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Abstract 

In this series of three papers we study singularly perturbed (SP) boundary 
value problems for equations of elliptic and parabolic type. For small values of 
the perturbation parameter parabolic boundary and interior layers appear in these 
problems. If classical discretisation methods are used, the solution of the finite 
difference scheme and the approximation of the diffusive flux do not converge uni
formly with respect to this parameter. Using the method of special, adapted grids, 
we can construct difference schemes that allow approximation of the solution and 
the normalised diffusive flux uniformly with respect to the small parameter. 

We also consider singularly perturbed boundary value problems for convection
diffusion equations. Also for these problems we construct special finite difference 
schemes, the solution of which converges e-uniformly. We study what problems ap
pear, when classical schemes are used for the approximation of the spatial deriva
tives. We compare the results with those obtained by the adapted approach. Re
sults of numerical experiments are discussed. 

In the three papers we first give an introduction on the general problem, and 
then we consider respectively (i) Problems for SP parabolic equations, for which 
the solution and the normalised diffusive fluxes are required; (ii) Problems ~or SP 
elliptic equations with boundary conditions of Dirichlet, Neumann and Robin type; 
(iii) Problems for SP parabolic equation with discontinuous boundary conditions. 
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Part III 

PARABOLIC EQUATIONS WITH A DISCONTINUOUS BOUNDARY 
CONDITION 

1. Introduction 

The solution of partial differential equations that are singularly perturbed and/ or 

have discontinuous boundary conditions generally have only limited smoothness. Due 

to this fact difficulties appear when we solve these problems by numerical methods. 

For example for regular parabolic equations with discontinuous boundary conditions, 

classical methods (FDM or FEM) on regular rectangular grids do not converge in the 

£00-norm on a domain that includes a neighbourhood of the discontinuity [8, 9, 4]. 

If the parameter multiplying the highest-order derivative vanishes, boundary- and 

interior layers generally appear. When a discontinuity is present in the initial function 

(given at t = 0), an interior layer is generated. Outside a neighbourhood of the dis

continuity classical difference schemes converge in the £00-norm for each fixed value of 

the small parameter, but they do not converge in the £00-norm in the neighbourhood 

of the discontinuity. Neither do they converge uniformly in e in any neighbourhood of 

the interior layer [8, 9]. Therefore, it is interesting to construct special methods which 

are £00-convergent for parabolic PDEs with discontinuous initial functions, both in the 

regular and in the singularly perturbed case. In the latter case it is important to see 

if and when such convergence can be uniform in the small parameter on the whole 

domain of definition. 

In [8, 9] singularly perturbed parabolic equations with discontinuous boundary con

ditions were studied. There, special difference schemes were constructed for these prob

lems. In order to be able to construct a method that was uniformly convergent (in the 

small parameter e), special variables were used in the neighbourhood of the disconti

nuity. By introducing the variables (} = x/(2e../i) and t, the singularity was removed 

from the boundary value problem and the solution became a smooth function in the 

new variables. This behaviour of the transformed solution allows the use of a classical 

scheme in the transformed variables in the neighbourhood of the singularity. Away 

from the singularity the classical scheme can be used with the original variables. 

This transformation in the neighbourhood of the singularity implied the use of a 

specially condensed grid in the neighbourhood of the boundary and interior layers. So 

we can say that the technique is based on: (i) fitted methods in which the coefficients of 

the difference equations are adapted to the singularities; (ii) methods that use special, 

refined meshes in the neighbourhood of singularities. For these schemes £00-convergence 

on the whole domain is proved, uniformly in the small parameter, but a disadvantage 

of these schemes is that they are very hard to realise in practice. 
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Because fitting of the coefficients, combined with fitting of the mesh is generally 
too complex for practical application, in the present paper we propose a new method 
in which only the coefficients are adapted. We use a uniform rectangular grid and 
a special difference equation with fitted coefficients. This method is much easier to 
realise. 

For the construction of the new scheme the coefficients are selected such that the 
solution of a model problem with a piecewise constant, discontinuous initial function is 
the exact solution of the difference equations. This difference scheme with adapted 
coefficients is studied in this paper and it is compared with the classical scheme. 

AE was shown in [8, 9], no scheme exiSts that converges uniformly on a uniform grid 
for the general problem with a parabolic layer. However, for problems with an interior 
layer, the present method has this favourable property, and, in addition, numerical 
examples show that the method has practical value for far more general equations with 
discontinuous boundary conditions. 

2. Problem Formulation 

We consider the Dirichlet boundary value problem for the following singularly per
turbed equation of parabolic type 

where 

L(2.1)u(x, t) = f(x, t), 

u(x, t) = <fJ(x, t), 

(x,t)EG, 

(x,t)ES, 

G = {(x,t)I -1<x<1, o < t::::; T}, S = G\G, 

L(2 l) = e-2 a2 - p(t)~ - c(t). . 8x2 at 

(2.la) 

(2.lb) 

(2.lc) 

T:iie parameter e may take any value eE(O, 1]. The coefficients c(t), p(t) and the source 
f(x, t) are sufficiently smooth functions on G and the coefficients are positive: 

c(t) ~ 0, p(t) ~Po > 0, (x, t)eG. (2.2) 

The boundary function <fJ(x, t) has a discontinuity of the first kind on the set S*: 

S* = {(x,t)lx = O,t = O}. 

A piecewise continuous function v(x, t), (:z:, t)ES\S*, is redefined at the discontinuity by 

v(x, t) = .!:. {fun v(:z: + s,t) + lim v(x + s, t)}, (x, t)ES*, (2.3) 
2 .o'-.0 s./'O 

and the jump in the discontinuity is defined by 

[v(x, t)] = {fun v(x + s, t) - lim v(:z: + s, t)} , (:z:, t)ES*. (2.4) 
•"-0 s/'O 
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For simplicity S* consists of a single point only. Outside S* the function <f>(x, t) is 

sufficiently smooth on S. 
Such boundary value problems with discontinuous boundary condition describe for 

example the temperature in a heat transfer problem, when two parts of a material with 
different temperatures are instantaneously connected [5]. Then, the small parameter E 

corresponds to a small heat conduction coefficient . 
. The solution of the boundary value problem (2.1) is a function uEC(G\S*)nC2'1 (G), 

that is on G it is 0 2 in x and 0 1 in t. 
We say that the discrete approximation converges €-uniformly (or uniformly in E) 

on G if the £00-norm of the error converges to zero on G, uniformly in e. 
For the construction of a special difference scheme we shall use the standard function 

w0 ( x, t), which is discontinuous on S*, 

l(x (ii1 ( -\* wo(x, t) = wo(x, t;p1) = 2v 2e y t ), x, t)EG S , (2.5) 

where p1 = p(O) and v(e) = erf(e) = ~ JJ exp(-a2) da is the error function. For 
t = O, at the point x = 0 the function '65) is defined by continuous extension. The 
function wo(x, t) is the solution of the constant coefficient equation 

( EP 8) L(2.6)u(x, t) = e2 ax2 - Pi at u(x, t) = O, (x, t)EG. (2.6) 

This function is piecewise constant on S at t = 0 and has a discontinuity of the first 
kind in S*: 

[wo(O, 0)] = 1. 

Suppose 

( rt c(e) ) 
Wo(x, t) =exp - lo p(e) d€ wo(x,71(t);p1), r P1 

with 77(t) = lo p(€) d€. (2.7) 

Then the function W0 (x, t) is continuous on G\S*, it is a solution of the homogeneous 
equation 

L(2.i)u(x, t) = 0, (x, t)EG. (2.8) 

On S the function u(x, t) is continuous and piecewise smooth. For simplicity we sup
pose that u(x, t) is sufficiently smooth on the boundary of G, and that a compatibility 
condition is satisfied at the corner points. We are interested in the solution of problem 
(2.1) in the neighbourhood of the point of discontinuity and in the neighbourhood of 
the generated interior layer. Therefore, we suppose that the boundary conditions at 
x = ±1 are such that no boundary layers appear. 

3. An £-uniformly Convergent Scheme 

On the set G we introduce the rectangular grid 

Gh =w xwo. (3.9) 
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Here wand wo are uniform grids on the segments [-1,lJ and [O,Tj respectively. For 
some N, No > 0 we take Xi = ih, iE7l; -1 ~ x, ~ 1; h = 2/N; ti = jr; j = 
0,1,2, .. . ,No, r == T/No; and 

Gh = G n Gh; sh = s n Gh; Sh = S* n Gh. 

On the set Sj. the boundary function <P(x, t) is defined by 

</>(x, t) = -21 { lim </>(s, t) + lim <f>(s, t)}, (x, t)ESh. 
s/x s'\.x (3.10) 

For the numerical approximation of (2.1) we may use classical difference approxi
mations (see [6, 7]). For example, in the case of the implicit central difference scheme 
we have 

where 

A(3.u)z(x, t) = f (x, t), 

z(x, t) = cf>(x, t), 

(x, t)EGh, 

(x, t)ESh, 
(3.lla) 

(3.llb) 

with 8-tz(x, t) and 8x-xz(x, t) the usual first and second difference of z(x, t} on the uniform 
grids wo and w respectively; the bar denotes the backward difference. It is well known 
that the operator A(3 .u) is monotone [7], which implies that the maximum principle 
holds for (3.11). 

Nevertheless, the classical difference scheme (i) does not converge on the whole 
domain a;;_ = Gh \Si. for a fixed value of e, and (ii) outside a neighbourhood of the 
discontinuity it does not converge uniformly with respect to e in the interior layer 
(see Section 4). To obtain uniform convergence, in the present paper we introduce a 
specially fitted scheme for the approximation of equation (2.la), 

where 

A(3.l2)z(x, t) = f(x, t), 

z(x, t) = cf>(x, t), 

(x, t)EGh, 

(x, t)ESh, 

A{3.12) = e21(x, t)Dxx - p(t)8t- c(t). 

(3.12a) 

(3.12b) 

According to the principle mentioned in the introduction, here 'Y(x, t) is a fitting 
coefficient or fitting factor, which is chosen such that the singular solution, Wo(x, t), is 
the exact solution of the homogeneous difference equation (3.13): 

A(3.12) Wo(x, t) ::: { e 21(x, t)8xx - p(t)8t- c(t)} Wo(x, t) = 0, (x, t)EGh. (3.13) 

More generally we can select 1(x, t) such that (3.13) is satisfied by v(x, t) = 
W0 (x, t) + u0 (x, t), where W0 is the singular solution and uo is some smooth solution 

of the homogeneous equation 

Lc2.1)u(x, t) = O, (x, y)EG. (3.14) 
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This leads to the following expression for -y: 

( ) p(t) 8-tv(x, t) + c(t)v(x, t) ( ) 
'Y x, t = 2 i: _ ( t) , x, t EGh, e U:i;:i;V X, 

(3.15) 

for any point (x, t) where C:i:mv(x, t) i= 0. 
We notice that for u0(x, t) = 0 the differences C:i:mv(x, t) and 5(v(x, t) can be very 

small because of the exponentially small derivatives of Wo(x, t) for large x/(e../f,). To 
improve the numerical behaviour in the computation of -y(x, t), we choose the function 
u0 such that the differences C:i:mWo and Ca;muo have the same sign, forJ (x, t)EGh. In 
particular, in the remaining part of this paper we take, for example, 

u0(x, t) = -{ x3 + 6e2x lot Pte) d.(,} exp (-lot;~:~ dv) , (x, t)EG, (3.16) 

so that, for example for c(t) = 0 and p(t) = 1, we obtain 

uo(x, t) = ucs.11)(x, t) = -x3 - 6e2xt, (x, t)EG. (3.17) 

Then, for -y(x, t) we have the general representation 

( ) p(t)(8t"W0(x, t) + b'tuo(x, t)) + c(t)(Wo(x, t) + uo(x, t)) 4 0 
'Y x, t = 2 J: ( ) 2 J: ( ) 'x .,... ' e va:mWo x, t + e v:i:muo x, t 

(3.18) 

where the functions Wo and uo are defined by (2.7) and (3.16) respectively. Note that 

8:i:mv = 8tv = v = O, at x = 0, t > 0. Therefore, for definiteness, we set '!'(x, t) = 1 
at x = 0. Now we define the resulting difference scheme as (3.12), where -y(x, t) is 
determined by (3.18). 

Under the condition that 
7"3/2 
h s'lf;(h,r) (3.19} 

where 1/J(h,r) > 0 and 'lf;(h,r)-+ 0 for h,r-+ 0, then the scheme (3.12,3.18) converges 
uniformly in e: 

for any vE(O, 1/3). 
H, for instance, 

then 

~ax lu(x, t) - z(x, t)I S M {(h + r)" + 'lf;(h, r)} , 
Gh 

3 
h ~ O(r 2Cl+v)) 

~ax lu(x, t) - z(x, t)I S M(hvi. + rvi), 
Gh 

(3.20) 

(3.21) 

(3.22} 

According to (2.7) to compute S.,;;;Wo(z, t) on time layer t = jr we use the difference derivative 
S.,;;;wo(z, 77(t)). The difference derivatives 6i-Wo(z, t), S.,;;;Wo(z, t), otuo(z, t), S.,;;;u0 (z, t) can easily be 
found, for example when the functions p(t) and c(t) are analytical. 
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for any v1e(O, 1/3). Thus, we have the following theorem [3]: 
Theorem 3.1. Under condition (3.19), the solution of the difference scheme (3.12, 

3.18) converges on Gh in the discrete.f.00 -norm to the solution of problem (2.1) uniformly 
in c. Under the conditions (3.19) or (3.21) respectively, the estimates (3.20) or (3.22) 
hold for the solution of the difference problem. 

4. Numerical Results 

By theory [8, 9] and by numerical experiments [2] it is shown that, for discontin
uous initial conditions, classical difference schemes do not converge in the £00-norm 
everywhere on the set Gh \S*, even for a :fixed value of c. Neither do they converge 
uniformly in c in the neighbourhood of the interior layer, outside a neighbourhood of 
S*. However, both the true solution u(x, t) and the numerical approximation z(x, t) are 

bound~d, uniformly in c and it may be the case that the error max0 h lz(x, t) - u(x, t)I 
is relatively small for the classical difference scheme. That would reduce the need for a 
special scheme. 

On the other hand, the above theorem shows that the fitted scheme converges 
uniformly in con Gh, but no indication is given about the value of the order constant 
Min (3.22). Moreover, the order of convergence is rather small. It might be possible 
that the error is rather large for any reasonable value of h or r. This might also reduce 
the practical value of our fitted scheme. To decide on the practical value of the new 
scheme numerical experiments are necessary to provide a more detailed comparison. 

4.1. The model problem 

To see the effect of the fitted scheme in practice, for the approximation of the model 
problem for a singularly perturbed heat equation with a discontinuous initial condition 

L(4.23}u(x, t) = e2-Ei- &tu(x, t) = O, (x,t)eG, 

(4.23) 

u(x, t) = </>(x, t), (x,t)eS, 

we compare the numerical results for the classical scheme (3.11) and the fitted scheme 

(3.12, 3.18). For problem (4.23) we have 

v(x, t) = wo(x, t; 1) + u(3.17}(x, t), 

so that the coefficient f'(x, t) in (3.12) takes the form 

-y(x,t) =I (4.24) 

1 for (x, t)eGh,x = 0. 



280 P.A. FARRELL, P.W. HEMKER AND G.I. SHISHKIN 

For E = 1/8, N = 32, No = 40 the solution of the model problem ( 4.23), with 

5 
<f>(x, t) = 2wo(x, t) + u2(x, t), (x, t)ES, ( 4.25) 

u2(x, t) = -(x + 0.5)2 - 2e2t, (4.26) 

for which we have the representation 

5 
u(x, t) = u2(x, t) + 2wo(x, t), (x, t)EG\S*, (4.27) 

is shown in Figure 1. The fitting coefficient (4.24) is shown in Figure 4. 

Computed solution 

Figure 1. Computed solution with the fitted scheme. 

The solution of problem (4.23,4.25) with u(4 .23)(x, t) = ~wo(x, t) + u2(x, t); 
e = 1/8; N = 32; No= 40. 

We can see that the solution has a jump at S* for t = 0, and for t > 0 it is smooth. 
The space derivatives of the solution are large in the neighbourhood' of the interior 
layer. The fitted coefficient varies strongly in the neighbourhood of the set S* and 
becomes almost constant (equal to 1) away from S*. 
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Coefficients 

Figure 2. Coefficients 1(:i:, t) in the fitted scheme. 

Scheme (3.18), for the same problem as used in Figure 1. 

4.2. Results with the classical difference approximation for the model 
problem 

We show the behaviour of the classical difference scheme (3.11), central in x and 
backward in t, for the model problem (4.23,4.25). We know that this scheme converges 
for a fixed parameter e on each smooth part of the solution of (4.23,4.25). Therefore 
we are primarily interested in the singular part of the solution for problem (4.23,4.25). 
Hence, we select the boundary conditions such that u(x, t) = w0(x, t), 

<P(x, t) = w0(x, t), (x, t)eS. (4.28) 

For the approximation of problem (4.23,4.28) we use the classical scheme (3.11). 
We solve the problem for different values of the mesh, h = 2/N, and the time step, 
T = 1/N0 , and for different values of the small parameter e. The results for a set 
numerical experiments are summarised in Table 1 and Table 2. 

We notice that asymptotically for larger N or No and smaller e, the !°°-norm of 
the error does not depend one, N and N0 independently, but behaves as depending 
on a single parameter N0e-2 or N c 1 for Table 1, and Noe-2 or N for Table 2. Note 
that lw0 (x, t)I :::; 0.5. From Table 1 we see that for no value of the parameter ewe c~ 
guarantee the error on G to be less than 123 for any sufficiently large N, No: 

111(K,e) = max {[ max_lwo(x,t)!t1E(N,No,e)} ~ 12% 
N, No~K (:i:,t)EG 

when K is sufficiently large. From the results in Table 2 we see that for no values of 
N0 , N we can guarantee the error on G, t ~ 0.2 to be less than 6% for ee(O, 1]: 

172(N,No) = m:x{[ m~ lwo(x,t}lt 1E(N,No,e)} ~ 6%. 
(:i:,t)EG,t~0.2 
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Table 1. Table of errors E( N, No, e) for the classical scheme. 

No N 

8 16 32 64 128 256 

10 e:=l 5.76(-2) 6.08(-2) 6.16(-2) 6.25(-2) 6.26(-2) 6.26(- 2) 

40 2.48(-2) 5.69(-2) 6.01(-2) 6.10(-2) 6.20(-2) 6.20(-2) 

160 2.93(-2) 2.47(-2) 5.69(-2) 6.01(-2) 6.10(-2) 6.20(-2) 

640 3.18(-2) 2.93(-2) 2.47(-2) 5.69(-2) 6.01(-2) 6.10(-2) 

10 e: = 1/8 3.18(-2) 2.93(-2) 2.47(-2) 5.69(-2) 6.01(-2) 6.10 (-2) 

40 3.27(-2) 3.18(-2) 2.93(-2) 2.47(-2) 5.69(-2) 6.01(-2) 

160 3.29(-2) 3.27(-2) 3.18(-2) 2.93(-2) 2.47(-2) 5.69(-2) 

640 3.29(-2) 3.29(-2) 3.27(-2) 3.18(-2) 2.93(-2) 2.47(-2) 

e: 

40 1 2.48(-2) 5.69(-2) 6.01(-2) 6.10(-2) 6.20(-2) 6.20(-2) 

0.5 2.93(-2) 2.47(-2) 5.69(-2) 6.01(-2) 6.10(-2) 6.20(-2) 
2-2 3.18(-2) 2.93(-2) 2.47(-2) 5.69(-2) 6.01(-2) 6.10(-2) 
2-3 3.27(-2) 3.18(-2) 2.93(-2) 2.47(-2) 5.69(-2) 6.01(-2) 
2-4 2.70(-2) 3.27(-2) 3.18(-2) 2.93(-2) 2.47(-2) 5.69(-2) 
2-s 7.69(-3) 2.70(-2) 3.27(-2) 3.18(-2) 2.93(-2) 2.47(-2) 
2-6 1.95(-3) 7.69(-3) 2.70(-2) 3.27(-2) 3.18(-2) 2.93(-2) 
2-7 4.88(-4) 1.95(-3) 7.69(-3) 2.70(-2) 3.27(-2) 3.18(-2) 
2-8 1.22(-4) 4.88(-4) 1.95(-3) 7.69(-3) 2.70(-2) 3.27(-2) 
2-9 3.05(-5) 1.22(-4) 4.88(-4) 1.95(-3) 7.69(-3) 2.70(-2) 

In this table E(N,No,<:) = max(:i:,t)EG,. le(x,t;N,No,e:)I, e(x,t;N,No,e:) = 
z(x, t) - wo(x, t) with h = 2/N and T = 1/N0 • 

The solution w0 is as defined in (2.5) with p 1 = 1. 

Thus, the computations also confirm that: (i) the classical scheme converges on the 

set Gh with t ~ to > 0 for a fixed value of Ei (ii) on G\S* the classical scheme does 

not converge for any fixed e; (iii) on the set Gh with t ~ to > 0 the scheme does not 
converge uniformly in e. 

4.3. A fitted difference approx~mation 

Let us study the behaviour of the fitted scheme applied to model problem ( 4.23,4.25), 

where the function u(x, t) is the sum of a smooth and a singular part 

( ) 5 - * u x, t = u2(x, t) + 2wo(x, t), (x, t)EG\S . (4.29) 

Because the problem is linear, we can study both parts of the error independently. 

First we consider the behaviour of the fitted scheme for the singular part, that is for 
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Table 2. Table of errors Eo.2(N, N0 , e) for the classical scheme. 

No N 

8 16 32 64 128 256 

10 e=l 3.08(-2) 3.39(-2) 3.40(-2) 3.40(-2) 3.40(-2) 3.40(-2) 

40 1.01(-2) 9.37(-3) 9.28(-3) 9.22(-3) 9.21(-3) 9.21(-3) 

160 3.77(-3) 2.73(-3) 2.45(-3) 2.38(-3) 2.37(-3) 2.36(-3) 

640 2.12(-3) 9.97(-4) 6.98(-4) 6.22(-4) 6.02(-4) 5.98(-4) 

10 e = 1/8 3.18(-2) 2.05(-2) 2.47(-2) 3.01(-2) 3.32(-2) 3.33(-2) 

40 3.27(-2) 2.45(-2) 7.67(-3) 8.62(-3) 8.59(-3) 8.65(-3) 

160 3.29(-2) 2.56(-2) 7.40(-3) 2.59(-3) 2.29(-3) 2.20(-3) 

640 3.29(-2) 2.50(-2) 7.57(-3) 2.17(-3) 7.35(-4) 5.89(-4) 

e 

40 1 1.01(-2) 9.37(-3) 9.28(-3) 9.22(-3) 9.21(-3) 9.21(-3) 

0.5 7.67(-3) 8.62(-3) 8.59(-3) 8.65(-3) 8.62(-3) 8.61(-3) 
2-2 2.45(-2) 7.67(-3) 8.62(-3) 8.59(-3) 8.65(-3) 8.62(-3) 
2-3 3.27(-2) 2.45(-2) 7.67(-3) 8.62(-3) 8.59(-3) 8.65(-3) 
2-4 2.66(-2) 3.27(-2) 2.45(-2) 7.67(-3) 8.62(-3) 8.59(-3) 
2-s 7.50(-3) 2.66(-2) 3.27(-2) 2.45(-2) 7.67(-3) 8.62(-3) 

r6 1.90(-3) 7.50(-3) 2.66(-2) 3.27(-2) 2.45(-2) 7.67(-3) 
2-7 4.76(-4) 1.90(-3) 7.50(-3) 2.66(-2) 3.27(-2) 2.45(-2) 
2-s 1.19(-4) 4.76(-4) 1.90(-3) 7.50(-3) 2.66(-2) 3.27(-2) 

2-9 2.98(-5) 1.19(-4) 4.76(-4) 1.90(-3) 7.50(-3) 2.66(-2) 

In this table Eo.2(N,No,e) = max{z,t)EG,.,z~o.2 le(x,t;N,No,e)I, 
e(x, t; N, N0 , e) = z(x, t) - wo(x, t) with h = 2/N and r = 1/No. 
The solution wo is as defined in (2.5) with P1 = 1. 

the model problem with 

<P(x, t) = wo(x, t), (x, t)eG\S*, 

283 

(4.30) 

as we did for the classical scheme. This initial function wo(x, t) is a representative 
example from the class of initial functions with a discontinuity. For problem ( 4.23,4.30) 

we have the solution 

u(x, t) = Wo(x, t), (x, t)eG\S*. (4.31) 

Then, considering the smooth part of the solution in the expression (4.29) we study 

problem (4.23) with 

tj>(x, t) = u2(x, t) = -(x + 0.5)2 - 2e2t, (x, t)EG. (4.32) 
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For problem ( 4.23,4.32}, we have the solution 

u(x, t) = u2(x, t), (x, t)eG. 

The results of these numerical experiments are given in Tables 3 and 4. 

Table 3. Table of errors E( N, No, e) for the new scheme. 

No N 

8 16 32 64 128 256 

10 E = 1 2.26(-2) 1.96(-2) 1.89(-2) 1.87(-2) 1.87(-2) 1.87(- 2) 

40 1.27(-2) 1.06(-2) 1.01(-2) 1.01(-2) 1.00(-2} 1.00(-2) 

160 7.74(-3) 5.30(-3) 4.30(-3) 4.16(-3) 4.08(-3) 4.07(-3) 

640 6.13(-3) 3.01(-3) 1.79(-3) 1.43(-3) 1.34(-3) 1.31(-3) 

10 E = 1/8 5.46(-3) 3.01(-3} 1.79(-3) 1.43(-3) 1.34(-3) 1.31(-3) 

40 5.56(-3) 2.30(-3} 9.47(-4) 5.28(-4) 4.17(-4) 3.88(-4) 

160 5.57(-3} 2.12(-3) 7.00(-4) 2.64(-4) 1.44(-4) 1.12(-4) 

640 5.58(-3) 2.07(-3) 6.36(-4) 1.92(-4) 6.90(-5) 3.66(-5) 

E 

40 1 1.27(-2) 1.07(-2} 1.01(-2) 1.01(-2) 1.00(-2) 1.00(-2) 

0.5 7.74(-3) 5.30(-3) 4.30(-3) 4.16(-3) 4.08(-3) 4.07(-3) 
2-2 6.13(-3) 3.01(-3) 1.79(-3) 1.43(-3) 1.34(-3) 1.31(-3) 

ra 5.56(-3) 2.30(-3} 9.47(-4) 5.28(-4) 4.17(-4) 3.88(-3) 
2-4 4.48(-3) 1. 70(-3) 6.56(-4) 2.60(-4) 1.44(-4) 1.12(-4) 
2-5 1.23(-3) 6.55(-4) 3.69(-4) 1.46(-4) 5.90(-5) 3.27(-5) 
2-6 3.08(-4) 1.79(-4) 8.37(-5) 5.67(-5) 2.63(-5) 1.12(-5) 
2-7 7.71(-5) 4.47(-5) 2.28(-5) 1.05(-5) 7.77(-6) 4.25(-6) 
2-s 1.93(-5) 1.12(-5) 5.71(-6) 2.86(-6) 1.34(-6) 1.15(-6) 
rg 4.82(-6) 2.80(-6) 1.43(-6) 7.15(-7) 3.58(-7) 2.09(-7) 

In this table the scheme (3.12) is used to solve a problem (4.23,4.30) with an 

interior layer. E(N,N0 ,e) = max(z,t)EG,. !e(x,t;N,N0 ,e)I, e(x,t;N,No,e) = 
z(x,t) - wo(x,t) with h = 2/N and -r = l/No; the solution wo is as defined in 
(2.5) with Po= 1. 

(4.33) 

From the results in Tables 3 and 4 we see that the errors for singular and regular 
parts, wo(x, t) and u2(x, t) respectively, decrease for N, No large enough, and a fixed 
value of the parameter e = 2-K, K = 0, 1, .... Also the errors decrease with increasing 
N uniformly in c. The relative error is less than 1% for N ;::: 8, No ;::: 160, e = 2-K, 
K;::: 0 when u(x,t) = w0(x,t). The relative error is also less than 1% for the same 
parameters when u(x, t) = u2(x, t). 
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Table 4. Table of errors E(N, N0 , e:). 

No e N 

8 16 32 64 128 256 
10 e-1 5.10(-2) 8.72(-2) 1.16(-1) 1.36(-1) 1.47(-1) 1.53(-1) 
40 1.46(-2) 2.27(-2) 3.15(-2) 3.89(-2) 4.50(-2) 4.87(-2) 
160 7.19(-3) 5.87(-3) 7.00(-3) 8.44(-3) 9.83(-3) 1.10(-2) 
640 7.32(-3) 4.05(-3) 2.74(-3) 2.22(-3) 2.08(-3) 2.32(-3) 

10 e = 1/8 7.32(-3) 4.05(-3) 2.74(-3) 2.22(-3) 2.08(-3) 2.32(-3) 

40 7.44(-3) 3.17(-3) 1.64(-3) 1.03(-3) 8.52(-4) 8.00(-4) 

160 7.46(-3) 2.94(-3) 1.25(-3) 6.06(-4) 3.74(-4) 3.04(-4) 

640 7.46(-3) 2.89(-3) 1.15(-3) 4.63(-4) 2.09(-4) 2.55(-4) 

e 

40 l 1.46(-2) 2.27(-2) 3.14(-2) 3.89(-2) 4.50(-2) 4.87(-2) 

0.5 7.19(-3) 5.87(-3) 7.00(-3) 8.44(-3) 9.83(-3) 1.10(-2) 
2-2 7.32(-3) 4.05(-3) 2.74(-3) 2.22(-3) 2.08(-3) 2.32(-3) 
2-3 7.44(-3) 3.17(-3) 1.64(-3) 1.03(-3) 8.52(-4) 8.00(-4) 
2-4 5.98(-3) 2.39(-3) 1.25(-3) 6.06(-4) 3.74(-4) 3.04(-4) 

rs 1.64(-3) 1.75(-3) 1.00(-3) 4.59(-4) 2.09(-4) 1.26(-4) 
2-6 4.11(-4) 4.77(-4) 4.47(-4) 3.04(-4) 1.47(-4) 6.90(-5) 

2-1 1.03(-4) 1.19(-4) 1.22(-4) 1.12(-4) 8.30(-5) 4.45(-5) 

2-8 2.57(-5) 2.98(-5) 3.04(-5) 3.05(-5) 2.80(-5) 2.17(-5) 

2-9 6.42(-6) 7.45(-6) 7.61(-6) 7.63(-6) 7.63(-6) 7.01(-6) 

In this table the scheme (3.12) is used to solve a problem (4.23,4.32) with a 

smooth solution. In this table E(N,N0 ,e:) = max(:i:,t)EG,. le(x,t;N,N0 ,s)I, 
e(x, t; N, No,&) = z(x, t) - u2(x, t) with h = 2/N and T = 1/N0 ; the solution 

u1 is as defined in (4.31). 
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The functions ~wo(x, t) and u2(x, t) are components of the solution of the problem 

(4.23), (4.25). Thus we have: (i) for the model problem (4.23), (4.25) the ~umerical 

scheme converges for a fixed e in the discrete £00-norm on Gh; (ii) we observe e-uniform 

convergence for the model problem ( 4.23, 4.25); (iii) the relative error for the model 

problem is less than 2% for N, No sufficiently large. 

4.4. The error analysis for the fitted difference scheme 

To determine the quality of the convergence, using the data from the Tables 3 and 

4 we can examine the experimental order of convergence of the fitted scheme. 

When we use the classical scheme (3.11) for problem (4.23,4.33) then, according to 
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the classical theory, we typically find an estimate of the form 

This estimate means that the function zc3.n)(x, t) converges to the function u2(x, t) for 
each fixed value of e. The constant Q(e) tends to infinity for e._ 0. 

From theory we know that the solution of the fitted difference scheme (3.12, 3.18) 
z(x, t) converges e-uniformly to the solution of problem (4.23,4.33). To investigate the 
e-uniform convergence of a function z(x, t) = z(x, t; e, h, r), it is natural to express an 

error estimate in the form 

max max lu(x,t,e)- z(x,t;e,h,r)I ~ M(h2 +rt, 
e Gh\S* 

(4.35) 

where v does not depend on the parameters€, h or r. To compute v we shall use an 

inequality of the form 

_!Ilax lu(x, t, e) - z(x, t; e, h, r)I ~ M(h2 + r)v(e). 
Gh\S* 

(4.36) 

We call v(e) in expression (4.36) the generalised order of convergence for a fixed 
value of the parameter e, and v in expression (4.35) the generalised order of e-uniform 
convergence. 

We determine the experimental generalised order at the point (N, N0 ) by 

v(N, N0 , e) = (JnE(N,N0,e) - lnE(2N,4N0 , e))/ln4, (4.37) 

where E(N,No,e) = max0 h\S* lu(x,t,e) - z(x,t;e,h,r)J, hN = 2 and rNo = 1. We 
introduce the experimental generalised order of convergence for fixed e as 

v(e) = min v(N,No,e), 
N,No 

(4.38) 

and the experimental generalised order of e-uniform convergence as 

v= min v(e). 
e 

(4.39) 

Similarly the the experimental e-unifo~ generalised order at the point (N, No) is 

v(N, No)= minv(N, No,e). 
e 

(4.40) 

The results are given in the Tables 6 and 5. 

From the results in the Tables 5 and 6 we see: (i) for wo(x, t) and u2(x, t) the 
experimental generalised order of e-uniform convergence for the fitted scheme is ap
proximately 0.413 and 0.450 respectively; (ii) for N;::: 16 and No ;::: 40 the generalised 
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Table 5. Experimental generalised order of co~vergence v(N,N0 ,e). 

No N 

8 16 32 64 128 

10 c=l 0.544 0.479 0.454 0.450 0.450 

40 0.631 0.653 0.640 0.650 0.651 

160 0.681 0.782 0.792 0.818 0.818 

10 c = 1/8 0.625 0.834 0.882 0.891 0.892 

40 0.696 0.858 0.922 0.938 0.945 

160 0.714 0.868 0.932 0.967 0.987 

c 

40 1 0.631 0.653 0.640 0.650 0.651 

0.5 0.681 0.782 0.792 0.818 0.818 
2-2 0.708 0.834 0.882 0.891 0.892 
2-3 0.854 0.904 0.934 0.939 0.946 
2-4 1.387 1.104 1.084 1.070 1.067 
2-s 1.391 1.484 1.351 1.237 1.195 
2-6 1.392 1.485 1.498 1.433 1.314 

2-1 1.393 1.485 1.498 1.486 1.378 
2-8 1.393 1.485 1.498 1.500 1.340 

The fitted scheme (3.12,3.18) for the problem ( 4.23,4.30), applied to the solu
tion u(x,t) = w0 (x,t) with the interior layer. v(N,N0 ,c) = (lnE(N,N0 ,c)
lnE(2N, 4No, c))/ ln4, 
E(N,No,c) from Table 3. 
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orders of e-uniform convergence for wo(x, t) and u2(x, t) are apparently not less than 
0.50. This means that in practice 

~ax lu(x, t) - z(x, t)I :::; M(h + r 112 ) 
Gh 

for N 2::: 16 and No 2::: 40, 0 < e :::; 1, for each value of the parameter e. In ac
cordance with the theory, for each value of e, the experimental generalised order of 
convergence tends to 1 for decreasing h and r. Thus, the experimental generalised 
order of convergence for the fitted scheme (3.12, 3.18) for the full model problem 
( 4.23, 4.25) is not less than predicted by the theory. The behaviour of the errors 
e(x, t; N, N0 , t) = z(x, t) - u(x, t) for the fitted scheme (3.12, 3.18) and for the classical 
scheme (3.11) are shown in the Figures 2 and 3. We can see that the largest errors 
are in the neighbourhood of the set S* and that the errors for the classical scheme are 
significantly larger than for the fitted scheme. 
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Table 6. Experimental generalised order of convergence v(N, No, c). 

No e N 

8 16 32 64 

10 e=l 0.583 0.736 0.789 0.795 

40 0.656 0.850 0.949 0.992 

160 0.413 0.551 0.828 1.012 

10 c = 1/8 0.604 0.652 0.702 0.691 

40 0.668 0.669 0.719 0.733 

160 0.685 0.676 0.718 0.769 

c N 

40 1 0.656 0.850 0.949 0.992 

0.5 0.413 0.551 0.828 1.012 

0.25 0.603 0.652 0.702 0.691 

0.125 0.820 0.669 0.719 0.733 

2-4 0.887 0.627 0.724 0.769 

2-5 0.891 0.984 0.859 0.820 

2-6 0.892 0.985 0.998 0.938 

2-7 0.893 0.985 0.998 0.999 

2-s 0.893 0.985 0.998 1.000 

v(N,No,c) = (lnE(N,No,e) - lnE(2N,4No,e:))/ln4, 
E(N,N0 ,e:) from Table 4. 
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0.798 

1.016 

L041 

0.687 

0.744 

0.276 

1.016 

1.041 

0.687 

0.744 

0.783 

0.799 

0.863 

0.966 

1.000 

Computation with the new scheme (3.12,3.18) for the smooth solution u(x, t) = 
u2(x, t). 
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Figure 3. Discretisation error the fitted scheme. 
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Scheme (3.12,3.18) is used for the same problem as used in Figure 1. 

l .... 
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II 
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Error 

Figure 4. Discretisation error the classical scheme. 

Scheme (3.11) is used for the same problem as used for Figure 1. 

5. Conclusion 
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For a singularly perturbed boundary value problem of parabolic type with discon
tinuous initial condition (2.1), we have constructed a specially fitted difference scheme 
that converges in G\S* e-uniformly in the i 00-norm. 

Numerical experiments for a model boundary value problem with discontinuous 
boundary function show that a classical difference scheme does not converge e-uniformly. 
Moreover, for a fixed value of e this scheme doesn't converge in the i 00-norm in the 
neighbourhood of the discontinuity, and away from the discontinuity it does not con
verge e-uniformly in the neighbourhood of the interior layer. In the case of the constant 
coefficient problem and a simple discontinuity, for which the error-function is the solu
tion, an error of less than 6% on G, t?: to= 0.2, and less than 12% on G\S* can not 
be guaranteed for arbitrarily small h or r. 

Theoretically and numerically it is also shown, that the fitted difference scheme 
converges e-uniformly in the £00-norm on Gh. Moreover in the case of the fitted scheme, 
for a model problem, an experimental generalised order of convergence of not less than 
0.5 is observed if h::::; 1/8 and T S 0.025 e.g. v(e, N, No) ?: 0.5 at N?: 16, No ?: 40. The 
experimental generalised order of convergence is substantially larger than the bound 
guaranteed by the theory. Both for the singular and for the regular part of the solution 
an error less than 1% is guaranteed for N?: 8, No> 40 and for any €E(O, 1]. 
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