images of SMC Research 1996

Semantics

J.W. de Bakker

1. HISTORY

Programs are written in a programming language, and serve as a means to
instruct a computer to perform a given task. As linguistic entities, programs
have form and meaning. In the specification of their form, one employs
syntactic rules, usually in the form of some grammatical formalism. In
semantics, one is concerned with defining meanings of programs in terms
of a mathematical model. For £ a programming language (the reader may
think of PASCAL, ML or PROLOG as typical examples), one looks for a
set P of mathematical objects and a meaning function M : L—P (*) such
that, for each s € £ (each program), one determines its meaning M(s) = p
as object in P. One advantage of having such a meaning function is that we
get a notion of equivalence of programs: two programs s;, s2 are equivalent
if they have the same meaning, i.e. M (s3) = M (s2). For example, two
procedures may be seen as equivalent if they compute the same function
(even though they may be ‘programmed’ in different ways). In general, the
design of semantic models is a rather demanding endeavour. Programming
languages are complex entities, and so are the computations specified by the
programs of the language. Accordingly, ever since the advent of high-level
programming languages (say from 1960 onwards), a rich body of methods
and tools has been developed to be used for this purpose.

In the period 1960 to 1970, the emphasis was on the use of general tech-
niques from the theory of computability for the formal definition of (syn-

J.VV. DE BAKKER

tax and) semantics of programming languages, e.g., based on (generalized)
Markov algorithms, or Van Wijngaarden’s two level grammars. Indeed,
thanks to the universality of these definitional systems, 1t was not surpris-
ing that complete formal definitions could be given. What was lacking in
these definitions was sufficient abstraction from representational (and of-
ten arbitrary) detail. Sheer symbol manipulation was often the prevalent
approach.

1.1. Denotational semantics

Owing to the pioneering work of D.S. Scott around 1970, the study of se-
mantics returned to the treasured principles of mathematical logic, viz. (i)
definitions should be compositional (a classic principle due to G. Frege) and
(i) definitions should clearly separate the linguistic realm from the mathe-
matical structure(s) (the domain(s) of interpretation) to which the linguistic
constructs are mapped (the P from definition (*) above). These principles
are fundamental for the style of so-called denotational semantics, which has
remained one of the major methodologies in semantics till the present day.
An even more seminal contribution of Scott was the design of semantic mod-
els for the lambda calculus—and many more related languages—couched in
the framework of a general theory of (lattice-theoretic) domain equations.
Jointly with his coworker, the late C. Strachey, Scott laid the foundations

for the semantic analysis of a host of-—mostly sequential-—programming
languages.

1.2. Structural operational semantics

Subsequently, extensions of the general theory were proposed by G.D. Plot-
kin, especially to cover as well the notions of nondeterminacy and par-
allelism. Around 1980, two further innovative developments took place.
Firstly, the notion of so-called structural operational semantics (SOS) was
- introduced by Plotkin. Its origin can be traced back to automata theory: a
- 298 transition system (S, A, —) consists of a set of states S, a set of actions A,
S and a transition relation —C S x A x S. In automata theory, one would
write 6(s,a) = s, in the SOS-oriented semantics the same fact is written

as s — s’ (f). Plotkin’s idea was to instantiate the abstract set of states
5 to a concrete set, viz. the set £ of statements in a programming lan-
guage, and to read (T) as: statement s performs an a-step and then turns
into the statement s’—which may, in turn, make a b-step, etc. The for-
malism of transitions such as () turned out to be especially fruitful in the
study of concurrency, initiated around 1980 in the work of R. Milner on

CCS (A Calculus for Communicating Systems) and C.A.R. Hoare on CSP
(Communicating Sequential Processes).

Qo

SEMANTICS,

1.53. Algebraic semantics

We next discuss two related areas which have been of prime importance in
the history of semantics. Firstly, so-called algebraic semantics has gained
a central status-—as third methodology - alongside the methods of denota-
tional and operational semantics. Here, the theory is built on the founda-
tions of universal algebra (such as the notions of initial and final algebra) and
equational logic. Algebraic semantics has turned out to be quite valuable,
1in particular for a logical underpinning of abstract data types (abstract ver-
sions of the data structures of programming). In addition, there are deep
connections with the theory of rewriting, the theory of concurrency, and
with (the vast variety of) specification formalisms.

1.4. Program logics

A second area of research neighbouring on that of semantics is the theory of
program correctness, verification and transformation. Historically, this work
dates back to Floyd’s inductive assertion method (1967), Dijkstra’s struc-
tured programming and weakest preconditions (early seventies), and Hoare’s
axiomatic method for simple sequential languages (1969). Though partly
more of a logical/syntactic flavour, this area exploits semantic modelling in
the investigation of the soundness of formal systems to prove program cor-
rectness or to deduce program transformations. Also, the steps prescribed
in refining a program from an abstract specification to an executable—and
hopefully efficient—implementation require semantic justification. So much
for the history of semantics. Some evidence for the world-wide recognition
of the developments sketched above may be inferred from the fact that five
of the pioneers named above (E.W. Dijkstra, Hoare, R.W. Floyd, Scott,
Milner) are recipients of the Turing award of the American Association
for Computing Machinery (the Turing award being the Nobel prize of the
computer science profession).

2. CURRENT DEVELOPMENTS

All four areas listed above—denotational semantics, operational semantics,
algebraic semantics, program logics—are topics of vigorous current activ-
ity. During the last two decades a mathematical discipline called ‘category
theory’ has become increasingly important in semantical investigations in
computer science. (This also holds for other areas, like specification or
type theory.) Category theory provides an elementary foundational lan-
guage in which the basic concepts of mathematics can be expressed, not
in terms of membership like in set theory, but in terms of ‘arrows’ (or
‘morphisms’) between ‘objects’. The basic idea is to describe mathematical
entities not as what they are made of, but as how they behave. For exam-
ple, set-theoretically a product consists ot a set of pairs, whereas category-
theoretically a product is an object with two projection arrows which be-

299

. _ E N
4 : N H .
- - - .
. . ')
. . . .
- : : TR i
L B
. E o
. .
. * . N
.7 . : . ! L3
- ' B 18 E: .
: -1 Lo L -
. . - . - Tk
R | o . oL B
. : . . e =
- - Y ! L] -
-
1

1. VV. DE BAKKER

have in a certain ‘universal’ way. In category theory one does not ‘open’ the
things under investigation, but one describes them ‘from the outside’. More
strongly: in category theory one gives specifications instead of implemen-
tations. This categorical perspective is fruitful in computer science, where
many black boxes occur, of which it is not known what precisely is inside.

Interesting applications of semantics are being developed in the design
of semantics driven implementations. Abstract interpretation is used as a
technique to investigate those properties of programs which may be derived
from their ‘execution’ in restricted—mostly finite-—models, e.g. to ascertain
termination properties (so-called strictness analysis). SOS-style semantic
specifications are at present investigated in a language independent fashion.
e.g. by analyzing the feasibility of ‘automatically’ deriving a denotational
semantics or a system of (equational) axioms from a given SOS definition.

Semantics is partly driven by its intrinsic foundational questions, and
partly by external developments such as technological advances and asso-
ciated software innovations. The scene of programming language design
has expanded considerably in the decade of the 1980s. The group of the
traditional imperative languages (ALGOL, PASCAL), together with an oc-
casional functional language (LISP), formed the starting point of a rapidly
growing variety of programming paradigms. Languages for concurrency
played a central role in the 1980s. Next, the field of functional languages
gained 1n 1mpact, with the language ML as, possibly, the most influen-
tial contemporary representative. Logic programming (LP) is an area of
much current interest, not in the least thanks to the influential Japanese
hfth generation project. One relatively fresh protagonist on this scene is
the paradigm of object-oriented (OO) languages, a belated offspring of the
1960s language SIMULA. Smalltalk and C** are more contemporary in-
stances of OO languages. One of the difficult issues at present is how to
give a complete semantical account of concurrent object-oriented program-
ming. T'his involves a combination of two levels: There are objects, which
are collections of ‘small’ programs acting on a local state, specified by a
class, and there is on a global level a ‘pool of objects’, in which one can
have (concurrent) interaction via sending of messages.

All these language families pose their own problems and often require
‘specilal-purpose’ mathematical tools. For example, functional languages
rely heavily on the (theory of the) typed lambda calculus, and LP is a
programming variant of Horn clause logic, itself a version of resolution logic
(which is, in turn, a way of viewing first order predicate logic).

Finally, we here draw attention to the growing interest for the interface
between the semantics of programming languages and that of natural lan-
guages as studied in computational linguistics. Semantics has grown in the
1980s, both in depth and in width, facing ever new challenges to assimilate
the continuous stream of foundational insights and technological advances.

SEMANTICS

parallel
objects rendez-vous
communication
awalt
statement
shared variable action
parallelism refinement
synchronization atomization
parallelism
u-calculus PTOCESS
| creation

\ J
‘ fork

context free statement

/

back-tracking

/

recursion
Figure 1. A selection of control flow notions as studied in ref. [4].

3. CONTRIBUTIONS OF CWI

3.1. Research topics

Parallelism or concurrency has been a major focus of semantic research at
the CWI in the past decade. An overview i1s contained in the collection
of reprinted papers [2]: [4] is an advanced text/monograph presenting a
comprehensive survey of our work since the early eighties (see also figure
1). Characteristic for a good deal of our approach is, on the one hand,
the reliance on topological structures in the semantic modelling, and on the
other, the large variety of forms of parallelism considered. Not only the
more traditional concurrency in an imperative setting, but also parallel ver-
sions of LP and OO have been studied in depth. In the period under review
a total of nine Ph.D. theses have been completed on the theory of paral-
lel processes in relation to the design and semantics of parallel languages

-
1 .
N . f .
. bl . . .
.J - ¥
) wr . - |r y - .
Wy - B
- - - i £
N 8 'k e R 1 .
. o ¥
. - v N -
3 .
. -, -
%

J.VV. DE BAKKER

according to the styles of imperative, dataflow, LP and OO programming,
with one further thesis on the proof theory for parallel OO. At present,
the main topics in our research are (i) algebraic and coalgebraic approaches
to transition systems; (ii) category-theoretic investigations in comparative
domain theory; (iii) generalized finiteness conditions in topological models;
(iv) predicate—versus state—transformations as theoretical underpinning
for a study of refinement; (v) semantics of higher-order and object-oriented
processes. In line with the general development mentioned above, category-
theoretic tools play an important role in much of this research. For exam-
ple, it has turned out to be useful to describe transition systems in terms of
coalgebras, which formally are defined as the dual of algebras. Also obser-
vational equivalences, such as the widely used notion of bisimulation, can
be described in coalgebraic terms. In this manner, a theory of coalgebras
1s being developed along the lines of (but dual to) universal algebra. This
theory seems to have promising applications, for instance, in the semantic
description of object-oriented languages.

In comparative domain theory, one of the main issues has been to rec-
oncile the use of metric spaces and partial orders (and their corresponding
Hausdorfl and non-Hausdorff topologies). Lawvere’s view of metric spaces
as so-called enriched categories, already developed in the early 1970’s, offers
the right context for this problem. It has led not only to a unification of both

theories, but also to new insights concerning, for instance, powerdomains
and topology (see also figure 2).

3.2. International and national cooperation

A substantial part of the CWI research in this field over the years has been
embedded In international or national collaborative projects. In the first
category, we participated in the ESPRIT sponsored project Parallel Archi-
tectures and Languages (1984-1989, see [1]| for a selection of its results on
semantics) and the ESPRIT Basic Research Action Integration—integrating
the toundations of functional, logic and object-oriented programming (1989-
1992). Currently, our foundational work is supported by the SCIENCE-
MASK project—Mathematical Structures in Semantics for Concurrency,
and a (national) SION project entitled ‘Non-well-founded sets in the se-
mantics of programming languages’. Nationally, we have collaborated for
many years with the groups led by G. Rozenberg (Leiden University) and
W.P. de Roever (Eindhoven University of Technology), first in the SION-
sponsored National Concurrency Project (LPC, 1984-1988), and next in the
NFI-project REX—Research and Education in Concurrent Systems, 1988-
1993. REX has tunded a series of international schools/workshops; [3] con-
tains the proceedings of the 1992 meeting on semantics. Presently, we are
involved in a SION funded collaborative project entitled HOOP—Higher
Order and Object-Oriented Processes—with as partners the CWI group in

SEMANTICS

/ " \
(Pre—OrderS‘)\ (Ultra—Metric Spaces)
. / A

Generalized
Ultra-Metric Spaces

s / \ B
- | | —
Chain-complete T Cauchy-Complete
Pre-Orders Ultra~-Metric Spaces
\u

Cauchy-Complete Generalized
Ultra-Metric Spaces

Figure 2. Categories of basic mathematical structures as used in denotational semantics,
with some (adjoint) functors between them.

semantics, Leiden University (J. Engelfriet, G. Rozenberg) and Eindhoven
University of Technology (J.C.M. Baeten).

REFERENCES

1. J.W. DE BAKKER (ed.). (1989). Languages for Parallel Architectures—
Design, Semantics, Implementation Models, Wiley.

2. J.W. DE BAKKER, J.J.M.M. RUTTEN (eds.). (1992). Ten Years of

Concurrency Semantics, selected papers of the Amsterdam Concurrency
Group, World Scientific.

3. J.W. DE BAKKER, W.P. DE ROEVER, G. ROZENBERG (eds.). (1993).

Semantics: Foundations and Applications, Springer Lecture Notes in
Computer Science Vol. 666.

4. J.W. DE BAKKER, E.P. DE VINK (1995). Control Flow Semantics,
MIT Press.

