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System Theory — A Brief Exposition

J.M. van den Hot, J.H. van Schuppen

1. INTRODUCTION

T'his paper provides an introduction to system theory for a general reader-
ship of mathematicians, engineers, and other scientists. In addition, contri-
butions of CWI's research group System and Control Theory are sumima-
rized.

In several areas of the sciences there is a need for mathematical models
of phenomena that evolve in time. Such models, called control system or
system, are used for control or for signal processing, and have been formu-
lated, for example, in connection with the movement of a compact disc, the
temperature in a glass furnace, the behaviour of an aircraft, the behaviour
of an underwater autonomous robot, and the flow of nitrate in the human
body.

A control system interacts with its environment by receiving an input sig-
nal and providing an output signal. A control system may be described by
a differential equation, a difference equation, logical rules, or a combination
of these as in a hybrid system. Here we restrict ourselves to system the-
ory. Control theory, with its main concept of teedback, is only marginally
touched upon.

The main problem of system theory is realization. This is motivated by
the problem ot system identification. The realization problem is to derive for
observations a system 1n a recursive state space representation, explained
below, and to classify all systems that represent the same observations. The
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system identification problem is to construct from observations a system in a
selected model class that approximates the data according to an approxima-
tion criterion. An example of such a problem is to construct a model for the
How of nitrate in the human body (see section 4). Realization and system
identification theory have been developed extensively for finite-dimensional
linear systems and for Gaussian systems. For other classes of systems the
results are much less complete.

System theory has been developed by researchers in various disciplines,
like engineering, mathematics, and econometrics, and uses many different
branches of mathematics, including linear algebra, differential equations,
geometry, operator theory, probability, and stochastic processes.

2. HISTORY

2.1. Origins

Control and signal processing problems were already intensively studied in
engineering and mathematics in the 1940’s, when N. Wiener and A. Kol-
mogorov piloneered an approach to the least-squares prediction problem. In
this problem an algorithm, called a filter, is to be derived that on the basis of
observations predicts a signal. Applications and extensions of this approach
followed in the 1950’s. Within engineering feedback control was developed
for amplifiers and communication equipment. Within mathematics optimal
control theory was studied, based on the calculus of variations, following
publications of Russian mathematicians led by L.S. Pontryagin. Related
developments in linear algebra, stochastic processes, information theory,
and communication theory influenced researchers active at that time.

Around 1960 weaknesses and limitations of optimal control and least-
squares prediction became clear. A filter that at any time needs an infinite
number of past data cannot be implemented on a computer with a finite
memory. Researchers in optimal control theory realized that only a limited
class of problems can be solved analytically.

Then R.E. Kalman proposed a new problem formulation for control and
filtering. If finite memory, however defined, i1s required for implementa-
tion, then why not consider as starting point a control system with finite
memory, that interacts with its environment via input and output signals?
The definition of a control system 1s inspired by developments in computer
science around 1960 with the concepts of an automaton and of a recursive
function, and is based on the concept of state, as used in physics, and on
a recursive structure for that state. At any time the current state and the
future input of a system uniquely determine the future ot the state and the
output. Seen in this way engineering models, control systems, and computer
algorithms, become analogous objects. System theory aims to study such
objects in a unified way. As a consequence there can be a unified approach
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tion. signal processing. and comput-
1119,

Along these lines Kalman solved
a least-squares prediction and filter-
ing problem for a control system,
the solution of which, now known
as the INalman filter. 1s widelyv ap-
plied 1 signal processing and con-
trol. The realization problem, in-
spired by the definition of a con-
trol system, 1s to construct a recur-
sive state space representation from
S5 . ar observations of input-output signals.
Figure 1. R.E. Kalman. (Courtesy INalman also showed that an optimal
Springer-Verlag.) control problem tor a linear systemn
and a quadratic criterion can be solved analytically and that the solution
1s dual to the INxalman filter. The shift from optimal control problems and
least-scquares prediction for models with infinite memory to systems with
hnite memory had been shown to work.

With T.5. Kuhn one mayv speak of a paradigm shift for control and sig-
nal processing, with enormous consequences. Control and signal processing
problems now vielded solutions with finite memory that could be 1mple-
mented directly and analyzed explicitly. Engineering modelling and system
identification took a new turn. Results from system theory. usually through
control and signal processing. are used in research areas including engineer-
ing. computer science, technology. economics, and cconometrics. By now
courses in systems and signals are in the undergraduate curricula of most
engineering departments and of mathematics departments, and software
packages with algorithis based on system theory are used in industry and
111 government.

A few lessons can be drawn from the development of system theory. Ap-
plications of system theory algorithims provide ample evidence for the use-
fulness of the concept of a state space representation. A system as math-
ematical model must be regarded as a representation of observations. Sys-
tem identification must take into account the fact that for a given set of

cls. Optimal control and filtering problems may not admit a solution with
finite memory, however it be defined. Solutions with finite memory may
be determined by turning the problem formulation around and asking for
a realization of the observations in a selected class of systems with finite
N1e1ory.
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2.2. What 1s a control system?

As an example we introduce the concept of a time-invariant finite-dimensio-
nal linear system without much attention to mathematical finesse. Consider
the system specified by the equations

x(t)

|

A;l’?(f) + Bié(f)* ;lf.f(f(_}) = .L'Q, (21)

I

y(t)

where t5 € R, T' = [ty, 00) is called the time interval of interest; xy € R"* the
initial state; uw : T — R the input function; xr : T — R" the state function;
y : 1 — IRY the output function; and A € R*"*" B e R*"*" ('€ RP*" and
D € RP*™ are matrices. As mentioned before, the main characteristic of
such a system is that at any time the state and the future input uniquely
determine the future of the state and of the output. The observations are
formed by the input and output functions, or, alternatively, by input-output
signals. The system is called linear because the output is a linear function
of the input and the initial condition, finite-dimensional because the state
space, R", is a finite-dimensional vector space, and time-invariant because
1ts response 1s the same 1if it starts from the same state at a later time.

T'he external description of such a system 1s specified by the following
relation for input-output signals:

Cx(t) + Du(t), (2.2)

z_‘.

y(t) = CeAli-tolp, +/ W(t — s)u(s)ds, (2.3)
Lo

W(t) = Cel'""B L Dt —ty), W:T — RPxm (2.4)

where W 1s called the impulse response function and 6 i1s the Dirac delta
function. The observations of the systemn,

U
Y

T — R™TP |,y satisfy (2.3) for a 2o € R* } | (2.5)

are also called the observable behaviour or behaviour of the system. A time
series 1s a set of numerical values of input-output signals.

2.3. Realization theory for finite-dimensional linear systems

First realization from the impulse response function W is discussed. Con-
sider the external representation as in (2.3). Through experimentation with
a phenomenon an engineer can obtain an estimate of . The question is
then whether there exists a finite-dimensional linear system with matrices
A, B,C,D such that (2.4) holds. If so, it is called a realization of the given
external system description or of the impulse response function. The real-
1zation problem also requires the classification of all minimal realizations.
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l.e., those where the dimension n of the state space is minimal. Other ques-
tions include: what is the characterization of the state space description of
a system it its external description 1s either time-reversible, symmetric, or
dissipative?

Kalman has derived a necessary and suflicient condition for an mmpulse
response function to have a realization as a hnite-dimensional linear systein
and a reachability and an observability condition for the realization to be
minimal. In addition, he has provided a classification of all minimal realiza-
tions (see for details the textbook [3] by E.D. Sontag). Parameterizations
for the class of minimal realizations were derived later. M. Hazewinkel and
Kalman have proven that for multi-input/multi-output systems no contin-
uous parameterization exists.

Secondly realization from input-output signals is discussed. This is very
relevant in research areas with short time series or where experimentation
1s not permitted, such as environmental modelling, biology, economics, and
econometrics. This should be contrasted with electrical engineering, where
through experimentation one can obtain arbitrarily long time series. In the
1970’s this problem was treated by R. Liu and L.C. Suen, and shortly after-
wards by E. Emre, LL.M. Silverman, and K. Glover with the term ‘dynamic
covers'.

In the behavioural approach to system theory, proposed by J.C. Willems
and developed by him and co-workers, realization from input-output signals
1s generalized. In this approach the observation vector is not a priori distin-
eguished into an input and output signal. In many engineering problems the
distinction is clear because of a causality relation, but in other problems,
for example in econometrics (e.g., income and consumption of households),
this is often not a priori the case.

2.4. Stochastic realization of stationary Gaussian processes

Kalman also proposed a definition of a stochastic control system. Consider
three discrete-time stationary stochastic processes: an input, a state, and
an output process. They form a stochastic control system if for all t € T
the conditional probability distribution of the next state and the current
output, (z(t+1),y(t)), given the past of the state, output, and input process,
depends only on the current state and the current input, (z(¢),u(t)). If the
probability distribution is Gaussian or normal and if only the conditional
mean of this distribution depends linearly on (x(t), u(t)), then the processes
satisty the following relations

|

x(t + 1) Ax(t) + Bu(t) + Mvo(t), x(ty) = xy, (2.6)

Cx(t) + Du(t) + Nv(t), (2.7)

|

y(t)
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where v is a Gaussian white noise process, i.e., a sequence of independent
random variables each of which has a Gaussian probability distribution func-
tion. The system specified by this representation is said to be a Gaussian
stochastic control system and a Gaussian system in case there is no input
Process.

Furthermore, Kalman formulated the weak stochastic realization problem
for stationary Gaussian processes. It was motivated by an analysis of the
Kalman filter. A stationary Gaussian process is said to have a stochastic
realization if there exists a Gaussian system such that the output process
equals the given process in distribution. P. Faurre and co-workers, in coop-
eration with Kalman, have given a characterization of a minimal stochastic
realization, classified them, and also analyzed a parameterization of the
class of stochastic realizations.

A. Lindquist and G. Picci (see [1]), and G. Ruckebusch, have solved the
strong Gaussian stochastic realization problem, in which the output process
must equal the given process almost surely. This problem is best studied in
geometric terms 1n which a stationary Gaussian process is associated with
a subspace of a Hilbert space.

Stochastic realization theory forms the theoretical foundation of signal
processing. Prediction problems were treated in the 1940’s. By now sig-
nal processing includes several techniques based on system theory, such as
prediction, filtering, smoothing, interpolation, and image processing.

2.5. Realization theory—extensions
LThe realization theory formulated for finite-dimensional linear systems and
for Gaussian systems has been generalized to many other classes of systems.
Only a few of these generalizations will be mentioned below. For each
mathematical structure the concept of a system must be defined anew.
Algebraic generalizations are linear systems over modules, rings, and finite
fields. Research in these directions was initiated by Kalman with contribu-
tions by M.L.J. Hautus, E.W. Kamen, and E.D. Sontag. Linear systems
over finite fields are used as mathematical models in coding theory and
have recently drawn new interest. The realization problem for systems in
algebralc structures as groups, semigroups, and algebras, is essentially the
problem of finding irreducible representations of input-output maps. A spe-
clal case of current interest is realization of positive linear systems that is
motivated by, for example, problems in biomathematics, chemical engineer-
ing, and economics. The realization problem for this class is unsolved and
requires further study of polyhedral cones and positive linear algebra.
Other systems for which the realization problem has been studied in-
clude: linear systems with functions in Hilbert spaces (by P.A. Fuhrmann),
systems 1n which the dynamics is specified by polynomials (by Sontag, in
cooperation with Kalman), bilinear systems, a system in a differential geo-
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metric context (described in terms of vector fields), and specific classes of
nonlinear systems (by H. Sussmann, M. Fliess, and B. Jacubczyk) and of
mechanical systems, such as Hamiltonian systems. In computer science the
concept corresponding to a system is an input-output automaton, a Petri
net, or a process algebra. In the automata literature, the realization prob-
lem has been solved by A. Nerode. A generalization of the concept of state
for systems with functions taking values in arbitrary sets was formulated
by Willems in terms of the conditional independence relation for sets. In
this definition the current state and the input signal make the past and the
future of the state and output signal conditionally independent.

A multi-parameter system is a system in which the time axis has been
generalized to an arbitrary index set or to a partially ordered set. A picture
may be modeled as a two-parameter system. The concept of state of such a
system may be phrased in terms of the conditional independence relation of
sets. The realization problem for this class has been studied in connection
with lmage processing.

Stochastic realization theory of Gaussian processes has also been general-
ized, tor example to diffusion processes in analogy with statistical mechanics
and quantum mechanics. A finite stochastic system may be defined analo-
gously to a Gaussian system for a finite-valued process with a finite-state
Markov process. In signal processing it is called a hidden Markov model
and in automata theory a probabilistic automaton. The stochastic realiza-
tion problem for this class, already studied in the 1960’s, is still unsolved,
as is the case for counting and jump processes.

An investigation is needed of the stochastic realization problem for stochas-

tic control systems with partial observations. The concepts of information
state and of information system should be studied in the framework of ex-
ponential families of distribution functions.

Kalman’s definition of a stochastic system can be reformulated in terms
of the conditional independence relation of probability theory, stating that
at any time the current state and the input process make the past and
the future of the state and the output process conditionally independent.
Multi-parameter stochastic realization problems in connection with random
fields are under investigation.

A generalization in another direction is the factor analysis model. In this
model for random variables the factor, corresponding to the state, makes
two or more variables conditionally independent. This generalization of the
concept of state is very interesting. R. Frisch, who received the Nobel prize
in economics, proposed this model as an alternative for the model used in
least squares estimation. Kalman has pointed out its relevance tor economic
modelling and contributed to the associated stochastic realization problem.
The problem is unsolved. The stochastic system corresponding to a factor
analysis model is termed an errors-in-variables model or a dynamic factor
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Figure 2. Environmental problems will motivate future research in system identification.
Photo: James Nachtwey— Magnum Photos. Courtesy ABC Press.

system. The realization problem for this class is studied in system theory
and econometrics by G. Piccl and M. Deistler.

2.60. System identification

\s stated in the Introduction, the system identification problem is to con-
struct from observations a control system in a chosen model class that bes
ts the observations according to a specified approximation criterion.
rrocedure for system identification is: (1) Selection of a model class bas
on a priori information; (2) Input design, experimentation, and data col-
lection; (3) Parameterization of the model class based on realization theory
and a check of its identifiability; (4) Approximation, selection of a control

system; and valuation of the quality of the selected system. The se-
oction of the model class is often based on domain modelling, for example

on physical laws, on chemical reaction kinetics, and on economic or phys-
10logical modelling. In step (3) of the procedure realization theory is used
exclusively. A textbook on system identification is that of L. Ljung [2].

" Il developed for the classes of finit

System 1dentification has been
oms and for Gaussian stochastic systems. For the

Timensional linear svst
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approximation criterion use is made of the least-squares criterion or the
hkelihood function. The problem is largely solved for single-input /single-
output linear svsteims., but still not satisfactory for multi-input /iulti-output
lnear systems. The most effective solutions are based on realization theory.
The most promising approach is presently the so-called subspace method,
based on stochastic realization theory and munerical linear algebra.

System identification problems for nonlinear svstems have heen studied
for a long time in engincering and cconometrics.  The relation between
realization theory for nonlinear svstems and system identification problems
for the same class remains to be explored.

3. CWI CcONTRIBUTIONS

3.1. Stochastic realization and system identification

The research by J.H. van Schuppen in stochastic realization theory is mo-
tivated by system identification. signal processing, and control for counting
and jump processes. The stochastic realization problem for finite-valued
processes 1s Investigated m cooperation with G. Picci. The current bot-
tleneck 1s the characterization of mininnal realizations of finite stochastic
systems. Solution of this problem leads to a factorization problem tor pos-
itive matrices. The closely related realization problem for deterministic
positive linear systems i1s currently investigated by J.N. van den Hof and
Van Schuppen. The stochastic realization problem in terms of o-algebras.
as well as for the factor analyvsis model have been treated.

Motivated by the engineering practice of using Gaussian white noise as in-
put signal, a stochastic realization problem for a Gaussian stochastic control
system has been formulated and solved. Parameter estimation problems for
counting processes were treated by P.J.C. Spreij. Recently AL A. Stoorvogel
and Van Schuppen investigated the approximation problem for Gaussian
stochastic systems using information theoretic criteria.

5.2, Linecar systems

Systems are modeled by a variety of methods including black-box 1identifi-
cation and the use of physical laws. The classical input/output framework.,
see (2.1) and (2.2). which dominates control theory is less appropriate in the
modelling context, and has to be replaced by a setting in which all exter-
nal variables are treated on an equal footing. This point of view, recently
emphasized in particular by Willems, leads to new questions for realiza-
tion theory. First-order representations of other types than the standard
input/state/output form (2.1) and (2.2) are used., and one needs to ana-
lyze the minimality conditions for such representations. As a basis for the
notion of equivalence of representations, the transter tunction is replaced
by the ‘behaviour’, which is the set of all trajectories (in some given func-
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tion space) admitted by the system equations. A study of minimality and
cquivalence for general first-order representations of linear systeis was un-
dertaken at CWI by J.M. Schumacher together with M. Kuijper and has
led to several journal papers and a book. In the approach based on be-
haviours, the choice of a function space has an impact on the notion of
equivalence. The equivalence notion that is obtained from working with the
space of so-called ‘impulsive-smooth distributions’, was studied in a joint
effort of A . H.W. Geerts and Schumacher. Recent work of M.S. Ravi and
J. Rosenthal in the U.S.A. and of V. Lomadze in the Republic of Georgia
has made clear that the set of generalized linear systems obtained in this
way provides the long-sought smooth compactification of the class of stan-
dard linear systems of a fixed McMillan degree. This issue is currently being
further explored in joint work of Ravi, Rosenthal, and Schumacher.

4. SYSTEM IDENTIFICATION OF NITRATE FLOW IN THE HUMAN BODY

4.1. Structural identifiability from input-output signals

In biology and mathematics the class of compartmental systems is frequently
used. A physiological model of a living organisim may consist of several com-
partments with more or less homogeneous concentrations of material. The
compartments interact by processes of transportation and diffusion. In biol-
ogy there often is prior knowledge on the structure of the model. Therefore
the class of compartmental systems is related to the class of structured linear
systems, 1n which the system is structured by physical laws. Before estimat-
ing the parameters, it should be examined whether the parameterization is
structurally identifiable, 1.e., whether the parameters can in principle be
determined uniquely from the data. Conditions for structural identifiability
from the impulse response follow directly from realization theory. J.M. van
den Hof has investigated structural identifiability from input-output signals
with unknown initial condition for both finite-dimensional linear systems
and positive linear systems.

4.2. BErample

As an example of a system identification problem we consider a model for
the uptake and dispersion of nitrate in the human body. In the model class
four compartments are considered: nitrate (NQO; ) in the stomach, the body
pool, and the saliva, and nitrite (NO,, ) in the saliva, as shown in figure 3.
The model may be described by the following differential equations:

: b . : : : :
r, = —K,r|+ Tors +ou, Ty = Kyry — (K2 + Kr)xs + K,
=
: ; b , b
ry = Koxy — (A + — )3, ry = Kixy — Ty,

Vi Vs
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Figure 3. Nitrate model.

in which xi,z2, and r3 denote the amount of NO; in the stomach, the
pody pool, and the saliva, respectively, and x4 denotes the amount of NO.
in the saliva; u; denotes the uptake of nitrate. The remaining variables are
constants. The constants K, Ay, and V,; are assumed to be known. The
unknown parameters are k' ,, Ko, K1, b, V,, and the initial condition xg. One
can observe the concentration of NO3 in the body pool and the saliva, and
the concentration of NO; in the saliva, i.e., we can observe xy/Vy, x3/Vj,
and x4/Vs. The model has been developed by the National Institute of
Public Health and Environmental Protection (RIVM).

T'he theory developed by Van den Hof for structural identifiability from
Input-output signals with a nonzero initial condition provides conditions on
the inputs u; and K such that the unknown parameters K,, Ko, K1,b, Vi,
and the initial condition xg can be uniquely determined from the observa-
tions.

5. CONCLUDING REMARKS

System theory has proven to be extremely useful for engineering, mathe-
matics, and other areas of the sciences, in particular for control and signal
processing. The concept of a control system, and the results of realization
theory and system identification are widely applied in industry, commerce,
and government.

System theory will in the future be motivated by new problems of en-
gineering and the sciences. Solution of these problems will become urgent
through the technological development and through the demands for in-
creased living standards. There may also be a shift away from electrical
and mechanical engineering to information processing. Realization prob-
lems motivated by information processing may therefore receive relatively
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more Interest. A realization approach is also needed for team and game
problems. In such decision and control problems there are two or more
decision makers with different observations. System theory has many open
problems.
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