
C e n t r u m W i s k u n d e & I n f o r m a t i c a

Probability, Networks and Algorithms

 Probability, Networks and Algorithms

Embedding complete ternary tree in hypercubes using
AVL trees

S.A. Choudum, I. Raman

REPORT PNA-E0812 DECEMBER 2008

Centrum Wiskunde & Informatica (CWI) is the national research institute for Mathematics and Computer
Science. It is sponsored by the Netherlands Organisation for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2008, Centrum Wiskunde & Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-3711

Embedding complete ternary tree in hypercubes
using AVL trees

ABSTRACT
A complete ternary tree is a tree in which every non-leaf vertex has exactly three children. We
prove that a complete ternary tree of height h, TTh, is embeddable in a hypercube of dimension.
This result coincides with the result of [2]. However, in this paper, the embedding utilizes the
knowledge of AVL trees. We prove that a subclass of AVL trees is a subgraph of hypercube.
The problem of embedding AVL trees in hypercube is an independent emerging problem.

2000 Mathematics Subject Classification: 68W10
1998 ACM Computing Classification System: G.2.2
Keywords and Phrases: Parallel algorithm, hypercube, complete ternary tree, AVL tree, embedding, dilation
Note: A part of second author‚Äôs work was carried out during her three months visit (May-July 2008) to Centrum
Wiskunde en Informatica, PNA1 Group, 1098 SJ, Amsterdam, The Netherlands.

Embedding complete ternary tree in hypercubes
using AVL trees

S.A. Choudum Indhumathi Raman *

Department of Mathematics
Indian Institute of Technology Madras

Chennai - 600036, India
email: sac@iitm.ac.in, indhumathi.raman@gmail.com

Abstract
A complete ternary tree is a tree in which every non-leaf vertex has exactly three children. We prove that a complete
ternary tree of height h, TTh, is embeddable in a hypercube of dimension . This result coincides with the
result of [2]. However, in this paper, the embedding utilizes the knowledge of AVL trees. We prove that a subclass
of AVL trees is a subgraph of hypercube. The problem of embedding AVL trees in hypercube is an independent
emerging problem.

Keywords: Parallel algorithm, hypercube, complete ternary tree, AVL tree, embedding, dilation

1 Introduction

An embedding  of a (guest) graph G = (VG, EG) into a (host) graph H = (VH, EH) is a map  :
VG VH (not necessarily a bijection) such that every edge (u, v) of G is mapped onto a path
P((u), (v)) which connects (u) and (v) in H. The dilation of an edge (u, v) in G is defined to
be the length of the path P((u), (v)). The dilation of , dil() is then defined to be the integer
max{length (P((u)), (v))) : (u, v) is an edge in G}. The expansion of  is defined to be the
ratio of VH and VG.
 One of the motivations for these concepts is in the area of parallel algorithms and parallel
computers. Here, the computational structure of a parallel algorithm A is represented by a graph
G(A) and the interconnection network of a parallel computer N is represented by a graph H(N).
An embedding of G(A) into H(N) describes the working of the parallel algorithm A when
implemented on N. The dil() is used to estimate the computational running time and the
expansion of  is used to estimate the number of unutilized processors in N. Leighton [9] gives
an extensive survey of embedding various graphs into interconnection networks like hypercubes,
meshes and tori. Note, that the dilation of any embedding is atleast 1, and if dil() = 1, then G is
(isomorphic with) a subgraph of H. In the following all our embeddings are injections, so the
expansion is atleast 1. Clearly, an injective embedding with dilation 1 and expansion 1 is the one
with least communication delay and the most cost effective. In this note, we first embed a
subfamily of AVL trees into hypercubes, then use this result to give an alternate proof of a result
of [2] which embeds complete ternary trees into hypercubes.

* A part of the author’s work was carried out during her three months visit (May-July 2008) to
Centrum Wiskunde en Informatica, PNA1 Group, 1098 SJ, Amsterdam, The Netherlands.

2 Preliminaries

Before we proceed to the embedding, we give a brief description of hypercubes and AVL trees.

2.1 Hypercubes

An n-dimension hypercube, Qn, has 2n vertices each labelled with a binary string of length n.
Two vertices are adjacent if and only if their labels differ in exactly one position. We use the
following properties of hypercubes for the embedding.

• Qn is n-regular and its diameter is n.

• Qn posseses exactly 2nn! automorphisms which can be described as follows. For each subset S
of {1, 2, … , n} and each permutation π of {1, 2, … , n}, the map f(S, π) : V (Qn) V(Qn)
defined by f(S, π)(x1x2 … xn) = (y1y2 … yn) is an automorphism of Qn where
yi = x π(i), if π(i) is in S

x π(i), if othewise

• Qn is a vertex-symmetric, edge-symmetric and P3-symmetric graph. (Here, P3 is a path
on 3 vertices)
A graph G is called a Pk-symmetric graph if for any two paths P = (u1, u2, … , uk) and Q = (v1,
v2, … , vk), there exists an automorphism α of G such that α(ui) = vi, for every i, 1 ≤ i ≤ k. P1-
symmetric graphs and P2-symmetric graphs are referred to as vertex-symmetric graphs and edge-
symmetric graphs respectively.

2.2 AVL trees

An AVL tree is a rooted binary tree T in which for every vertex v in V(T), the heights of the
subtrees, rooted at the left and right child of v, differ by at most one. Adelson-Velskii and Landis
[1] defined these trees to provide most efficient data structures for computational routines like
searching and sorting; see [3, 4, 8, 12, 13]. It is also known as height-balanced tree.
Subsequently, there have been several variations of AVL trees all of which maintain some
balance in the heights of the subtrees rooted at every internal node. All these variations are
studied under a common title called the height balanced trees; see [5, 7, 11]. The importance of
AVL trees is due to the fact that their height is logarithmic to their size. Therefore, operations
like searching can be performed in logarithmic time on an AVL data structure, whereas the same
operations can take linear time (in the worst case) on an arbitrary binary data structure. We are
concerned with a subclass of AVL trees, Th of height h which is defined as follows: T0 = K1, T1

= K1,2 and Th (h ≥ 2) is obtained by taking three copies of Th−2 with roots r1, r2, r3 (say), and two
new vertices R, S and adding the edges (R, S), (S, r1), (S, r2) and (R, r3); see Figure 1 and R is
designated as the root of Th. The number of vertices (th) of Th can be computed using the
recurrence relation th = 3th−2+2, for h ≥ 2 and the initial conditions t0 = 1 and t1 = 3.

On solving this relation, we get th = , if h is even

 , if h is odd

3 Embedding

3.1 Embedding AVL tree into hypercube

We are now ready to embed the AVL tree Th (defined in section 2.2) into Qd(h) with expansion
2d(h) / th which is close to 1. Thus the embedding is nearly optimal. The embedding of the AVL
tree Th is given by the following theorem.

Theorem 3.1: For every h ≥ 2, Th is a subtree of Qd(h) where d(h) = , if h is even

, if h is odd

Proof: To achieve such an embedding, we label Th using d(h)-bit binary strings by recursion on
h and depending on the value of h (mod 10). Since Qd(h) = Qd(h-2) x Qt where t = d(h) – d(h-2), we
prefix every label of a copy of Th-2 by one of 2t-bit string. We also make use of a small extension
in the structure of the tree for the proof to work. Given a tree Th with root R, we denote by Th

*, a
supertree of Th formed by adding two new vertices A and B and two new edges (A,B) and (B,R).
We call Th

*, the auxillary tree of Th and the path (A,B,R) the auxiliary path of Th
*; see Figure 2.

3.2 Embedding complete ternary tree into hypercube

A complete ternary tree is a tree in which every non-leaf vertex has exactly three children. The
structure of ternary trees has found application in parallel computing. In [10], the authors have
developed and implemented software whose strategy was implemented using the CS tool
software and a ternary tree network topology. A balanced ternary tree has been used to represent
the widely used binary trees; see [12]. Hence, the problem of embedding ternary trees in
hypercubes is of interest. In [6], Havel has conjectured the following:

Conjecture: The complete ternary tree can be embeddable into its optimal hypercube with
dilation 2.

In this section, we first provide an embedding of a complete ternary tree of height h, TTh in T2h

(discussed in section 2). We next provide an embedding of TTh into the hypercube using the
result of the previous section. The dimension of optimal hypercube for complete ternary tree is

T1
Th-2

Th-2Th-2

T0

Th

Figure 1: Structure of
Th

A

B

R

Th

Figure 2: Structure of Th*

. However in this paper, the expansion of our embedding is . Hence,
there is a slight relaxation in the expansion factor as compared to the statement of the conjecture.

Theorem 3.2: A complete ternary tree TTh of height h is embeddable into the AVL tree T2h with
dilation 2.

Proof: We prove by induction on h. Figure 3 gives a pictorial depiction of the embedding TTh in
T2h with dilation 2.

Combining Theorem 3.1 and Theorem 3.2, we have the following result.

Corollary 3.3: A complete ternary tree TTh of height h is embeddable into a hypercube of
dimension with dilation 2.

The result has been proved by S.A. Choudum et. al., in [2]. The interesting aspect of the proof
provided in this paper is the use of an AVL tree as an intermediate tree. The problem of
embedding AVL trees in hypercubes is an independent research problem and is open.

4 References

[1] G.M. Adelson-Velskii and E.M. Landis, An algorithm for the organization of information,
Soviet Math. Dokl., 3(1962), 1259-1262.

[2] S.A. Choudum and S. Lavanya, Embedding complete ternary trees into hypercubes, To
appear in Discussiones Mathematicae Graph Theory.

[3] C.S. Ellis, Concurrent search and insertion in AVL trees, IEEE Trans. Comput., 29, 9(1980),
811-817.

[4] C.C. Foster, Information Storage and Retrieval Using AVL Trees, Proc. ACM 20th Nat.
Conf.(1965), 192-205.

[5] C.C. Foster, A generalization of AVL trees, Comm. ACM, 16 (1973), 513 - 517.

dc

a

b

(c)(b)

(d)

(a)

TTh-1TTh-1TTh-1

T2h-2

T2h-2

T2h-2

Figure 3: Embedding TTh into T2h

[6] I. Havel, On certain trees in hypercubes, In Topics in combinatorics and graph theory,
Physica-Verlag Heidelberg(1990), 353-358.

[7] P.L. Karlton, S.H. Fuller, R.E. Scroggs, and E.B. Kaehler, Performance of Height-Balanced
Trees, Communications of the ACM, 19, 1(1976) 23 - 28.

[8] D.E. Knuth, Sorting and Searching, The Art of Computer Programming - 3, Addison-
Wesley, 1973.

[9] F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees,
Hypercubes, Morgan Kaufmann, San Mateo, CA, 1992.

[10] S. Liuni, N. Prunella, G. Pesole, T. D’Orazio, E. Stella and A. Distante, A new parallel
algorithm for computation of statistically significant patterns in DNA sequences, Proceeding
of the Twenty-Sixth Hawaii International Conference on System Sciences, 1(1993) 605 - 612.

[11] F. Luccio, L. Pagli, Power trees, Communications of the ACM, 21, 11 (1978), 941-947.

[12] K. Matsuzakshi and A. Morihata, Balanced Ternary-Tree Representation of Binary Trees
and Balancing algorithms, Mathematical Engineering Technical Reports METR 2008-30.
Available in www.ipl.t.u-tokyo.ac.jp/pub/METR2008-30.pdf.

[13] M. Medidi and N. Deo, Parallel Dictionaries using AVL-Trees, Journal of Parallel and
Distributed Computing, 49(1998) 146 - 155.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Shift: none
 Normalise (advanced option): 'improved'

 32

 D:20081222082619
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 Full
 1106
 333

 None
 Right
 11.3386
 0.0000

 Both
 19
 AllDoc
 20

 CurrentAVDoc

 Uniform
 14.1732
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0c
 Quite Imposing Plus 2
 1

 0
 5
 4
 5

 1

 HistoryList_V1
 qi2base

