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Abstract 

In his series of three papers we study singularly perturbed (SP) boundary value 
problems for equations of elliptic a.nd parabolic type. For small values of the pertur
bation parameter parabolic boundary a.nd interior layers appear in these problems. 
If classical discretisation methods are used, the solution of the finite difference 
scheme a.nd the approximation of the diffusive flux do not converge uniformly with 
respect to this parameter. Using the method of special, adapted grids, we can 
construct difference schemes that allow approximation of the solution and the nor
malised diffusive flux uniformly with respect to the small parameter. 

We also consider singularly perturbed boundary value problems for convection
diffusion equations. Also for these problems we construct special finite difference 
schemes, the solution of which converges e-uniformly. We study what problems ap
pear, when classical schemes are used for the approximation of the spatial deriva
tives. We compare the results with those obtained by the adapted approach. Re
sults of numerical experiments are discussed. 

In the three papers we first give an introduction on the general problem, and 
then we consider respectively (i) Problems for SP parabolic equations, for which 
the solution and the normalised diffusive fluxes are required; (ii) Problems for SP 
elliptic equations with boundary conditions ofDirichlet, Neumann and Robin type; 
(iii) Problems for SP parabolic equation with discontinuous boundary conditions. 
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Part II 

BOUNDARY VALUE PROBLEM FOR ELLIPTIC EQUATION WITH 
MIXED BOUNDARY CONDITION 

1. Introduction 

In this part we sketch a variety of special methods which are used for constructing 
e-uniformly convergent schemes. We shall demonstrate a method which achieves im
proved accuracy for solving singularly perturbed boundary value problem for elliptic 
equations with parabolic boundary layers. 

In Section 4 we shall introduce a natural class, B, of finite difference schemes, in 
which (by the above mentioned approaches (a) and (b)) we can construct (formally) the 
special finite difference schemes with approximate solutions which converge parameter
uniformly to the solution of our initial boundary value problem. 

In this chapter we consider a class of singularly perturbed boundary value prob
lems which arise when diffusion processes in a moving medium are modeled. For such 
boundary value problems which describe transfer with diffusion, we construct a special 
scheme that converges parameter-uniformly. We shall show that for the construction 
of such schemes from class B, the use of a special condensing grid (or an adaptive 
mesh) is necessary. It means that the choice (to construct special parameter-uniformly 
convergent schemes for our class of convection diffusion problems) is quite restricted. 
By condensing (or adaptive) grids we can construct finite difference schemes which 
converge parameter-uniformly. We shall present and discuss the results of numerical 
computations using both the classical and the new special finite difference schemes. 

2. The Class of Boundary Value Problems 

2.1. The physical problem 
The diffusion of a substance in a convective flow of an incompressible fluid in a 

two-dimension domain gives rise to an equation of the form 

- e~u(x) + v(x). Vu(x) = F(x), x En, (2.la) 

where v(x) and F(x) are the velocity and source, respectively; 1/e is the Peclet number 
(Reynolds number), if the substance is heat (diffusive matter or momentum.)!11. When 
the substance is heat (diffusive matter or momentum) then u(x) is the temperature 
(density or velocity) at the point x. On the boundary of domain considered (that is the 
wall of the container holding the fluid) we have a boundary condition that describes 
the exchange of the substance with the surrounding environment 

8 
- a(u(x) - U(x)) - 8n u(x) = O, x E ffn. (2.lb) 
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Here 00 n is the boundary of the domain (the wall of the container), /n is the outward 

normal derivative at the boundary, a characterises intensity of exchange of the sub
stance between the medium and the wall, where the value is given by U(x). When a 
tends to infinity the condition (2.lb) becomes the Dirichlet condition 

u(x) = U(x), x E a°n. 

The inflow boundary, that is the part of the boundary an\ a<>n where the stream enters 
the domain, we denote by a+n, and the outflow boundary by a-n 

n(x) · v(x) < o, x E a+n; n(x). v(x) > o, x E a-n. 
Here n( x) is a unit vector in the direction of the external normal. On the boundary 
aon we have condition 

n(x) · v(x) = O, x E f!Jn. 
On a+n the value of u(x) is given, and on outflow boundary a-n we assume the :0.ux 
to be known 

u(x) = u+(x), x E a+n, 
a -8n u(x) = 'IJl(x), x E 8 fl. 

(2.lc) 

(2.ld) 

Problem (2.1) describes a general diffusion process into moving medium. For sufficiently 

large Peclet number . (Reynolds number), e can be very small. As e tends to zero a 
boundary layer appears in the neighbourhood of the boundary a<>n. 

2.2. The class of boundary value problems 

Now we describe the class of two-dimensional convection-diffusion problems with 
mixed boundary conditions, for which we shall study the convergence behaviour. No

tice that we consider here mixed boundary conditions, wh~re usually only Dirichlet 
boundary conditions are studied. 

On the rectangular domain D = {x: 0 < x1 < ~' i = 1, 2} we consider the elliptic 
boundary value problem 

L(2.2)u(x) = {e2 L aa(x) :2 - b(x) aa - c(x)} u(x) = J(x), x ED, (2.2a) 
a=i,2 Xa x1 

u(x) = <p(x), x Er+, (2.2b) 

a o 
l(2.2)u(x)::: -ea On u(x) - (1 - a:)u(x) = 1/J(x), x Er , (2.2c) 

! u(x) = 17(x), x Er-. (2.2d) 

Here a8 , b, c, f, cp, 1/J, and 1J are sufficiently smooth functions, a E [O, 1], e E (0, 1], 
ao $ ai(x), a2(x) $ a0 ; b(x) 2'.: bo; c(x) 2'.: O; x ED; ao, bo > 0, and 

r+ = r n {x I xi = o}, 
r- = r n { x I xi = di}, 

r 0 = r n {x I 0 < Xi <di}. 
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This class of problems includes, for example, the following boundary value problem 
for a regular differential equation 

{ a2 a } L(2.s)U(y) = L As(Y)82 - B(y)0 U(y) = F(y), 
s=l,2 Ys Yl 

(2.3a) 

y E D, with regular boundary conditions 

U(y) = <I>(y), y E f+, 
8 

l(2.3}U(y) =-a: 8n U(y) - (1- a)U(y) = w(y), y E f 0 , 

8 
8n U(y) = 0, y Er-, 

(2.3b) 

on the rectangular domain f> = {y : 0 < Yi < di, i = 1, 2}, ~ = e-1 ~' if the size of 
domain f> is sufficiently large. 

2.3. The construction of e-uniformly convergent schemes 
When e tends to zero in the neighbourhood of r 0 , boundary layers appear which are 

described by parabolic equations. Hence these layers are known as parabolic boundary 
layers. 

Although classical difference approximations (see, for example, [6, 7] ] ) converge 
for (2.2) to the solution of the boundary value problem for each fixed value of e (see 
Theorem 3.1), the accuracy of the numerical solution depends on the value of e and 
decreases, sometimes to complete loss of accuracy, when e is less or comparable with 
the step-size of the uniform grid. This means that classical finite difference schemes do 
not converge uniformly with respect to the parameter e, (see theorem 3.2). Therefore, 
for the boundary value problem (2.2) it is of interest to construct special schemes the 
solution of which does converge e-uniformly. 

For the case of the Dirichlet problem (2.2a), an e-uniformly convergent finite dif
ference scheme is found in [9, 10]. 

3. Classical Difference Scheme 

To solve the problem (2.2) we first use a classical :finite difference method. On the 
set D we introduce the rectangular grid 

(3.4) 
• 

where w, is a, in general non-uniform, grid on the interval [O, d,] and N, is the number 
of nodes of the grid w,, s = 1, 2. Define h! = x!+l - x!, h8 = m&Xi h!, h :$ M N-1, 

where h = max, h,, N = min, N,, s = 1, 2; Dh = D n Dh, rh = r n Dh. For problem 
(2.2) we use the difference scheme 

A(3.s)z(x) = f(x), x E Dh, 

z(x) = i,o(x), x E rt, 
(3.5a) 

(3.5b) 
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where 

A(3.s)z(x) = 1/J(x), x E ri, 
8a;1 z(x) = 17(x), x Er;:, 

A(3.5)z(x) = e2 L as(x)8x;;-.z(x) - b(x)8x1 z(x) - c(x)z(x), 
s=l,2 

{ 
ea8x2 z(x) - (1 - a)z(x), 

A(3.5)z(x) _ 
-ea~z(x) - (1- a)z(x), 
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(3.5c) 

(3.5d) 

8x.x,,z(x) is the second divided difference on a non-uniform grid, and 8x.z(x) and 8x;z(x) 
are the first forward and backward divided differences. 

The difference scheme (3.5), (3.4) is monotone (that is the maximum principle 

holds) [71. By means of the maximum principle, and using the estimates of the 

derivatives[5J, we find that the solution of the scheme (3.5)-(3.4) converges (for a fixed 

value of the parameter e) as 

!u(x) - z(x)I ~ Me-4N- 1 , x E Dh. (3.6) 

Theorem 3.1 Let u E C 4 (D). Then, for a fixed value of the parameter e, the so

lution of the scheme (3.5)-(3.4) converges to the solution of the boundary value problem 

(2.2) with an error bound given by (3.6). 

Clearly (3.6) does not imply e-uniform convergence of the difference scheme. In 
fact it can be shown that it is impossible to obtain e-uniform convergence for the 

difference scheme (3.5)-(3.4) on a fixed e-independent mesh. The proof is found in [8]. 
We summarise this result in the following theorem. 

Theorem 3.2 (see [5]) On an e-independent grid of type (3.4), the solution of 

the classical finite difference scheme (3.5), ( 4.8) does not converge e-uniformly to the 

solution of the boundary value problem (2.2). 

We want to make the following interesting observation. We consider problem (2.2). 

If we take in l(2.2) the parameter e = 1 (leaving e unchanged in (2.2a) and A(3•5), but 

adapting it in A(s.s) ), then no singular part will appear as a first term in the expansion 

w.r.t. e. Hence, the classical scheme will bee-uniform convergent in this case. 

4. The Fitted Difference Scheme 

For parabolic problems with parabolic layers, it was shown in [5] that there does 

not exist a difference scheme only based on fitting of the coefficients, for which the 

solution converges e-uniformly to the solution. Here we show a similar result for the 

elliptic boundary value problem (2.2). Let us consider the problem 

2 ) 8 L(4.7)u(x) = e ~u(x - ~u(x) = 0, x ED, 
ux1 

(4.7a) 
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u(x) = 0, x Er+, 

l(2.2)u(x) = 1/J(x), x E r0, 

a -on u(x) = 0, x Er , 

1/J(x) = { 1/Jo(x1), x E r 0, x2 = 0, 
0, X E ro, X2 -:/: 0, 

(4.7b) 

(4.7c) 

(4.7d) 

and the function 1/Jo(x1), x1 E [ 0, d1] is sufficiently smooth. The solution of problem 
( 4. 7) is the singular solution. 

Let us introduce a class, called class A, of finite difference schemes for problem 
( 4. 7), for the construction of which we use uniform meshes: 

D: = {Dh(3.4), where w8 = w: are uniform grids, s = 1, 2}. (4.8) 

and also (for the approximation of equation (4.7a)) a standard five-point, fitted finite 
difference operator 

A(4.9)z(x) := { 2: (As8x8 x8 + Bs8xs - C }z(x) = E, X E Dh. (4.9) 
s=i,2 

Here the coefficients A 8 , B 8 , C, E are functionals of the coefficients of equation (4.7a) 
and also depend on x, hi, h2, and c. We suppose that for h2 c-i ---+ 0 and hi ---+ 0 
these coefficients A8 , Bs, C, E approximate the data of equation (4.7a), in the uniform 
norm, in the neighbourhood of at least one point the boundary layer region. 

Theorem 4.1 In the class A of finite difference schemes there does not exist a 
difference scheme of which the solution converges €-uniformly to the solution of the 
boundary value problem (4.7). 

The proof of this theorem is rather complex. An outline of the principle steps is 
found in [11, 13]. 

Remark 1. A statement similar to Theorem 4.1 is also true in the case when the 
difference schemes are constructed on a more general stencil with a finite number of 
nodes. 

The results of Theorem 4.l and Remark 1 can be explained as follows. All solutions 
of problem ( 4. 7) (defined by different functions tjJ( x)) are singular solutions. Those 
solutions can not be represented as linear combinations of a finite number of fixed 
functions of boundary layer type (boundary layer functions). 

Let us introduce class B of finite difference schemes for problem (2.2), for the con
struction of which we use rectangular grids Dh (3.4), which are generally non-uniform 
and a five-point finite difference operator (in general a fitted operator) of the standard 
form. The coefficients of the difference operator are, as before, functionals of the co
efficients of the equation (2.2a) and also depend on x, c and on the distance between 
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the nodes of the stencil used. Again, we suppose that for h --+ O the coefficients of 

the difference operator approximate (in the uniform norm) the coefficients of equation 

(2.2a) on the set Dh(a.4)· 

We remark that class Bis a natural class for constructing finite difference schemes 

for problem (2.2) as it includes both fitted methods and methods with special con

densing grids. This is in contrast to class A, which contains only schemes on uniform 

meshes. Consequences of Theorem 4.1 include results such as: 

Corollary 4.2 

In the case of boundary value problems of type (2.2), class B of finite difference schemes 

does not contain any difference scheme which, on grids with arbitrary distribution of 

nodes, can achieve e:-uniform convergence of the solution to solution of boundary value 

problem (2.2) by the use of a fitted method. 

Corollary 4.3 

In the case of boundary value problems of type (2.2), the use of special condensing 

grids (or adaptive meshes) is necessary for the construction of e: -uniformly class B 

finite difference schemes. 

5. Difference S~eme of Method of Special Condensing Mesh 

We now construct an e:-uniformly convergent scheme for the boundary value problem 

(2.2). We use a special condensing mesh (in the neighbourhood of the boundary layers), 

where the distribution of the nodes is defined by a-priori estimates of the solution and 

its derivatives. This approach is similar to that in [11, 12, 13], where the Dirichlet 

problem was studied. 
Consider the special grid 

(5.10) 

where w2* = w2*(u) is a special piecewise uniform mesh, w1 is a uniform mesh, u is a 

parameter which depends one: and N2. The mesh w2*(u) is constructed as follows. The 

interval [ O, d2] is divided into three parts [ 0, u ], [ <r, ~ - u ], [ ~ - u, d2 ], 0 < u ~ d2/4. 

Each subinterval [ O, u] and [ ~ - u, d2] is divided into N2/ 4 equal cells and the subin

terval [u,d2 -u] into N2/2 equal cells. Suppose u = u(e:,N2) = min[d2/4, melnN2] 

where m is arbitrary number. 
The difference scheme (3.5), (5.10) belongs to class B. The scheme is constructed 

using an a priori adapted mesh. Distribution of the nodes on grid Dh* ensures e: 

-uniform approximation of the boundary value problem. This is formalised in the 

following theorem (see also [5]). 

Theorem 5.1 The solution of difference scheme (3.5), (5.10) converges e:-uniformly 

to the solution of boundary value problem (2.2). The following bound holds for the error 

lu(x) - z(x)I s M N-1!3 , x E Dh* . (5.11) 
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The proof of this theorem will appear in a future paper. 

6. Numerical Results 

, Theoretically (see Theorem 3.2) it has been shown that the classical difference 
scheme (3.5) on the uniform grid (4.8) does not converge c-uniformly in the l00-norm 
to the solution of the boundary value problem (2.2). But it could be the case that 
the error max:vh lz(x) - u(x)I is relatively small for the classical scheme, which would 
reduce the need for a special scheme. 

On the other hand, Theorem 5.1 shows that the special scheme (3.5),(5.10) converges 
.s-uniformly, but no indication is given about the value of the order constant Min (5.11) 
and the order of convergence is rather small. It might be that the error is relatively 
large for any reasonable values of Ni, N2. This would reduce the practical value of the 
special scheme. The following numerical experiments address these issues. 

6.1. The model problem 
To see the effect of the special scheme in practice, for the approximation of the model 

problem we study the singularly perturbed elliptic equation with a mixed boundary 
condition 

where 

- 2 8 Lc6.12)u(x) = c .6.u(x) - -8 u(x) = -1, xED , 
X1 

l(6.12)u(x) = 'lf;(x), xEr0 , 

u(x) = 0, xEr+, 
a 

-0 u( x) = 0 , xEr- , 
X2 

l ( ) -{ a.s(8/8x2)u(x)-(l-a)u(x), x2=0, 
(612)U X = 

· -a.s(8/ax2)u(x)-(l-a)u(x), x 2 =1. 

(6.12) 

We compare the numerical results for the classical scheme (3.5), ( 4.8) and the special 
scheme (3.5), (5.10). Here D = {x: 0 < xi,x2 < 1}, 

'lf;(x) = { x1, xEr0 , x2 = O, 
O, xEr0,x2 = l. 

For the solution of problem (6.12), we have the representation 

u(x) = U(x) + W(x), xED, 

where U(x) = x1, xED, is the outer solution, and W(x) represents the parabolic 
boundary layer in the neighbourhood of the edges at x2 = 0 and x2 = 1. We have the 
following bounds on the solution 

-1::; u(x) ::; 1, xED . 
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Due to Theorem 5.1 the solution of the discrete problem with the adapted mesh 
converges e-uniformly to the solution of our model problem (6.12). The function uh(x), 
which is the solution of the special scheme (3.5),(5.10) is shown in Figure 1. 

Figure 1. Solution computed with the adapted mesh, e = 0.01, a: = 0.5, N = 32 and m = 1.0. 

6.2. The behaviour of the numerical solution of the classical scheme 
To see the difference between the use of the uniform and the adapted grid, for the 

approximation of (6.12) we first use the classical scheme (3.5), (4.8). We solve the 
problem for different values of the mesh width h1 = h2 = N-1 and for different values 
of the parameters e and a. The results for a set of numerical experiments is given in 
Table 1. 

From Table 1 we can see that the solution of scheme (3.5)-(4.8) does not converge 
c-uniformly. The errors, for a fixed value of N, depend on the parameters c and a. For 
c ~ 0.1 and a= 0.0, 0.1, 0.5, 1.0 the error behaviour is regular: when N increases, the 
error decreases. For e = 10-3 and a = 0.0, 0.1, 0.5 and for e = 10-2 and a = 0:0, for 
some values of N the error increases with increasing N. For a = 0.5, 1.0 and a fixed N 
the error increases with decreasing e. In particular, for c = 10-3 and a= 0.5, 1.0 the 
errors for N $ 128 are of the same order or larger than (in .e=-norm) the solution of 
the BVP. Thus, the numerical results illustrate that the lack of e-uniform convergence 
leads to large errors indeed. 

6.3. The behaviour of the numerical solution of the special scheme 
In Table 2 we show the behaviour of (3.5), (5.10), with m = m(s.io) = 1, applied 

to the model problem (6.12) From Table 2 we can see that the solution of the scheme 
(3.5)-(5.10) does converge e-uniformly indeed. The errors for a fixed value of e = 
1.0, 10-1 , 10-2 , 10-3 and a = 0.0, 0.1, 0.5, 1.0 have all a regular behaviour and decrease 
for increasing N. For a fixed value of a and N the error stabilises for decreasing e: the 
errors for e = 10-2 and c = 10-3 are practically the same. For c $ 10-2 and a fixed 
value of N we find the largest error for a = 1.0. In particular, for c $ 10-2 , a = 1.0 
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Ta.ble 1. Ta.hie of errors E(N, e, a) for the classical scheme 

N 4 8 16 32 

e Q 

1 0.00 0.105 0.633(-1) 0.329(-1) 0.158(-1) 
10-1 0.305 0.144 0.655(-1) 0.291(-1) 
10-:i 0.247 0.127 0.822(-1) 0.107 
10-:i 0.246 0.121 0.588(-1) 0.283(-1) 

1 0.10 0.691(-1) 0.381(-1) 0.170(-1) 0.744(-2) 
10-1 0.312 0.149 0.701(-1) 0.310(-1) 
10-:i 0.247 0.194 0.185 0.156 
10-:i 0.246 0.209 0.216 0.216 

1 0.5 0.852(-1) 0.401(-1) 0.183(-1) 0.842(-2) 
10-1 0.706 0.473 0.254 0.121 
10-:i 1.20 1.26 1.15 0.893 
10-:i 1.28 1.43 1.49 1.48 

1 1.0 0.123 0.610(-1) 0.288(-1) 0.132(-1) 
10-1 1.52 0.752 0.344 0.154 
10-:i 18.2 10.3 5.19 2.40 
10-:i 187. 109. 57.9 29.5 

In this table the error E(N,e,a) is defined by 

E(N,e,a) = ~ le(x;N,e,a)I, 
zEDi. 

e(:z:; N,e, a)= z(:z:) - u*(:z:), 

64 

0.696(-2) 

0.122(-1) 

0.882(-1) 

0.157(-1) 

0.314(-2) 

0.129(-1) 

0.109 

0.211 

0.359(-2) 

0.526(-1) 

0.557 

1.41 

0.562(-2) 

0.643(-1) 

1.02 

14.6 

128 

0.241(-2) 

0.403(-2) 

0.246(-1) 

0.200(-1) 

0.104(- 2) 

0.423(-2) 

0.583(-1) 

0.197 

0.119(-2 ) 

0.176(-1) 

0.279 

1.27 

0.187(-2) 

0.211(-1) 

0.408 

7.01 

(6.13a) 

(6.13b) 

where u*(x) is the piecewise interpolation of z!256(:z:), m = mcs.10) = 1 (see 
Table 2), and z(x) = zN(x) is the solution of (3.5),(4.8) with h1 = h:,i = N-1• 

Notice that u*(z) is an accurate approximation of u{:z:). 

and N = 128 the error is less than 6%. Also here, the numerical results illustrate the 
practical value of e-convergent methods. 

7. Conclusion 

For the elliptic boundary value problem (2.2), where a small parameter multiplies 
the highest derivative, we have analysed different approaches for the construction of 
discrete methods. We present methods for which the accuracy of the discrete solution 
does not depend on the value of the small parameter, but only on the number of points 
in the discretisation. 

We show that in a natural class of finite difference schemes, for the problem consid
ered, no e-uniform methods exist on a uniform grid (Theorem 4.1). As a consequence, 
fur the construction of e-uniform methods the use of a.n adapted non-uniform mesh is 
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Table 2. Table of errors E(N, e:, a) for the special scheme 

N 4 8 16 32 64 128 
€ a 

1 0.0 0.105 0.633(-1) 0.329(-1) 0.158(-1) 0.696(-2) 0.241(-2) 
10-1 0.262 0.144 0.655(-1) 0.291(-1) 0.122(-1) 0.403(-2) 
10-2 0.246 0.147 0.807(-1) 0.361(-1) 0.148(-1) 0.497(-2) 
10-3 0.246 0.147 0.807(-1) 0.361(-1) 0.148(-1) 0.497(-2) 

1 0.1 0.691(-1) 0.381(-1) 0.170(-1) 0.744(-2) 0.314(-2) 0.104(-2) 
10-1 0.276 0.149 0.701(-1) 0.310(-1) 0.129{-1) 0.423(-2) 
10-2 0.246 0.170 0.887(-1) 0.461(-1) 0.240(-1) 0.924(-2) 
10-3 0.246 0.169 0.887(-1) 0.461(-1) 0.241(-1) 0.925(-2) 

1 0.5 0.852(-1) 0.401(-1) 0.183(-1) 0.842(-2) 0.359(-2) 0.119(-2) 
10-1 0.611 0.473 0.254 0.121 0.526(-1) 0.176(-1) 
10-2 0.539 0.511 0.361 0.217 0.111 0.420(-1) 
10-3 0.535 0.511 0.361 0.217 0.111 0.420(-1) 

1 1.0 0.123 0.610(-1) 0.288(-1) 0.132(-1) 0.562(-2) 0.187(-2) 
10-1 1.14 0.752 0.344 0.154 0.643(-1) 0.211(-1) 
10-2 0.977 0.889 0.554 0.301 0.144 0.521.(-1) 
10-3 0.963 0.888 0.554 0.301 0.144 0.521(-1) 

In this tabie the function E(N, e:, a) is defined by (6.13), but now z(x) = z:,.N (x) 
in (6.13) is the solution of {3.5),(5.10) with m = ffl(s.io) = 1 and N1 = N2 = N 
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necessary. With a special, adapted, non-uniform mesh and a simple classical difference 

scheme, we are able to construct an c-uniform approximation 

To illustrate the practical importance of our study, for a model problem we show by 

a numerical example that, on a uniform grid, the classical difference scheme is not e:

uniformly convergent. In our example, the error (with a Neumann boundary condition) 

is not less than 7003 of the solution, for N=128 and c = 10-3 . The same example shows 

that we might obtain an c-uniformly convergent solution if we use the adapted mesh. 

Now the error is not larger than 63 of the solution, for any value of the parameter 

c. Thus, the numerical example illustrates that the theoretical considerations have 

practical implications indeed. 
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