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Let C 1 , .... c,, be a system or closed curves on a triangulizable surface S. The 
system is called mi11i11wlly crossing if each curve C, has a minimal number of sell~ 
intersections among all curves c; freely homotopic to C, and if each pair C,, C, has 
a minimal numher of intersections among all curve pairs ( ·;, ( ·; fredy homotopic tu 
C,. C, respectively Ii, j = l, ... , k, i I- j). The system is called rl'gu/ur it each point 
tra1ersed at least twice by these curves is traversed exactly twice. •md forms a crnssing. 

We show that we can make any regular system minimally crossing by applying 
Rcidcmcistcr moves in such a way that at each move the number of crossings dllcS 
not increase. It implies a finite algorithm to make a given system or curves mini-
mally crossing by Rciden1eister moves. t 1997 Acadcmil· Pri.::.s 

1. INTRODUCTION AND FORMULATION OF THE THEOREM 

Let S be a surface. A closed curve on S is a continuous function 
C: S 1 -+ S (where S 1 is the unit circle in the complex plane). Two closed 
curves C and C' are .fi'cely homotopic, in notation: C - C', if there exists a 
continuous function <!>: S 1 x [ 0, 1] -+ S such that <!>( :::, 0) = C(:::) and 
c/J(:::, l)=C'(:::) for all :::ES 1• 

* Present addrc:.s: Dr. Neher Laboratorium, P.O. Box 42 l, 1160 AK Leidschcndam. 
The Netherlands. 
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For any closed curve C on S, the number of self-intersections (counting 
nultip!icities) of C is denoted by er( C). That is, 

er( C) = t I{ (IV,::) E S 1 x S 1 I C(1v) = C(::), IV#::} 1. ( I ) 

vforeover, miner( C) denotes the minimum number of er( C') where C' 
anges over all closed curves freely homotopic to C. That is, 

miner( C) = min{ er( C') IC' - C}. (2) 

For any pair of closed curves C, D on S, the number of intersections of 
~ and D (counting multiplicities) is denoted by er( C, D ). That is, 

cr(C, D)= J{(1r,::)ES 1 xS 1 JC(w)=D(::JlJ. (3) 

Vloreover, miner( C, D) denotes the minimum of er( C', D') where C' and 
O' range over all closed curves freely homotopic to C and D, respectively. 
fhat is, 

miner( C, D) = min {er( C', D') I C' - C, D' - D}. (4) 

Let C 1, ••• , Ck be a system of closed curves on a surface S. We call 
C1 , ... , Ck minimally crossing if 

(i) cr(C;)=mincr(C;) foreach i=!, ... ,k; 
(5) 

(ii) er( C;, Ci) =miner( C;, Ci) for all i, j = !, ... , k with i =F j. 

We call C 1 , ••• , Ck a regular system of curves if C,, ... , C" have only a finite 
rrumber of intersections (including self-intersections), each being a crossing 
:)f only two curve parts. That is, no point on Sis traversed more than twice 
by c,' ... , ck and each point of s traversed twice has a disk-neighborhood 
:)n which the curve parts are topologically two crossing straight lines. To 
such systems of curves we can apply the following four operations called 
Reidemeister moves: 

0. replacing -.._Q,-- by /()"' (type 0 ); 

I. replacing x by /\ (type!); 
(61 

I I. replacing >=< by '-..../ (type II); ~ 

III. replacing * by * (type II!). 

The pictures here represent the intersection of the union of C 1 , ... , C, with 
an open disk on S. So no other curve parts than the ones shown intersect 
such a disk. 

Here and below we take all statements topologically. For instance, an 
open disk is any topological space homeomorphic to an open disk. Pictures 
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are taken up to topological transformations. As an 'implicit' Reidemeister 
move we take shifting all curves simultaneously over the surface, by an 
isotopy <l>: S---> S (thus not changing the combinatorial structure of the 
system of curves). 

The main result of this paper is: 

THEOREM 1. Let S be a trianguli::able surface. Then any regular system 
of closed curves on S can be transformed to a minimally crossing system by 
a series of Reidemeister moves. 

This theorem will be used in a subsequent paper [ 4] to prove a theorem 
on decompositions of graphs and a homotopic circulation theorem. 

It is important to note that the main content of Theorem 1 is that we do 
not need to apply the operations ( 6) in the reverse direction-otherwise the 
result would follow quite straigthforwardly with the classical techniques of 
simplicial approximation (as applied by Reidemeister [ 6] ). Clearly, the 
reverse of a type III Reidemeister move is again a type III Reidemeister 
move: similarly for type 0. However, this does not hold for types I and II. 

The theorem has as a consequence: 

COROLLARY 1 a. There is a jinite algorithm to transform a given regular 
system of closed curves on a surface, to a minimally crossing system of closed 
curves by Reidemeister rnoves. 

We can assume here that the system is given in a combinatorial way. 
That is, the curves are given by the graph formed by their embedding, and 
the surface by the faces made by that graph. For our purposes it only mat
ters if a face is topologically a disk or not. This all can be described in a 
finite way. 

The reason that our theorem gives a finite algorithm is that we can apply 
the Reidemeister moves without increasing the total number of crossings. 
So in a brute force way, we could enumerate all possible configurations 
that arise from the given system by any series of Reidemeister moves 
type III (there are only finitely many of them, since there are only finitely 
many graphs with a given number of vertices, and since for each graph 
there are only finitely many ways of attaching faces). Next we see if we can 
apply to any of these configurations a Reidemeister move of type 0, I or II. 
If so, we can continue with a simpler system: that is, with fewer crossings 
or with fewer closed curves (by removing a homotopically trivial closed 
curve). If not, our theorem says that the system is minimally crossing. 

We can arrive at this conclusion by our theorem. If we would need to 
apply Reidemeister moves of type I or II also in the reverse direction, we 
would not obtain a finite procedure. 
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2. SOME FURTHER TERMINOLOGY AND NOTATION 

Let S be a surface. A curve on Sis a continuous function C: I___,. S where 
I is a connected subset of S 1• It is closed if I= S 1• nonclosed if I# S 1, and 
simple if it is one-to-one. 

Let C be a curve on a surface S and let A <;: S. We call L a chord on A 
of C if L = Cl I for some connected component I of C 1 [A]. We call L a 
chord on A of C 1 , ... , Ck if Lis a chord on A of one of C 1 , ••• ,Ck. 

A closed curve C is called nullhomotopic if it is freely homotopic to a 
constant function. It is orientation-preserving if passing once around C does 
not change the meaning of 'left' and 'right'. Otherwise, C is orienta
tion-reversing. 

We will, if no confusion arise, identify a closed curve C: S 1 _,. S with its 
image C[S 1 ]. Moreover, we identify a closed curve C with any closed 
curve C' = C ef; if rP: S 1 --> S 1 is a homeomorphism isotopic to the identity. 

3. REDUCTION TO COMPACT SURFACES WITH 
A FINITE NUMBER OF HOLES 

A compact surface with a finite number of holes is a surface arising from 
a compact surface by deleting a finite number of points. (So a compact sur
face with a finite number of holes need not be compact.) 

We show that to prove Theorem I we may restrict ourselves to compact 
surfaces with a finite number of holes. 

Let S be a surface and let S' <;: S. For closed curves C and D on S' 
denote the function miner by miner' if it is with respect to S'. Clearly, 

miner'( C);?: miner( C) and miner' ( C, D) ;?: miner( C, D ). ( 7) 

PROPOSITION 1. Let S be a triangu/i::::ab/e swface and C 1 , ••• , Ck be a 
regular systern of closed cwTes on S. Then S contains a compact surface S' 
with a finite number of holes such that S' contains C 1, ••• , Ck and such that 
miner'( C;) =miner( C;) for each i and miner'( C;, C;) =miner( C;, C;) j(Jr a/I 
i, }(ii= j). 

Proof Consider a polygonal decomposition of S in which each vertex 
has degree 3. For all i, j with I ~ i < j ~ k. let A i.; be the set of all polygons 
traversed when shifting C; and C; to some closed curves c; and Cj (respec
tively) satisfying er( c;. C/) =miner( C;, C;). Similarly, for each i = 1, ... , k 
let L1; be the set of all polygons intersected when shifting C; to some closed 
curve c; satisfying er( c;) =miner( C;). Note that each A;,; and each A; is 
finite. Let S' be the union of all A i.; and A;· Then S' is a compact bordered 
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surface with a finite number of boundary components, and the proposition 
follows. I 

Proposition 1 shows that in the sequel we may assume: 

Sis a compact surface with a finite number of holes. (8) 

4. THE DISK 

One important ingredient in our proof is a theorem of Ringel, and an 
extension of it, on shifting curves in a disk. 

Let Ube a closed disk. Consider systems of nonclosed curves C 1, ••• , Ck 
on U satisfying: 

( i) each C; is simple and has end points on bd( U); 

(ii) if i # j, C; and Ci have at most one intersection, being a 
crossing; 

(iii) each point of U traversed by at least two curves belongs 
to the interior of U and is a crossing of two curve parts, 
and is not traversed by any other curves. 

Ringel [ 8] showed: 

(9) 

THEOREM 2 (Ringel's theorem). Let Ube a closed disk. Let C 1, •• ., Ck 
and C',, .. ., C~ be systems of curves on U each satisfying (9). For each i, let 
C; and c; have the same pair of end points. Then C 1, •• ., C, can be moved to 
C'1 , •• ., C~ by a series of Reidemeister moves of type III, each applied to the 
interior of U. 

Next consider systems of curves C,, .. ., Ck on U satisfying: 

( i) each C; is either closed and disjoint from bd( U) or is 
nonclosed and has two distinct end points on bd( U); 

(ii) each point p of U traversed by at least two curve ( 10) 
parts belongs to the interior of U and is a crossing of 
the two curve parts while no other curve parts 
traverse p. 

Call a system satisfying ( 10) minimally crossing if each curve is simple, 
and any two curves have at most one intersection. We derive from Ringel's 
theorem: 

THEOREM 3. Any system of curves on U satisfying (10) can be trans
formed to a minimally crossing system by a series of Reidemeister moves. 
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Proof Let C 1 , ••• , Ck be a system of curves on U satisfying ( 10 ). We 
may assume that no series of Reidemeister moves decreases the number of 
(self-)crossings. We show that the system is minimally crossing, by induc
tion on the number t of crossings (including self-crossings) of C 1 , •••• c,. 

We first show that each of the C; is simple. Suppose, say, C 1 is not sim
ple. Then C, contains a simple 'loop' L-that is, there is an interval 
I= [x, y] such that C 1 11 is one-to-one, except that C 1(x) = C 1( y). Let U' 
be a disk in U containing L and its interior, except for a 'small' 
neighbourhood of C 1 ( x ). So U' contains less than t crossings, and hence, 
by the induction hypothesis, the chords of the C; on U' are minimally 
crossing. Hence the chord L n U' does not intersect any of the other 
chords. Therefore, all other chords are actually pairwise disjoint closed cur
ves contained in the interior of L. With Reidemeister moves of type 0 they 
can be moved to the exterior of L. After that we can apply a Reidemeister 
move of type I to remove L, contradicting the minimality of the number of 
crossings. 

We next show that any two of the C; cross each other at most once. Sup
pose that, say, C 1 and C,_ cross each other more than once. Then there 
exist intervals 11 =[x 1,y 1 ] and 12 =[x2 • .\'2] such that C1 jJ1 and C2 l12 

are disjoint, except that C 1(x 1 ) = C2(x 2 ) and C 1(y 1 ) = Ckv 2 ). Let L be 
the digon formed by C 1 I J 1 and C2 j J 2. Let U' be a disk on U containing 
L and its interior, except for a small neighbourhood of C 1 ( x 1 ). So U' con
tains less than t crossings, and hence, by the induction hypothesis, the 
chords of the C; on U' are minimally crossing. By Ringel's theorem 
(Theorem 2) we can apply Reidemeister moves so that the two chords formed 
by C1[11] and C2[1:~J have a crossing 'close' to C 1(x 1 ), in such a way that 
the digon formed in the new situation does not contain any other curve 
parts. Hence it can be removed with a Reidemeister move of type II. This 
reduces the number of crossings, and hence contradicts the minimality of 
the number of crossing. I 

5. PROPERTIES OF MINIMAL COUNTEREXAMPLES 

With the help of the results of Section 4 we derive in this section some 
properties of 'minimal counterexamples' to Theorem l. Let S be a tri
angulizable surface and let C 1 , ... , C" be a regular system of closed curves 
on S. We call C 1 , •.• , C" a minimal counterexample if the following holds: 

(i) the system cl' ... , c" is not minimally crossing; 

(ii) no series of Reidemeister moves decreases er( C;) for any ( 11 ) 
. 1 1 k 1 (C CJ" · .. 1 1 k 1·(·_,_ ')· 1 E l , ... , f or er ; , i 1or any 1, J E 1 , .. ., 1 1 -:- J . 

(iii) k is minimal (under ( i) and (ii)). 
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It is obvious that any system obtained from a minimal counterexample 
by applying a series of Reidemeister moves of type III, is a minimal coun
terexample again (since such operations are reversible). Furthermore, we 
cannot apply a Reidemeister move of type 0, I, or II to any minimal coun
terexample. 

PROPOSITION 2. Let C1' ... , ck be a minirnal counterexample on sand let 
A be an open disk on S. Then the chords of C 1 , ••• , C" on A are minimally 
crossing, and none is a closed curue. 

Proof Directly from Theorem 3 and ( 11 )(ii). I 

In particular: 

PROPOSITION 3. Let C 1 , ••• ,Ck be a minimal counterexample on S. Then 
there is no open disk containing any of the curves C; for i = 1, ... , k. 

Proof Directly from Proposition 2. I 

Next we show: 

PROPOSITION 4. Let cl' ... , ck be a rninimal counterexample on S. Then 
k ~ 2 and if' k = 2 then er( C;) =miner( C;)(i = 1, 2). 

Proof We first show for any regular system C 1 , ••• ,Ck of closed curves 
on S: 

if C1' ... , ck .. I can be transformed to closed curves C'1' ... , c;, -I 

by a series of Reidemeister moves, then there exists a closed 
curve C~ such that C 1 , ••. ,Ck can be transformed to C'1 , ••• , C~ 

by a series of Reidemeister moves. ( 12) 

To see this we may assume that C'1, ... , c~ I arise from cl' ... , ck - I by one 
Reidemeister move. We assume this is a Reidemeister move of type III-the 
other types follow similarly. 

Let P, Q, R be the three chords of C 1 , ••• , C1, 1 on an open disk A c S to 
which the Reidemeister move is applied. Note that C 1 , ... , C" 1 do not 
have other chords on A, but C" can have chords on A. 

By Proposition 2 we know that the chords of C 1 , ••• , Ck on A are mini
mally crossing, and by Theorem 2 we may assume that the triangle 
enclosed by P, Q and R does not intersect any of the chords of Ck on A. 
After this we can apply the Reidemeister move to P, Q, R and we obtain 
(12). 
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It implies: 

Let C1 , •• ., Ck be a minimal counterexample on S. Then for each 
rE{l, ... ,k} the system C1 ,. •• ,C,_ 1 ,C,+ 1 , ... ,C, is minimally 
crossing. 
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( 13) 

For suppose that, say, C 1 , ••• , Ck- 1 is not minimally crossing. By ( 11 )(iii) 
there is a series of Reidemeister moves bringing C 1 , ••• , Ck_ 1 to 
C'1, ••• , C~_ 1 so that for some i E { 1, ... , k- 1}, er( C'.J <er( C;) or for some 
i, j E { 1, ... , k- I}, er( c;, c;J <er( C;, Ci)(i # j). By (12) there is a curve C~ 
and a series of Reidemeister moves bringing C,, ... , Ck 1 , Ck to 
C'1, ••• , C~ __ 1, C~. This contradicts ( 11 )(ii). 

So we have ( 13 ), which gives the proposition. I 

6. SPHERE, OPEN DISK, AND PROJECTIVE PLANE 

We now have directly: 

PROPOSITION 5. Theorem 1 is true in case Sis a sphere or an open disk. 

Proof Directly from Proposition 3. I 

PROPOSITION 6. Theorem 1 is true in case S is the projective plane. 

Proof Let C 1, ... ,Ck be a minimal counterexample on S. Let D be a 
simple closed nonnullhomotopic curve on S so that D, C,, ... , Ck is a 
regular system of curves and so that I::= 2::7= 1 cr(D, C;) is minimal. Let 
A:= S\D. So A is an open disk. We may assume that A is the unit open 
disk in C and that S is obtained from the closed unit disk K in C by iden
tifying opposite points on the boundary of K. By Proposition 2 each chord 
of A is a simple path connecting two points on bd( K) and each two chords 
intersect each other at most once. Moreover, by Ringel's theorem and 
Proposition 2 we may assume that all chords are straight line segments 
with endpoints on bd(K). 

Now if there is a chord I that does not connect two opposite points on 
bd(K), then there is a straight line segment connecting two opposite points 
on bd(K) and not intersecting /. This would give a nonnullhomotopic 
closed curve on Shaving fewer intersections with C,, ... , C" than D-a con
tradiction. 

So each chord connects two opposite points, and hence each chord 
corresponds to one nonnullhomotopic closed curve C;( i E { 1, ... , k} ). Hence 
the system C1 , ••• ,Ck is minimally crossing, contradicting ( 11 )(i). I 

582b 71) J.(() 
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7. MINIMIZING THE CROSSING NUMBER OF PERMUTATIONS 

Theorem 1 for the special cases of the annulus and the Mobius strip 
turns out to boil down to statements on permutations. These statements 
are basic also for our proof for more general surfaces. 

Let re be a permutation of {I, ... , n}. A crossing pair of re is a pair {i, j} 
with (i- j)(n(i)-n(j)) < 0. The crossing number er( re) of re is the number 
of crossing pairs of re. (In Bourbaki [ 2] and Geck and Pfeiffer [ 3] the 
number er( re) is called the length of the permutation re.) 

Let miner( re) denote the minimum of er( n') taken over all conjugates n' 
of n. So mincr(n) only depends on the sizes of the orbits of n. 

A transposition is any permutation (k, k +I) for some k E { 1, ... , n-1}. 
Since each permutation CJ is a product of transpositions r 1 , ••• , r 111 , it is tri
vial to say that for each permutation n there exist transpositions r 1 , ••• , r 111 

such that 

er( r 111 ···r 1 nr 1 • • • r 111 ) =miner( n). ( 14) 

What however can be proved more strongly is: 

THEOREM 4. For each permutation n of { 1, ... , n )- there exist transposi
tions r 1 , ••• , r 111 such that ( 14) holds and such that moreover: 

er( r / · · · r 1 nr 1 • • • ri) ~ er( r; 1 • • • r 1 nr 1 • • • r1 1 ) ( 15) 

for each j = I, ... , 111. 

That is, when going step by step to mincr(n) we never have to increase 
the number of crossings. In Section 9 we shall see that a similar statement 
also holds if we maximi:e the number of crossings. 

We should remark here that Theorem 4 has been proved by Geck and 
Pfeiffer [ 3] for all Wey I groups (including the symmetric group). Its coun
terpart for maximizing, Theorem 5, is, according to our information, not 
known for Wey] groups. For completeness we give a proof of Theorem 4. 
for which we use the following proposition (which is also easy to derive 
with the theory developed in Bourbaki [ 2] (Chapter 4 Section 5) for the 
more general Coxeter groups). 

PROPOSITION 7. Let n be a permutation, let r be the transposition 
(k, k + 1 ), and let n' := rnr. Then: 

cr(n') ~er( n) if and only if n' = n 
( 16) 

or n(k)>n(k+l) or re 1(k)>n 1(k+l). 
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Proof To see sufficiency, suppose cr(n') > cr(n ). Then clearly n' # n. 

Moreover, by parity, er( n') ~er( n) + 2. Hence n' has a crossing pair 
{ i, J} i=- { k, k + 1} such that { r( i), r(j)} is not a crossing pair of n. We may 
assume that i < j, and hence r(i) < r(j). So rnr(i) > rnr(j) and 
nr(i)<nr(j). Hence nr(i)=k and nr(j)=k+l. Son 1(k)=r(i)<r(j)= 
7C 1(k + 1 ). 

One similarly shows that n( k) < n( k + 1 ) (since er( n' 1 ) =er( n') > 
cr(n)=cr(n· 1 )). 

To see necessity, suppose n' :F n, n(k) < n(k + 1) and n 1(k) < n 1(k + I). 
Then for each crossing pair { i, J} of n, the pair { r(i), r(j)} is a crossing pair of 
n'. Indeed, we may assume i < j; hence n(i) > n(j). Since n(k) < n(k + I) we 
know { i, J} i=- { k, k + 1}. So r(i) < r(j). ff { r( i), r())) is not a crossing pair of 
n', we have TC 1(r(i))<TC1(r(j)); that is, r(n(i))<r(n(j)). So {TC(i),n(j)} = 
{ k, k + q, and hence TC(i) = k +I and TC(j) = k. Son 1(k + I)= i < j =TC 1( k), 

a contradiction. 
Hence er( n') ~er( n ). To show strict inequality, we show that { k, k + 1} 

is a crossing pair of n'. (Note that it is not a crossing pair of TC.) 

Suppose { k, k + 1} is not a crossing pair of n'. So TC 1(k) < TC'(k + 1 ). That 
is, r(n(k+l))<r(n(k)). As TC(k+I)>n(k), we know {TC(k),n(k+l)}= 
{ k, k + 1}. But this would imply that n' = n, contradicting our assumption. I 

We put n'::::; n if there exist permutations n 1i, ... , n 1 such that n: 1> = n', 

n1 =n, and for each i= 1, ... , t, cr(n: 1 1 ):;::;; cr(n;) and there exists a transposition 
r such that n:; = rn; 1 r. (Possibly t = 0.) So ::::; is reflexive and transitive. 

Proof of Theorem 4. We show that for each permutation n on { 1, ... , n} 
there exists a permutation n:'::::; n such that n' = ( 1, 2, ... , j 1 )( ) 1 + 1, ... , ):) · · · 
(I 1 + 1 .... , ), ) for some j 1 < j: < · ·. < ),. = n. This proves the theorem, since 
the number of crossing pairs of n:' only depends on the sizes of the orbits. 

Represent permutation n' as 

Choose n' and this representation so that n:'::::; n and so that the vector 
(k 1 , ..• ,kn) is lexicographically minimal. We may assume that TC 1 =TC. 

We show that k i = j for j = 1, ... , n. Suppose this is not the case, and 
choose r satisfying k,. :Fr, with r as small as possible. So ki = j for all j < r, 
and k,. > r. 

By the lexicographic minimality of representation ( 17 ), k,. is not the first 
of any of the orbits in this representation (otherwise we could choose r as 
the start ofa new orbit). So TC 1(k,.) =k,. 1 =r-1. 

Define n':=rnr, where r-:=(k,.-1,k,.). Then rr: 1(k,.-l}E{r, ... ,n}, 
implying TC 1(k, - 1) ~ r > r- 1 = n: 1(k,.). So by Proposition 7, cr(n'):;::;; er( TC). 

This contradicts the lexicographic minimality of representation ( 17 ). I 
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Note that from the proof of Theorem 4 we also obtain: 

miner( n) = n - s (18) 

for any permutation n of {I, ... , n} with s orbits. 

8. THE ANNULUS 

Theorem 4 implies Theorem I in case S is the annulus (the sphere with 
two points deleted). 

PROPOSITION 8. Theorem 1 is true in case S is the annulus. 

Proof Let C 1 , •• ., Ck be a minimal counterexample on S. We may 
assume that Sis obtained from the square K = [ 0, 1] x (0, I) by identifying 
(0,x) and (l,x) for each xE(O, !). Let A 1 :=ix(O, I), let A denote the 
curve on S arising after identifying A0 and A 1 , and let U = ( 0, I) x ( 0, I). 

We may assume that we have chosen the representation so that 
A, C 1 , •.• , c, is regular and so that the number of crossings of A with 
cl' ... , ck is as small as possible. 

Then each chord of C 1 , •.• , C" on U connects A0 and A 1 (when taking 
their closures in K). (Otherwise we could (with the help of Ringel's 
theorem) decrease the number of crossings of A with C 1 , ••• , Ck.) So we can 
orient each chord so that it runs on K from A0 to A 1 • 

Let x 1 , ••• , x 11 be the crossing points of C 1 , ••• , C1, with A, in order. So 
there is a permutation n of { 1, ... , n} such that the chord starting at x, at 
A0 ends at x,,u 1 at A 1(i= 1, ... , n). Note that cr(n) is equal to the total num
ber of crossings of cl' ... , ck. 

Now we have the following: 

if T is a transposition such that er( mr) ::;; er( n ), then we can 
apply Reidemeister moves to C 1 , ••• , Ck such that the associated 
permutation becomes equal to mr. ( 19) 

Indeed, let T = (m, m + 1 ). By Proposition 7, we may assume that 
n(m) > n( m + 1 ). Hence the chords starting at x 111 and at x 111 + 1 cross. There
fore, by Ringel's theorem we can apply Reidemeister moves so that their 
crossing is the first in both of these chords. Then by a topological transfor
mation we can shift the crossing beyond A. This makes that n is transformed 
to rnr. This shows ( 19 ). 

Now if k = 1, n has one orbit. Let C'1 be a closed curve on S freely 
homo topic to C 1 satisfying er( C'1 ) =miner( C 1 ). Then C'1 gives similarly a 
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permutation n'. As C'1 is freely homotopic to C 1 , n' is conjugate to n. As 
er( C'1 ) <er( C; ), we know that er( n') <er( n ). 

So by Theorem 4 there exist transpositions r 1 , ••• , r,,, such that 
cr(rr .. r 1nr 1 ···r;):(cr(r; 1 • .. r 1nr 1 ···r; 1 ) for each j=l, ... ,m, with 
strict inequality for j = rn. But this would give by (19) a series of 
Reidemeister moves so as to decrease the number of self-crossings of C 1 -

contradicting the fact that C 1 is a minimal counterexample. 
If k = 2, then n has two orbits. Then we can consider similarly closed 

curves C'1 , C2 freely homo topic to C 1 , C 2 respectively, satisfying 
er( C'1 , C2) =miner( C 1 , C2 ). I 

9. MAXIMIZING THE CROSSING NUMBER OF PERMUTATIONS 

If we want to apply a similar technique to the Mobius strip, we have to 
consider 1naximi::ing the number of crossings of permutations. We define 
maxcr(n) to be the maximum ofcr(n') taken over all permutations n' con
jugate to n. Again trivially for any permutation n there exist transpositions 
r 1, ••• , r,,, such that 

cr(r111 • • • r 1 nr 1 · • • r 111 ) = maxcr(n). (20) 

Again this can be sharpened to: 

THEOREM 5. For each permutation n there exist transpositions r 1 , ••. , r /11 

such that ( 20) holds and such that moreover: 

cr(r;···r 1 nr 1 ···T;)~cr(r; 1 ···r 1nr 1 ···r; 1 ) ( 21 ) 

for each j = 1. ... , 111. 

We prove Theorem 5 directly only in case n has one or two orbits. The 
general case follows from Proposition 12 below. 

We first show a few propositions. We define =< as in the proof of 
Theorem 4. 

Denote the sequence 1, n, 2, n- l, 3, n - 2, ... by a 1 , a2 , a 1 , a4 , a,, .... So 

a, =S 

a,= n - s +I 

Hence a,,= Ln/2J + 1. 

if r=2s- \, 

if r = 2s. 

Define permutation n,, of { 1, ... , n} by 

nn :=(a1, a2, ... , a,1). 

(22) 

(23) 
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Moreover, if h, k ~ 1 with h + k = n, define permutation n1i. k of { 1, ... , n} by 

(24) 

So nu has orbits of sizes h and k. 

PROPOSITION 9. Let n be a permutation of { 1, ... , n}. 

(i) If re has one orbit then n :::( n,,. 

(ii) If re has two orbits, of si::.e h and k, where 1 belongs to the orbit 

of si:::e h, then re:::( n "· ". 

Proof Write n = ( k 1 , ... , k 11 ) (in case ( i)) or n = ( k 1, ... , k" )(k" + 1 , ••• , k 11 ) 

(in case (ii)), in such a way that (k 1 , -k 2 , k> -k .. , ... ) is lexicographically 
minimal. 

We show that k i = ai for j = I, ... , n, thus proving the proposition. Sup
pose k,. =f. a,. for some r, which we choose as small as possible. So ki = ai for 
j = I, ... , r - 1 and k,. E {a,.+ 1, ... , a 11 }. Clearly, k 1 = I, so r =f. 1. Moreover, in 
case (ii), r=f.h+l (since otherwise (k 1 , ... ,k1i)=(a 1, ... ,a1i), so 
a,. E { k1i + 1, ••• , k,,}, and we can put a,. in the position of k1i + 1 ; this would 
contradict the lexicographic minimality assumption). 

This implies 

n 1(k,.)=k,. 1 =a, 1 • (251 

Case 1. r is odd, say r=2s+l. So a,.=s+l, {k 1 , ... ,k,._i}= 
{a 1, .•• ,a2,}={l, ... ,s}u{n-s+l, ... ,n} and 

{k,., ... ,k,,}={s+l, ... ,n-s}. (261 

By the choice of r we have that k,. =f.a,.=s+ 1, and so by (26), 
s+2~k,.~n-s, and hence k,.-1E{k,.+ 1 , ... , k,,}. Therefore, 

n 1(k,.- l) E {k,, ... , k 11 } = {s +I, ... , n -s}. (27) 

Define r:=(k,.-1,k,.) and n':=rnr. Then by (25) and since 
k,. - 1, k,. E { s + 1, ... , n - s}, 

n' 1(k,.- 1) = rrc 1r(k,.- I)= rrc 1(k,.) 

= r( k /' I ) = k /' I = ll /' I = n - s + 1. ( 28) 

Moreover, 

n' 1(k,.)=rrc 1r(k,.)=rn 1(k,-l)E{s+l, ... ,n-s}, (291 

as rc 1(k,.- 1) E {s + 1, ... , n -s} (by (27)) and ask,., k,. - 1E{s+1, .. ., n-s). 
By (28) and (29 ), n' 1(k,.) < n' 1(k,. - 1 ), implying by Proposition 7 that 

cr(n')~cr(n); so re=:(n'. 
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This contradicts the lexicographic minimality assumption, since 
rr:'=(k1, ... ,k,.. 1.k,.- l, ... ). 

Case 2. r is even, say r=2s. So a,.=n-s+l, {k 1, ... ,k,. 1} = 
{I, ... , s} u { n - s + 2, ... , n} and 

{k,., ... ,k11}={s+l, ... ,n-s+I}. (30) 

By the choice of r we have that k,. ;ifa,.=n-s+ I, and so by (30), 
s+ I ~k .. ~n -s, and hence k,. + 1 E { k,.+ 1, ... , k,,}. Therefore, 

n· 1(k,.+l)E{k,., ... ,k,J ={s+I, ... ,n-s+l}. (31) 

Define r:=(k,.,k,.+l) and n':=rnr. Then by (25) and as 
k,, k,.+ I E {s+ 1, ... , n-s+ I}, 

n:'- 1(k,.+l)=rn 1r(k,.+l)=rn- 1(k,.)=r(k,. i)=k,. 1=a,. 1=s. (32) 

Moreover, 

n:' 1(k,.)=rn 1r(k,.)=rn 1(k,.+l)E{s+l, ... ,n-s+l}, (33) 

as n 1(k,.+l)E{s+l, ... ,n-s+l} (by (31)) and as k,.,k,.+lE 
(s+l, ... ,n-s+l}. 

By (32) and (33) n' 1(k,.) > n' 1(k,. + 1 ), implying by Proposition 7 that 
cr(7T. 1 ) ~ cr(n:); so n ~ n'. This again contradicts the lexicographic mini
mality assumption, since n'=(k 1 , ••• ,k,. 1 ,k,.+l, ... ). I 

At this point we have shown Theorem 5 for permutations n with one orbit. 
It follows that for any permutation n of { 1, ... , n} with only one orbit one has 

maxcr(n) = cr(n,,) = (;)-l n; 1 J. (34) 

Next: 

PROPOSITION 10. If his even then cr(n1,.Jil~cr(n:,d). 

Proo/ Observe that if i, jE {k + 1, ... , n} and {a,., ai} is a crossing pair 
of nu,, then {a,. '" ai d is a crossing pair of 7T.1i.k· Similarly, if 
i,jE{l, ... ,k} and {a,.,aJ is a crossing pair of7T."·'" then {a,.+ 1,,ai+ 11 } is 
a crossing pair of 7T. 11.". 

Finally, each pair {a,., a i} with 1 ~ i ~ h < j ~ n, is a crossing pair of re"·". 
So we obtain the required inequality. I 

Proposition I 0 implies the theorem for permutations with two orbits of even 
size each. Indeed, by Proposition 9 we have that for each permutation n with 
two orbits, of even sizes h and k, one has 7T. ~ re"·" or re ~ n". ". As by 
Proposition 10 one has cr(:n:1i. ") = cr(nk. 1il. both n1i." and n"· ''attain maxcr(n). 
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We are left to consider permutations with two orbits, at least one of 
them being odd. Then we have: 

PROPOSITION 11. Let h be odd and let k be such that k is even or k? h. 

Then nh.k <nk.h· 

Proof We may assume that k:;::: 2 (otherwise k = h = 1, and the claim is 
trivial). 

By Proposition 9 it suffices to show that there exists a permutation n 
such that rr1i. k < n and such that the orbit of n containing 1 has size k. To 
this end, it suffices to show that there exists a permutation n such that 
n1i. k < n and such that the orbit of n containing 11 has size k. This follows 
from the fact that if 11 belongs to the orbit of size k, then we may assume 
that n(n) = 1, and hence 1 belongs to the orbit of size k. 

Let u := 111/21. Consider permutations n such that n1i. k < n and such 
that 

n=(1,k2 , ..• ,kd(k1i+t'···,k11 ) (35) 

where 

(i) k;+k;+t =n+2 for each even i<n; 

(ii) k;<k;+ 1 foreachodd i~11-2 with i=l-h; (36) 

(iii) k; ~ u for each odd i ~ n. 

Such permutations n exist since ( 24) is of this form. Choose n such that 
k 3 + k, + . · · + k;, is as large as possible. 

Note that condition (36)(iii) implies that 

{ k; I; odd} = { 1, 2, ... , u}. (37) 

We first show: 

Let ki = k; + 1 with i, j odd and 3:::; i ~ h < j ~ n. Then i < h and 
j<n. Moreover, ifj::::;11-2, then kic 2 >k;+ 2 · (38) 

Indeed, suppose to the contrary that i = h, or j = n, or j ~ n - 2 and 
ki + 1 < k;+ 2 · Then rr(k;) < n(ki). For if i =h then n(k;) = 1 < n(k). If 
i:::; h - 2 and j = 11 then k; + 2 ?;; k; + 1 = k i ? k 1i + 1 , and hence n( k;) = k; + 1 = 

n+2-k;+ 2 :::;n+2-k1i+ 2 =k 11 + 1 =n(k). If i~h-2 and j:::;n-2 and 
kin <k;+ 2 , then n(k;) = k;+ 1 =n+2-k;+ 2 < n + 2- ki+ 2 =k1 + 1 =n(k1). 

So n(k;) < n(k). 
Now let r := (k;, ki) and n' := rnr. As n(k;) < n(k), we have 

n'(k;)>n'(ki), and hence Proposition 7 gives cr(rr')?;;cr(rr). So n<n'. 
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Let r' := (k; 1, k;_ 1) and n" := r'n'r'. Since k, 1 = ki 1 + 1 and 
rc'(k;_i)=rn(k,_ 1)=r(k1)=k;>k1=r(k)=rn(ki 1 )=n'(ki 1 ), we know 
rc"(k, __ 1)<n"(ki i), and hence, again by Proposition 7, cr(n")~cr(n'); so 
re'< n". Hence n ~ n". 

However, the representation of n" is obtained from that of n by inter
changing k, and ki and by interchanging k, 1 and ki 1 • This contradicts 
the maximality of k, +k5 + ... +k". Thus we have (38). 

From this we derive that k 3 ~ 3, which finishes the proof: as it implies 
that k1i+ 1 =2 and hence k1i+i =11. 

First we have k1i = u. For suppose k1i < u. Then by ( 37) there exists an 
odd j E {lz + l, ... , 11} such that k; = k" + I, contradicting ( 38 ). 

Next ifk is even, then k1+ 2 =k,+l for each odd i in {3~i~lz-2}. 
Otherwise, choose the largest odd i in { 3, ... , h - 2} for which k, + 2 ~ k, + 2. 
Then there exists an odd j E { h + 2, ... , n} such that k; = k, + 1. Then by 
(38),j:S;n-l, and hence (as n is odd),j~n-2. So by (38), k 1 + 2 >k1+ 1 , 

contradicting the maximality of i (since k 1+ 2 <k;+ 1 <u=k"). Hence 
k 3 = u - ( h - 3) /2 ~ 3 (since 2u = n + 1 = h + k + 1 ); h + 3 as k ); 2). 

If k is odd, then /1 is even and k); h. Then k, + 2 ~ k, + 2 for each odd i 
in {3~i:S;h-2}. For suppose k 1+ 2 );k,+3. Then there exists an odd 
jE{lz+2, ... ,n-3} such that ki=k,+1 and ki+ 2 =k,+2. Then (38) 
implies k, + 2 = k/+ 2 > k, + "' a contradiction. Therefore, k 3 ~ u - (h - 3)); 3 
(since 2u = n = h + k ~ 2h as k); h ). I 

This finishes the proof of Theorem 5 for permutations with two orbits. 
Indeed, let n be a permutation with two orbits, of size h and k respectively, 
where h is odd and k is even or k;;;: h. Then by Propositions 9 and 11, 
n<nk.h· So nu, should attain a maximum number of crossings. 

In fact, we obtain maxcr(n)=cr(n1,.d for any permutation with two 
orbits of size lz and k, where h is odd, and k is even or k;;;: h. Concluding, 
for any permutation with two orbits, of sizes h and k: 

(11) lh-lj lk-lj maxcr( n) = 2 - l T - l T - min { /z, k} 

(n) lh-IJ lk-lj maxcr( n) = 2 - l T - l T 

10. THE MOBIUS STRIP 

if h and k are odd, 

(39) 

otherwise. 

Theorem 5 implies Theorem 1 in case S is the Mobius strip (the projec
tive space with one point deleted) in the same way as Theorem 4 implies 
Theorem I in case Sis the annulus as we saw in Section 8. 
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PROPOSITION 12. Theorem l is true in case Sis the Mobius strip. 

Proof Similar to the proof of Proposition 8. I 

We should note here that a reverse derivation from Theorem 1 for the 
Mobius strip implies Theorem 5 for permutations with any number of 
orbits. 

11. GEODESICS ON HYPERBOLIC AND EUCLIDEAN SURFACES 

All surfaces for which Theorem 1 remains to be proved are hyperbolic or 
Euclidean. It means that these surfaces can be equipped with a geometric 
structure, which gives 'geodesics' on the surface. Basic ingredient in our 
proof then is the fact that each nonnullhomotopic closed curve on such a 
surface can be brought arbitrarily close to a geodesic by a series of 
Reidemeister moves. 

In order to give a more precise formulation and a proof of this statement 
we need some definitions and basic facts about surfaces and their universal 
covering surfaces, the background of which can be found in Baer [ 1], 
Koe be [ 5], Reinhart [ 7], and Stillwell [ 9]. 

Let Ube the Euclidean or hyperbolic plane. There exists a metric dist on 
U such that for any three points x, y, ::: on U lie, in this order, on a line 
if and only if <list( x, .: ) =<list( x, y) + dist( y, .: ). An isometry on U is a 
homeomorphism efJ: U--+ U so that dist(efJ(x), efJ(y))=dist(x, y) for all 
x, y E U. Thus, an isometry maps lines to lines. 

Let S be any compact surface with a finite number of points deleted, 
with Euler characteristic x( S)::;:;; 0. If x(S) = 0, S is called Euclidean and if 
x( S) < 0, S is called hyperbolic. The Euclidean plane (if S is Euclidean) or 
the hyperbolic plane (if if S is hyperbolic) can be considered as a wzirersa/ 
covering surface of S. That is, there exists a 'projection' function if;: U-> S 
with the following properties: 

(i) for each u EU there is an open disk N containing u so that 
if; IN: N--+ Sis one-to-one; 

(ii) if u, u' E U and t/;( u) = l/J( u') then there exists an isometry 
rp: U--+ U so that rp(u) = u' and if; efJ =if;; (40) 

(iii) for each closed curve C: S 1 --+ S and each u E t/; 1 [ C( 1 ) ] 
there exists a unique continuous function D: IR-+ U such 
that C'(O)=u and such that if; ,D(x)=C(e2'"') for all 
x E IR. ( D is a lifting of C to U.) 
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A closed curve J on S is called geodesic if any lifting of J to U is a line and 
if J has only a finite number of selfintersections. This last condition means 
that there is no closed curve K such that J = K" for some n > 1. 

Each nonnullhomotopic closed curve on S is freely homotopic to J" for 
some geodesic J and some n ;?!: 1. If S is hyperbolic, then J and n are 
unique. 

The projection function if; transmits the distance function dist on U to a 
distance function <list., on S given by: 

dist_..,.(x, y) := min{ dist(x', y') Ix', y' EU, i/;(x') = x, ij;(y') = y} (41) 

for x, y ES. Moreover, we can speak of a 'piecewise linear' curve C on S, 
of the length length( C) of such a curve, and of convex subsets of S (these 
are the subsets containing with any pair of points x, y also the shortest line 
segment connecting x and y ). We may assume that each nonnullhomotopic 
piecewise linear function has length larger than 2. 

We introduce a measure for the distance of a closed curve from a 
geodesic. Let C: s I -+ s be a piecewise linear closed curve on S, and let 
D: IR-+ Ube a lifting of C to U. If C is nonnullhomotopic, the deviation 

dev( C) of C is equal to 

inf{ e ID[ IR] r;;;_ B(L, e) for some line L} (42) 

where B( L, e) := { x E VI dist( L, x) < el. If C is nullhomotopic, its deviation 
dev(C) is 

inf{ e ID[ IR] r;;;_ B( u, e) for some point u}. (43) 

PROPOSITION 13. Let cl' ... , c,, be closed CUl'PCS 011 sand let B > 0. Then 
there exists a series l!/' Reidemeister moves bringing C 1 , .. ., C, to C'1 , ... , c;, 
such that dev( c;) < B for each i = 1, .. ., k. 

Proo/ We introduce a second measure for the 'geodesicity' of a curve. 
Let C: S 1 -+ S be a closed curve. Let C': IR-+ Ube any lifting of C to U. 
For any t E IR, let I be the largest interval on IR such that t EI and 
C'[I] s; B( C(t), 1 ). If I is bounded, let rand s be the end points of I. Define 

tort 1( C') :=length( C'[ /]) - <list( C'( r), C'(s) ). (44) 

If I= IR (so C is nullhomotopic and C' is contained in a disk of radius 1 ), 
then tort 1( C') : =length( C' ). The 'tortuosity' of C is 

tort( C) :=sup{ tort 1( C') It E IR}. (45) 

Obviously, this number is independent of the choice of lifting C' of C. 
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The following relation between dev and tort is easy to see, by continuity: 

For each L and each s > 0 there exists a 6 > 0 such that each 
piecewise linear closed curve C on S with length( C) ~ L and 
tort( C) ~ 6 has dev( CJ<<:. (46) 

Now we prove Proposition 13. Let L be the maximum length of the C;. 
Take 6 as in ( 46 ). We consider the following operation applied to a point 
u ES. Let B(u, 1) be the ball with radius 1 around u. Replace each chord 
of C 1 , ... , Ck by the shortest curve on B( u, 1 ) connecting the end points of 
that chord. If C; is contained in B( u, 1 ) we replace it by a closed curve of 
length close to 0. 

This operation can be performed by Reidemeister moves (by 
Theorem 3 ). We perform this operation to any u, as long as the replace
ment reduces the length of at least one C; by more than 6. So we can apply 
it only a finite number of times, and hence finally tort( C;) ~ 6 for each i. 
Therefore, by ( 46 ), dev( C;) < <: for each i. I 

12. THE HYPERBOLIC SURFACES 

Hyperbolic surfaces have the property that each nonnullhomotopic 
closed curve is freely homotopic to a unique geodesic-more precisely, to 
the power of a geodesic with a unique image. This is used to prove: 

PROPOSITION 14. Theorem 1 is true in case S is a hyperbolic surjc1ce. 

Proof Let C 1 , ... , C" be a minimal counterexample. By Proposition 4 
we know that k ~ 2 and that if k = 2 then er( C;) =miner( C;) for i = 1, 2. 
Moreover, from Propositions 2 and 13 we know that each C; is non
nullhomotopic. Let 1; be a geodesic with C; ~ 1'.'' for some n; ~ 1. Let G; be 
the image of l;. So G; is a graph embedded on S. As the J, are geodesic, 
we know that if G; #- G;· then G; n G;· is finite. 

Let G be the graph G 1 u . · · u G1,. Let V and E denote the vertex set 
and edge set of G. By introducing some extra vertices of degree 2, we may 
assume that G does not have loops or multiple edges. Moreover, we may 
assume that V is also the vertex set of each G;. For each v E V and each 
i = 1, ... , k, let d, .. ; be half of the valency of v in G;. 

Now we consider a neighbourhood of G-in fact, we consider a 
polygonal decomposition of it. To this end we choose for each vertex i· a 
convex polygon P,. containing v in its interior, and for each edge e a convex 
4-gon P, such that any edge e = uv is contained in the interior of 
P 11 u P,. u P, .. We can assume that the P, are mutually disjoint and that 
the P,, are mutually disjoint, while P,. and P,. intersect if and only if v is 
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incident with e. In that case, P,. and P e intersect in a side both of P .. and 
of P,,. Moreover, each side of any P,. is equal to the intersection of P,. with 
P" for some edge e incident with v. So, if e and e' are 'opposite' edges inci
dent with vertex v, then P" and P". intersect P,. in opposite sides of P, .. We 
can also assume that if v and v' are the vertices incident with edge e, then 
P,. and P, .. intersect P., in opposite sides of P, .. 

Choose e > 0 such that for each edge e = uv, B( e, e) is contained in 
P., u P" u P,.. By Proposition 13 we may assume that we have applied 
Reidemeister moves to C 1 , ••• , Ck so that dev( C;) < e for each i. Hence the 
C; are contained in the interior of the union of the P,. and P, .. We may 
assume moreover that no crossing of the C; is on any side of any P,., and 
that we have applied Reidemeister moves so as to minimize the number of 
intersections of the C; with the sides of the P,.. By Proposition 2 the chords 
of the C; on any P,. and on any P,. are minimally crossing. 

This implies the following. Let l; form the circuit ( r 11 , e 1, i·,, ... , e,. v,) in 
G, with v0 = v,. Then C; traverses P,.0 , P,.1, P,.1, ••• , P,.,. P,.,, in this order, 
repeatedly-that is, n; times. After entering a polygon at some side, it 
leaves the polygon at the opposite side. We may assume that any two 
chords of the C; on any P,. cross each other only if they connect two dif
ferent pairs of opposite sides. 

First, suppose that k = 1. Choose an edge e0 of G, with ends t~ 0 and v, 
say. Then we may assume that P,. does not contain any self-crossing of C 1, 

except if e = e0 • (This can be seen as follows. If e and e' are opposite edges 
of G incident with vertex v of G, then P .. u P,. u P,,. forms a disk. So by 
Ringel's theorem (Theorem 2) we can 'move' crossings from P .. to P, ... ) 

Let R := P .. 0 n P,.11 • Let n := n,. Let p 1, ••• , p,, be the crossing points of C, 
with R, in this order. Let K 1 , ••• , K,, be the chords of S\R. taking indices 
in such a way that each K;. at the end traversing P,.11 , touches P;· Then 
there is a permutation n of { l, ... , n} such that P rr1 ; 1 is the other end point 
of K;. 

If J, is orientation-preserving, the total number of self-crossings of C 1 is 
equal to 

o "' (d,. I) cr(n)+ n· L,. 2 . 
1· E J 

(47) 

Now if n' ::( n for some permutation n' then there exist Reidemeister moves 
changing C, so as to change n ton'. Since C 1 is a minimal counterexample, 
cr(n) is as small as possible. Hence by Theorem 4, n is minimally crossing 
among all conjugates of n. 

Now if C'1 is a minimally self-crossing closed curve freely homotopic to 
C,, and we would move C'1 similarly close to G, we would obtain a per
mutation n' conjugate to rr., and hence the number of self-crossings of C', 
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is not less than ( 47 ). Therefore, C 1 attains a minimum number of self
crossings. 

If 1 1 is orientation-reversing, the total number of self-crossings of C1 is 
equal to 

(n) o '\' (d,. J) -cr(n)+n- L._ 2 . 
2 eel 

Then we can proceed similarly to the orientation-preserving case, 
Theorem 5. 

Next, suppose that k = 2 and that G 1 =f. G2 . Then 

cr(C 1,C2 )= I n 1 d,._ 1n2 d,. 2 • 

1·E:: I' 

(48) 

us mg 

(49) 

which number is also equal to miner( C 1 , C 2 ) by Baer's theorem [ 1 ]. This 
contradicts the fact that C 1 , C2 is a minimal counterexample. 

Finally, suppose that k=2 and G 1 =G 2 . Then we may assume that 
1 1 =12 . We can now proceed as in the case k = 1. We obtain a permutation 
n of { 1, ... , n} with orbits of sizes 11 1 and 11 2 (with /1 := n 1 +n 2 ). 

If J 1 is orientation-preserving, the total number of crossings (including 
self-crossings) of C 1 and C2 is equal to (47). Like in the case k=l, it 
follows that C 1, C2 is minimally crossing. (Note that if cr(C'1, C~)= 

miner( C 1 • C2 ) for some C'1 - C 1 and C~ - C2 , we can apply Reidemeister 
moves so as to obtain moreover that er( C'1 ) =miner( C 1 ) and er( C~) = 
mincr(C2 ), since we have finished the case k= I (using (12)).) 

If J 1 is orientation-reversing, the total number of crossings (including 
self-crossings) of C 1 and C2 is equal to (48). Then we can proceed similarly 
to the orientation-preserving case above. I 

13. THE TORUS AND THE KLEIN BOTTLE 

The only two surfaces for which we have not proved yet Theorem 1 are 
two Euclidean surfaces: the torus and the Klein bottle. The difference with 
the hyperbolic case is that on these surfaces there is not a unique geodesic 
freely homotopic to a given closed curve if it is orientation-preserving. 
However, in that case any two such geodesics can be moved in two essen
tially different ways to each other. This enables us to remove a point of the 
surface and to obtain a reduction to the hyperbolic case. 

PROPOSITION 15. Theorem 1 is true in case S is the torus or the Klein 
bottle. 
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Proof Let C 1 , ••• ,Ck form a minimal counterexample for the torus or 
the Klein bottle S. So k = 1 or k = 2. We may assume that if J is any 
geodesic freely homotopic to any C;, and L and L' are two difierent liftings 
of J, then <list( L, L') > 1. (Necessarily, L and L' are parallel lines.) By 
Proposition 13 we may assume that dev( C;) < ~· 

Then there exist geodesics J 1, ... , Jk such that C; - J? for some n; and 
such that dist(D;, L;) <~for some liftings D; and L; of C; and J; respec
tively. Let c; - C; be such that C',, ... , c;.. is minimally crossing. Again by 
Proposition 13, we may assume that there exist geodesics J; such that 
c; - J';"' and such that <list( n;, L;) <~for some liftings D; and L; of c; and 
J; respectively. Since any two different liftings of any J; are parallel line at 
least at distance I apart, and similarly for any two liftings of any 1;, and 
since any liftings of l; and J; are parallel lines for any fixed i, we can delete 
a point x from S such that no C; and c; traverses x and such that for each 
i, C; and c; are freely homotopic also in S\ { x}. As S\ { x} is hyperbolic, 
Theorem I is reduced to the hyperbolic case. I 

14. FORMULAS FOR CROSSING NUMBERS 

As further consequences of the methods given above we give more 
explicit expressions for the minimal crossing number of closed curves on 
hyperbolic surfaces. 

THEOREM 6. Let C be a closed curve on a hyperbolic swjace, and let J 
be the geodesic and n the natural number such that C - J". Then: 

( i) miner( C) = n 2 • er( 1) + n - I if J is orientation-preserving, 

(ii) miner( C) = n 2 . cr(J) + Ln - l/2j if J is orientation-reversing. 

Proof We may assume that er( C) =miner( C). In particular, no series 
of Reidemeister moves can decrease er( C). Let G be the image of J, and let 
V and E denote the vertex set and edge set of G. For each r E V, let d, 
denote half of the valency of v in G. 

We apply the same techniques as in the proof of Proposition 14 to move 
C close to G. By the fact that cr(l) = :L,.,;I'( 'i ) and by (18 ), ( 34 ), ( 4 7 ), and 
( 48 ), the formulas follow. I 

THEOREM 7. Let C, D be two closed curses on a hyperbolic swj'ace, and 
let J, K be geodesics and m, n be natural numbers such that C - 1 111 and 
D-K". Then 

(i) miner( C, D) = 2mn. cr(l) + min{ m, n} (/' J - Kand C and Dare 
orientation-reversing, 
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(ii) miner( C, D) = 2mn · er(]) if J ~ K and C or D is orientation. 
preserving, 

(iii) miner( C, D) = mn · er(J, K) if J ?- K. 

Proof 
and (39). 

Similar to the proof of Theorem 6, now using ( 18 ), ( 34 }, 

I 
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