
Average-Case Analysis Using Kolmogorov
Complexity

Ming Li* Paul Vi tanyi t

Abstract

This expository paper demonstrates how to use Kolmogorov complex­
ity to do the average-case analysis via four examples, and exhibits a sur­
prising property of the celebrated associated universal distribution. The
four examples are: average case analysis of Heapsort [17, 15], average
nni-distance between two binary rooted leave-labeled trees [20], compact
routing in computer networks [3], average-case analysis of an adder al­
gorithm [4]. The property is that the average-case complexity of any
algorithm whatsoever equals its worst-case complexity if the inputs are
distributed according to the Universal Distribution [14]. We provide the
proofs for the latter three items.

1 Introduction

Kolmogorov complexity has been very successfully applied to obtain lower
bounds solving many long-standing open questions. See [15] for details. A
much less well-known fact is that Kolmogorov comple.'tity is also a powerful
tool for average-case analysis of algorithms. The purpose of this expository
paper is to explain such ideas via several elegant examples. We do not intend
to comprehensively survey such results.

.. Often, it is very difficult to analyze the average-case complexit,y of an algo-
rithm. This is because, unlike the worse-case analysis, the average-case analysis

*City University of Hong Kong and University of Waterloo. Supported in part by the
NSERC Opera.ting Grant OGP0046506, ITRC, a CGAT grant, and the Steacie Fellowship.
Current addres5: Department of Computer Science, City University of Hong Kong, Kowloon,
Hong Kong. Ou sabbatical leave from: Department of Computer Science, University of
Waterloo, Waterloo, Ont. N2L 3Gl, Ca.nada. E-mail: mli@cs.cityu.edu.hk

1CWI a.nd University of Amsterdam. Partially supported by the European Union through
NeuroCOLT ESPRIT Working Group Nr. 8556, and by NWO through NFI Project AL­
ADDIN under Contract number NF 62-376 and NSER.C under International Scientific Ex­
cliange Award ISE012S66.1. Address: GWI, Kruislaa.n 413, 1098 SJ Amsterdam, The Nether­
lands. Email: paulv@cwi.nl

157

D.·Z. D1.1 and K.-1. Ko (eds.). Advances in Algorithms, Languages, and Complexiry, 157-169.
© 1997 Kluwer Academic Publishers. Printed in the Netlteriands.

158 MING LI, PAUL VITA.NY!

has to aver<ige over all instances of the input. In average-case analysis, the in­
compressibility method has an advantage over a prob;~bilistk approach. In the
hitter approach, one deals with expectations or variances over some ensemble of
objects. Using Kolrnogorov mmplexity, we can reason about an incompressible
individual object. Because it is incompressible it has all statistical properties
with certainty, rather than having them hold with some (high) probability as
in a probabilistic analysis. This fact greatly simplifies the resulting analysis.

We briefly review the definition of Kolmogorov complexity. For a complete
treatment of this subject, see [15]. Fix a universal Turing machine U with
binary input alphabet. The machine U takes two inputs p and y. U interprets
pas a program and simulates p on input y. The Kolmogorov complexity of a
binary string x, given y, is defined as

C(xly):::::: min{l(p): U(p,y) = x},

where l(p) denotes the length (number of bits) of p. (If k is a number then !kl
denotes the absolute value of k. If .4 is a set then d(A) denotes the cardinality of
A., t.hat is, the number of elements in it.) Thus C(x!y) is the minirm.Lm number
of bits in a description from which x can be effectively reconstructed, given y.
Let C(x) ::;:: C(x!c), where t denotes the null string.

By a simple c:ounting argument, the following claim can be easily proved.

Claim 1 For each n and c < n, any y, there ar·e at least 2n - 2n-c strings of
length n with the property

C(x!n, y) ?:: rz - c. (1)

We call a string c-random if it satisfies C(x!n, y) '.?;: n - c. An undirected
graph G on n nodes can be encoded by n(n - 1)/2 bits, each bit indicating
whether a certain edge is present. We say a graph G of n nodes is c-randoro if
C(Gln) ;:-:: n(n -1)/2 - c, here we use G to denote its mvn encoding, and c can
be generalized to a function of n.

2 Heapsort and Tree Distance

"We avoid the question of in which cases of averagt.Hase analysis one can apply
Kolmogorov complexity. To this question, the authors would like to know the
answer as well. We instead give a few successful applications in this section and
two more together with proofs in the next two sect.ions.

Heapsort. Heapsort is a \videly used S-Orting algorithm. It is the first
algorithm that sorts n numbers in-place with running time guaranteed to be
of order nlogn. Here 'in-place' means it does not require extra nontrivial
memory space. The method was first discovered by J.W.J. Williams [21] and
subsequently improved by R.\V. Floyd [7].

AVERAGE-CASE ANALYSIS USING KOLMOGOROV COMPLEXITY 159

The hea.psort algorithm works in two steps. First it converts the input into a
he.:i.p. Then it sorts the input by repeatedly deleting the root (smallest element)
and restoring the heap. It is well-known that we can build a heap from an array
of n integers in O(n) time. The second stage runs in n rounds to empty the
heap. Each round takes between 0(1) and 2 logn stept:i for restoring the heap.
but the precise bound was unknown.

To restore a (rn.in-)heap after the root key is deleted. the Williams· original
algorithm takes the rightmost element from the bottom of the heap, puts it in
the root, then it pushes this element <lowu (swap it with the larger child) the
heap, making two comparison each step, until this element is smaller than both
of its children. This process takes 2 log n steps in the worst case.

Floyd 's algorithm compares the two children of the root, promotes the larger,
and keeps on doing this until reaching the bottom, and then it fills the empty
spot with the rightmost element in the bottom, and pushes this element back
up the tree until it is greater than its father (predsely at the same position as
in Williams' algorithm). The worst case of Floyd's algorithm is also 2logn.

Despite Heapsort 's prominence and serious efforts, the average case of Heap­
sort was open for 30 years. People tried to give probabilistic analysis of these two
algorithms, but alter 1 round of update, the probabilistic distribution changes.
Only recently Schaffer and Sedgewick [19] succeeded in giving a precise analysis
of its average case performance. I. Munro [17] suggested a remarkably simple
solution using incompressibility. The idea is as follows. FLx a random heap
H of Kolmogorov complexity approximately n log n. For each of the n heap­
restoring rounds, record the position where the last. element finally resides in
H. This position can be recorded by a 0-1 sequence encoding a path from the
root to the position, with 0 indicating left branch and 1 indicating right. Each
sequence is of length up to log n. It is easy to see that one can reconstruct H
from these n sequences. Thus, the average length of these sequences must be
approximately logn (because Kolmogorov complexity of His at least n logn).
Since most heaps are random, averaging, we conclude that Floyd 's algorithm
runs in log n steps on average, and Williams' algorithm uses 2 log n st.eps on
average.

Nni Distance. In computational biology, evolutionary trees are repi:e­
sented by unrooted unordered binary trees with uniquely labeled leaves and
unlabeled internal nodes. Measuring the distance between such trees is useful
in biology. A nearest neighbor interchange (nni) operation swaps two subtrees
that are separated by an internal edge (u,v), as shown in Figure l. See (13j for
relevant references.

For example, in Figure 2 it takes 2 nni moves to convert (i) to (ii).
K Culik II and D. Wood [6], improved by [13}, proved that nlogn + O(n)

nni moves are sufficient to transform a tree of n leaves to any ot.her tree with
the same set of leaves. But the question is, is this the best upper bound'! D.
Sleator, R. Tarjan, and W. Thurston [20] proved an S'l(n log n) lower bound for

160 MING LI, PAUL VITANYI

~~~ 
~--~~ ~----~ ~-~v 

Figure l: The two possible nni operations on an internal edge ( u, u). 

Cat 

Whale 

Reptilian Ance.~tor 

(i) 

Goose 

Cat Dog 

I!) 

R~ptilian Ancestor 

(ii) 

Figure 2: The nni distance between (i) and (ii) is 2 

most pairs of trees, essentially using the incompressibility method. (Note, they 
proved their results for a more general graph transformation system.) 

The idea behind the proof is simple. Consider T1 and T2 such that C(T1 IT2 ) 2:: 
n log n. If we can encode each nni move with 0 (l) bits, then there must be at 
least fl(nlogn) nni moves since otherwise C(Ti!T2 ) < n logn. It is the encoding 
process that is hard and we refer the reader to {20]. 

There are also other applications. For e."Cample, in [8] and [10], we used 
Kolmogorov complexity to analyze the average-case complexity of some Longest 
Common Subsequence and Shortest Common Supersequence algorithms. 

3 Compact Routing in Computer Networks 
In very large networks like the global telephone network or the internet the mass 
of messages being routed creates major bottlenecks degrading performance. In 
this section, we are intert>,sted in determining the optimal space to represent 
routing schemes in communication networks on the average for all static net-



AVERAGE-CASE ANALYSIS USING KOLMOGOROV COMPLEXITY 161 

works. We follow [3]. 
A universal routing strategy for static communication networks will, for 

every network, generate a routing scheme for that particular network. Such a. 
rauting scheme comprises a local routing function for every node in this network. 
The routing function of node u returns for every destination v '#; u an edge 
incident to u on a path from u to v. Thls way, a routing scheme describes a 
path, called a. route, between every pair of nodes u, v in the network. 

It is easy to see tha.t we ca.n do shortest path routing by entering a routing 
ta.hie in each node u which for each destination node v indicates to what adja­
cent node w a message to v should be routed first. If u has degree d, it requires 
a. ta.ble of at most n log d bits, and the overall number of bits in all local routing 
tables never exceeds n2 logn. 

Several factors may inftuence the cost of representing a routing scheme for a 
particular network. We use a basic model and refer the readers to [3] for other 
variations. Here, we consider point to point communication networks on n nodes 
described by an undirected labeled graph G = (V, E), where V = {l, ... ,n}. 
Assume that the nodes know the identities of their neighbors. This information 
is for free. 

Theorem 2 For shortest path routing in O(logn)-randam graphs local routing 
functions ca.n be stored in 6n bita per node. Hence the complete routing scheme 

·~ is represented by 6n2 bits. 

Proof: The next two lemmas can be proved easily by Kolmogorov complexity, 
. we leave the proofs to the readers. 

Lemma 3 All o(n)-random labeled graphs have. diameter 2. 

Lemma 4 Let c be. a feed constant. If G i.s a ciogn-random labeled graph, 
then from each node i all other nodes are either directly connected to i or are 
directly connected to one of the least (c + 3) logn nodes directly adjacent to i. 

Let G be an O(log n )-random graph on n nodes. By Lemma 4 we know that 
from each node u we can shortest path route to each node v through the least 

... O(Iog n) directly adjacent nodes of u. By Lemma. 3, G has diameter 2. Once the 
:... .. message reached node v its destination is either node v or a direct neighbor .of 
f' node v (which is known in node v by assumption). Therefore, routing functions 
: of size 0 ( n log log n) can be used to do shortest path routing. We can do better 

than this. 
Let Ao ~ V be the set of nodes in G which are not directly connected to u. 

Let 111, ••• , vm be the O(log n) least nodes directly adjacent to node u, Lemma 4, 
through which we can shortest path route to all nodes in Ao. For t = l, 2 ... , l 

, define At = {w E Ao - U!:i A8 : (vt, w) E E}. Let mo = d(Ao) and define 
fnt+i = mt - d(At+d· Let l be the first t such that mt < n/loglogn. Then 
we claim that Vt is connected by an edge in E to at least 1/3 of the nodes not 
connected by edges in E to nodes u, v1, ... , Vt-1 • 

[::: . 



.. 

.. 

.. 

.. 

hits. whkh contrndictl! tht~ 

• 
Recall that l is the least 

the 10<:.U function 

• A table of intermediat•~ 

cha.racteril>'tic !!ll:'CitU~:11ce 
in at mn;it m1-l - + 

n. We r.onstrud 

A.~ Wl: enter in the u:th 
le:ll!lr. intc.rniediil.T-t~ 

a 0. For the nodes that are not in 
we enter a 0 in their in the t.ahle that. M entry t.hi!; 
node can be found in th~: second table. Claim 5, the size of this table 
is bounded 

n+ 



AVERAGE.CASE ANALYSIS USING KOLMOOOROV COMPLEXM'Y 163 

• A table with explidUy binary codt-d intermediate nodes on a. short.est 
pat.h for the orderf'd set or the remaining destination nodes. Those nodes 
had a 0 entry in the first table and there are at most m1 < n/ loglogn of 
them, namely the nodes in .4-0 - V,,. 1 A,. E&eh t>ntry consilits of the code 
o! length log log n + 0( 1) for t.he position in incrl'.&Sing order of a node out. 
of lit. •.• , Vm with m = O(log n) by Lemma 4. Hence this second t.&ble 
requires at mOllt 2n bit.s. 

The rout.ing algorithm is as follows. The direct neighbors of u are known in 
node u and are routed without routing table. If we route from su.rt node u to 
target node w which is not direct!)· adja.r,eont to u, then we do the following. If 
node w has llJI entry in the first table then route over the edge coded iu unary, 
otherwise find a.n entry (or node w in the second table. 

Altogether. we have d(F(u)) :$ 6n. Slightly more precise counting and 
c:hoosing I such that m1 is the first such quantity< n/ logn shows d(F(u)) $ 3n . 

• 
A matching lower bound o! 0(n2) can also be proved. 

Theorem 6 For .shorte.st po.th f'O'll.ting in o{n)·n:m.clom grcplu t'ACh l.ocoJ. mating 
ftm.ction mwt be .stored m at leo.st n/2 - o{n) bw per node. Hmce Che compltte 
mmng .scheme require• at lmri n2 /2 -o(n2 ) 11"11 to be 1tored. 

The results on Koltnogorov random graphs abowl have the followi!lg corollar­
ies. Consider the subset o! (3 log n)-ra.ndom graphs within the clMa of O(log n)­
random gra.phs on n nodes. They constitute a fra.ction of at leut. (1 - l/n3) 

ol. t.he class of all graphs on n nodes. The mvial upper bound on the minimal 
total number of bits for all routing functions together is O(n2 logn) for shortest 
path rout.ing on all gra.phs on n nodes. Simple computation o! the average ol. 
the total number of bit.I used to store the routing scheme over all grapba on n 
nodes shows tha.t both Theorem 2 and Theorem 6, hold ror the C111!1'1lfe ca.te. 

The average case consists o! the average cost, taken over all Ja.beled grapba 
o1. n nodes, or representing a routing scheme for graphs over n nodes. For a 
graph G, let T(G) be the number of bits used to store its routing scb.e.rne. The 
aw:mge total number of bit.I to stot'e the routing scheme for routing over la.beled 
graphs on n nodes ill l:T(G)/2nln-IJ/Z with the sum taken over all graphs G 
on nodes {1,2 ..... r1}. That is, the uniform average over all the labeled graphs 
on n nodes. 

4 Addition in log2 n Steps on Average 

Balf a century ago, Burks, Goldstine, and von Neumann obtained a log2 n 
expe;;:ted upper bound on the 'longest carry sequence' for adding two n-bit 

' bina.r)· numbers (2]. In computer a.rthitecture design, efficient design o! adders 



'2. 

to left, b!.t 
stepc5 tt1 compute the surrim.ittk~l of t:.vo ri-bit numb,.r;:;. 

1.oc11Q'l.neau adder i;; h<1."ll'd dhridt~ <'.ltld whid.1 
adirh t\!iO n-hit nuinb;:~rs I!! 1 n l!t"'ps. It 111 !.l."letl in com-
puters. For details about bod1 S<-'t~ iil.lly stand.li.rd com1mter Mchiieetur\' 
textbook sucll as 

Th!! reiiults in 
time of at mtm l + 

Theorem 7 The no·eti"JI adder h1u the twtrt~ 
n. 

Proof: For any 
no-Garry Adder uses t rouncls 
can be written as 

time of at l+ 

= if the 
then x and 11 

wthere = t - l, 
we r.an describe :z 

= b i11 0 or l, and u is tlW? '-'"''"!'''""''"''"" 
y, n, q and the concatenta.tion of 

• the positioo (:if 11 in y 



thit! 

l+ 

" L JAj --1~ 
i>c2··lug" 

are at .m~t 2n··• 
Let p; 

Since this holds for every this is aJso d1c1 a.verz1ge t.irnt~ of the 1'Jg1c.> .. 
rithm. • 
5 Average-Case Complexity Equals \Vorst-Case 

Cornplexity Under Universal Distributions 

Consider a machine such that the :ret of program.:> for w·hicli it ha.lt:,i 
.is that is, no such j}rogram is the proper of another sueh 
program. Such machines compute ruU recursh-e 
functions and contain an universal machine .f./I. to before 
we can define with to v· which is now induced 
by a Bet. of ore.tix-:tree 

than 

it ma.'l{in1izes '"."'""''" "'"' 
we sbom:d that th~ average-case 

computational of t.lfll!i whatsoever wider the univera.a.1 dis­
tribution turns out to be of the same order of as the •i.·orst-c.ase 
oomplexity. Tbis ht:>lds botb for time and for sp&i:'.e co1np.1ex1ty. 

For many the ii.ver:tge-ca.'ie time under some distributions 
on the is less than the V10rst-case time. For using 
\UCM:U'.an<lormz1ed} 1.Ju11c.11:w1rt on a list of n items to be romd under the 
uniform distribution on the inputs an <lNerage running time of while 
the worst-caise time is The worst-ea..'*' time of "'u.1<.:J>;;:;un 



166 MING LI, PAUL VITA.NY! 

is typir:a.lly reached if the list is already sorted or almost sorted, that is, exactly 
in cases where we actually should not have to do much work at all. Since in 
practice the li.sts to be sorted occurring in computer computations are often 
sorted or almost sorted, programmers often prefer other sorting algorithms 
which might run faster with almost sorted lists. Without loss of generality 
we identify inputs of length n with the natural numbers corresponding with 
binary strings of length n. 

Definition I Consider a discrete sample space /.,/ with probability density 
function P. Let t(:r) be the running time of algorithm A. on problem instance 
x. Define the worst-case time complexity of .4 as T(n) = max{t(x) : l(x) = n}. 
Define the P-avera.ge time complexity of .4 

T(n!P) = Ei(z)=n P(x)t~x). 
E1(.r)=n P(x, 

We compare the average time comple..xity for Quicksort under the Uniform 
Distribution L{x) and under the Universal distribution m(x). Define L(x) "" 
rzl(z)-I, such that the conditional probability L(;:z;jl(x) = n) = rn. We 
encode the list of elements to be sorted as nonnegative integers in some standard 
way. 

For Quicksort, T(nlL) = 0(nlogn). We may expect the same complexity 
under m, that is, T(n!m) = O(nlogn). But Theorem 8 will tell us much more, 
namely, T{njm) = S1(n2 ). Let us give some insight why this is the case. 

With the low average time complexity under the Uniform Distribution, there 
can only be o((logn)2"/n) strings x of length n with t(x) :::= fl(n2 ). Therefore, 
given n, each such st.ring can be described by its sequence number in this small 
set, and hence for each such x we find K(xln) :Sn - logn + 3loglogn. (Since 
n is known, we can find each n - k by coding k self-delimiting in 2 log k bits. 
The inequality follows by setting k 2'.: logn - loglogn.) 

Therefore, no really random x's, with K(xln) 2: n, can achieve the worst­
case run time O(n2 ). Only strings x which a.re nonrandom, with K(xln) < n, 
among which are the sorted or almost sorted lists, and lists exhibiting other 
regularities, can have O(n2) running time. Such lists x have relatively low 
Kolmogorov complexity K(x) since they are regular (can be shortly described}, 
and therefore m(x) = 2-K(z) is very high. Therefore, the contribution of these 
strings to the average running time is weighted very heavily. 

Theorem 8 (m-Average Complexity) Let A be an algorithm with inputs 
in .N. Let th.e inputs to A be distribu.ted according to the universal distribution 
m. Then, the average case time complexity is of the same order of magnitude 
as th.e corresponding worst-case time complexity. 

Proof: We define a probability distribution P(x) on the inputs that assigns 
high probability to the inputs for which the worst-case complexity is reached, 
and zero probability for other cases. 



AVmt.AOE-CA.SE ANALYSIS USINO KOLMOOOltOY COMPL.!XITY 167 

Let A be I.be algorithm involved. Let T(n) be the W'Ol'Bt-cue tlme oomplexity 
of A. Clearly, T(n) is recuniwi (for instuce by running A 011 all r's ol length 
n). Define t.be probability distribution P(;r) by 

Step l For ea.eh n = 0, l, ... , set a,. := E,1 .. 1 • .,, m(:r). 

Step 2 If l(.r) = n and z is lexicographically least with t(.r) = T(n) then 
P(J:) :• a.. else P(J:) := O. 

It is eur to see that a,. is enumerable :Ii.nee m(:r) is enumerable. Therefore, 
P{.r) is enumerable. Below we use a fact from !I5J, Theorem 4.1 and the 
following Example 4.5, tha.t cpm(z) ;::: P(:r), where cp = K(P) + 0(1) is 
a conste.nt depending on P but not on :r. We haWt defined P(.r) such that 
EsEN P(.r) 2: E .. E.V m(z), and P(:r) is an enumerable probability distribution. 
The averagt" Cast' tirne complexity T(nlrn} wit.b l'f!IJ)eCi to the m distribution 
on the i.nput.s. is now obtained by 

T(n!m) = E m(.r)t<:r> 
ll•l•n E11.r1• .. m(.r) 

:!: .!.. L P(:z:) T(n) 
cp I!•)•" E11s)•R m(:i:) 

= .!.. :E P{z) T(n) = .!..r(n). 
Cp l(ir)•n E11•)•n P(;i;) Cp 

The inequality T(n) ~ T(nfm) holds vacuously. • 
The analogue or the theorem holds for other complexity meuura (like ,,.a 

complexity), by about the aa.me proof. further reeearch has been dooe on 
related measures that exhibit similar behaviour. See for example [16. 12. 11]. 

6 Acknowledgement 

We thank our eoa.uthors for papers [3, 4]: R. Beige!, H. Buhrman, W. Oawcll., 
J.H. Hooprna.n, L. Zhang. We have used the proofs from these two pa.pen to 
demonstrate our points. 

References 

[ll B.E. Briley, Some new results on average worst case carry. IEEE Thm.t. 
Computers, C..22:5(1973). 



168 MING U, PAUL VITANYI 

!2] A.W.Burks, H.H. Goldstine, J. von Neumann, Preliminary discussion of 
the logical design of an electronic computing instrument. Institute for Ad­
vanced Studies, Report (1946). Reprinted in John von Neumann Collected 
Works, vol 5 (1961). 

(3] H. Buhrman, J .H. Hoepman, P.M.B. Vitanyi, Optimal routing tables, Proc. 
15th ACM Symp. Principles Distribut. Comput., ACM Press, 1996, 134-
142. 

[4J R. Beige!, W. Gasa.rch, M. Li, and L. Zhang, Addition in log2 n steps on 
average, manuscript. 

(5] T. Cormen, C. Leiserson, and R. Rivest, Introduction to algorithms. MIT 
Press, 1990. 

(6] K. Culik II, D. Wood, A note on some tree similarity measures, Inform. 
Process. Lett., 15(1982), 39-42. 

[7} R.W. Floyd, Treesort 3: Algorithm 245, Comm. ACM, 7(1964), 701. 

[8] D. Foulser, M. Li, and Q. Yang, Theory and algorithms for plan merging. 
Artificial Intelligence, 57(1992), 143-181. 

[9] K. Hwang, Computer arithmetic: principles, architecture, and design. Wi­
ley, New York, 1979. 

[10) T. Jiang and M. Li, On the approximation of shortest common superse­
quences and longest common subsequences. SIAM J. Compv.t., 24:5(1995), 
1122-1139. 

[11] A.K. Jagota. and K.W. Regan, Testing Neural Net Algorithms on Gen­
eral Compressible Data, In Proceedings of the International Conference on 
Neural Infomt.ation Processing, Hong Kong, 1996, Springer-Verlag. 

[12] K. Kobayashi, On malign input distributions for algorithms, IEIOE 1htns. 
Inform. and Syst., E76-D:6(1993), 634-640. 

[13] M. Li, J. Tromp, and L. Zhang, On the nearest neighbor intercliange dis­
tance, COCOON'96, Hong Kong, 1996. Final version to appear in J. The­
oret. Biology, 1996. 

[14] M. Li and P. Vitiinyi, Average case complexity equals worst-case com­
plexity under the Universal Distribution. Inform. Process. Lett., 42(1992), 
145-149. 

{15} M. Li a.nd P. Vitanyi, An Introduction to Kolmogorov Comple:s:ity and Its 
Applications. Springer-Yerlag, New York, 1993. 



-~AVERAGE-CASE ANALYSIS USING KOLMOGOROV COMPLEXITY 169 

[16] P.B. Miltersen, The complexity of malign ensembles, SIAlvf J. Comput., 

22:1(1993), 147-156. 

{17] I. Munro, Personal communication, 1993. 

[18] G. Schay, How to add fast-on average. American Mathematical Monthly, 

102:8 (19915), 725-730. 

[19] R. Schaffer and R. Sedgewick, J. Algorithms, 15(1993), 76-100. 

[20] D. Slea.tor, R. Tarjan, and W. Thurston, Short encodings of evolving struc­
tures, SIAM J. Discr. Math., 5(1992), 428-450. 

[21} J.W.J. Williams, Algorithm 232: HEAPSORT, Comm. A.CM, 7(1964), 
347-348. 


