Making Curves Minimally Crossing by Reidemeister Moves

Maurits de Graaf *
Department of Mathematics, Unitersity of Amsterdam. Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands
and
Alexander Schrijver
('WI, Kruisladn 413, 1098 SJ Amsterdam, The Netherlands; and Department of Mathematics, Unicersit! of Amsterdam,
Plantage Muidergracht 24, I018 TV Amsterdam, The Netherlands

Received February 22, 1996

DEDICATED TO PROFESSOR W. T. TUTTE ON THE OCCASION OF HIS EIGHTIETH BIRTHDAY

Abstract

Let C_{1}, \ldots, C_{h} be a system of closed curves on a triangulizable surface S. The system is called minimully crossing if each curve C^{\prime}, has a minimal number of selfintersections among all curves $C^{\prime \prime}$, freely homotopic to C_{i}^{\prime} and if each pair C_{i}, C_{j}^{\prime} has a minimal number of intersections among all curve pairs $C_{1}^{\prime \prime}$, $C_{"}^{\prime \prime}$, freely homotopic to (,,C, respectively $(i, j=1, \ldots, k, i \neq j)$. The system is called regular if each point traversed at least twice by these curves is traversed exactly twice, and forms a crossing.

We show that we can make any regular system minimally crossing by applying Reidemeister moves in such a way that at each move the number of crossings does not increase. It implies a finite algorithm to make a given system of curves minimally crossing by Reidemeister moves. 1. 1997 Academic Press

1. INTRODUCTION AND FORMULATION OF THE THEOREM

Let S be a surface. A closed curve on S is a continuous function $C: S^{1} \rightarrow S$ (where S^{1} is the unit circle in the complex plane). Two closed curves C and C^{\prime} are freely homotopic, in notation: $C \sim C^{\prime}$, if there exists a continuous function $\Phi: S^{1} \times[0,1] \rightarrow S$ such that $\Phi(z, 0)=C(z)$ and $\Phi(z, 1)=C^{\prime}(z)$ for all $z \in S^{1}$.

[^0]For any closed curve C on S, the number of self-intersections (counting nultiplicities) of C is denoted by $\operatorname{cr}(C)$. That is,

$$
\begin{equation*}
\operatorname{cr}(C)=\frac{1}{2}\left|\left\{(w, z) \in S^{1} \times S^{1} \mid C(w)=C(z), w \neq z\right\}\right| . \tag{1}
\end{equation*}
$$

Moreover, $\operatorname{mincr}(C)$ denotes the minimum number of $\operatorname{cr}\left(C^{\prime}\right)$ where C^{\prime} anges over all closed curves freely homotopic to C. That is,

$$
\begin{equation*}
\operatorname{mincr}(C)=\min \left\{\operatorname{cr}\left(C^{\prime}\right) \mid C^{\prime} \sim C\right\} \tag{2}
\end{equation*}
$$

For any pair of closed curves C, D on S, the number of intersections of $こ$ and D (counting multiplicities) is denoted by $\operatorname{cr}(C, D)$. That is,

$$
\begin{equation*}
\operatorname{cr}(C, D)=\left|\left\{(w, z) \in S^{1} \times S^{1} \mid C(w)=D(z)\right\}\right| . \tag{3}
\end{equation*}
$$

Moreover, mincr (C, D) denotes the minimum of $\operatorname{cr}\left(C^{\prime}, D^{\prime}\right)$ where C^{\prime} and D^{\prime} range over all closed curves freely homotopic to C and D, respectively. That is,

$$
\begin{equation*}
\operatorname{mincr}(C, D)=\min \left\{\operatorname{cr}\left(C^{\prime}, D^{\prime}\right) \mid C^{\prime} \sim C, D^{\prime} \sim D\right\} \tag{4}
\end{equation*}
$$

Let C_{1}, \ldots, C_{k} be a system of closed curves on a surface S. We call C_{1}, \ldots, C_{k} minimally crossing if
(i) $\operatorname{cr}\left(C_{i}\right)=\operatorname{mincr}\left(C_{i}\right)$ for each $i=1, \ldots, k$;
(ii) $\operatorname{cr}\left(C_{i}, C_{j}\right)=\operatorname{mincr}\left(C_{i}, C_{j}\right)$ for all $i, j=1, \ldots, k$ with $i \neq j$.

We call C_{1}, \ldots, C_{k} a regular system of curves if C_{1}, \ldots, C_{k} have only a finite number of intersections (including self-intersections), each being a crossing of only two curve parts. That is, no point on S is traversed more than twice by C_{1}, \ldots, C_{k} and each point of S traversed twice has a disk-neighborhood on which the curve parts are topologically two crossing straight lines. To such systems of curves we can apply the following four operations called Reidemeister moves:

The pictures here represent the intersection of the union of C_{1}, \ldots, C_{k} with an open disk on S. So no other curve parts than the ones shown intersect such a disk.

Here and below we take all statements topologically. For instance, an open disk is any topological space homeomorphic to an open disk. Pictures
are taken up to topological transformations. As an 'implicit' Reidemeister move we take shifting all curves simultaneously over the surface, by an isotopy $\Phi: S \rightarrow S$ (thus not changing the combinatorial structure of the system of curves).

The main result of this paper is:

Theorem 1. Let S be a triangulizable surface. Then any regular system of closed curves on S can be transformed to a minimally crossing system by a series of Reidemeister moves.

This theorem will be used in a subsequent paper [4] to prove a theorem on decompositions of graphs and a homotopic circulation theorem.

It is important to note that the main content of Theorem 1 is that we do not need to apply the operations (6) in the reverse direction-otherwise the result would follow quite straigthforwardly with the classical techniques of simplicial approximation (as applied by Reidemeister [6]). Clearly, the reverse of a type III Reidemeister move is again a type III Reidemeister move; similarly for type 0 . However, this does not hold for types I and II.

The theorem has as a consequence:

Corollary 1a. There is a finite algorithm to transform a given regular system of closed curves on a surface, to a minimally crossing system of closed curves by Reidemeister moves.

We can assume here that the system is given in a combinatorial way. That is, the curves are given by the graph formed by their embedding, and the surface by the faces made by that graph. For our purposes it only matters if a face is topologically a disk or not. This all can be described in a finite way.

The reason that our theorem gives a finite algorithm is that we can apply the Reidemeister moves without increasing the total number of crossings. So in a brute force way, we could enumerate all possible configurations that arise from the given system by any series of Reidemeister moves type III (there are only finitely many of them, since there are only finitely many graphs with a given number of vertices, and since for each graph there are only finitely many ways of attaching faces). Next we see if we can apply to any of these configurations a Reidemeister move of type 0 , I or II. If so, we can continue with a simpler system; that is, with fewer crossings or with fewer closed curves (by removing a homotopically trivial closed curve). If not, our theorem says that the system is minimally crossing.

We can arrive at this conclusion by our theorem. If we would need to apply Reidemeister moves of type I or II also in the reverse direction, we would not obtain a finite procedure.

2. SOME FURTHER TERMINOLOGY AND NOTATION

Let S be a surface. A curve on S is a continuous function $C: I \rightarrow S$ where I is a connected subset of S^{1}. It is closed if $I=S^{1}$, nonclosed if $I \neq S^{1}$, and simple if it is one-to-one.

Let C be a curve on a surface S and let $A \subseteq S$. We call L a chord on A of C if $L=C \mid I$ for some connected component I of $C^{-1}[A]$. We call L a chord on A of C_{1}, \ldots, C_{k} if L is a chord on A of one of C_{1}, \ldots, C_{k}.

A closed curve C is called nullhomotopic if it is freely homotopic to a constant function. It is orientation-preserving if passing once around C does not change the meaning of 'left' and 'right'. Otherwise, C is orienta-tion-reversing.

We will, if no confusion arise, identify a closed curve $C: S^{1} \rightarrow S$ with its image $C\left[S^{1}\right]$. Moreover, we identify a closed curve C with any closed curve $C^{\prime}=C \phi$ if $\phi: S^{1} \rightarrow S^{1}$ is a homeomorphism isotopic to the identity.

3. REDUCTION TO COMPACT SURFACES WITH A FINITE NUMBER OF HOLES

A compact surface with a finite number of holes is a surface arising from a compact surface by deleting a finite number of points. (So a compact surface with a finite number of holes need not be compact.)

We show that to prove Theorem 1 we may restrict ourselves to compact surfaces with a finite number of holes.

Let S be a surface and let $S^{\prime} \subseteq S$. For closed curves C and D on S^{\prime} denote the function mincr by mincr' if it is with respect to S^{\prime}. Clearly,

$$
\begin{equation*}
\operatorname{mincr}^{\prime}(C) \geqslant \operatorname{mincr}(C) \quad \text { and } \quad \operatorname{mincr}^{\prime}(C, D) \geqslant \operatorname{mincr}(C, D) \tag{7}
\end{equation*}
$$

Proposition 1. Let S be a triangulizable surface and C_{1}, \ldots, C_{k} be a regular system of closed curves on S. Then S contains a compact surface S^{\prime} with a finite number of holes such that S^{\prime} contains C_{1}, \ldots, C_{k} and such that $\operatorname{mincr}{ }^{\prime}\left(C_{i}\right)=\operatorname{mincr}\left(C_{i}\right)$ for each i and $\operatorname{mincr}^{\prime}\left(C_{i}, C_{i}\right)=\operatorname{mincr}\left(C_{i}, C_{j}\right)$ for all $i, j(i \neq j)$.

Proof. Consider a polygonal decomposition of S in which each vertex has degree 3. For all i, j with $1 \leqslant i<j \leqslant k$, let $\Lambda_{i, j}$ be the set of all polygons traversed when shifting C_{i} and C_{j} to some closed curves C_{i}^{\prime} and C_{j}^{\prime} (respectively) satisfying $\operatorname{cr}\left(C_{i}^{\prime}, C_{j}^{\prime}\right)=\operatorname{mincr}\left(C_{i}, C_{j}\right)$. Similarly, for each $i=1, \ldots, k$ let Δ_{i} be the set of all polygons intersected when shifting C_{i} to some closed curve C_{i}^{\prime} satisfying $\operatorname{cr}\left(C_{i}^{\prime}\right)=\operatorname{mincr}\left(C_{i}\right)$. Note that each $\Delta_{i, j}$ and each Δ_{i} is finite. Let S^{\prime} be the union of all $\Delta_{i, j}$ and Δ_{i}. Then S^{\prime} is a compact bordered
surface with a finite number of boundary components, and the proposition follows.

Proposition 1 shows that in the sequel we may assume:
S is a compact surface with a finite number of holes.

4. THE DISK

One important ingredient in our proof is a theorem of Ringel, and an extension of it, on shifting curves in a disk.

Let U be a closed disk. Consider systems of nonclosed curves C_{1}, \ldots, C_{k} on U satisfying:
(i) each C_{i} is simple and has end points on $\operatorname{bd}(U)$;
(ii) if $i \neq j, C_{i}$ and C_{j} have at most one intersection, being a crossing;
(iii) each point of U traversed by at least two curves belongs to the interior of U and is a crossing of two curve parts, and is not traversed by any other curves.

Ringel [8] showed:
Theorem 2 (Ringel's theorem). Let U be a closed disk. Let C_{1}, \ldots, C_{k} and $C_{1}^{\prime}, \ldots, C_{k}^{\prime}$ be systems of curves on U each satisfying (9). For each i, let C_{i} and C_{i}^{\prime} have the same pair of end points. Then C_{1}, \ldots, C_{h} can be moved to $C_{1}^{\prime}, \ldots, C_{k}^{\prime}$ by a series of Reidemeister moves of type III, each applied to the interior of U.

Next consider systems of curves C_{1}, \ldots, C_{k} on U satisfying:
(i) each C_{i} is either closed and disjoint from $\operatorname{bd}(U)$ or is nonclosed and has two distinct end points on $\operatorname{bd}(U)$;
(ii) each point p of U traversed by at least two curve parts belongs to the interior of U and is a crossing of the two curve parts while no other curve parts traverse p.

Call a system satisfying (10) minimally crossing if each curve is simple, and any two curves have at most one intersection. We derive from Ringel's theorem:

Theorem 3. Any system of curves on U satisfying (10) can be transformed to a minimally crossing system by a series of Reidemeister moves.

Proof. Let C_{1}, \ldots, C_{k} be a system of curves on U satisfying (10). We may assume that no series of Reidemeister moves decreases the number of (self-)crossings. We show that the system is minimally crossing, by induction on the number t of crossings (including self-crossings) of C_{1}, \ldots, C_{k}.

We first show that each of the C_{i} is simple. Suppose, say, C_{1} is not simple. Then C_{1} contains a simple 'loop' L-that is, there is an interval $I=[x, y]$ such that $C_{1} \mid I$ is one-to-one, except that $C_{1}(x)=C_{1}(y)$. Let U^{\prime} be a disk in U containing L and its interior, except for a 'small' neighbourhood of $C_{1}(x)$. So U^{\prime} contains less than t crossings, and hence, by the induction hypothesis, the chords of the C_{i} on U^{\prime} are minimally crossing. Hence the chord $L \cap U^{\prime}$ does not intersect any of the other chords. Therefore, all other chords are actually pairwise disjoint closed curves contained in the interior of L. With Reidemeister moves of type 0 they can be moved to the exterior of L. After that we can apply a Reidemeister move of type I to remove L, contradicting the minimality of the number of crossings.

We next show that any two of the C_{i} cross each other at most once. Suppose that, say, C_{1} and C_{2} cross each other more than once. Then there exist intervals $I_{1}=\left[x_{1}, y_{1}\right]$ and $I_{2}=\left[x_{2}, y_{2}\right]$ such that $C_{1} \mid I_{1}$ and $C_{2} \mid I_{2}$ are disjoint, except that $C_{1}\left(x_{1}\right)=C_{2}\left(x_{2}\right)$ and $C_{1}\left(y_{1}\right)=C_{2}\left(y_{2}\right)$. Let L be the digon formed by $C_{1} \mid I_{1}$ and $C_{2} \mid I_{2}$. Let U^{\prime} be a disk on U containing L and its interior, except for a small neighbourhood of $C_{1}\left(x_{1}\right)$. So U^{\prime} contains less than t crossings, and hence, by the induction hypothesis, the chords of the C_{i} on U^{\prime} are minimally crossing. By Ringel's theorem (Theorem 2) we can apply Reidemeister moves so that the two chords formed by $C_{1}\left[I_{1}\right]$ and $C_{2}\left[I_{2}\right]$ have a crossing 'close' to $C_{1}\left(x_{1}\right)$, in such a way that the digon formed in the new situation does not contain any other curve parts. Hence it can be removed with a Reidemeister move of type II. This reduces the number of crossings, and hence contradicts the minimality of the number of crossing.

5. PROPERTIES OF MINIMAL COUNTEREXAMPLES

With the help of the results of Section 4 we derive in this section some properties of 'minimal counterexamples' to Theorem 1 . Let S be a triangulizable surface and let C_{1}, \ldots, C_{k} be a regular system of closed curves on S. We call C_{1}, \ldots, C_{k} a minimal counterexample if the following holds:
(i) the system C_{1}, \ldots, C_{k} is not minimally crossing;
(ii) no series of Reidemeister moves decreases $\operatorname{cr}\left(C_{i}\right)$ for any $i \in\{1, \ldots, k\}$ or $\operatorname{cr}\left(C_{i}, C_{i}\right)$ for any $i, j \in\{1, \ldots, k\}(i \neq j)$;
(iii) k is minimal (under (i) and (ii)).

It is obvious that any system obtained from a minimal counterexample by applying a series of Reidemeister moves of type III, is a minimal counterexample again (since such operations are reversible). Furthermore, we cannot apply a Reidemeister move of type 0 , I, or II to any minimal counterexample.

Proposition 2. Let C_{1}, \ldots, C_{k} be a minimal counterexample on S and let A be an open disk on S. Then the chords of C_{1}, \ldots, C_{k} on A are minimally crossing, and none is a closed curve.

Proof. Directly from Theorem 3 and (11)(ii).
In particular:

Proposition 3. Let C_{1}, \ldots, C_{k} be a minimal counterexample on S. Then there is no open disk containing any of the curves C_{i} for $i=1, \ldots, k$.

Proof. Directly from Proposition 2.
Next we show:

Proposition 4. Let C_{1}, \ldots, C_{k} be a minimal counterexample on S. Then $k \leqslant 2$ and if $k=2$ then $\operatorname{cr}\left(C_{i}\right)=\operatorname{mincr}\left(C_{i}\right)(i=1,2)$.

Proof. We first show for any regular system C_{1}, \ldots, C_{k} of closed curves on S :
if C_{1}, \ldots, C_{k-1} can be transformed to closed curves $C_{1}^{\prime}, \ldots, C_{k-1}^{\prime}$ by a series of Reidemeister moves, then there exists a closed curve C_{k}^{\prime} such that C_{1}, \ldots, C_{k} can be transformed to $C_{1}^{\prime}, \ldots, C_{k}^{\prime}$ by a series of Reidemeister moves.

To see this we may assume that $C_{1}^{\prime}, \ldots, C_{k \ldots 1}^{\prime}$ arise from C_{1}, \ldots, C_{k-1} by one Reidemeister move. We assume this is a Reidemeister move of type III-the other types follow similarly.

Let P, Q, R be the three chords of $C_{1}, \ldots, C_{k, 1}$ on an open disk $A \subset S$ to which the Reidemeister move is applied. Note that C_{1}, \ldots, C_{k-1} do not have other chords on A, but C_{k} can have chords on A.

By Proposition 2 we know that the chords of C_{1}, \ldots, C_{k} on A are minimally crossing, and by Theorem 2 we may assume that the triangle enclosed by P, Q and R does not intersect any of the chords of C_{k} on A. After this we can apply the Reidemeister move to P, Q, R and we obtain (12).

It implies:
Let C_{1}, \ldots, C_{k} be a minimal counterexample on S. Then for each $r \in\{1, \ldots, k\}$ the system $C_{1}, \ldots, C_{r-1}, C_{r+1}, \ldots, C_{k}$ is minimally crossing.

For suppose that, say, C_{1}, \ldots, C_{k-1} is not minimally crossing. By (11)(iii) there is a series of Reidemeister moves bringing C_{1}, \ldots, C_{k-1} to $C_{1}^{\prime}, \ldots, C_{k-1}^{\prime}$ so that for some $i \in\{1, \ldots, k-1\}, \operatorname{cr}\left(C_{i}^{\prime}\right)<\operatorname{cr}\left(C_{i}\right)$ or for some $i, j \in\{1, \ldots, k-1\}, \operatorname{cr}\left(C_{i}^{\prime}, C_{j}^{\prime}\right)<\operatorname{cr}\left(C_{i}, C_{j}\right)(i \neq j)$. By (12) there is a curve C_{k}^{\prime} and a series of Reidemeister moves bringing $C_{1}, \ldots, C_{k-1}, C_{k}$ to $C_{1}^{\prime}, \ldots, C_{k-1}^{\prime}, C_{k}^{\prime}$. This contradicts (11)(ii).

So we have (13), which gives the proposition.

6. SPHERE, OPEN DISK, AND PROJECTIVE PLANE

We now have directly:

Proposition 5. Theorem 1 is true in case S is a sphere or an open disk.
Proof. Directly from Proposition 3.
Proposition 6. Theorem 1 is true in case S is the projective plane.
Proof. Let C_{1}, \ldots, C_{k} be a minimal counterexample on S. Let D be a simple closed nonnullhomotopic curve on S so that D, C_{1}, \ldots, C_{k} is a regular system of curves and so that $\Sigma:=\sum_{i=1}^{k} \operatorname{cr}\left(D, C_{i}\right)$ is minimal. Let $A:=S \backslash D$. So A is an open disk. We may assume that A is the unit open disk in \mathbb{C} and that S is obtained from the closed unit disk K in \mathbb{C} by identifying opposite points on the boundary of K. By Proposition 2 each chord of A is a simple path connecting two points on $\mathrm{bd}(K)$ and each two chords intersect each other at most once. Moreover, by Ringel's theorem and Proposition 2 we may assume that all chords are straight line segments with endpoints on $\operatorname{bd}(K)$.

Now if there is a chord l that does not connect two opposite points on $\operatorname{bd}(K)$, then there is a straight line segment connecting two opposite points on $\operatorname{bd}(K)$ and not intersecting l. This would give a nonnullhomotopic closed curve on S having fewer intersections with C_{1}, \ldots, C_{k} than D-a contradiction.
So each chord connects two opposite points, and hence each chord corresponds to one nonnullhomotopic closed curve $C_{i}(i \in\{1, \ldots, k\})$. Hence the system C_{1}, \ldots, C_{k} is minimally crossing, contradicting (11)(i).

7. MINIMIZING THE CROSSING NUMBER OF PERMUTATIONS

Theorem 1 for the special cases of the annulus and the Möbius strip turns out to boil down to statements on permutations. These statements are basic also for our proof for more general surfaces.

Let π be a permutation of $\{1, \ldots, n\}$. A crossing pair of π is a pair $\{i, j\}$ with $(i-j)(\pi(i)-\pi(j))<0$. The crossing number $\operatorname{cr}(\pi)$ of π is the number of crossing pairs of π. (In Bourbaki [2] and Geck and Pfeiffer [3] the number $\operatorname{cr}(\pi)$ is called the length of the permutation π.)

Let $\operatorname{mincr}(\pi)$ denote the minimum of $\operatorname{cr}\left(\pi^{\prime}\right)$ taken over all conjugates π^{\prime} of π. So $\operatorname{mincr}(\pi)$ only depends on the sizes of the orbits of π.

A transposition is any permutation $(k, k+1)$ for some $k \in\{1, \ldots, n-1\}$. Since each permutation σ is a product of transpositions $\tau_{1}, \ldots, \tau_{m}$, it is trivial to say that for each permutation π there exist transpositions $\tau_{1}, \ldots, \tau_{m}$ such that

$$
\begin{equation*}
\operatorname{cr}\left(\tau_{m} \cdots \tau_{1} \pi \tau_{1} \cdots \tau_{m}\right)=\operatorname{mincr}(\pi) \tag{14}
\end{equation*}
$$

What however can be proved more strongly is:
Theorem 4. For each permutation π of $\{1, \ldots, n\}$ there exist transpositions $\tau_{1}, \ldots, \tau_{m}$ such that (14) holds and such that moreover:

$$
\begin{equation*}
\operatorname{cr}\left(\tau_{j} \cdots \tau_{1} \pi \tau_{1} \cdots \tau_{j}\right) \leqslant \operatorname{cr}\left(\tau_{j,} \cdots \tau_{1} \pi \tau_{1} \cdots \tau_{j, 1}\right) \tag{15}
\end{equation*}
$$

for each $j=1, \ldots, m$.
That is, when going step by step to $\operatorname{mincr}(\pi)$ we never have to increase the number of crossings. In Section 9 we shall see that a similar statement also holds if we maximize the number of crossings.

We should remark here that Theorem 4 has been proved by Geck and Pfeiffer [3] for all Weyl groups (including the symmetric group). Its counterpart for maximizing, Theorem 5, is, according to our information, not known for Weyl groups. For completeness we give a proof of Theorem 4, for which we use the following proposition (which is also easy to derive with the theory developed in Bourbaki [2] (Chapter 4 Section 5) for the more general Coxeter groups).

Proposition 7. Let π be a permutation, let τ be the transposition $(k, k+1)$, and let $\pi^{\prime}:=\tau \pi \tau$. Then:

$$
\begin{gather*}
\operatorname{cr}\left(\pi^{\prime}\right) \leqslant \operatorname{cr}(\pi) \quad \text { if and only if } \quad \pi^{\prime}=\pi \tag{16}\\
\text { or } \quad \pi(k)>\pi(k+1) \quad \text { or } \quad \pi^{\prime}(k)>\pi^{-1}(k+1) .
\end{gather*}
$$

Proof. To see sufficiency, suppose $\operatorname{cr}\left(\pi^{\prime}\right)>\operatorname{cr}(\pi)$. Then clearly $\pi^{\prime} \neq \pi$. Moreover, by parity, $\operatorname{cr}\left(\pi^{\prime}\right) \geqslant \operatorname{cr}(\pi)+2$. Hence π^{\prime} has a crossing pair $\{i, j\} \neq\{k, k+1\}$ such that $\{\tau(i), \tau(j)\}$ is not a crossing pair of π. We may assume that $i<j$, and hence $\tau(i)<\tau(j)$. So $\tau \pi \tau(i)>\tau \pi \tau(j)$ and $\pi \tau(i)<\pi \tau(j)$. Hence $\pi \tau(i)=k$ and $\pi \tau(j)=k+1$. So $\pi^{-1}(k)=\tau(i)<\tau(j)=$ $\pi^{-1}(k+1)$.

One similarly shows that $\pi(k)<\pi(k+1)$ (since $\operatorname{cr}\left(\pi^{\prime-1}\right)=\operatorname{cr}\left(\pi^{\prime}\right)>$ $\left.\operatorname{cr}(\pi)=\operatorname{cr}\left(\pi^{-1}\right)\right)$.

To see necessity, suppose $\pi^{\prime} \neq \pi, \pi(k)<\pi(k+1)$ and $\pi^{-1}(k)<\pi^{-1}(k+1)$. Then for each crossing pair $\{i, j\}$ of π, the pair $\{\tau(i), \tau(j)\}$ is a crossing pair of π^{\prime}. Indeed, we may assume $i<j$; hence $\pi(i)>\pi(j)$. Since $\pi(k)<\pi(k+1)$ we know $\{i, j\} \neq\{k, k+1\}$. So $\tau(i)<\tau(j)$. If $\{\tau(i), \tau(j)\}$ is not a crossing pair of π^{\prime}, we have $\pi^{\prime}(\tau(i))<\pi^{\prime}(\tau(j))$; that is, $\tau(\pi(i))<\tau(\pi(j))$. So $\{\pi(i), \pi(j)\}=$ $\{k, k+1\}$, and hence $\pi(i)=k+1$ and $\pi(j)=k$. So $\pi^{1}(k+1)=i<j=\pi^{-1}(k)$, a contradiction.

Hence $\operatorname{cr}\left(\pi^{\prime}\right) \geqslant \operatorname{cr}(\pi)$. To show strict inequality, we show that $\{k, k+1\}$ is a crossing pair of π^{\prime}. (Note that it is not a crossing pair of π.)

Suppose $\{k, k+1\}$ is not a crossing pair of π^{\prime}. So $\pi^{\prime}(k)<\pi^{\prime}(k+1)$. That is, $\tau(\pi(k+1))<\tau(\pi(k))$. As $\pi(k+1)>\pi(k)$, we know $\{\pi(k), \pi(k+1)\}=$ $\{k, k+1\}$. But this would imply that $\pi^{\prime}=\pi$, contradicting our assumption.

We put $\pi^{\prime} \preccurlyeq \pi$ if there exist permutations π_{0}, \ldots, π_{t} such that $\pi_{0}=\pi^{\prime}$, $\pi_{t}=\pi$, and for each $i=1, \ldots, t, \operatorname{cr}\left(\pi_{i}, 1\right) \leqslant \operatorname{cr}\left(\pi_{i}\right)$ and there exists a transposition τ such that $\pi_{i}=\tau \pi_{i}, \tau$. (Possibly $t=0$.) So \leqslant is reflexive and transitive.

Proof of Theorem 4. We show that for each permutation π on $\{1, \ldots, n\}$ there exists a permutation $\pi^{\prime} \preccurlyeq \pi$ such that $\pi^{\prime}=\left(1,2, \ldots, j_{1}\right)\left(j_{1}+1, \ldots, j_{2}\right) \ldots$ $\left(j_{s-1}+1, \ldots, j_{s}\right)$ for some $j_{1}<j_{2}<\cdots<j_{s}=n$. This proves the theorem, since the number of crossing pairs of π^{\prime} only depends on the sizes of the orbits.

Represent permutation π^{\prime} as

$$
\begin{equation*}
\pi^{\prime}=\left(k_{1}, \ldots, k_{i_{1}}\right)\left(k_{j_{1}+1}, \ldots, k_{i_{2}}\right) \cdots\left(k_{j_{1}+1}, \ldots, k_{j_{1}}\right) \tag{17}
\end{equation*}
$$

Choose π^{\prime} and this representation so that $\pi^{\prime} \preccurlyeq \pi$ and so that the vector $\left(k_{1}, \ldots, k_{n}\right)$ is lexicographically minimal. We may assume that $\pi^{\prime}=\pi$.

We show that $k_{j}=j$ for $j=1, \ldots, n$. Suppose this is not the case, and choose r satisfying $k_{r} \neq r$, with r as small as possible. So $k_{j}=j$ for all $j<r$, and $k_{r}>r$.

By the lexicographic minimality of representation (17), k_{r} is not the first of any of the orbits in this representation (otherwise we could choose r as the start of a new orbit). So $\pi^{-1}\left(k_{r}\right)=k_{r-1}=r-1$.

Define $\pi^{\prime}:=\tau \pi \tau$, where $\tau:=\left(k_{r}-1, k_{r}\right)$. Then $\pi^{\prime}\left(k_{r}-1\right) \in\{r, \ldots, n\}$, implying $\pi^{\prime \prime}\left(k_{r}-1\right) \geqslant r>r-1=\pi^{\prime}\left(k_{r}\right)$. So by Proposition $7, \operatorname{cr}\left(\pi^{\prime}\right) \leqslant \operatorname{cr}(\pi)$. This contradicts the lexicographic minimality of representation (17).

Note that from the proof of Theorem 4 we also obtain:

$$
\begin{equation*}
\operatorname{mincr}(\pi)=n-s \tag{18}
\end{equation*}
$$

for any permutation π of $\{1, \ldots, n\}$ with s orbits.

8. THE ANNULUS

Theorem 4 implies Theorem 1 in case S is the annulus (the sphere with two points deleted).

Proposition 8. Theorem 1 is true in case S is the annulus.
Proof. Let C_{1}, \ldots, C_{k} be a minimal counterexample on S. We may assume that S is obtained from the square $K=[0,1] \times(0,1)$ by identifying $(0, x)$ and $(1, x)$ for each $x \in(0,1)$. Let $A_{i}:=i \times(0,1)$, let A denote the curve on S arising after identifying A_{0} and A_{1}, and let $U=(0,1) \times(0,1)$.

We may assume that we have chosen the representation so that A, C_{1}, \ldots, C_{k} is regular and so that the number of crossings of A with C_{1}, \ldots, C_{k} is as small as possible.

Then each chord of C_{1}, \ldots, C_{k} on U connects A_{0} and A_{1} (when taking their closures in K). (Otherwise we could (with the help of Ringel's theorem) decrease the number of crossings of A with C_{1}, \ldots, C_{k}.) So we can orient each chord so that it runs on K from A_{0} to A_{1}.

Let x_{1}, \ldots, x_{n} be the crossing points of C_{1}, \ldots, C_{k} with A, in order. So there is a permutation π of $\{1, \ldots, n\}$ such that the chord starting at x_{i} at A_{0} ends at $x_{\pi(i)}$ at $A_{1}(i=1, \ldots, n)$. Note that $\operatorname{cr}(\pi)$ is equal to the total number of crossings of C_{1}, \ldots, C_{k}.

Now we have the following:
if τ is a transposition such that $\operatorname{cr}(\tau \pi \tau) \leqslant \operatorname{cr}(\pi)$, then we can apply Reidemeister moves to C_{1}, \ldots, C_{k} such that the associated permutation becomes equal to $\tau \pi \tau$.

Indeed, let $\tau=(m, m+1)$. By Proposition 7, we may assume that $\pi(m)>\pi(m+1)$. Hence the chords starting at x_{m} and at x_{m+1} cross. Therefore, by Ringel's theorem we can apply Reidemeister moves so that their crossing is the first in both of these chords. Then by a topological transformation we can shift the crossing beyond A. This makes that π is transformed to $\tau \pi \tau$. This shows (19).

Now if $k=1, \pi$ has one orbit. Let C_{1}^{\prime} be a closed curve on S freely homotopic to C_{1} satisfying $\operatorname{cr}\left(C_{1}^{\prime}\right)=\operatorname{mincr}\left(C_{1}\right)$. Then C_{1}^{\prime} gives similarly a
permutation π^{\prime}. As C_{1}^{\prime} is freely homotopic to C_{1}, π^{\prime} is conjugate to π. As $\operatorname{cr}\left(C_{1}^{\prime}\right)<\operatorname{cr}\left(C_{i}\right)$, we know that $\operatorname{cr}\left(\pi^{\prime}\right)<\operatorname{cr}(\pi)$.

So by Theorem 4 there exist transpositions $\tau_{1}, \ldots, \tau_{m}$ such that $\operatorname{cr}\left(\tau_{j} \cdots \tau_{1} \pi \tau_{1} \cdots \tau_{j}\right) \leqslant \operatorname{cr}\left(\tau_{j-1} \cdots \tau_{1} \pi \tau_{1} \cdots \tau_{j-1}\right)$ for each $j=1, \ldots, m$, with strict inequality for $j=m$. But this would give by (19) a series of Reidemeister moves so as to decrease the number of self-crossings of C_{1} contradicting the fact that C_{1} is a minimal counterexample.

If $k=2$, then π has two orbits. Then we can consider similarly closed curves $C_{1}^{\prime}, C_{2}^{\prime}$ freely homotopic to C_{1}, C_{2} respectively, satisfying $\operatorname{cr}\left(C_{1}^{\prime}, C_{2}^{\prime}\right)=\operatorname{mincr}\left(C_{1}, C_{2}\right)$.

9. MAXIMIZING THE CROSSING NUMBER OF PERMUTATIONS

If we want to apply a similar technique to the Mőbius strip, we have to consider maximizing the number of crossings of permutations. We define $\operatorname{maxcr}(\pi)$ to be the maximum of $\operatorname{cr}\left(\pi^{\prime}\right)$ taken over all permutations π^{\prime} conjugate to π. Again trivially for any permutation π there exist transpositions $\tau_{1}, \ldots, \tau_{m}$ such that

$$
\begin{equation*}
\operatorname{cr}\left(\tau_{m} \cdots \tau_{1} \pi \tau_{1} \cdots \tau_{m}\right)=\operatorname{maxcr}(\pi) \tag{20}
\end{equation*}
$$

Again this can be sharpened to:
Theorem 5. For each permutation π there exist transpositions $\tau_{1}, \ldots, \tau_{m}$ such that (20) holds and such that moreover:

$$
\begin{equation*}
\operatorname{cr}\left(\tau_{j} \cdots \tau_{1} \pi \tau_{1} \cdots \tau_{j}\right) \geqslant \operatorname{cr}\left(\tau_{j} \quad 1 \quad \cdots \tau_{1} \pi \tau_{1} \cdots \tau_{j}, 1\right) \tag{21}
\end{equation*}
$$

for each $j=1, \ldots, m$.
We prove Theorem 5 directly only in case π has one or two orbits. The general case follows from Proposition 12 below.

We first show a few propositions. We define \preccurlyeq as in the proof of Theorem 4.

Denote the sequence $1, n, 2, n-1,3, n-2, \ldots$ by $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \ldots$. So

$$
\begin{array}{ll}
a_{r}=s & \text { if } \quad r=2 s-1, \tag{22}\\
a_{r}=n-s+1 & \text { if } \quad r=2 s .
\end{array}
$$

Hence $a_{n}=\lfloor n / 2\rfloor+1$.
Define permutation π_{n} of $\{1, \ldots, n\}$ by

$$
\begin{equation*}
\pi_{n}:=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \tag{23}
\end{equation*}
$$

Moreover, if $h, k \geqslant 1$ with $h+k=n$, define permutation $\pi_{h, k}$ of $\{1, \ldots, n\}$ by

$$
\begin{equation*}
\pi_{h . k}:=\left(a_{1}, \ldots, a_{h}\right)\left(a_{h+1}, \ldots, a_{n}\right) . \tag{24}
\end{equation*}
$$

So $\pi_{h, k}$ has orbits of sizes h and k.
Proposition 9. Let π be a permutation of $\{1, \ldots, n\}$.
(i) If π has one orbit then $\pi \preccurlyeq \pi_{n}$.
(ii) If π has two orbits, of size h and k, where 1 belongs to the orbit of size h, then $\pi \preccurlyeq \pi_{h, k}$.

Proof. Write $\pi=\left(k_{1}, \ldots, k_{n}\right)$ (in case (i)) or $\pi=\left(k_{1}, \ldots, k_{h}\right)\left(k_{h+1}, \ldots, k_{n}\right)$ (in case (ii)), in such a way that ($k_{1},-k_{2}, k_{3},-k_{4}, \ldots$) is lexicographically minimal.

We show that $k_{j}=a_{j}$ for $j=1, \ldots, n$, thus proving the proposition. Suppose $k_{r} \neq a_{r}$ for some r, which we choose as small as possible. So $k_{j}=a_{j}$ for $j=1, \ldots, r-1$ and $k_{r} \in\left\{a_{r+1}, \ldots, a_{n}\right\}$. Clearly, $k_{1}=1$, so $r \neq 1$. Moreover, in case (ii), $r \neq h+1$ (since otherwise $\left(k_{1}, \ldots, k_{h}\right)=\left(a_{1}, \ldots, a_{h}\right)$, so $a_{r} \in\left\{k_{h+1}, \ldots, k_{n}\right\}$, and we can put a_{r}, in the position of k_{h+1}; this would contradict the lexicographic minimality assumption).

This implies

$$
\begin{equation*}
\pi^{\prime}\left(k_{r}\right)=k_{r} \quad 1=a_{r} \tag{25}
\end{equation*}
$$

Case 1. r is odd, say $r=2 s+1$. So $a_{r}=s+1, \quad\left\{k_{1}, \ldots, k_{r-1}\right\}=$ $\left\{a_{1}, \ldots, a_{2 s}\right\}=\{1, \ldots, s\} \cup\{n-s+1, \ldots, n\}$ and

$$
\begin{equation*}
\left\{k_{r}, \ldots, k_{n}\right\}=\{s+1, \ldots, n-s\} . \tag{26}
\end{equation*}
$$

By the choice of r we have that $k_{r} \neq a_{r}=s+1$, and so by (26). $s+2 \leqslant k_{r} \leqslant n-s$, and hence $k_{r}-1 \in\left\{k_{r+1}, \ldots, k_{n}\right\}$. Therefore,

$$
\begin{equation*}
\pi^{-1}\left(k_{r}-1\right) \in\left\{k_{r}, \ldots, k_{n}\right\}=\{s+1, \ldots, n-s\} \tag{27}
\end{equation*}
$$

Define $\tau:=\left(k_{r}-1, k_{r}\right)$ and $\pi^{\prime}:=\tau \pi \tau$. Then by (25) and since $k_{r}-1, k_{r} \in\{s+1, \ldots, n-s\}$,

$$
\begin{align*}
\pi^{\prime} \quad 1\left(k_{r}-1\right) & =\tau \pi^{-1} \tau\left(k_{r}-1\right)=\tau \pi \quad{ }^{1}\left(k_{r}\right) \\
& =\tau\left(k_{r-1}\right)=k_{r} \quad 1=a_{r} \quad 1=n-s+1 \tag{28}
\end{align*}
$$

Moreover,

$$
\begin{equation*}
\pi^{\prime-1}\left(k_{r}\right)=\tau \pi{ }^{\prime} \tau\left(k_{r}\right)=\tau \pi \quad{ }^{\prime}\left(k_{r}-1\right) \in\{s+1, \ldots, n-s\}, \tag{29}
\end{equation*}
$$

as $\pi^{\prime}\left(k_{r}-1\right) \in\{s+1, \ldots, n-s\}\left(\right.$ by (27)) and as $k_{r}, k_{r}-1 \in\{s+1, \ldots, n-s\}$.
By (28) and (29), $\pi^{\prime-1}\left(k_{r}\right)<\pi^{\prime} \quad\left(k_{r}-1\right)$, implying by Proposition 7 that $\operatorname{cr}\left(\pi^{\prime}\right) \geqslant \operatorname{cr}(\pi)$; so $\pi \preccurlyeq \pi^{\prime}$.

This contradicts the lexicographic minimality assumption, since $\pi^{\prime}=\left(k_{1}, \ldots, k_{r}, k_{r}-1, \ldots\right)$.

Case 2. r is even, say $r=2 s$. So $a_{r}=n-s+1, \quad\left\{k_{1}, \ldots, k_{r}, 1\right\}=$ $\{1, \ldots, s\} \cup\{n-s+2, \ldots, n\}$ and

$$
\begin{equation*}
\left\{k_{r}, \ldots, k_{n}\right\}=\{s+1, \ldots, n-s+1\} . \tag{30}
\end{equation*}
$$

By the choice of r we have that $k_{r} \neq a_{r}=n-s+1$, and so by (30), $s+1 \leqslant k_{r} \leqslant n-s$, and hence $k_{r}+1 \in\left\{k_{r+1}, \ldots, k_{n}\right\}$. Therefore,

$$
\begin{equation*}
\pi^{-1}\left(k_{r}+1\right) \in\left\{k_{r}, \ldots, k_{n}\right\}=\{s+1, \ldots, n-s+1\} \tag{31}
\end{equation*}
$$

Define $\tau:=\left(k_{r}, k_{r}+1\right)$ and $\pi^{\prime}:=\tau \pi \tau$. Then by (25) and as $k_{r}, k_{r}+1 \in\{s+1, \ldots, n-s+1\}$,

$$
\begin{equation*}
\pi^{\prime-1}\left(k_{r}+1\right)=\tau \pi \quad \tau\left(k_{r}+1\right)=\tau \pi^{-1}\left(k_{r}\right)=\tau\left(k_{r} \quad 1\right)=k_{r, 1}=a_{r} .1=s . \tag{32}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\pi^{\prime-1}\left(k_{r}\right)=\tau \pi^{-1} \tau\left(k_{r}\right)=\tau \pi^{-1}\left(k_{r}+1\right) \in\{s+1, \ldots, n-s+1\} \tag{33}
\end{equation*}
$$

as $\pi^{-1}\left(k_{r}+1\right) \in\{s+1, \ldots, n-s+1\} \quad$ (by (31)) and as $k_{r}, k_{r}+1 \in$ $\{s+1, \ldots, n-s+1\}$.

By (32) and (33) $\pi^{\prime}{ }^{1}\left(k_{r}\right)>\pi^{\prime}\left(k_{r}+1\right)$, implying by Proposition 7 that $\operatorname{cr}\left(\pi^{\prime}\right) \geqslant \operatorname{cr}(\pi)$; so $\pi \preccurlyeq \pi^{\prime}$. This again contradicts the lexicographic minimality assumption, since $\pi^{\prime}=\left(k_{1}, \ldots, k_{r} \quad\right.$, $\left.k_{r}+1, \ldots\right)$.

At this point we have shown Theorem 5 for permutations π with one orbit. It follows that for any permutation π of $\{1, \ldots, n\}$ with only one orbit one has

$$
\begin{equation*}
\operatorname{maxcr}(\pi)=\operatorname{cr}\left(\pi_{n}\right)=\binom{n}{2}-\left\lfloor\frac{n-1}{2}\right\rfloor \tag{34}
\end{equation*}
$$

Next:
Proposition 10. If h is even then $\operatorname{cr}\left(\pi_{k, h}\right) \leqslant \operatorname{cr}\left(\pi_{h, k}\right)$.
Proof. Observe that if $i, j \in\{k+1, \ldots, n\}$ and $\left\{a_{i}, a_{j}\right\}$ is a crossing pair of $\pi_{k, k}$, then $\left\{a_{i}, a_{j k}\right\}$ is a crossing pair of $\pi_{h, k}$. Similarly, if $i, j \in\{1, \ldots, k\}$ and $\left\{a_{i}, a_{j}\right\}$ is a crossing pair of $\pi_{k, h}$, then $\left\{a_{i+h}, a_{j+h}\right\}$ is a crossing pair of $\pi_{h, h}$.
Finally, each pair $\left\{a_{i}, a_{j}\right\}$ with $1 \leqslant i \leqslant h<j \leqslant n$, is a crossing pair of $\pi_{h, k}$. So we obtain the required inequality.
Proposition 10 implies the theorem for permutations with two orbits of even size each. Indeed, by Proposition 9 we have that for each permutation π with two orbits, of even sizes h and k, one has $\pi \preccurlyeq \pi_{h, k}$ or $\pi \preccurlyeq \pi_{k, h}$. As by Proposition 10 one has $\operatorname{cr}\left(\pi_{h, k}\right)=\operatorname{cr}\left(\pi_{k, h}\right)$, both $\pi_{h, k}$ and $\pi_{k, h}$ attain $\operatorname{maxcr}(\pi)$.

We are left to consider permutations with two orbits, at least one of them being odd. Then we have:

Proposition 11. Let h be odd and let k be such that k is even or $k \geqslant h$. Then $\pi_{h, k} \leqslant \pi_{k, h}$.

Proof. We may assume that $k \geqslant 2$ (otherwise $k=h=1$, and the claim is trivial).

By Proposition 9 it suffices to show that there exists a permutation π such that $\pi_{h, k} \preccurlyeq \pi$ and such that the orbit of π containing 1 has size k. To this end, it suffices to show that there exists a permutation π such that $\pi_{h, k} \preccurlyeq \pi$ and such that the orbit of π containing n has size k. This follows from the fact that if n belongs to the orbit of size k, then we may assume that $\pi(n)=1$, and hence 1 belongs to the orbit of size k.

Let $u:=\lceil n / 2\rceil$. Consider permutations π such that $\pi_{h, k} \preccurlyeq \pi$ and such that

$$
\begin{equation*}
\pi=\left(1, k_{2}, \ldots, k_{h}\right)\left(k_{h+1}, \ldots, k_{n}\right) \tag{35}
\end{equation*}
$$

where
(i) $k_{i}+k_{i+1}=n+2 \quad$ for each even $i<n$;
(ii) $k_{i}<k_{i+2}$ for each odd $i \leqslant n-2$ with $i \neq h$;
(iii) $k_{i} \leqslant u \quad$ for each odd $i \leqslant n$.

Such permutations π exist since (24) is of this form. Choose π such that $k_{3}+k_{5}+\cdots+k_{h}$ is as large as possible.

Note that condition (36)(iii) implies that

$$
\begin{equation*}
\left\{k_{i} \mid i \text { odd }\right\}=\{1,2, \ldots, u\} \tag{37}
\end{equation*}
$$

We first show:
Let $k_{j}=k_{i}+1$ with i, j odd and $3 \leqslant i \leqslant h<j \leqslant n$. Then $i<h$ and $j<n$. Moreover, if $j \leqslant n-2$, then $k_{j+2}>k_{i+2}$.

Indeed, suppose to the contrary that $i=h$, or $j=n$, or $j \leqslant n-2$ and $k_{j+2}<k_{i+2}$. Then $\pi\left(k_{i}\right)<\pi\left(k_{j}\right)$. For if $i=h$ then $\pi\left(k_{i}\right)=1<\pi\left(k_{j}\right)$. If $i \leqslant h-2$ and $j=n$ then $k_{i+2} \geqslant k_{i}+1=k_{j} \geqslant k_{h+2}$, and hence $\pi\left(k_{i}\right)=k_{i+1}=$ $n+2-k_{i+2} \leqslant n+2-k_{h+2}=k_{h+1}=\pi\left(k_{j}\right)$. If $i \leqslant h-2$ and $j \leqslant n-2$ and $k_{j+2}<k_{i+2}$, then $\pi\left(k_{i}\right)=k_{i+1}=n+2-k_{i+2}<n+2-k_{j+2}=k_{j+1}=\pi\left(k_{j}\right)$. So $\pi\left(k_{i}\right)<\pi\left(k_{j}\right)$.

Now let $\tau:=\left(k_{i}, k_{j}\right)$ and $\pi^{\prime}:=\tau \pi \tau$. As $\pi\left(k_{i}\right)<\pi\left(k_{j}\right)$, we have $\pi^{\prime}\left(k_{i}\right)>\pi^{\prime}\left(k_{j}\right)$, and hence Proposition 7 gives $\operatorname{cr}\left(\pi^{\prime}\right) \geqslant \operatorname{cr}(\pi)$. So $\pi \preccurlyeq \pi^{\prime}$.

Let $\tau^{\prime}:=\left(k_{i-1}, k_{j-1}\right)$ and $\pi^{\prime \prime}:=\tau^{\prime} \pi^{\prime} \tau^{\prime}$. Since $k_{i-1}=k_{j-1}+1$ and $\pi^{\prime}\left(k_{i-1}\right)=\tau \pi\left(k_{i-1}\right)=\tau\left(k_{i}\right)=k_{j}>k_{i}=\tau\left(k_{j}\right)=\tau \pi\left(k_{j-1}\right)=\pi^{\prime}\left(k_{j-1}\right)$, we know $\pi^{\prime \prime}\left(k_{i-1}\right)<\pi^{\prime \prime}\left(k_{j-1}\right)$, and hence, again by Proposition $7, \operatorname{cr}\left(\pi^{\prime \prime}\right) \geqslant \operatorname{cr}\left(\pi^{\prime}\right)$; so $\pi^{\prime} \preccurlyeq \pi^{\prime \prime}$. Hence $\pi \preccurlyeq \pi^{\prime \prime}$.

However, the representation of $\pi^{\prime \prime}$ is obtained from that of π by interchanging k_{i} and k_{j} and by interchanging $k_{i \ldots 1}$ and k_{j-1}. This contradicts the maximality of $k_{3}+k_{5}+\cdots+k_{h}$. Thus we have (38).

From this we derive that $k_{3} \geqslant 3$, which finishes the proof, as it implies that $k_{h+2}=2$ and hence $k_{h+1}=n$.

First we have $k_{h}=u$. For suppose $k_{h}<u$. Then by (37) there exists an odd $j \in\{h+1, \ldots, n\}$ such that $k_{j}=k_{h}+1$, contradicting (38).

Next if k is even, then $k_{i+2}=k_{i}+1$ for each odd i in $\{3 \leqslant i \leqslant h-2\}$. Otherwise, choose the largest odd i in $\{3, \ldots, h-2\}$ for which $k_{i+2} \geqslant k_{i}+2$. Then there exists an odd $j \in\{h+2, \ldots, n\}$ such that $k_{j}=k_{i}+1$. Then by (38), $j \leqslant n-1$, and hence (as n is odd), $j \leqslant n-2$. So by (38), $k_{j+2}>k_{i+2}$, contradicting the maximality of i (since $k_{i+2}<k_{i+2}<u=k_{h}$). Hence $k_{3}=u-(h-3) / 2 \geqslant 3$ (since $2 u=n+1=h+k+1 \geqslant h+3$ as $k \geqslant 2$).

If k is odd, then n is even and $k \geqslant h$. Then $k_{i+2} \leqslant k_{i+2}$ for each odd i in $\{3 \leqslant i \leqslant h-2\}$. For suppose $k_{i+2} \geqslant k_{i}+3$. Then there exists an odd $j \in\{h+2, \ldots, n-3\}$ such that $k_{j}=k_{i}+1$ and $k_{j+2}=k_{i}+2$. Then (38) implies $k_{i}+2=k_{j+2}>k_{i+2}$, a contradiction. Therefore, $k_{3} \geqslant u-(h-3) \geqslant 3$ (since $2 u=n=h+k \geqslant 2 h$ as $k \geqslant h$).

This finishes the proof of Theorem 5 for permutations with two orbits. Indeed, let π be a permutation with two orbits, of size h and k respectively, where h is odd and k is even or $k \geqslant h$. Then by Propositions 9 and 11 , $\pi \preccurlyeq \pi_{k, h}$. So $\pi_{k, h}$ should attain a maximum number of crossings.

In fact, we obtain $\operatorname{maxcr}(\pi)=\operatorname{cr}\left(\pi_{h, k}\right)$ for any permutation with two orbits of size h and k, where h is odd, and k is even or $k \geqslant h$. Concluding, for any permutation with two orbits, of sizes h and k :

$$
\begin{array}{ll}
\operatorname{maxcr}(\pi)=\binom{n}{2}-\left\lfloor\frac{h-1}{2}\right\rfloor-\left\lfloor\frac{k-1}{2}\right\rfloor-\min \{h, k\} & \text { if } h \text { and } k \text { are odd, } \\
\operatorname{maxcr}(\pi)=\binom{n}{2}-\left\lfloor\frac{h-1}{2}\right\rfloor-\left\lfloor\frac{k-1}{2}\right\rfloor & \text { otherwise. }
\end{array}
$$

10. THE MÖBIUS STRIP

Theorem 5 implies Theorem 1 in case S is the Möbius strip (the projective space with one point deleted) in the same way as Theorem 4 implies Theorem 1 in case S is the annulus as we saw in Section 8 .

Proposition 12. Theorem 1 is true in case S is the Möbius strip.
Proof. Similar to the proof of Proposition 8.
We should note here that a reverse derivation from Theorem 1 for the Mőbius strip implies Theorem 5 for permutations with any number of orbits.

11. GEODESICS ON HYPERBOLIC AND EUCLIDEAN SURFACES

All surfaces for which Theorem 1 remains to be proved are hyperbolic or Euclidean. It means that these surfaces can be equipped with a geometric structure, which gives 'geodesics' on the surface. Basic ingredient in our proof then is the fact that each nonnullhomotopic closed curve on such a surface can be brought arbitrarily close to a geodesic by a series of Reidemeister moves.

In order to give a more precise formulation and a proof of this statement we need some definitions and basic facts about surfaces and their universal covering surfaces, the background of which can be found in Baer [1], Koebe [5], Reinhart [7], and Stillwell [9].

Let U be the Euclidean or hyperbolic plane. There exists a metric dist on U such that for any three points x, y, z on U lie, in this order, on a line if and only if $\operatorname{dist}(x, z)=\operatorname{dist}(x, y)+\operatorname{dist}(y, z)$. An isometry on U is a homeomorphism $\phi: U \rightarrow U$ so that $\operatorname{dist}(\phi(x), \phi(y))=\operatorname{dist}(x, y)$ for all $x, y \in U$. Thus, an isometry maps lines to lines.

Let S be any compact surface with a finite number of points deleted, with Euler characteristic $\chi(S) \leqslant 0$. If $\chi(S)=0, S$ is called Euclidean and if $\chi(S)<0, S$ is called hyperbolic. The Euclidean plane (if S is Euclidean) or the hyperbolic plane (if if S is hyperbolic) can be considered as a universal covering surface of S. That is, there exists a 'projection' function $\psi: U \rightarrow S$ with the following properties:
(i) for each $u \in U$ there is an open disk N containing u so that $\psi \mid N: N \rightarrow S$ is one-to-one;
(ii) if $u, u^{\prime} \in U$ and $\psi(u)=\psi\left(u^{\prime}\right)$ then there exists an isometry $\phi: U \rightarrow U$ so that $\phi(u)=u^{\prime}$ and $\psi \phi=\psi ;$
(iii) for each closed curve $C: S^{1} \rightarrow S$ and each $u \in \psi{ }^{\text {' }}[C(1)]$ there exists a unique continuous function $D: \mathbb{R} \rightarrow U$ such that $C^{\prime}(0)=u$ and such that $\psi \cdot D(x)=C\left(e^{2 \pi i v}\right)$ for all $x \in \mathbb{R}$. (D is a lifting of C to U.)

A closed curve J on S is called geodesic if any lifting of J to U is a line and if J has only a finite number of selfintersections. This last condition means that there is no closed curve K such that $J=K^{n}$ for some $n>1$.
Each nonnullhomotopic closed curve on S is freely homotopic to $J^{\prime \prime}$ for some geodesic J and some $n \geqslant 1$. If S is hyperbolic, then J and n are unique.
The projection function ψ transmits the distance function dist on U to a distance function dist ${ }_{S}$ on S given by:

$$
\begin{equation*}
\operatorname{dist}_{S}(x, y):=\min \left\{\operatorname{dist}\left(x^{\prime}, y^{\prime}\right) \mid x^{\prime}, y^{\prime} \in U, \psi\left(x^{\prime}\right)=x, \psi\left(y^{\prime}\right)=y\right\} \tag{41}
\end{equation*}
$$

for $x, y \in S$. Moreover, we can speak of a 'piecewise linear' curve C on S, of the length length (C) of such a curve, and of convex subsets of S (these are the subsets containing with any pair of points x, y also the shortest line segment connecting x and y). We may assume that each nonnullhomotopic piecewise linear function has length larger than 2.
We introduce a measure for the distance of a closed curve from a geodesic. Let $C: S^{1} \rightarrow S$ be a piecewise linear closed curve on S, and let $D: \mathbb{R} \rightarrow U$ be a lifting of C to U. If C is nonnullhomotopic, the deviation $\operatorname{dev}(C)$ of C is equal to

$$
\begin{equation*}
\inf \{\varepsilon \mid D[\mathbb{R}] \subseteq B(L, \varepsilon) \text { for some line } L\} \tag{42}
\end{equation*}
$$

where $B(L, \varepsilon):=\{x \in U \mid \operatorname{dist}(L, x)<\varepsilon\}$. If C is nullhomotopic, its deviation $\operatorname{dev}(C)$ is

$$
\begin{equation*}
\inf \{\varepsilon \mid D[\mathbb{R}] \subseteq B(u, \varepsilon) \text { for some point } u\} \tag{43}
\end{equation*}
$$

Proposition 13. Let C_{1}, \ldots, C_{k} be closed curves on S and let $\varepsilon>0$. Then there exists a series of Reidemeister moves bringing C_{1}, \ldots, C_{k} to $C_{1}^{\prime}, \ldots, C_{k}^{\prime}$ such that $\operatorname{dev}\left(C_{i}^{\prime}\right)<\varepsilon$ for each $i=1, \ldots, k$.

Proof. We introduce a second measure for the 'geodesicity' of a curve. Let $C: S^{\prime} \rightarrow S$ be a closed curve. Let $C^{\prime}: \mathbb{R} \rightarrow U$ be any lifting of C to U. For any $t \in \mathbb{R}$, let I be the largest interval on \mathbb{R} such that $t \in I$ and $C^{\prime}[I] \subseteq B(C(t), 1)$. If I is bounded, let r and s be the end points of I. Define

$$
\begin{equation*}
\operatorname{tort}_{,}\left(C^{\prime}\right):=\operatorname{length}\left(C^{\prime}[I]\right)-\operatorname{dist}\left(C^{\prime}(r), C^{\prime}(s)\right) . \tag{44}
\end{equation*}
$$

If $I=\mathbb{R}$ (so C is nullhomotopic and C^{\prime} is contained in a disk of radius 1), then tort, $\left(C^{\prime}\right):=$ length $\left(C^{\prime}\right)$. The 'tortuosity' of C is

$$
\begin{equation*}
\operatorname{tort}(C):=\sup \left\{\operatorname{tort},\left(C^{\prime}\right) \mid t \in \mathbb{R}\right\} . \tag{45}
\end{equation*}
$$

Obviously, this number is independent of the choice of lifting C^{\prime} of C.

The following relation between dev and tort is easy to see, by continuity:
For each L and each $\varepsilon>0$ there exists a $\delta>0$ such that each piecewise linear closed curve C on S with length $(C) \leqslant L$ and $\operatorname{tort}(C) \leqslant \delta$ has $\operatorname{dev}(C)<\varepsilon$.

Now we prove Proposition 13. Let L be the maximum length of the C_{i}. Take δ as in (46). We consider the following operation applied to a point $u \in S$. Let $B(u, 1)$ be the ball with radius 1 around u. Replace each chord of C_{1}, \ldots, C_{k} by the shortest curve on $B(u, 1)$ connecting the end points of that chord. If C_{i} is contained in $B(u, 1)$ we replace it by a closed curve of length close to 0 .

This operation can be performed by Reidemeister moves (by Theorem 3). We perform this operation to any u, as long as the replacement reduces the length of at least one C_{i} by more than δ. So we can apply it only a finite number of times, and hence finally $\operatorname{tort}\left(C_{i}\right) \leqslant \delta$ for each i. Therefore, by (46), $\operatorname{dev}\left(C_{i}\right)<\varepsilon$ for each i.

12. THE HYPERBOLIC SURFACES

Hyperbolic surfaces have the property that each nonnullhomotopic closed curve is freely homotopic to a unique geodesic-more precisely, to the power of a geodesic with a unique image. This is used to prove:

Proposition 14. Theorem 1 is true in case S is a hyperbolic surface.
Proof. Let C_{1}, \ldots, C_{k} be a minimal counterexample. By Proposition 4 we know that $k \leqslant 2$ and that if $k=2$ then $\operatorname{cr}\left(C_{i}\right)=\operatorname{mincr}\left(C_{i}\right)$ for $i=1,2$. Moreover, from Propositions 2 and 13 we know that each C_{i} is nonnullhomotopic. Let J_{i} be a geodesic with $C_{i} \sim J_{i}^{n_{i}}$ for some $n_{i} \geqslant 1$. Let G_{i} be the image of J_{i}. So G_{i} is a graph embedded on S. As the J_{i} are geodesic, we know that if $G_{i} \neq G_{i^{\prime}}$ then $G_{i} \cap G_{i^{\prime}}$, is finite.

Let G be the graph $G_{1} \cup \cdots \cup G_{k}$. Let V and E denote the vertex set and edge set of G. By introducing some extra vertices of degree 2 , we may assume that G does not have loops or multiple edges. Moreover, we may assume that V is also the vertex set of each G_{i}. For each $v \in V$ and each $i=1, \ldots, k$, let $d_{r, i}$ be half of the valency of v in G_{i}.

Now we consider a neighbourhood of G-in fact, we consider a polygonal decomposition of it. To this end we choose for each vertex t a convex polygon P_{r} containing v in its interior, and for each edge e a convex 4-gon P_{c} such that any edge $e=u v$ is contained in the interior of $P_{u} \cup P_{c} \cup P_{t}$. We can assume that the P_{t} are mutually disjoint and that the P_{c} are mutually disjoint, while P_{r} and P_{c} intersect if and only if v is
incident with e. In that case, P_{r} and P_{e} intersect in a side both of P_{c} and of P_{r}. Moreover, each side of any P_{r} is equal to the intersection of P_{r} with P_{e} for some edge e incident with v. So, if e and e^{\prime} are 'opposite' edges incident with vertex v, then $P_{c^{\prime}}$ and $P_{c^{\prime}}$ intersect P_{r} in opposite sides of P_{r}. We can also assume that if v and v^{\prime} are the vertices incident with edge e, then P_{r} and $P_{t^{\prime}}$ intersect P_{c} in opposite sides of $P_{c^{\prime}}$.
Choose $\varepsilon>0$ such that for each edge $e=u v, B(e, \varepsilon)$ is contained in $P_{u} \cup P_{e} \cup P_{r}$. By Proposition 13 we may assume that we have applied Reidemeister moves to C_{1}, \ldots, C_{k} so that $\operatorname{dev}\left(C_{i}\right)<\varepsilon$ for each i. Hence the C_{i} are contained in the interior of the union of the P_{t} and P_{i}. We may assume moreover that no crossing of the C_{i} is on any side of any P_{i}, and that we have applied Reidemeister moves so as to minimize the number of intersections of the C_{i} with the sides of the P_{i}. By Proposition 2 the chords of the C_{i} on any P_{r} and on any P_{c} are minimally crossing.
This implies the following. Let J_{i} form the circuit $\left(c_{1}, e_{1}, v_{1}, \ldots, e_{1}, v_{1}\right)$ in G, with $v_{0}=v_{1}$. Then C_{i} traverses $P_{t_{0},}, P_{c_{1}}, P_{r_{1}, \ldots}, P_{c_{i}}, P_{r_{i}}$, in this order, repeatedly-that is, n_{i} times. After entering a polygon at some side, it leaves the polygon at the opposite side. We may assume that any two chords of the C_{i} on any P_{t} cross each other only if they connect two different pairs of opposite sides.

First, suppose that $k=1$. Choose an edge e_{0} of G, with ends v_{0} and v_{1} say. Then we may assume that P_{c} does not contain any self-crossing of C_{1}, except if $e=e_{0}$. (This can be seen as follows. If e and e^{\prime} are opposite edges of G incident with vertex v of G, then $P_{c} \cup P_{t} \cup P_{c^{\prime}}$ forms a disk. So by Ringel's theorem (Theorem 2) we can 'move' crossings from P_{c}, to P_{6}.)

Let $R:=P_{c_{0}^{\prime}} \cap P_{t_{0}}$. Let $n:=n_{1}$. Let p_{1}, \ldots, p_{n} be the crossing points of C_{1} with R, in this order. Let K_{1}, \ldots, K_{n} be the chords of $S \backslash R$, taking indices in such a way that each K_{i}, at the end traversing $P_{t, i}$, touches p_{i}. Then there is a permutation π of $\{1, \ldots, n\}$ such that $P_{\pi(\prime)}$ is the other end point of K_{i}.

If J_{1} is orientation-preserving, the total number of self-crossings of C_{1} is equal to

$$
\begin{equation*}
\operatorname{cr}(\pi)+n^{2} \sum_{r \in I^{\prime}}\binom{d_{r, 1}}{2} \tag{47}
\end{equation*}
$$

Now if $\pi^{\prime} \preccurlyeq \pi$ for some permutation π^{\prime} then there exist Reidemeister moves changing C_{1} so as to change π to π^{\prime}. Since C_{1} is a minimal counterexample, $\operatorname{cr}(\pi)$ is as small as possible. Hence by Theorem 4, π is minimally crossing among all conjugates of π.

Now if C_{1}^{\prime} is a minimally self-crossing closed curve freely homotopic to C_{1}, and we would move C_{1}^{\prime} similarly close to G, we would obtain a permutation π^{\prime} conjugate to π, and hence the number of self-crossings of C_{1}^{\prime}
is not less than (47). Therefore, C_{1} attains a minimum number of selfcrossings.

If J_{1} is orientation-reversing, the total number of self-crossings of C_{1} is equal to

$$
\begin{equation*}
\binom{n}{2}-\operatorname{cr}(\pi)+n^{2} \sum_{r \in V^{\prime}}\binom{d_{r, 1}}{2} . \tag{48}
\end{equation*}
$$

Then we can proceed similarly to the orientation-preserving case, using Theorem 5.

Next, suppose that $k=2$ and that $G_{1} \neq G_{2}$. Then

$$
\begin{equation*}
\operatorname{cr}\left(C_{1}, C_{2}\right)=\sum_{r \in l^{r}} n_{1} d_{r, 1} n_{2} d_{r, 2} \tag{49}
\end{equation*}
$$

which number is also equal to mincr $\left(C_{1}, C_{2}\right)$ by Baer's theorem [1]. This contradicts the fact that C_{1}, C_{2} is a minimal counterexample.

Finally, suppose that $k=2$ and $G_{1}=G_{2}$. Then we may assume that $J_{1}=J_{2}$. We can now proceed as in the case $k=1$. We obtain a permutation π of $\{1, \ldots, n\}$ with orbits of sizes n_{1} and n_{2} (with $n:=n_{1}+n_{2}$).

If J_{1} is orientation-preserving, the total number of crossings (including self-crossings) of C_{1} and C_{2} is equal to (47). Like in the case $k=1$, it follows that C_{1}, C_{2} is minimally crossing. (Note that if $\operatorname{cr}\left(C_{1}^{\prime}, C_{2}^{\prime}\right)=$ $\operatorname{mincr}\left(C_{1}, C_{2}\right)$ for some $C_{1}^{\prime} \sim C_{1}$ and $C_{2}^{\prime} \sim C_{2}$, we can apply Reidemeister moves so as to obtain moreover that $\operatorname{cr}\left(C_{1}^{\prime}\right)=\operatorname{mincr}\left(C_{1}\right)$ and $\operatorname{cr}\left(C_{2}^{\prime}\right)=$ $\operatorname{mincr}\left(C_{2}\right)$, since we have finished the case $k=1$ (using (12)).)

If J_{1} is orientation-reversing, the total number of crossings (including self-crossings) of C_{1} and C_{2} is equal to (48). Then we can proceed similarly to the orientation-preserving case above.

13. THE TORUS AND THE KLEIN BOTTLE

The only two surfaces for which we have not proved yet Theorem 1 are two Euclidean surfaces: the torus and the Klein bottle. The difference with the hyperbolic case is that on these surfaces there is not a unique geodesic freely homotopic to a given closed curve if it is orientation-preserving. However, in that case any two such geodesics can be moved in two essentially different ways to each other. This enables us to remove a point of the surface and to obtain a reduction to the hyperbolic case.

Proposition 15. Theorem 1 is true in case S is the torus or the Klein bottle.

Proof. Let C_{1}, \ldots, C_{k} form a minimal counterexample for the torus or the Klein bottle S. So $k=1$ or $k=2$. We may assume that if J is any geodesic freely homotopic to any C_{i}, and L and L^{\prime} are two different liftings of J, then $\operatorname{dist}\left(L, L^{\prime}\right)>1$. (Necessarily, L and L^{\prime} are parallel lines.) By Proposition 13 we may assume that $\operatorname{dev}\left(C_{i}\right)<\frac{1}{4}$.

Then there exist geodesics J_{1}, \ldots, J_{k} such that $C_{i} \sim J_{i}^{n_{1}}$ for some n_{i} and such that $\operatorname{dist}\left(D_{i}, L_{i}\right)<\frac{1}{4}$ for some liftings D_{i} and L_{i} of C_{i} and J_{i} respectively. Let $C_{i}^{\prime} \sim C_{i}$ be such that $C_{1}^{\prime}, \ldots, C_{k}^{\prime}$ is minimally crossing. Again by Proposition 13, we may assume that there exist geodesics J_{i}^{\prime} such that $C_{i}^{\prime} \sim J_{i}^{\prime n_{i}}$ and such that $\operatorname{dist}\left(D_{i}^{\prime}, L_{i}^{\prime}\right)<\frac{1}{4}$ for some liftings D_{i}^{\prime} and L_{i}^{\prime} of C_{i}^{\prime} and J_{i}^{\prime} respectively. Since any two different liftings of any J_{i} are parallel line at least at distance 1 apart, and similarly for any two liftings of any J_{i}^{\prime}, and since any liftings of J_{i} and J_{i}^{\prime} are parallel lines for any fixed i, we can delete a point x from S such that no C_{i} and C_{i}^{\prime} traverses x and such that for each i, C_{i} and C_{i}^{\prime} are freely homotopic also in $S \backslash\{x\}$. As $S \backslash\{x\}$ is hyperbolic, Theorem 1 is reduced to the hyperbolic case.

14. FORMULAS FOR CROSSING NUMBERS

As further consequences of the methods given above we give more explicit expressions for the minimal crossing number of closed curves on hyperbolic surfaces.

Theorem 6. Let C be a closed curve on a hyperbolic surface, and let J be the geodesic and n the natural number such that $C \sim J^{\prime \prime}$. Then:
(i) $\operatorname{mincr}(C)=n^{2} \cdot \operatorname{cr}(J)+n-1$ if J is orientation-preserving,
(ii) $\operatorname{mincr}(C)=n^{2} \cdot \operatorname{cr}(J)+\lfloor n-1 / 2\rfloor$ if J is orientation-reversing.

Proof. We may assume that $\operatorname{cr}(C)=\operatorname{mincr}(C)$. In particular, no series of Reidemeister moves can decrease $\operatorname{cr}(C)$. Let G be the image of J, and let V and E denote the vertex set and edge set of G. For each $v \in V$, let d_{r} denote half of the valency of v in G.

We apply the same techniques as in the proof of Proposition 14 to move C close to G. By the fact that $\operatorname{cr}(J)=\sum_{r \in \cdot} \cdot\binom{d_{2}}{2}$ and by (18), (34), (47), and (48), the formulas follow.

Theorem 7. Let C, D be two closed curses on a hyperbolic surface, and let J, K be geodesics and m, n be natural numbers such that $C \sim J^{\prime \prime \prime}$ and $D \sim K^{\prime \prime}$. Then
(i) $\operatorname{mincr}(C, D)=2 m n \cdot \operatorname{cr}(J)+\min \{m, n\}$ if $J \sim K$ and C and D are orientation-reversing,
(ii) $\operatorname{mincr}(C, D)=2 m n \cdot \operatorname{cr}(J)$ if $J \sim K$ and C or D is orientationpreserving,
(iii) $\operatorname{mincr}(C, D)=m n \cdot \operatorname{cr}(J, K)$ if $J \nsim K$.

Proof: Similar to the proof of Theorem 6, now using (18), (34), and (39).

ACKNOWLEDGMENTS

We thank Andries E. Brouwer for helpful reference to work on Weyl groups.

REFERENCES

1. R. Baer, Kurventypen auf Flächen, J. reine angenandte Math. 156 (1927), 23I-246.
2. N. Bourbaki, "Groupes et Algèbres de Lie," Hermann, Paris, 1968.
3. M. Geck and G. Pfeiffer, On the irreducible characters of Hecke algebras, Adtunces in Mathematics 102 (1993), 79-94.
4. M. de Graaf and A. Schrijver. Decomposition of graphs on surfaces, J. Combin. Theory Ser. B 70 (1997), 157-165.
5. P. Koebe, Riemannsche Mannigfaltigkeiten und nichteuklidische Raumformen (Vierte Mitteilung), Sitzungsherichte Deutsche Akudemic von Wissenschaften Berlin, mathematischephysikulische Klusse (1929), 414-457.
6. K. Reidemeister, Elementare Begründung der Knotentheorie, Abhandlungen aus dem mathematischen Seminar der Hamhurgischen Unitersität 5 (19261927). 24-32.
7. B. L. Reinhart, Algorithms for Jordan curves on compact surfaces, Annals of Mathematics (2) 75 (1962), 209-222.
8. G. Ringel. Teilungen der Ebene durch Geraden oder topologische Geraden, Mathematische Zeitschllift 64 (1955), 79-102.
9. J. Stillwell, "Geometry of Surfaces," Springer, New York, 1992.

[^0]: * Present address: Dr. Neher Laboratorium, P.(). Box 421, 2260 AK Leidschendam. The Netherlands.

