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1. INTRODUCTION 

Natural numbers-the numbers by wl1ich we count-have always struck the 
imagination. Problems involving natural nun1bers often are simple to state, 
but their solution may require a lot of mathematical creativity and ingenuity. 
A classical exan1ple is the problem of perfect numbers which was studied 
already by the ancient Greeks: nowadays, it has become a sta11dard problem 
for testing the accuracy and reliability of ne,v computers and software. (See 
also figure 1.) Daily life, even in antiquity, is unthinkable without counting, 
so the scientific discipline now known as Number Theory finds its roots in 
practical problems of every day. 

In number theory, one studies the properties of natural and rational num
bers and the solution of equations by such numbers. Some typical questions 
are: what are the divisors of a given nurr1be1~ and how many are there? How 
many prime numbers (i.e., numbers > 1 only divisible by 1 and themselves) 
are there below a given bound x? Is there an n > 2 for which the equation 
xn + yn == zri has a solution in rational numbers? 

Many problems can be solved i11 a step-by-step way, i.e., with the l1elp 
of an algorithm. Loosely speaking, an algorithm is a set of arithmetic r·ules 
which yields, when applied to a prescribed input, a definite output in a finite 
number of computational steps. The invention of mechanical and electronic 
computers meant a huge step forward for the study of algorithms. These 
machines, if programmed correctly, do not make mistakes nor lose concen-
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Figure 1. Factorization of numbers has fascinated mathematicians from ancient Greece 

through to the present day. Three prominent representatives are: Pierre de Fermat 

(1601-1665, above left), C.F. Gauss (1777-1855, above right), and Hendrik W. Lenstra, 
Jr. (b. 1949, below). 

tr·atio11, so tl1ey ctr·e l)E:•1·f·t~c·tly Sl1it1ecl tc) ser·vc~ clS 111oclE~r·11 slaves f'or· tl1e te
cliol_1s c1.11cl ti111e-c·o1·1s t1111i11g \VC)1· k of· tl1e c·or11 l)l.l t.fttic)11 ctl 11l1111 be1·-tl1eo1·ist.. 111 
adclitio11, 1·11a11y k11c>,v11 i11gE~11iol1s c1lgo1~it,l1111s for· ,t11s,ve1·i11g 11111111)e1·-t,l1eo1·et.ic· 



c1t1(~stior1s would 11ot l1avt~ l)e(~11 i11ve11te(l 'U}·it/1.cJ'lJ,t c·o1111)11 t.E~r·s. F()t· exc-1111 ple, 
1r1ocle1·11 c:1lgc)ritl1111s for fir1dir1g t.l1e 1)1·i111c~ f,1<·tc)1·s of llirye 11l111tl)ers, c1rc~ vc~r·y 
i11effic::ie11t for· .. c;;rricill r1ur11bers, c111cl it. is c~vc\11 l)t·,1(·t,ic·,1lly i1111>ossil)lc~ t,o ,tI)I)ly 
tl1er11 wi t.11011 t tl1e l1el p of f,1s t c~l<~c·t1·c)11ic C'.C)lll J)ll tc"r·s. Tl1e ,tcl vc)r1t c)f ve('.
tor cor11J)t1ters ir1 tl1e eight,ies, a11(l l),11·ctllel C'.OillJ)11t,ers ir1 tl1e 11ir1eties l·1as 
stir11ulc:1ted t.he stt1dy of algc)rit.l1111s f'c)r s11c:l1 c1r·c-..l1it,(~c:t,11r·es. Sc'verc1l r111111l)E~r
tl1eo1·etic: prol)le111s, like those vvl1c~r·e c)11e wc111t,s t1() fi11cl 11t1r11r)ers witl1 cl spe
cial property, ,1re well-s11itecl for· t,rE::at1r1e11t. with t,he l1elp of suc~l1 vec:tor· 
and/ 01· parallel algorithrr1s. 

These develo1)111e11ts l1ave giver1 r·ise t,o the l)i1·tl1 of 'Co1111)ut,c1tic)11al ( or 
Algorithn1ic) N ur11ber Theor·y'. Her·e, tl1e C'.()IIlJ)11ter is a tool for experi111en
tation a11d for testir1g hypotheses, and it is c1 stirnl1ll1s for tl1e clevelc)pr11e11t 
of ever n1ore efficier1t algoritl1111s, wl1ic~h c:a11 lead to 11ew ir1sigl1t arid new 
n1atherr1c1tical res11lt,s. 

2. GLOBAI., I)EVELOI:>MEN.-fS IN C;Oiv1PU.-fATIONAI.J NlJf\.1BER Tf-IEORY 

Before t,l1e advent of fast elect,ro11ic-, corr1pl1te1·s, table~-, were ar1 in1porta11t 
aid tc) 11ur11ber-tl1eo1·ists. Nowadays, it is 111uch 111or·e efficie11t to save a 
comp,uter· prograrn or implerriented al_qorithrn and to c1uickly ge11erate the 
tables or· individual table e11tries eacl1 tirr1e tl1ey are needed. Collec:tions of 
such (sub )pr·ograrns are available 110w i1·1 several comp,uter· algebr·a packages 
like PARI, MAPLE a11d MATHEMATICA. They enable the researcl1er to 
perform arithn1etic calculations (in arbitrary precisio11) 011 mathematical 
objects st1ch as 11u111bers, vectors, 111atrices, algebraic 11u111bers and fi11ite 
fields, a11d to perfor111 syrribolic co1r1putatior1 like i11tegratio11, differentiation 
and formal series expa11sio11. 

The desig11, irr1plen1entat,ion, arid a11alysis of efficie11t algorith111s for solv
ing nu111ber-theoretic problerns l1as bee11 t,l1e 111ai11 activity of' researchers in 
computatio11al nu111ber theory. As a11 illustration, we will br·iefly describe 
her·e three 111ajor algo1·itl1111ic develop111ents, na111ely, ir1 factoring, pri111ality 
testing and lattice basis reductio11. A sur·vey of 111oder11 factori11g n1ethods 
ca11 be found in [2]. An excelle11t l1istorical Sl11·vey of tl1e co1·11pt1tatio11al l1is
tor·y of factoring and prir11ality testing fro1n 1750 to about 1950, i.e., before 
the e'ra of electro'nic computers is pr·ese11ted i11 [5]. Old a11d 111odern primal
ity tests are treated in [1]; tl1is book also t1·eats algoritl1rr1s for lattice basis 
reduction. An excelle11t textbook 011 algorith111ic algebraic 11un1ber theory is 
[3]. 

2.1. Factoring 
An important stimulus for the stl1cly of factor·ing algoritl1r11s was the dis
covery by R.L. Rivest, A. Shamir a11d L. Adlen1an, in 1978, of a public-key 
er1cryption sche111e, now known as RSA. It is based on the (presumed) diffi
culty of· decomposing a given lar~ge nl1n1ber into prin1e factors. For the cur-
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re11tly best known facto1·ing algo1·itl11r1s p1·ac~tic:al experie11c~e Sl1ggests that 
factoring indeed is a hard JJfC)bl(~1r1~ c1ltl1ot1gl1 11otl1i11g l1as bet1,r1 J)roved so 
far. 

Tl1e best known factoring algor·it,l1111s try t,() fi11d i11tegers ::l: <:lnd :l/ witl1 
tl1e property that 

(2.1) 

where n is the nun1ber to be factor·ed ( and k11ow11 to l)e con1posite). For 
such x and y, the number d = gcd(x - y, n) is easily con1puted t)y a well
known algorithm of Euclid, and d is a proper divisor of n in at least half the 
number of cases for which (2.1) holds. So if we have no success, we try to 
find another pair x, y. To find a congruence of the forn1 (2.1), one tr·ies to 
collect many congruences of the form x7 = ai mod n, where the ai only l1ave 
prime factors in a given set :F, which is called the factor base. If we l1ave 
succeeded to find more such congrue11ces ( also called relations) tha11 there 
are different primes in the factor l)ase, we can co111bir1e then1 with the help 
of linear algebra t,ecl1niques (Gaussia11 elimi11ation or iterative 111ethods), to 
find a congruence of the form (2.1). Tl1ere are several 111ethods to find the 
above relations. 011e is based on the computation of the continued fraction 
of n and anothe1· is based on efficient sievi11g techniques for findi11g values 
of quadratic polynomials which only consist of prime factors in the set :F. 

Two important algorithmic discoveries have effectuated a jump in the size 
of the numbers which can be factored within a reasonable time on a modern 
computer: the quadratic sieve method (QS) published in its modern form 
in 1985 by C. Pomerance (but with main ideas going back to M. Kraitchik 
in 1926), and the elliptic curve method (ECM) published in 1987 by H.\V. 
Lenstra, Jr. ECM is suitable to find factors up to 35-40 decimal digits of 
large numbers. Its complexity, as conjectured theoretically, and as observed 
in the experi1nents, depends primarily on the size of the smallest prime 
factor p of the number n which we wish to factor. The complexity of the 
quadratic sieve method depends on the size of n, and not 011 its prime 
factors. It is still the method by which the largest numbers (not of a special 
form like an± b where a and b are small compared to an ± b) have been 
factored. The p1·esent world record is the so-called RSA-129 number, a 
number of 129 decimal digits. In 1977 Rivest et al. challenged the public 
to factor this number. They estimated that the required run11ing time, 
using the best algorithms and machines available in 1977, would be 40 
quadrillion (= 1015 ) years. It was factored only seventeen years later, in 
April 1994, with a variation of the quadratic sieve method after an eight
month worldwide computing effort organized by D. Atkins, M. Graff, A.K. 
Lenstra, and P. Leyland. Also CWI has contributed idle workstation cycles 
to this result. RSA-129 turned out to be the product of two primes, one of 
64 and one of 65 digits, and it is a typical example of a key used in the RSA 
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public-key e11cryption sche1r1e. ECl'v1 a11cl QS r1icely cor11pler11e11t, eacl1 otl1er: 
011e us11ally tries ECJ\t1 first. i11 order to fi11cl facto1·s less t,l1a11 25-30 dec·i111al 
digit.s. If one is lucky, larger· fact,or·s are s01r1eti111es fc)l111ci: the wc)rld r·ec~ord 
is <:l JJri111e factor of 42 deci1r1al digits. I11 t,l1e r1ext st,eJ) QS is trit:}d, pr·ovided 
t.l1c1t t,l1e nun1ber t,o l)e fac~t,ored is s1r1all er1ot1gl1: J)o1>11l<11·ly spoke11, ECrv1 
fi11ds s111aller factors of larger· r1u1r1bers, QS fincls lar·ger· fctc~tc)r·s of srr1aller 
r1u1r1l)ers. 

A thirc.l 111etl1ocl, c~alled tl·1e N un1ber Field Sieve (NFS) a11d l)t1blisl1ed ir1 
1993 l)y J.M. Pollard, ar1d i11 1·efi11ed for·111 by J.P. Bt1l1ler, H.W. Ler1stra, 
Jr., and C. Po111era11ce, is exJ)ected to be 111ore efficient for· ger1e1·al r1u111bers 
than tl1e quadratic sieve, arid it is tl1e subject of i11te11sive cl1r1·e11t researcl1 
to find out where the cross-over poi11t betwee11 NFS a11d QS lies. (See also 
figure 2.) 

The size of the 11t1111bers wl1icl1 c~ould just l)e factored at, a given ti111e witl1 
tl1e available algo1·itl1rr1s clr1d c:or11puter technology was abot1t, 25 decin·1al 
digits in 1967, 40--50 ir1 1974, 70,.--·80 i11 1987, 100 i11 1990, a11cl 120--130 at 
present. Tl1is illustrates the r·apid develop1ne11ts, both i11 algorith111s and 
i11 l1ard,vare, if we realize t,l1at for tl1e best l{11own factoring rr1etl1ods the 
con1putational eff'ort roughly doubles if t,he 11u1nber to be fact,ored grows 
with 2-3 decimal digits. 

2. 2. Primality testing 
Before ,ve a11 e goi11g to try to factor a number n, l1ow do we know that 
n indeed is co111posite? Tests for compositeness are based on tl1e 'Little 
Theoren1' of Fer111at wl1icl1 states that if p is a pri1r1e nu111ber, arid a is a 
positive ir1tege1· such that gcd( a, p) = 1, tl1er1 a1J- l = 1 1110d p. So if' we find 
for sor11e b witl1 gcd( b, n) == 1 tl1at bri- I I 1 1110d n, tl1e11 r1, cannot be prime, 
and we can atte111pt to factor· n. If the test yields = 1 mod ri, we can not 
be sl1re tl1at n. is pri111e si11ce the cori'ver .. r;;e of Fern1at 's Little Theorern does 
not hold. However, in rnost such cases n ir1deed is pr·ime arid exceptions are 
very rare. The sirnplest way to rigorously prove pri111ality of ri is to show 
that it has no divisor·s < ·11,. For srnall n, this 111ethod works on a modern 
PC or workstation, but for larger n ( co11sisting of 111ore tl1ar1 15 decimal 
digits, say) the 11u11.1ber of ope1·ations becomes too large. Until 1980, the 
available prirnality tests were based on tl1e knowledge of tl1e prin1e factors 
of n - l or n + l a11d beca1ne in1practical for nurnbers of mor·e than 100 
decimal digits. A breaktl1rough car11e wl·1er1 Adle111ar1, Po111era11ce, and R. 
Rumely found a test, t,hat was efficient for rnuch larger r1un1bers. Tl1is was 
simplified and i1np1~oved by H. Col1er1, a11d H.W. Le11stra, Jr. Ar1 efficient 
implementation was writte11 by H. Col1en and A.K. Ler1stra, witl1 tl1e help 
of D.T. Winter at CWI. Witl1 tl1is JJrogr·arn, it was possible i11 1986 to prove 
primality of nun1bers llp to 300 decir11al digits in a few 111i11utes CPU-tirne. 
At present, 011e is able to pr·ove p1~irr1alit,y of gener·al nun1l)ers witl1 n1ore than 
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Figure 2. History of factoring records obtained with general-purpose factoring meth

ods: Continued Fraction (blue), Quadratic Sieve (yellow), and General Number Field 
Sieve (red). 



10()0 dec'.ir11al cligits, tl1a11ks to ,1lgc)1·it,l11r1ic: c111cl i1111>le111er1t;,1ti()Ilctl r·esl1lts of' 
A. At.ki11, F. l\llor·ai11, W. Bosr11c1, c111cl Ivl.-P. vct11 cler· Hl.1lst,. For· 11t1111l>ers 
of a SJ)ec:ic1l forr11, like tl1e M er·,'3t:r1.r1,c rl,'ttrrilJt:,'r',9 211 - 1, SJ)ec·ial IJr·i111ctlity test.s 
are k11ow11. Irr fact, t.}1e lar·gestJ k11ow11 1)r·i111f.~ 1111111l)t~1· is t.11(• NIE~rser111e l)r·ir11e 
285943

:
3 - 1, a r1l1111be1· of' 258, 716 dec'.i111al cligit.s. It was clisc~c>ver·ecl l)y D. 

Slowi11ski a11cl P. Gage i11 1994 vvitl1 tl1e l1el1) c)f t.l1e so-c:ctllecl Luc'.cls-LE~l1111e1· 
test., wl1ic:l1 r~eads as follows: clefi11E: tl1e S(~c111(~11c'.(~ {"ti)i} l>y: tL() ·- 4 a11cl 
Ui+ 1 = 'lLT - 2 ( i == 0, 1, ... ) ; tl1e11 ·r11 == 21' - l is a pr·i111e if' a11cl orrly if p is a 
prirne > 2, and if 'ri divides "U1>-'2. 

2. 3. Lattice basis recluctiort 
The tl1ird problem we 111er1tio11 her·e is tl1at of fi11dir1g ,-,rriall 'Vector·s iri lat
t,ices. In 1982, A.K. Lenstr·a, H.W. Lenstra, Jr·., a11d L. Lovasz J)lit)lished 
their so-called 'lattice l)ctsis redu(~tion' algoritl1n1. It c~C.)IllI)llt,es £1·0111 arr ar
bitr·ary basis of a lattic~e ir1 nrri a so-called reducecl basis ,vl1ic~l1 has c~e1·tain 
r1ice properties ( its \rectors are r1e,1rly 01~t,hogor1al). Tl1e algorith1r1 11,1s 111a11y 
irnporta11t applicat,ior1s ir1 a variet,y of 111c:1therr1atic'.al fields, like tl1e facto1·
izatio11 of polyr1orr1ials, pulJlic-key cryptograplry, extr·acting tl1e sql1are-root 
of ext1~en1ely large algebraic nurr1bers ( or1e crt1cial step i11 the N11rnber Field 
Sieve factoring algoritl1111), and tl1e disproof of the Mer·t,ens conject,l1re ( clis
cussed in the next sectior1). For some applicatior1s, tl1is algo1~itl1111 i11 fact 
is a very efficient 1r1t1lti-di111ensio11al continued fractio11 algoritl1rn by which 
one is able to find si111ultaneol1s approxir11atior1s of vectors of 1·eal 1111mbers 
by vectors of ratio1-1al r1urr1bers wit,h tl1e san1e denon1inator. Tl1is pr~oblem 
occurs frequent,ly in 11urr1ber tl1eory. 

3. COMPUTATIONAL NUiv1BER THEORY AT CWI 
A recer1t survey of the research ir1 computatio11al n11mbe1~ theory at CWI i11 
the past 25 years is prese11ted ir1 [4]. \Ve restrict ourselves here to giving 
a concise description of tl1e results obtained with respect to the Riemann 
hypothesis, the Mertens conjectt1re, arid the problem of factoring large 11un1-
bers. The computational nun1be1' tl1eory group at CWI prese11tly cor1sists 
of H.J.J. te Riele (project leader·), \V.M. Lioen and D.T. Wir1t,er (scientific 
progr·an11r1ers), arid H. Boe11der and R.-M. H11izing (junior researc:l1ers at 
CWI and Leider1 University). In 1993-1994, P.L. Mor1tgornery was a vis
iting researcher i11 tl1e group. J. var1 de Lu11e ( senio1· researcher, retired 
in 1993) was the initiator of the con1putational work on tl1e Rier11ann l1y
pothesis, and of other projects of the group like the work on the Goldbach 
conjec:ture. Close cooperation exists witl1 tl1e nurnber theory group of R. 
Tijdeman in Leiden. 
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3.1. The Riemann h,ypothesis 
Consider the fl1nctior1 ((~9) == I:::~1 ri- 8

, \vher·e s == a+ it is a complex 
variable. If a > 1, tl1e11 tl1e ser·ies cc)11vergE~s, so tl1at ( ( s) is proJ)erly defi11ed 
tl1ere. By l1sing a tecl111ic1ue now k11owr1 as ar1alytic c~o11ti11uatic)r1, Rie1nan11 
sl1owed i11 1859 t,hat tl1ere is a ur1ic1ue f'unctio11 wl1icl1 coir1cides with ( ( s) for 
a > 1, and ,vl1icl1 is a11alytic: ir1 the 'Whole cor11plex pla11e, except at t.he poi11t 
s == l ( wl1ere the functio1-1 l1as a pole of order 1). Tl1is fur1ctio11 is k11ow11 as 
tl1e Riemann zeta functiori, arid it plays a pron1i11ent role ir1 pr·in1e number 
theory. It is known to have infinitely rr1ar1y con1plex ze1·0s i11 tl1e so-called 
critical strip O < a < 1, and in an eigl1t--·1)age paper which appeared in 
1859, Riemann wrote tl1at it is ver·y likely that all tl1ese zer,os lie on the line 
a == ½. So far, r1obody l1as been able to ( dis )prove this assertion, which is 
known 110w as tl1e Riemann hypothesis. 

What is tl1e relatio11 between the Rien1ann hypothesis a11d pri1ne number 
theory'? Let 7r(x) denote the nu1nber of primes < x. As early as in 1792 or 
1793, C.F. Gauss co11jectured that tl1e density of the prin1e numbers close 
to x is approxin1ately eql1al to 1/ log x, a11d that the so-called logaritl1mic 
integral 

X dt 

2 logt 
li(x) == (3.2) 

is a good approximatio11 of the function 7f ( x). Extensive r1un1erical con1-
putatio11s by A.M. Odlyzko suggest that tl1e error in this approximation is 
proportional to x: for x == 1012 , 1014 , 1016 , 1017 , 1018 we have 

(1r(x) - li(x))/ x = -0.038, -0.031, -0.032, -0.025, -0.022, 

respectively. The trut,h of tl1e Rierr1an11 l1ypotl1esis implies that 

ri(x) == li(x) + O(x1f 2 log x) as x > oo. 

What is kr1own about tl1e location of the complex zeros of ((s )'? Massive 
numerical cornputations carried out by Van de Lu11e, Te Riele, and Winte1' 
at CWI in 1983-1984 on a CDC Cyber 750 computer, and on a CDC Cyber 
205 ( one of the first vector con1puters in The Netherlands), have proved 
that the first 1.5 x 109 complex zeros of ((s) are all simple and lie on 
the line a = ½- The amount of CPU-time t1sed was about 1000 (low
priority) hours on both machines. This extended similar computational 
work by R.P. Brent at the Australian National U11iversity in Canberra for 
the first 156, 800, 001 complex zeros. Extensive corr1putations by Odlyzko 
have shown later that the Riemann l1ypothesis holds for 1011g sequences of 
consecutive zeros with rank in the neighbourhood of 1018 , 1019 , and 1020 . 

Table 1 gives the successive published records in provi11g that the first r,, 

co1nplex zeros of the Riemann zeta fur1ction satisfy tl1e Rie111a11n hypothesis. 
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Table 1. Numerical verification of the Riemann hypothesis for the first 'n complex zeros. 

3. 2. The Mertens conjecture 
The Mertens conjecture is a state111ent abot1t the so-called Mobi us fur1ction 

n == 1 
' µ(n) :== if ri is divisible by tl1e sq11are of a pri1ne nurr1ber, 

if n is the product of k distinct prin1es. 

Based on nun1erical data concernir1g the function 

Jivf(x) == µ(n), 
- -

F. Mertens stated in 1897 that the inequality 

IM(x)I < x, x > I, 

is 'very probable'. This is now kr1own as the Mertens conjectur·e. 
The size of M(x) is closely related to the locatior1 of the complex zeros 

of the Riemann zeta function. In fact, it is riot too difficult to show that 
the boundedness of M ( x) / x implies the truth of the Riernanr1 hypothesis. 
For all values of A1(x) which have been computed explicitly, the Mertens 
conjecture is tr11e. In 1994, Lioen and Va11 de Lune at CWI established that 
-0.513 < M(x)/ x < 0.571 for200 < x < l.78x 1013 . Their computations 
consumed about 400 CPU-hours on a Cray C98 super vector con1puter. 
Nevertheless, serious doubts concerning the truth of the Mertens cor1jecture 
were raised already in 1942 by A.E. Ingham, who showed that it is possible 
to prove the existence of certain large values of I A1 ( x) I/ x without the need 
to expl·icitly corripute M ( x). In orde1' to fi11d such large values, 011e has to 
solve a so-called simultaneot1s inhomogeneot1s Diopl1antine approximation 
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Figure 3. Graph of the function h(y,) + t) fort E [-3, +3] (left), with enlargement 
of its centra I part (right). 

probler11. U si11g tl1e algoritl1r11 of' Le11str·a, Ler1stra, a11d Lovkisz, 111e11tior1ed 
in the pr·evious sectio11, Odlyzko and Te Riele irr 1985 fol111d a dispr·oof of 
tl1e Mer·tens c;o11jecture. This requir·ed to fi11d a valt.1e y == y0 for wl1icl1 a 
certai11 functio11 h(y) ( whicl1 we shall riot give exJ)licitly here) assur11es a 
value> 1. Tl1e value fo1111ll (see also fig11re 3) was: 

Yo =-14()45 28~)68()5929 98()4679()~16 1 G:~C)39f)781 127 4()()5919 !)978973803 9965960762.521505. 

U11fortu11ately, tl1is disproof is ir1effective: only the existen,ce of an x wl1ere 
1\1(x)I/ x > l was proved. Ir1 1987 l1owever, J. Pi11tz gave a11 explicit 

2'94 (huge) upper bound, proving that IM(x)I/ x > I for x < exp(3.21 x 1064 ). 

For· tl1e corrrputation of tl1is upper· bou11d, Pintz usecl 100-digit accu1--ate 
values of the first 2000 co111plex zeros of tl1e Rierr1ann zeta f1111ctior1, a11d 28-
digit acct1rate values of tl1e r1ext 12950 corr1plex zer·os, as co111J)uted earlier 
by Te Riele for tl1e 'ineff·ecti11e dispr·oof. 

3. 3. Factoring large n·u1nber·s 
At C\VI n1uch tin1e arid effor·t. lras been sper1t on tl1e efficie11t imple111e11-
tation of the quadratic sieve 111et,l1od on large vector· 1nainf1~ames like tl1e 
CDC CylJer· 205, tlre NEC SX-2, a11d tl1e Cray Y-11P a11d Cray C98 vector· 
co1nputers. 

!11 t,l1e course of years, various rrew factorization records have been es
tablisl1ed l)y the CWI Corrrputational Nur11ber Theory group. These, arid 



n1any otl1er factorecl nur11bers W€~1·t~ (~or1t,rilJut.io11s tc) tl1e so-l·alled (;l11111i11g
l1arr1 Tal)le ( a t.al)le of kr1ow11 fact,c)r·s of 1111111l)er·s of t1l1e for·111 ll·ri ±I, i11it,iate(l 
i11 1925 l)y A.J .C. Cu1111ingl1a111 c111cl H.J. \Vc)oclall) ct11cl t,c) a11 (~Xt,(~11sio11 of 
tl1is t.able. 

Ir1 Tctl)le 2 we give s0111e figures al)o11t r·e('.OI'c.l fac:t,or·izat,io11s fot111cl at CvVI 
011 vector· c:c)1r1pute1·s. All 1·es11lts were olJtc1i11ed 011 or1.e I)I'C)C:E~ssc)r of tl1e 
vector· c:or11pt1ter· listed. 011 the C1·ay Y-lv1P we co'uld l1c1ve usecl £0111· CPUs, 
tl1us 1·educ:ir1g tl1e sievir1g tir11t~ by a f'actor· of about four·, si11c~e t,l1e 11·1ost 
tin1e-consu111i11g steps of tl1e qt1adr·at1ic sieve algor·itl1111 are al111ost 1>e1·fec:·t,ly 
parallelizable. 

year machi11e 

1986 Cyber 205 

1988 NEC SX-2 

1991 Cray Y-MP 

size of 
numbers 

(decimals) 
72 
75 

87 
92 

101 

• • s1ev1ng 
time 

(hours) 
4.3 
12.2 

30 
95 

475 

Gaussian 
elim. time 
(seconds) 

21 
37 

200 
700 

1800 

approximate 
order of 

sparse system 
6,070 
7,400 

18,800 
24,300 

50,200 

Table 2. Record factorizations with QS on vector (super)computers. 

Tl1e latest r·ecords were obtair1ed i11 the Sl1n1n1er of 1994 wit,h tl·1e help 
of tl1e Cray C98 at SARA (Tl1e Acaden1ic Co111pl1ting Ce11tre A111sterdan1), 
and 111a11y ,vorkstatio11s in a collal)o1·atior1 betwee11 Orego11 State University 
a11d CWI: a 162-digit Cun11ir1ghar11 nurnber was factored with tl1e 'Special 
Number Field Sieve' (SNFS, for wl1icl1 the 11u111ber n to be factored l1as 
the forn1 n = ar11 ± b, a and b l)ei11g s1r1all con1pared t,o n ), and a 105-digit 
11umber vv·as factored witl1 the 'Ge11eral Nu1r1ber Field Sieve' (GNFS, for 
whicl1 110 special forrn of n is known). One 1no11th after tl1e lat.te1~ r·esult was 
obtai11ed, A.K. Lenstra, B. Dodson, and Mo11tgo111ery cracked a 116-digit 
partition r1u111ber with GNFS. 011 Nove111ber 26, 1994 S. Co11tini, Dodson, 
A.K. Lenstra, a11d Mo11tgo111ery c~o111pleted tl1e fact,orizatio11 of a 119-digit 
cofactor of the 123-digit partition nun1l)er p( 13171) into two pr·i111es of 52 
and 67 digits usi11g GNFS. F1·01r1 tl1e ti111e t,l1ey used ( about 250 r11ips years) 
they estin1ate that t,l1is is about 2.5 ti1r1es less tl1ar1 wl1at tl1ey would 11eed 
to factor a nu111ber of co111parable size with tl1e quadratic sieve 111etl1od. 

Montgon1ery arid H uizing factored sever·al otl1er nl1111bers with SNFS ( of 
98, 99, 106, 119, 123, 135, and 137 deci1nal digits) inclucling s0111e more 
and most wa11ted Cu1111ingha111 11t1r11bers (i.e. difficult r111mbe1·s in tlre Cun-
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ningl1a1n table, not yet f'ftctored) usir1g a nev..r <1lgo1·itl11n of Mo11tgorr1ery for 
cornJ)uting the square roc)t of tl1e procl11<~t of 1r1a11y algel)r·,1.ic'. r1u1·r1l)ers, and 
his 11ew iterative l)lock La11czos algc)ritl1111 for· fi11clir1g depl~11cle11c'.ies i11 large 
sparse 1r1atrices over· GF(2). Ht1izir1g also fa<:torecl 87-, 97-, a11cl 107-digit 
nur11bers witl1 GNFS. 

Cu1·re11tly, r11ost factor·ization I'eSectrch at C\VI ai111s at c:ontributir1g to 
tl1e Cur111ir1gl1arr1 tables. 111 tl1e first t1pdat.e to tl1e exte11cled table, issued in 
Septer11ber 1994, all the corr1posite 11t1111l)ers witl1 less tl1a11 86 clecir11c1l digits 
were cor11 pleted. Tl1is bo11nd has lJee11 r·aised i11 l\!Iay 1995 t,o 90 decirnal 
digits. 
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