well as

κ(x) := x1 −
µ̃1 − λ̃

µ̃1 − µ̃2
(θ − x2) = y1 +

µ̃+
1 − λ̃+

µ̃+
1 − µ̃+

2

(y2 − θ), (13)

where (κ(x), θ) is the state in which the optimal path crosses the slow-down threshold.
One way to solve the minimization problem (12) is the following; from now on we focus on the
ending state y = (0, 1), as this will later turn out to be the most likely point of entering ∂e in
many situations. For each fixed crossing state (κ(x), θ), we can find the cost of the path through
that state. Then, we minimize this cost over all possible values of κ. Note that the optimal value
κ(x) is a function of the starting state x. This property complicates the shape of the optimal paths
significantly, as well as the analysis of the new measure.
The total cost of the bottom part of the optimal path, i.e., the subpath from x to (κ(x), θ) attains
its minimum when the triplet (λ̃, µ̃1, µ̃2) is a solution to

λ̃ = µ̃1 + κ(x)−x1

θ−x2
(µ̃1 − µ̃2)

λ̃ + µ̃1 + µ̃2 = λ + µ1 + µ2

λ̃µ̃1µ̃2 = λµ1µ2

λ̃ ≤ µ̃1 and µ̃1 > µ̃2

λ̃, µ̃1, µ̃2 > 0

(14)

Similarly, the total cost of the subpath above the threshold from (κ(x), θ) to (0, 1) is minimal when
(λ̃+, µ̃+

1 , µ̃+
2 ) is a solution to

λ̃+ = µ̃+
1 − κ(x)

1−θ (µ̃+
1 − µ̃+

2 )
λ̃+ + µ̃+

1 + µ̃+
2 = λ + µ+

1 + µ2

λ̃+µ̃+
1 µ̃+

2 = λµ+
1 µ2

λ̃+ ≤ µ̃+
1 and µ̃+

1 > µ̃+
2

λ̃+, µ̃+
1 , µ̃+

2 > 0

(15)

Notice also that if (λ̃, µ̃1, µ̃2) is the solution to (14) for some starting state x, it also minimizes
this system if we replace x by any state that belongs to the straight line between x and (κ(x), θ).
Similarly, (λ̃+, µ̃+

1 , µ̃+
2 ) which is the solution of (15) stays unchanged for the whole top part of the

optimal path.
It will be useful to define the functions γ1 and γ2 as the cost of the subpaths (of the optimal path
to overflow) below and above the thresholds, i.e.,

γ1(x1, x2) := − (x1 − κ(x)) log
λ̃(x1, x2)

λ
− (θ − x2) log

µ̃2(x1, x2)
µ2

, (16)

γ2(κ(x), θ) := −κ(x) log
λ̃+(κ(x), θ)

λ
− (1− θ) log

µ̃+
2 (κ(x), θ)

µ2
, (17)

where λ̃ and µ̃2 are given by the solution to (14), λ̃+ and µ̃+
2 by the solution to (15), and κ(x) is

given in (13). Then clearly the total cost of the path (x1, x2) → (κ(x), θ) → (0, 1) can be expressed
as γ1(x1, x2) + γ2(κ(x), θ).

9



3.3 Decay rate as minimal cost

Once we have considered all possible path types with their minimal cost, we can obtain the
overall minimum cost, corresponding to the most probable path, and the corresponding (state-
dependent) new measures (λ̃(x), µ̃1(x), µ̃2(x)) and (λ̃+(x), µ̃+

1 (x), µ̃+
2 (x)). Defining

γ(x) := overall minimal cost over all paths x → ∂e,

the following theorem states that this is in fact the exponential decay rate of the probability px
B as

B → ∞. It is based on a large deviation principle for the process X(t) (with a local rate function
that is closely related to our cost function) that can be found in the Appendix.

Theorem 3.2. The exponential decay rate of px
B is equal to the minimal cost of overflow γ(x), i.e.,

lim
B→∞

1
B

log px
B = −γ(x).

We now present the value of γ(x) (as well as the corresponding new measures) for the three
cases mentioned above (that is, second server is bottleneck, ‘shifting bottleneck’, and first server
is bottleneck).

3.4 Importance sampling scheme for µ2 < µ+
1 < µ1

In this case, where the second queue is always the bottleneck, the new measure under which the
path to overflow has minimal cost, in terms of the cost function (8), turns out to be given by

(λ̃, µ̃1, µ̃2) =


(µ2, µ1, λ), if x ∈ A1,

solution to (14), if x ∈ A2,

(λ, µ1, µ2), if x ∈ A3,

(18)

and

(λ̃+, µ̃+
1 , µ̃+

2 ) =


(µ2, µ

+
1 , λ), if x ∈ A+

1 ,

solution to (15), if x ∈ A+
2 ,

(λ, µ+
1 , µ2), if x ∈ A+

3 .

(19)

Here the subsets Ai and A+
i , i = 1, 2, 3 form a partition of the state space D̄ ∪ D̄+ as depicted in

Figure 2, where α1 := (µ1 − µ2)/(µ1 − λ) and α+
1 := (µ+

1 − µ2)/(µ+
1 − λ). We chose not give the

precise definitions of the sets Ai and A+
i here, since they do not add much to the understanding.

For some starting states x, Figure 2 also shows the shape of the most probable path to ∂e.
Note that the new measure in the subsets A1 and A+

1 , i.e., interchanging λ and µ2, has been earlier
found in [17] for the problem of reaching a large total network population. Measures similar to
the ones in the other subsets were introduced in [15]. Also, we point out that the new measure is
continuous in the state x, as can be verified by solving system (14) for x = (α1θ+α+

1 (1−θ), 0) and
x = (θα1 + (1− θ)/α+

1 , 0), yielding the solutions in the first and third lines of (18), respectively. A
similar principle holds above the slow-down threshold as well.

10
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Figure 2: Partition of D̄ ∪ D̄+ and some optimal paths to overflow when µ2 < µ+
1 < µ1.

The cost γ(x) of the optimal path, and hence the decay rate of px
B can be expressed as:

γ(x) =


(1− x1 − x2)γ, if x ∈ A1,

γ1(x1, x2) + γ2(κ(x), θ), if x ∈ A2,

0, if x ∈ A3,

(20)

where

γ := − log
λ

µ2
,

is the decay rate of the path (0, 0) → (0, 1), γ1 and γ2 are as in (16) and (17), and κ(x) is given in
(13). Importantly, we treat only paths with starting state below the slow-down threshold; starting
states above the threshold are substantially easier to deal with.

3.5 Importance sampling scheme for µ+
1 ≤ µ2 < µ1

In the case where the bottleneck may shift from the second to the first station due to the slowdown
mechanism, the new measure under which the path to overflow has minimal cost, in terms of cost
function (8), is given by

(λ̃, µ̃1, µ̃2) =


(µ2, µ1, λ), if x ∈ B1,

solution to (14), if x ∈ B2,

(λ, µ1, µ2), if x ∈ B3.

(21)

and

(λ̃+, µ̃+
1 , µ̃+

2 ) =

{
solution to (15), if x ∈ B+

2 ,

(λ, µ2, µ
+
1 ), if x ∈ B+

3 .
(22)
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Figure 3: Partition of D̄ ∪ D̄+ and some optimal paths to overflow when µ+
1 ≤ µ2 < µ1.

Here, the five subsets B1, B2, B3, B
+
2 and B+

3 are shown in Figure 3, which is comparable to
Figure 2. The main difference is that there is no set B+

1 , and the constant α+
1 is replaced by

α+
2 := (µ2 − µ+

1 )/(µ2 − λ), while α1 is the same as introduced in the previous subsection.
The decay rate γ(x) is now given by

γ(x) =


θ(1− x1 − x2)γ + (1− θ) log(1/z+), if x ∈ B1,

γ1(x1, x2) + γ2(κ(x), θ), if x ∈ B2,

(1− θ) log(µ2/µ+
1 ), if x ∈ B3.

(23)

Here z+ is the unique solution in (0, 1) of the equation

λ + µ+
1 + µ2(1− z+) = 2

√
λµ+

1

z+
, (24)

which follows from system (14) by taking (x1, x2) = (0, 0). In fact, (1− θ) log(1/z+) is the cost of
the vertical path (0, θ) → (0, 1) in the interior, satisfying λ̃ = µ̃+

1 . See also Equations (30) and (33)
in [11] and [13] respectively, for more details.

3.6 Importance sampling scheme for µ+
1 < µ1 ≤ µ2

When the first queue is always the bottleneck and θ is not too small (to be made more precise at
the end of this subsection), the new measure under which the path to overflow has minimal cost,
in terms of cost function (8), is given by

(λ̃, µ̃1, µ̃2) =


(µ1, λ, µ2), if x ∈ C1,

solution to (14), if x ∈ C2,

(λ, µ2, µ1), if x ∈ C3.

(25)
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Figure 4: Partition of D̄ ∪ D̄+ and some optimal paths to overflow when µ+
1 < µ1 ≤ µ2.

and

(λ̃+, µ̃+
1 , µ̃+

2 ) =

{
solution to (15), if x ∈ C+

2 ,

(λ, µ2, µ
+
1 ), if x ∈ C+

3 .
(26)

The sets C1, C2, C3, C
+
2 and C+

3 are shown in Figure 4, where α2 := (µ2 − µ1)/(µ2 − λ); the
constants β and β1 are given shortly. Interestingly, for the current case the behavior under the
new measure is entirely different on C1 and C2, and the measure is not continuous in states that
lie on the boundary between these two sets. For such states x, the cost of the path ‘upwards’,
which is γ1(x) + γ2(κ(x), θ), is equal to the cost of the path ‘to the right’, which can be shown
to be θγ + (1 − θ) log(1/q) − x1 log(µ1/λ) with q being the unique solution in (0, λµ+

1 /µ2
1) of the

equation

µ1µ2q
2 + µ1(µ1 − λ− µ+

1 − µ2)q + λµ+
1 = 0 (27)

(see also Proposition 14 in [13] for more background). Thus, the boundary between C1 and C2 is
the zero level curve of the function

f(x) = θγ + (1− θ) log(1/q)− x1 log(µ1/λ)− γ1(x1, x2)− γ2(κ(x), θ).

The intersection point of this curve with the horizontal axis lies at (β1, 0) with

β1 := θ(µ2 − µ1)/(µ2 − λ) + (1− θ)(λµ+
1 − µ2

1q)/(λµ+
1 − µ1µ2q

2).

The intersection point (0, β) with the vertical axis follows as the unique solution to

f(0, β) = θγ + (1− θ) log(1/q)− (θ − β) log(1/z)− (1− θ) log(1/z+) = 0, (28)

where z is the unique solution in (0, 1) of

1− µ2z = 2

√
λµ1

z
, (29)
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which is the analogue of Equation (24), with µ+
1 replaced by µ1.

The main result of this subsection is the decay rate, which is in this case given by:

γ(x) =


θγ + (1− θ) log(1/q)− x1 log(µ1/λ), if x ∈ C1,

γ1(x1, x2) + γ2(κ(x), θ), if x ∈ C2,

(θ − x2) log(µ2/µ1) + (1− θ) log(µ2/µ+
1 ), if x ∈ C3.

(30)

We finally return to our assumption that θ should not be too small. In particular we used in the
above that the threshold lies above the set C1, i.e., θ > β. When µ2 is very large compared to λ

and µ1, the corresponding value of β may be rather large, because the cost of ‘upward’ paths will
be much larger than the cost of paths ‘to the right’. However, for most ‘real-life’ cases, β is quite
small; in the most interesting (heavily loaded) cases, β is still below 0.1. Of course we could also
consider cases where β is larger than θ. This will lead to minor changes in the structure of C1, C2

and C+
2 , and the minimal cost γ(x) will then also change; we chose to leave this special case out.

3.7 Properties of the new measures

We like to summarize some important properties of the new measures (λ̃(x), µ̃1(x), µ̃2(x)) and
(λ̃+(x), µ̃+

1 (x), µ̃+
2 (x)) described in Sections 3.4–3.6 in the following proposition. The first two

statements hold independently of the relation between the parameters λ, µ1, µ
+
1 and µ2, and show

that the functions λ̃(x), λ̃+(x), µ̃2(x) and µ̃+
2 (x) depend monotonically on x. The last two state-

ments give bounds which do depend on the relation between the parameters.

Proposition 3.3. For any x ∈ D̄ ∪ D̄+ the functions λ̃(x), µ̃1(x), µ̃2(x) and λ̃+(x), µ̃+
1 (x), µ̃+

2 (x), as
defined by either (18) and (19), or by (21) and (22), or by (25) and (26) satisfy the following:

(i)
∂λ̃(x)
∂x1

≤ 0,
∂µ̃2(x)

∂x1
≥ 0,

∂λ̃(x)
∂x2

≤ 0 and
∂µ̃2(x)

∂x2
≥ 0

(if µ+
1 < µ1 ≤ µ2, then assume that x /∈ C1);

(ii)
∂λ̃+(x)

∂x1
≤ 0,

∂µ̃+
2 (x)

∂x1
≥ 0,

∂λ̃+(x)
∂x2

≤ 0 and
∂µ̃+

2 (x)
∂x2

≥ 0;

(iii) λ̃(x) ∈ [λ, µ2] and µ̃2(x) ∈ [λ, µ2] if µ2 < µ1, and
λ̃(x) ∈ [λ,

√
λµ1/z] and µ̃2(x) ∈ [µ2z, µ1] ∪ {µ2} if µ2 ≥ µ1;

(iv) λ̃+(x) ∈ [λ, µ2] and µ̃+
2 (x) ∈ [λ, µ2] if µ2 < µ+

1 and

λ̃+(x) ∈ [λ,
√

λµ+
1 /z+] and µ̃+

2 (x) ∈ [µ2z
+, µ+

1 ] if µ2 ≥ µ+
1 .

Here, as before, z+ is defined by (24) and z by (29).
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4 Asymptotic efficiency

For the special case in which the starting state is the origin, it is known from [13] that the new
measures provided in Section 3 are not always asymptotically optimal. For example, in the sim-
plest case, when µ2 < µ+

1 < µ1, multiple visits of the process Q(t) to the horizontal axis ∂2 may
lead to large likelihood ratios of particular sample paths under the new measure (µ2, µ1, λ). This
critically impacts the quality of the estimator. To avoid this behavior we use a technique similar
to what was proposed in [8] and also used in [15]. It is based on using a specific measure around
∂2, under which visits to ∂2 are harmless to the likelihood ratio. Thus, in this section we will
introduce new measures (indicated by bars) based on the measures from the previous section
(indicated by tildes), and subsequently prove that these new measures are indeed asymptotically
efficient. As in the previous section, we split the problem into three cases. In Section 4.1 we ex-
plain our method in detail for the situation in which the second server is always the bottleneck
(µ2 < µ+

1 < µ1), and in Sections 4.2 and 4.3 we treat the other cases.

4.1 Asymptotic efficiency for µ2 < µ+
1 < µ1

In this subsection we present a modification of the scheme constructed in Subsection 3.4 and
prove its asymptotic optimality. At first we introduce the function W (x) for any point x = (x1, x2)
of the state space. This function will give us expressions for the new measures, denoted by bars,
similar to how it was done in [8, 15]. In particular we will now find such a measure both below
(λ̄(x), µ̄1(x), µ̄2(x)) and above (λ̄+(x), µ̄+

1 (x), µ̄+
2 (x)) the threshold.

For some small δ > 0, let us first introduce three auxiliary functions Wi(x), i = 1, 2, 3:

W1(x) := 2γ2(x)I{x∈D̄+} + 2 (γ1(x) + γ2(κ(x), θ)) I{x∈D̄} − δ,

W2(x) := 2γ(x1, δ/2γ)− δ, (31)

W3(x) := 2γ(0)− 3δ,

where γ(x), γ1(x) and γ2(κ(x), θ) are as in (20), see also (16) and (17); we recall that γ equals
− log(λ/µ2).
In the next step we introduce the minimum of these auxiliary functions:

W̄ (x) := W1(x) ∧W2(x) ∧W3(x). (32)

Since W2(x) = W1(x1, δ/2γ), it follows that this minimum is only attained by W2 in a narrow
strip along the horizontal axis, namely when x2 ≤ δ/2γ, unless x is close to the origin, in which
case W3 is the minimum. In all other states we simply have W̄ (x) = W1(x).
The last step is a mollification procedure, in which we define:

W (x) := −ε log
3∑

i=1

e−Wi(x)/ε. (33)

The resulting function W (x) is a ‘smoothed’ version of W̄ (x), except on the threshold, where W1

is not differentiable. The ‘smoothness’ of W (x) depends on the choice of the parameter ε: the
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larger ε is chosen, the smoother the function W (x) is. On the other hand, as ε ↓ 0 we see that
W (x) converges to the (non-smooth) function W̄ (x).
The parameters δ and ε depend on B, and in the sequel we will need the following conditions for
their asymptotic behavior as B grows large, see [8]. For conciseness, we often suppress the index
B.

Assumption 4.1. The parameters δ ≡ δB and ε ≡ εB are strictly positive and satisfy the following limit
conditions: as B →∞, (i) εB → 0, (ii) δB → 0, (iii) BεB →∞, (iv) εB/δB → 0.

The following expression for the gradient of W (x) is immediate from (33), and will play an im-
portant role in the representation of the state-dependent, asymptotically efficient new measure:

DW (x) =
3∑

k=1

ρk(x)DWk(x), where ρk(x) :=
e−Wk(x)/ε∑3
i=1 e−Wi(x)/ε

. (34)

Also, we have the following helpful property.

Proposition 4.2. The gradients of the functions Wi(x), i = 1, 2, 3 are given by:

DW1(x) = 2
(

log
λ

λ̃(x)
, log

µ̃2(x)
µ2

)
, if x ∈ D̄,

DW1(x) = 2
(

log
λ

λ̃+(x)
, log

µ̃+
2 (x)
µ2

)
, if x ∈ D̄+,

DW2(x) = 2
(

log
λ

λ̃(x1, δ/2γ)
, 0
)

,

DW3(x) = (0, 0).

Proof. It is clear that DW1(x) = −2γ(1, 1) if x ∈ A1 ∪ A+
1 and DW1(x) = (0, 0) if x ∈ A3 ∪ A+

3 .
When x ∈ A2, DW1(x) seems to be more complicated:

1
2
DW1(x) = Dγ(x) =

(
log

λ

λ̃(x)
, log

µ̃2(x)
µ2

)
+

∂γ(x)
∂κ(x)

(
∂κ(x)
∂x1

,
∂κ(x)
∂x2

)
−x1 − κ(x)

λ̃(x)

(
∂λ̃(x)
∂x1

,
∂λ̃(x)
∂x2

)
− θ − x2

µ̃2(x)

(
∂µ̃2(x)

∂x1
,
∂µ̃2(x)

∂x2

)

− κ(x)
λ̃+(x)

(
∂λ̃+(x)

∂x1
,
∂λ̃+(x)

∂x2

)
− 1− θ

µ̃+
2 (x)

(
∂µ̃+

2 (x)
∂x1

,
∂µ̃+

2 (x)
∂x2

)
.

This gradient is more involved than its analog for the standard Jackson tandem (see Proposi-
tion 5.1 in [15]), not only because we now have two new measures (below and above the slow-
down threshold), but also due to the strong dependence on x of the optimal path shape (and
the optimal crossing state (κ(x), θ) in particular). Fortunately, the second term is zero because
∂γ(x)/∂κ(x) = 0 due to the fact that (κ(x), θ) is the optimal crossing state. Also, applying implicit
differentiation one can find the partial derivatives of all ‘tilded’ variables (λ̃(x), etc.) and show
that the vectors in the second and third lines sum up to zero.
The other statements (including the case when x ∈ A+

2 ) follow easily from the definitions of
Wi(x), i = 1, . . . , 3.
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Now we are ready to define the new measure, see also (27) and (29) in [15]:

λ̄(x) := λe−〈DW (x),v0〉/2eH(DW (x))/2, if x ∈ D̄,

µ̄i(x) := µie
−〈DW (x),vi〉/2eH(DW (x))/2, i = 1, 2, if x ∈ D̄,

λ̄+(x) :=
λ

λ + µ+
1 + µ2

e−〈DW (x),v0〉/2eH+(DW (x))/2, if x ∈ D̄+,

µ̄+
1 (x) :=

µ+
1

λ + µ+
1 + µ2

e−〈DW (x),v1〉/2eH+(DW (x))/2, if x ∈ D̄+,

µ̄+
2 (x) :=

µ2

λ + µ+
1 + µ2

e−〈DW (x),v2〉/2eH+(DW (x))/2, if x ∈ D̄+.

(35)

Note that the functions λ̃(x), etc. from the previous section are transition rates, while the functions
λ̄(x), etc. are transition probabilities under the new measure (just as λ and λ/(λ + µ+

1 + µ2) are
transition probabilities under the original measure when x ∈ D̄ resp. x ∈ D̄+). The functions
H(DW (x)) and H+(DW (x)) in the new measure (35) are known as Hamiltonians, which we use
to enable the comparison with [4, 8, 15]; in fact they provide the normalization such that the new
transition probabilities sum up to 1. More precisely,

H(DW (x)) := 2 log
[
λe−〈DW (x),v0〉/2 + µ1e

−〈DW (x),v1〉/2 + µ2e
−〈DW (x),v2〉/2

]−1

and

H+(DW (x)) := 2 log

[
λe−〈DW (x),v0〉/2

λ + µ+
1 + µ2

+
µ+

1 e−〈DW (x),v1〉/2

λ + µ+
1 + µ2

+
µ2e

−〈DW (x),v2〉/2

λ + µ+
1 + µ2

]−1

.

Now that we defined the change of measure in (35), we are ready to prove that it is asymptotically
efficient. We start with some lemmas that are similar to the ones in [4].

Lemma 4.3. The likelihood L(A) of a path A = (Xj , j = 0, . . . , σ) under the new measure (35) satisfies

log L(A) =
B

2

σ−1∑
j=0

〈DW (Xj), Xj+1 −Xj〉

+
2∑

k=1

1
2

σ−1∑
j=0

〈DW (Xj), vk〉I{Xj = Xj+1 ∈ ∂k} (36)

− 1
2

σ−1∑
j=0

(
H(DW (Xj))I{Xj∈D} + H+(DW (Xj))I{Xj∈D+}

)
.

Proof. The proof is analogous to the proof of Lemma 1 in [4].

Lemma 4.4. For any path A = (Xj , j = 0, ..., σ) under the new measure (35), the first term in (36)
satisfies∣∣∣∣∣∣B2

σ−1∑
j=0

〈DW (Xj), Xj+1 −Xj〉 −
B

2
(W (Xσ)−W (X0))

∣∣∣∣∣∣ ≤ C

Bε
σ + C+σ+,
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for sufficiently large Bε, where C and C+ are some positive constants and σ+ is the number of slow-down
threshold crossings up to time σ.

Proof. Our argument is based on the representation

W (x + y) = W (x) + 〈DW (x), y〉+
1
2
yT H(x)y + |y|2r(x, y),

where y := Xj+1 − Xj is a one-step increment of the scaled process Xj , the matrix H(x) is the
Hessian matrix of the function W (x), and the function r(x, y) is such that lim|y|→0 r(x, y) = 0,
except when x and x + y are separated by the slow-down threshold. In the latter case we can
bound r(x, y) from above, uniform in x, as follows:

r(x, y) ≤ 2BC+,

where C+ is some positive constant, based on a uniform upper bound on |DW (x)−DW (x + y)|.
To end the proof, we refer to Lemma 5.5 in [15] for the following bound that holds when x and
x + y are not separated by the slow-down threshold,∣∣∣∣12yT H(x)y + |y|2r(y)

∣∣∣∣ ≤ 2C

B2ε
,

where C is some positive constant.

Lemma 4.5. For any x ∈ D we have H(DW (x)) ≥ 0, and for any x ∈ D+ we have H+(DW (x)) ≥ 0.

Proof. For any x ∈ D̄+ we have

H+(DW1(x)) = −2 log

[
λe− log(λ/λ̃+)

λ + µ+
1 + µ2

+
µ+

1 e− log(µ̃+
2 /µ2)+log(λ/λ̃+)

λ + µ+
1 + µ2

+
µ2e

log(µ̃+
2 /µ2)

λ + µ+
1 + µ2

]

= −2 log

[
λ̃+ + µ̃+

1 + µ̃+
2

λ + µ+
1 + µ2

]
= 0,

H+(DW2(x)) = −2 log

[
λe− log(λ/λ̃)

λ + µ+
1 + µ2

+
µ+

1 elog(λ/λ̃)

λ + µ+
1 + µ2

+
µ2

λ + µ+
1 + µ2

]

= −2 log

[
λ̃ + µ+

1 λ/λ̃ + µ2

λ + µ+
1 + µ2

]
≥ 0,

where the last inequality is found by considering the convex function f(x) := (x + λµ+
1 /x +

µ2)/(λ + µ+
1 + µ2); since f(λ) = f(µ+

1 ) = 1 it follows that f(x) < 1 for any x ∈ [λ, µ2] ⊂ [λ, µ+
1 ].

Finally we also have

H+(DW3(x)) = −2 log
[
λ + µ+

1 + µ2

λ + µ+
1 + µ2

]
= 0.
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Combining these bounds with representation (34) and keeping in mind the concavity of H+(x)
(thanks to Proposition 3.2 in [8]) we obtain

H+(DW (x)) = H+

(
3∑

i=0

ρi(x)DW (x)

)
≥

3∑
i=0

ρi(x)H+ (DWi(x)) ≥ 0,

for any x ∈ D̄+.

The proof of the other statement is analogous, or follows from Lemma 5.3 in [15].

Lemma 4.6. Consider the slow-down network and recall the definition of τx
B in (6). For any sequence υB

such that limB→∞ υB = 0 the following limit holds:

lim
B→∞

1
B

log E(eυBτx
B |IB(Ax) = 1) = 0.

Proof. We define a new random variable τ which represents the same random period of time as
τx
B , but for the case when θ = 0, i.e., for the two-node tandem Jackson network with parameters

(λ, µ+
1 , µ2). It is clear that τx

B ≤st τ . From Lemma 5.6 in [15] we know that for the standard
Jacksonian tandem network

lim
B→∞

1
B

log E(eυBτ |IB(Ax) = 1) = 0,

for any υB satisfying limB→∞ υB = 0. This completes the proof.

Theorem 4.7. When µ2 < µ+
1 < µ1 and Assumption 4.1 holds, the new measure in (35), where the

function W is based on (20), is asymptotically optimal.

Proof. We will roughly follow the proof of Theorem 5.7 in [15], finding upper bounds on each of
the three terms in Lemma 4.3.
To deal with the first term, we first bound W (x) from below. Upon combining the fact that
W2(x) ≥ W1(x)− δ for any x ∈ D̄ ∪ D̄+ (this is shown in the same manner as in Thm. 5.7 of [15];
use (20)), with the monotonicity of γ(x) in both x1 and x2, and using definition (33), it is found
that

W (x) ≥ −ε log(e−W1(x)/ε + e(−W1(x)+δ)/ε + e−W3(x)/ε)

≥ −ε log(3e(−2γ(x)+3δ)/ε) = 2γ(x)− ε log(3)− 3δ. (37)

Using the same technique we obtain an upper bound for W (Xτx
B
):

W (Xτx
B
) ≤ −δ. (38)

Combining the inequalities (37)-(38) with Lemma 4.4 (take σ = τx
B), we now derive the following

upper bound on the first term in Lemma 4.3:

B

2

τx
B−1∑
j=0

〈DW (Xj), Xj+1 −Xj〉 ≤
B

2
(−2γ(x) + η(B)) +

C

Bε
τx
B + C+τx,+

B , (39)
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where C and C+ are some positive constants, η(B) is such that limB→∞ η(B) = 0 (use Assump-
tion 4.1), and τx,+

B is the number of slow-down threshold crossings up to time τx
B .

Now let us bound the second term in Lemma 4.3. For any x ∈ ∂2 we have 〈DW2(x),−v2〉 =
〈DW3(x),−v2〉 = 0 and 〈DW1(x),−v2〉 = 2 log(µ̃2/µ2); applying (34) we arrive at

〈DW (x),−v2〉 = 2 log
(

µ̃2

µ2

)
ρ1(x) ≥ −2γρ1(x) ≥ −2γe−(W1(x)−W2(x))/ε, (40)

where the first inequality comes from the fact that µ̃2 ≥ λ (see Proposition 3.3). It is also clear that
W1(x)−W2(x) = δ for any x ∈ A1∩∂2, where the functions W1(x) and W2(x) are defined by (31).
The second statement of Proposition 3.3 guarantees that the difference W1(x)−W2(x) decreases
to 0 as x goes from (α1, 0) to (α−1

1 , 0). From here we can immediately find 0 ≤ W1(x)−W2(x) ≤ δ,
which implies:

〈DW (x),−v2〉 ≥ −2γe−δ/ε.

Using the same technique and keeping Proposition 3.3 in mind, one can also show that

〈DW (x),−v1〉 ≥ −2γe−δ/ε,

for any x ∈ ∂1. Using these inequalities we can bound the second term in Lemma 4.3 from above:

2∑
k=1

1
2

τx
B−1∑
j=0

〈DW (Xj), vk〉I{Xj = Xj+1 ∈ ∂k} ≤ γe−δ/ετx
B. (41)

Finally note that Lemma 4.5 provides a straightforward bound on the last term of the log-likelihood
expression in Lemma 4.3:

H(DW (Xj))I{Xj∈D} + H+(DW (Xj))I{Xj∈D+} ≥ 0. (42)

Upon combining (39), (41) and (42), we bound (36) in the following way:

log(L(A)) ≤ −Bγ(x) + B
η(B)

2
+ χ(B)τx

B + C+τx,+
B ,

where

χ(B) := γe−δ/ε +
C

εB
.

Now for any path Ax we have

1
B

log E [L(Ax)IB(Ax)] =
1
B

log(E [L(Ax)|IB(Ax) = 1] P [IB(Ax) = 1])

≤ 1
B

log
(
E
[
e−Bγ(x)+Bη(B)+χ(B)τx

B+C+τx,+
B |IB(Ax) = 1

]
px

B

)
= −γ(x) +

η(B)
2

+
1
B

log E
[
eχ(B)τx

B |IB(Ax) = 1
]

+
1
B

log E
[
eC+τx,+

B |IB(Ax) = 1
]

+
1
B

log px
B.
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Using that limB→∞ τx,+
B /B = 0 a.s. when IB(Ax) = 1, and that limB→∞ χ(B) = 0 (see Assump-

tion 4.1), and invoking Lemma 4.6 and Theorem 3.2, we conclude that

lim
B→∞

1
B

log E [L(Ax)IB(Ax)] ≤ −2γ(x) = 2 lim
B→∞

1
B

log px
B.

In view of criterion (4), this completes the proof.

4.2 Asymptotic efficiency for µ+
1 ≤ µ2 < µ1

Remarkably, we can use the same function W (x) for this case as in the previous subsection, see
(33); also we define the new measures

(
λ̄(x), µ̄1(x), µ̄2(x)

)
and

(
λ̄+(x), µ̄+

1 (x), µ̄+
2 (x)

)
in the same

way, see (35).
One difference with the previous case is that Lemma 4.5 no longer holds. In fact the Hamiltonians
can be negative now, but the next lemma shows that they vanish as B grows large; recall that due
to Assumption 4.1 we have that 1/ε →∞ and δ/ε →∞ as B →∞.

Lemma 4.8. For any x ∈ D we have H(DW (x)) ≥ 0, and for any x ∈ D+ we have

H+(DW (x)) ≥ −C?e
−(θ− δ

2γ
)γ/ε

for some finite constant C? > 0.

Proof. Using the same technique as in the proof of Lemma 4.5, one can prove that the first state-
ment holds, while for the second statement we find

H+(DW (x)) ≥ ρ2(0, θ)H+(DW2(0, x2)),

if x ∈ D+. The second factor on the right hand side is in fact a constant, since DW2 does not
depend upon its second argument. Furthermore it is negative, and

ρ2(0, θ) ≤ e−W2(0,θ)/ε

e−W1(0,θ)/ε
≤ e

−(θ− δ
2γ

)γ/ε
,

so that the claim follows.

Theorem 4.9. When µ+
1 ≤ µ2 < µ1 and Assumption 4.1 holds, the new measure in (35), where the

function W is based on (23) and (17), is asymptotically optimal.

Proof. In order to prove this theorem we again bound all three terms of the log-likelihood ratio,
see Lemma 4.3. For the first two terms we find exactly the same as in (39) and (41). As for the
third term, this is now bounded in Lemma 4.8. Thus, we find again

log(L(A)) ≤ −Bγ(x) + B
η(B)

2
+ χ(B)τx

B + C+τx,+
B ,

only now

χ(B) = γe−δ/ε +
C

εB
+

C?

2
e
−(θ− δ

2γ
)γ/ε

,

which also vanishes as B grows large. From now on we can follow the proof of Theorem 4.7
which leads us to the result.
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4.3 Asymptotic efficiency for µ+
1 < µ1 ≤ µ2

For the case when µ+
1 < µ1 ≤ µ2 we again use the function W (x) defined by (33), to describe the

IS scheme as in (35), which we can prove to be asymptotically efficient. It is important that in this
case the function W2(x) plays a more important role than before. Because of the structure and the
cost of the optimal path to overflow we now have

W̄ (x) = W2(x), for any x ∈ C1 ∪ {x : x2 ≤ δ/2γ},

see also Figure 4. In the two previous subsections this was only valid on {x : x2 ≤ δ/2γ}.

Theorem 4.10. When µ+
1 < µ1 ≤ µ2 and Assumption 4.1 holds, the new measure in (35), where the

function W is based on (30) and (17), is asymptotically optimal.

Proof. Not surprisingly, the proof of this theorem is almost the same as that of Theorem 4.9. Even
Lemma 4.8 remains valid in this case. The only essential difference is the behavior of the function
W (x) on the constraints ∂1 and ∂2. This leads to a different bound on the second term of the
log-likelihood in Lemma 4.3. As in Theorems 4.7 and Theorem 4.9 we have for any x ∈ ∂2,

〈DW (x),−v2〉 ≥ −2 log(1/z)ρ1(x),

but for ρ1(x) we now have by Theorem 5.8 in [15] that

ρ1(x) ≥ exp
(
−2β log(1/z)

ε

)
,

where β is unique solution to the equation f(0, β) = 0, see also (28). We conclude, that for any
x ∈ ∂2,

〈DW (x),−v2〉 ≥ 2 log(z) exp
(
−2β log(1/z)

ε

)
.

For x ∈ ∂1 we have, again due to Theorem 5.8 in [15]:

〈DW (x),−v1〉 ≥ −2 log(µ1/λ)e−2δ/ε.

The rest of the proof can be done by mimicking the arguments used in Thm. 4.7 or Thm. 4.9.

5 Conclusions

This paper focused on constructing IS schemes for estimating the probability of a specific rare
event: overflow in the second queue of the slow-down network before the system idles, start-
ing from any given state. We proved asymptotic efficiency of the proposed new measure. The
analysis heavily relied on large-deviations argumentation.
One can look at this result from two different perspectives. On one hand, this is the continuation
of our earlier work on rare-event simulation in a two-node Jacksonian tandem network, see [15].
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On the other hand, this paper can be viewed as the generalization of already existed research on
the slow-down network, see [7, 13]. We rigorized and further studied the empirical findings of
[13]. Also, [7, 13] consider the restrictive case that the only possible starting state is the origin.
In our paper we developed IS schemes for all three possible cases (second queue bottleneck,
‘shifting bottleneck’, first queue bottleneck), unlike [7] that specializes to a specific ordering of
the parameters: λ < µ+

1 < µ2 ≤ µ1 (which is covered by our ‘shifting bottleneck’ case µ+
1 ≤ µ2 <

µ1). In our schemes one may pick an arbitrary starting state x. An important by-product of our
analysis is a precise description of the typical path to overflow (in the second queue), starting in
an arbitrary state. Although our proofs use specific properties of the model at hand, we strongly
feel that our methodology carries over to more general classes of queues.
As indicated in the introduction, a next challenge is to transform the methods presented in this
paper into simulation programs. We stress that, even with an asymptotically efficient new mea-
sure at our disposal, new questions come up: should we compute the new measure ‘on the fly’
(that is, while running the program), or precompute it (and store it)? Also, it may pay off to par-
tition the state space into a small number of sets, and to approximate the state-dependent change
of measure by new measures that are constant on these sets. A detailed simulation study, as well
as extensive practical guidelines, will be presented in a forthcoming paper.

A Appendix. Large deviations

The goal of this appendix is to establish the result that the cost of the optimal path to overflow
is equal to the exponential decay rate of our probability of interest, see Theorem 3.2. We also
highlight a number of important and interesting large-deviations properties of the process X(t).
Let us consider any absolutely continuous function φ : [0,∞) → D̄ ∪ D̄+, representing a path
associated with the scaled process X(t). Our first aim is to define a so-called local rate function
`(φ(t), φ̇(t)), which depends both on the position at time t and on the time derivative (or speed
vector) φ̇(t) at time t. To do it, first we define four auxiliary functions Li(y), where the argument
y should be interpreted as a ‘speed vector’:

Li(y) := sup
ϑ

(〈ϑ, y〉 − gi(ϑ)) , i = 1, . . . , 4, (43)

and where

g1(ϑ) := λ(eϑ1 − 1) + µ1(eϑ2−ϑ1 − 1) + µ2(e−ϑ2 − 1),

g2(ϑ) := λ(eϑ1 − 1) + µ+
1 (eϑ2−ϑ1 − 1) + µ2(e−ϑ2 − 1),

g3(ϑ) := λ(eϑ1 − 1) + µ2(e−ϑ2 − 1),

g4(ϑ) := λ(eϑ1 − 1) + µ1(eϑ2−ϑ1 − 1);

cf. (5.5) in [19]. It is observed that g1(·) corresponds to D, g2(·) to D+, g3(·) to ∂1, and g4(·) to ∂2.
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Now we can define the local rate function ` as:

`(φ(t), φ̇(t)) :=



L1(φ̇(t)), if φ(t) ∈ D,

L2(φ̇(t)), if φ(t) ∈ D+ ∪ ∂e,

[L1 ⊕ L3 ](φ̇(t)), if φ(t) ∈ ∂1 \ ∂+
1 ,

[L2 ⊕ L3 ](φ̇(t)), if φ(t) ∈ ∂+
1 ,

[L1 ⊕ L2 ⊕ L3 ](φ̇(t)), if φ(t) = (0, θ),
[L1 ⊕ L4](φ̇(t)), if φ(t) ∈ ∂2,

[L1 ⊕ L2 ](φ̇(t)), if φ(t) ∈ ∂θ,

(44)

where, for n ≥ 2, and y denoting a two-dimensional vector,

[L1 ⊕ . . .⊕ Ln](y) := inf

{
n∑

i=1

ρiLi(yi) : ρi ≥ 0,
n∑

i=1

ρi = 1,
n∑

i=1

ρiyi = y

}
,

is the inf-convolution of the functions L1, . . . , Ln, the infimum being taken over all values ρi and
vectors yi, i = 1, . . . , n, that satisfy the given conditions.
We now briefly explain why we use this inf-convolution on the boundaries of the state space.
Assume that the scaled process X(t) follows a path φ(t) ∈ ∂1 \ ∂+

1 , such that ∂φ2/∂t > 0 for
t ∈ [0, T ]. Hence, the first and the second components of the vector y should be zero and strictly
positive, respectively. It is clear that the original (unscaled) jump process Q(t) can only increase
its second component when it is not on ∂1, since jumps of the v1 type are not allowed on ∂1.
Therefore the inf-convolution provides a ‘mixture’ of the functions L1 and L3, supposing that the
process Q(t) spends a fraction of time ρ in the lower part of the interior D and a fraction 1− ρ on
the vertical constraint. Note that ρ must be such that φ(t) has speed y with positive increment in
the vertical direction and zero-increment in the horizontal direction, such that the scaled process
X(t) remains in ∂1.

Now we are ready to state the following theorem.

Theorem A.1. The process X(t) satisfies a large deviations principle with rate function (44), i.e.,

lim
B→∞

− 1
B

log px
B = inf

∫ τ

0
`(φ(t), φ̇(t))dt,

where τ := inf{t > 0 : φ(t) ∈ ∂e, φ(s) 6= 0, s ∈ (0, t)} and the infimum is taken over all absolutely
continuous functions φ : [0,∞) → D̄ ∪ D̄+ such that φ(0) = x and τ < ∞.

Proof. We sketch the proof of this result, as it is reminiscent of results proven in [7]; see also the
proof of Thm. 4.1 in [15]. The main arguments are taken from [5, 6].
We first introduce the process Z(t), which is an unconstrained version of X(t), that is, Z(t) is
allowed to have negative values in both components. In addition we will assume that Z(0) =
X(0) = x ∈ D̄ ∪ D̄+. One can then use Theorems 3.2 and 3.4 of [6] to show that the map Γ :
Z(t) → X(t) exists and Theorem 2.2 from the same paper to show that it is Lipschitz continuous.
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Γ is known as the Skorokhod map and the question whether it exists is referred as the Skorokhod
problem; for more details see [6].
Since the map Γ is Lipschitz continuous and the process Z(t) satisfies a large deviation principle
(see Theorem 7.2.3 of [5]), one can apply the contraction principle (see Theorem 2.13 of [19]) and
conclude that the process of our interest, X(t), satisfies a large deviations principle with rate
function `(φ(t), φ̇(t)) defined by (44).

To prove Thm. 3.2, we now recapitulate the main findings of Section 4 in [15]. Using the local rate
function ` we can define the rate function of any path φ(t) = (φ1(t), φ2(t)) with t ∈ [0, T ] for some
T , as the integral of ` over time. At first let us mention the following property: for the paths that
stay in one of the subsets D,D+, ∂1 \ ∂+

1 , ∂+
1 , ∂2, the rate function (44) is minimal when the path

is straight, with constant speed vector; see Lemma 5 of [15], and p. 87 of [19].
Now we assume that φ(t) ∈ D, for t ∈ (0, T ) is a path between two states x and y. We know that
the path φ(t) has minimal cost if the process X(t) moves along a straight line at constant speed.
We can define a corresponding new measure as follows:

λ̃ = λeϑ1 ,

µ̃1 = µ1e
ϑ2−ϑ1 , (45)

µ̃2 = µ2e
−ϑ2 ,

where ϑ = (ϑ1, ϑ2) is the maximizer in (43) with i = 1. In fact this is exactly the same new mea-
sure we would find using the cost minimization procedure from Section 3, due to the immediate
equality

`(φ(t), φ̇(t)) = I(λ̃, µ̃1, µ̃2); (46)

see again [15]. This equality however, does not hold on the boundaries. Instead, when φ(t) stays
on ∂1 or ∂2 for t ∈ [0, T ], we have

`(φ(t), φ̇(t)) ≤ I(λ̃, µ̃1, µ̃2),

where the new measure (λ̃, µ̃1, µ̃2) is again defined as in (45). However, for the optimal paths we
still have equality between local rate functions and cost functions on the boundaries, see Lemma 6
in [15]. Let, e.g., Φ1 be the set of paths that travels a distance h > 0 along ∂1 \∂+

1 at constant speed
during a time σ, i.e.,

Φ1 = {φ(t) ⊂ ∂1 \ ∂+
1 : φ(0) = (0, x?

2), φ(σ) = (0, x?
2 + h)},

for some x?
2. Then we have the following relation

inf
φ∈Φ1

∫ σ

0
`(φ(t), φ̇(t))dt = h inf

I(λ̃, µ̃1, µ̃2)
µ̃1 − µ̃2

,

where the second infimum is taken over all λ̃, µ̃1 and µ̃2 such that λ̃ < µ̃1 and µ̃1 > µ̃2. We have
a similar situation for paths that follow ∂+

1 or the horizontal constraint ∂2.
Our last result, which is an analogue of Lemma 7 in [15], regulates the number of subpaths of the
optimal path to overflow.
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Lemma A.2. The optimal path from any starting state x to the exit boundary ∂e does not have more than

(i) two subpaths in each subset, if µ+
1 < µ1 ≤ µ2, and

(ii) one subpath in each subset otherwise.

Finally, using all the results in this appendix, Thm. 3.2 follows; the proof is analogous to the proof
of Thm. 8 in [15].
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