Average-Case Analysis Using Kolmogorov
Complexity

Ming Li* Paul Vitanyif

Abstract

This expository paper demonstrates how to use Kolmogorov complex-
ity to do the average-case analysis via four examples, and exhibits a sur-
prising property of the celebrated associated universal distribution. The
four examples are: average case analysis of Heapsort [17, 15], average
nni-distance between two binary rooted leave-labeled trees [20], compact
, routing in computer networks [3], average-case analysis of an adder al-
E gorithm [4]. The property is that the average-case complexity of any
¢ algorithm whatsoever equals its worst-case complexity if the inputs are

distributed according to the Universal Distribution [14]. We provide the
proofs for the latter three items.

1 Introduction

‘Kolmogorov complexity has been very successfully applied to obtain lower
bounds solving many long-standing open questions. See [15] for details. A
much less well-known fact is that Kolmogorov complexity is also a powerful
tool for average-case analysis of algorithms. The purpose of this expository
paper is to explain such ideas via several elegant examples. We do not intend
to comprehensively survey such results.

 Often, it is very difficult to analyze the average-case complexity of an algo-
rithm. This is because, unlike the worse-case analysis, the average-case analysis

*City University of Hong Kong and University of Waterloo. Supported in part by the
_ NSERC Operating Grant OGP0046506, ITRC, a CGAT grant, and the Steacie Fellowship.
Current address: Department of Computer Science, City University of Hong Kong, Kowloon,
Hong Kong. On sabbatical leave from: Department of Computer Science, University of
Waterloo, Waterloo, Ont. N2L 3G1, Canada. E-mail: mli@cs.cityn.edu.hk
TCWI and University of Amsterdam. Partially supported by the European Union through
NeuroCOLT ESPRIT Working Group Nr. 8556, and by NWO through NFI Project AL-
~ ADDIN under Contract number NF 62-376 and NSERC under International Scientific Ex-
change Award ISE0125663. Address: CWI, Kruislaan 413, 1098 SJ Amsterdam, The Nether-
-lands. Email: paulv@cwi.nl

157

D.-Z. Du and K.-I. Ko (eds.), Advances in Algorithms, Languages, and Complexiry, 157-169.
© 1997 Kluwer Academic Publishers. Printed in the Netherlunds.

158 MING LI, PAUL VITANY]

has to average over all instances of the input. In average-case analysis, the in-
compressibility method has an advantage over a probabilistic approach. In the
latter approach, one deals with expectations or variances over some ensemble of
objects. Using Kolmogorov complexity, we can reason about an incompressible
individual object. Because it is incompressible it has all statistical properties
with certainty, rather than having them hold with some (high) probability as
in a probabilistic analysis. This fact greatly simplifies the resulting analysis.

We briefly review the definition of Kolmogorov complexity. For a complete
treatment of this subject, see [15]. Fix a universal Turing machine I/ with
binary input alphabet. The machine U takes two inputs p and y. U interprets
p as a program and simulates p on input y. The Kolmogorov complexity of a
binary string =z, given y, is defined as

C(zly) = min{l(p) : U(p,y) = =},

where I(p) denotes the length (number of bits) of p. (If k is a number then k|
denotes the absolute value of k. If 4 is a set then d(A) denotes the cardinality of
A, that is, the number of elements in it.) Thus C{zly) is the minimum number
of bits in a description from which z can be effectively reconstructed, given y.
Let C{x) = C(zle), where ¢ denotes the null string.

By a simple counting argument, the following claim can be easily proved.

Claim 1 For each n and ¢ < n, any y, there are at least 2 — 2°~¢ sirings of
length n with the property

Clzin,y) >n—ec (1)

We call a string c-random if it satisfies C'{z|n,y) > n —¢. An undirected
graph G on n nodes can be encoded by n(n — 1}/2 bits, each bit indicating
whether a certain edge is present. We say a graph G of n nodes is e-random if
C(Gln) > n{n —1)/2 — ¢, here we use G to denote its own encoding, and ¢ can
be generalized to a function of 7.

2 Heapsort and Tree Distance

We avoid the question of in which cases of average-case analysis one can apply
Kolmogorov complexity. To this question, the authors would like to know the
answer as well. We instead give a few successful applications in this section and
two more together with proofs in the next two sections.

Heapsort. Heapsort is a widely used sorting algorithm. It is the first
algorithm that sorts n numbers in-place with running time guaranteed to be
of order nlogn. Here ‘in-place’ means it does not require extra nontrivial
memory space. The method was first discovered by J.W.J. Williams [21] and
subsequently improved by R.W. Floyd [7].

AVERAGE-CASE ANALYSIS USING KOLMOGOROV COMPLEXITY 159

The heapsort algorithm works in two steps. First it converts the input into a
heap. Then it sorts the input by repeatedly deleting the root {(smallest element)
and restoring the heap. It is well-known that we can build 2 heap from an array
of n integers in O(n) time. The second stage runs in n rounds to empty the
heap. Each round takes between O(1) and 2logn steps for restoring the heap.
but the precise bound was unknown.

To restore a (min-)heap after the root key is deleted. the Williams' original
algorithm takes the rightmost element from the bottom of the heap, puts it in
the root, then it pushes this element down (swap it with the larger child) the
heap, making two comparison each step, until this element is smaller than both
of its children. This process takes 2logn steps in the worst case.

Floyd’s algorithm compares the two children of the root, promotes the larger,
and keeps on doing this until reaching the bottom, and then it fills the empty
spot with the rightmost element in the bottom, and pushes this element back
up the tree until it is greater than its father (precisely at the same position as
in Williams’ algorithm). The worst case of Floyd’s algorithm is also 2logn.

Despite Heapsort’s prominence and serious efforts, the average case of Heap-
sort was open for 30 years. People tried to give probabilistic analysis of these two
algorithms, but after 1 round of update, the probabilistic distribution changes.
Only recently Schaffer and Sedgewick [19] succeeded in giving a precise analysis
of its average case performance. I. Munro [17] suggested a remarkably simple
solution using incompressibility. The idea is as follows. Fix a random heap
H of Kolmogorov complexity approximately nlogn. For each of the n heap-
restoring rounds, record the position where the last element finally resides in
H. This position can be recorded by a 0-1 sequence encoding a path from the
root to the position, with 0 indicating left branch and 1 indicating right. Each
sequence is of length up to logn. It is easy to see that one can reconstruct H
from these n sequences. Thus. the average length of these sequences must be
approximately logn (because Kolmogorov complexity of H is at least nlogn).
Since most heaps are random, averaging, we conclude that Floyd’s algorithm
runs in logn steps on average, and Willlams' algorithm uses 2logn steps on
average.

Nni Distance. In computational biology, evolutionary trees are repre-

~sented by unrooted unordered binary trees with uniquely labeled leaves and
unlabeled internal nodes. Measuring the distance between such trees is useful
“in biology. A nearest neighbor interchange (nni) operation swaps two subtrees
that are separated by an internal edge (u,v), as shown in Figure 1. See [13] for
relevant references.

For example, in Figure 2 it takes 2 nni moves to convert (i) to (ii).

K. Culik I and D. Wood [6], improved by [13], proved that nlogn + O(n)
nni moves are sufficient to transform a tree of n leaves to any other tree with
the same set of leaves. But the question is, is this the best upper bound? D.
Sleator, R. Tarjan, and W. Thurston [20] proved an Q(nlogn) lower bound for

160 MING LI, PAUL VITANYI]

B

Figure 1: The two possible nni operations on an internal edge (u,).

Cat Dog Cat Dog

Seal

Horse

Seal

Whale

Horse Goose

Goose ‘Whale

Platypus
Platypus Ostrich
Ostrich
Reptilian Ancestor Reptilias Ancestor

0] (iiy

Figure 2: The nni distance between (i) and (ii) is 2

most pairs of trees, essentially using the incompressibility method. (Note, they
proved their results for a more general graph transformation system.)

The idea behind the proof is simple. Consider T} and T such that C{T}|Ty) >
nlogn. If we can encode each nni move with O{1) bits, then there must be at
least (}(nlogn) nni moves since otherwise C(T}|T2) < nlogn. It is the encoding
process that is hard and we refer the reader to {20].

There are also other applications. For example, in [8] and [10], we used
Kolmogorov complexity to analyze the average-case complexity of sore Longest
Common Subsequence and Shortest Common Supersequence algorithms.

3 Compact Routing in Computer Networks

In very large networks like the global telephone network or the internet the mass
of messages being routed creates major bottlenecks degrading performance. In
this section, we are interested in determining the optimal space to represent
routing schemes in communication networks on the average for all static net-

AVERAGE-CASE ANALYSIS USING KOLMOGOROV COMPLEXITY 161

works. We follow [3].

A universal routing strategy for static communication networks will, for
every network, generate a routing scheme for that particular network. Such a
routing scheme comprises a local routing function for every node in this network.
The routing function of node u returns for every destination v # u an edge
incident to u on a path from u to v. This way, a routing scheme describes a
path, called a route, between every pair of nodes u,v in the network.

It is easy to see that we can do shortest path routing by entering a routing
table in each node u which for each destination node v indicates to what adja-
cent node w a message to v should be routed first. If w has degree 4, it requires
a table of at most nlog 4 bits, and the overall number of bits in all local routing
tables never exceeds n® logn.

Several factors may influence the cost of representing a routing scheme for a
particular network. We use a basic model and refer the readers to (3] for other
variations. Here, we consider point to point communication networks on n nodes
described by an undirected labeled graph G = (V, E), where V' = {1,...,n}.
Assume that the nodes know the identities of their neighbors. This information
is for free.

_ Theorem 2 For shortest path routing in O{log n)-random graphs local routing
_ functions can be stored in 6n bits per node. Hence the complete routing scheme
= 4is represented by 6n> bits.

Proof: The next two lemmas can be proved easily by Kelmogorov complexity,
we leave the proofs 1o the readers.

- Lemma 3 All o(n)-random labeled graphs have diameter 2.

Lemma 4 Let ¢ be a fixed constant. If G is a clogn-random labeled graph,
then from each node i all other nodes are either directly connected to i or are
- directly connected to one of the least (¢ + 3) logn nodes directly adjacent to i.

Let G be an Of(log n)-random graph on n nodes. By Lemma 4 we know that
from each node v we can shortest path route to each node v through the least
O(logn) directly adjacent nodes of u. By Lemma. 3, G has diameter 2. Once the

«..message reached node v its destination is either node v or a direct neighbor of

' node v (which is known in node v by assumption). Therefore, routing functions

.. of size O(nloglogn) can be used to do shortest path routing. We can do better

;. than this.

: Let Ay C V be the set of nodes in G which are not directly connected to u.

- Letwy,..., vy bethe O(logn) least nodes directly adjacent to node u, Lemma 4,
through which we can shortest path route to all nodesin 4q. Fort=1,2...,1
define 4; = {w € 4o — U'Z} As : (v, w) € E}. Let my = d(Ao) and define
Meyy = my — d(Asp1). Let I be the first £ such that m; < nfloglogn. Then
we claim that v; is connected by an edge in E to at least 1/3 of the nodes not
connected by edges in E to nodes w,v1,...,%—1.

162 MING LI, PAUL VITANY]

Claim 5 d{ 4] > f3 for 1 €1 <]

Proof: Suppose, by way of contradiction, that there exists a least ¢ < such
that {d{4;) = g /2] > my .y /6, Then we can describe (2, gven n, as follows,

¢ This discussion in O{1) bis.
s Nodes u,vy in 2logn bits, padded with 0's if need be.

* The presence or absence of edges incident with nodes WoVy, . Wpey dn
r=n=l+ - 4n-(t~1)bits. This gives us the characteristic sequences
of Ag,..., A¢. in V, where a characteristic sequenceof AinV isa string
of d(V) bits with, for each v € V. the vth bit equals 1 if v € 4 and the
vth bit is 0 otherwise.

¢ A self-delimiting description of the characteristic sequence of 4, in Ay -
U’:;i Ay, using Chernoff’s bound, in at most my_; - {176)%m,_y loge +
O(i(’)g LT 1) bits.

The description E(G) with all bits corresponding to the presence or ab-
sence of edges between v; and the nodes in 4y — U:;‘l A, deleted, saving
my.; bits. Furthermore, we delete also all bits corresponding 1o presence

or absence of edges incident with u,v;,...,v;-; saving a further r bits.

This description of & uses at most
nin - 1)/2+4 Ollogn) + me_y ~ (1/6)%my-; loge ~ my,

bits, which contradicts the O{log n}-randomness of G because my_, > n/loglogn,
|

Recall that [is the least integer such that m; < n/ loglogn. We construct
the local routing function F{u) as follows.

¢ A table of intermediate routing node entries for all the nodes in Ay in
increasing order. For each node w in Uizl As we enter in the wth position
in the table the unary representation of the least intermediate node v, with
(u,v), (v,w} € E, followed by a 0. For the nodes that are not in U‘,=1 As
we enter a 0 in their position in the table indicating that an entry for this
node can be found in the second table. By Claim 5, the size of this table
is bounded by:

i o
n+ Y (1/3)(2/3) len <n+ > (1/3)(2/3) " sn < 4n

EE3 ame]

AVERAGE-CASE ANALYSIS USING KOLMOGOROV COMPLEXITY 163

« A table with explicitly binary coded intermediate nodes on a shortest
path for the ordered set of the remaining destination nodes. Those nodes
had a U entry in the first table and there are at most my < nf loglogn of
them, namely the nodes in Ag U:M A;. Each entry consists of the code
of length loglogn+O{1) for the position in increasing order of a node out
of vy,..., Uy with m = Oflogn) by Lemma 4. Hence this second table
requires at most 2n bits,

The routing algorithm is as follows. The direct neighbors of u are known in
node u and are routed without routing table. If we route from start node u to
target node w which is not directly adjacent 1o u, then we do the following, If
node w has an eutry in the first table then route over the edge coded iu unary,
otherwise find an entry for node w in the second table.

Altogether, we have d(F(u)} < 6n. Slightly more precise counting and
choosing { such that mny is the first such quantity < n/ logn shows d{F{u)) < 3n.

A matching lower bound of £3{n®) can also be proved.

Theorem 6 For shortest path routing in o{n}-random graphs each local routing
function must be stored in at least n/2 — o{n) bits per node. Hence the complete
routing scheme reguires ot least n? /2 — o(n®) bits to be stored.

The results on Kolmogorov random graphs above have the following corollar-
ies. Consider the subset of (3 log n)-random graphs within the class of O{logn)-
random graphs on n nodes. They constitute a fraction of at least (1 — 1/n%)
of the class of all graphs on n nodes. The trivial upper bound on the minimal
total number of bits for all routing functions together is O(n® logn) for shortest
path routing on all graphs on n nodes. Simple computation of the average of
the total number of bits used to store the routing scheme over all graphson n
nodes shows that both Theorem 2 and Theorem 6, hold for the average case.

The average case consists of the average cost, taken over all labeled graphs
of n nodes, of representing a routing scheme for graphs over n nodes. For a

graph G, let T{(7) be the number of bits used to store its routing scheme. The
o everage toal number of bits to store the routing scheme for routing over labeled
graphs on n nodes is 37 T(G)/27"=1/2 with the sum taken over all graphs G
on nodes {1,2,.... n}. That is, the uniform average over all the labeled graphs
on n nodes.

4 Addition in logy,n Steps on Average
Half a century ago, Burks, Goldstine, and von Neumann obtained a logyn

expected upper bound on the ‘longest carry sequence’ for adding two n-bit
binary numbers [2]. In computer architecture design, efficient design of adders

164 MING LI, PAUL VITANY]

directly affects the length of CPU clock cyele. The following algorithm (and 1y
analysis using [2]} for adding two n-bit binary numbers z and y is known to the
computer designers and can be found 1 standard computer arithmetic design
books such as [9].

1. 5= o3y {add bit-wise ignoring carries); ¢ = carry sequence,

5
2. while C # 0 do
S S
C .= pew carry sequence.

Let’s call this ‘no-carry adder’ algorithm. The expected logyn carry se-
quence length upper bound of [2] implies that this algorithm runs in 1 + logyn
expected rounds {step 2). It turns out that this algorithm is the most efficient
addition algorithm in the expected case currently known. Of course, it takes n
steps in the worst case. This algorithm, in the average case, is exponentially
faster than the trivial linear time ‘ripple-carry adder’ and it is two time faster
than the well-known ‘carry-lockahead adder’.

In the ripple-carry adder, the carry ripples from right to left, bit by bit, and
hence it takes {1{n) steps to compute the summation of two n-bit numbers.

The carry-lookahead adder is based on a divide and conguer algorithm which
adds two n-bit numbers in 1+2log, n steps. It is used in nearly all modern com-
puters. For details about both adders, see any standard computer architecture
textbook such as [9, 5].

The results in [2], [1], and [18] imply that the no-carry adder has expected
time of at most 1 + logyn. But these proofs are all nontrivial probabilistic
analysis.

{4] has given an almost trivial and elementary proof of the same fact using
Kolmogorov complexity, We present their proof here.

Theorem 7 The no-carry adder has the average running time of af most 1 4
logz Te,

Proof: For any binary string input z and y such that I{z) = l{y) = n, if the
no-carry adder uses t rounds (i.e., excuting Step 2 for ¢ times), then r and y
can be written as

z =g'bulz",y = y'bly",

where l{u) =t ~ 1, I{z’) = l{y’'), bis 0 or 1, and U is the complement of u. Now
we can describe z using y, n, g and the concatentation of the following binary
strings:

= the position of u in y (in ezactly logy n bits by padding),

e ',

AVERAGE-CASE ANALYSIS USING KOLMOGOROV COMPLEXITY 163

Here the program g contains information telling IV how to compose x from
the given information. Since the above two strings have total length n ~ ¢ -
1+ logy n, the value § can be deduced from » and input length. So €+ 1 bits of
x are saved at the cost of extra log, n bits, See [4] for more careful discussion.
Thus Clein,y,q) € 0 - ¢ -1+ logy n. Therefore, for any string x of length n
with Clzin,y,q) = n -1, the algorithm must stop in at most log, n +1~ | steps
on input x and y.

Since there are only 2°¢ programs of length n - i, there are at moss 2°7°
strings « of length n with Kolmogorov complexity Clzin,y.q) = n ~i. Let py
denote the probability that Clzin,y. ¢) =n — 1 for l{z) = n. Then p, < 2* and
$opi = 1. Thus the average running time for each y is bounded above by

k4

Z pili—1+logn) €1 +logn

imd-logn

Since this holds for every y, this is also the average running time of the algo-
rithm. | |

5 Average-Case Complexity Equals Worst-Case
Complexity Under Universal Distributions

Consider a Turing machine such that the set of programs for which it halts
is prefix-free, that is, no such program is the proper prefix of another such
program. Such self-delimiting Turing machines compute all partial recursive
functions and contain an appropriate universal machine U”. Similar to before
we can define Kolmogorov complexity with respect to {7 which is now induced
by a set of prefix-free programs. The resulting prefiz complexity K (x) is slightly
larger than C(z), that is, C(z) € K(z) € C(z) + 2log C(z).

The universal distribution m defined by m{x) = 2-%1%) is one of the fore-
most notions in all of the the theory of Kolmogorov complexity. In [15] we
give many remarkable properties an applications for this fundamental notion.
It multiplicatively dominates all enumerable distributions {(and therefore also
all computable ones}. Therefore, a priori it maximizes ignorance by assigning
maximal probability to all objects. In [14, 15] we showed that the average-case
computational complexity of any algorithm whatsoever under the universal dis-
tribution turns out to be of the same order of magnitude as the worst-case
complexity. This holds both for time complexity and for space complexity.

For many algorithms the average-case running time under some distributions
on the inputs is less than the worst-case running time. For instance, using
{nonrandomized) Quicksort on a list of n items to be sorted gives under the
uniform distribution on the inputs an average running time of O(nlogn) while
the worst-case running time is {n®). The worst-case running time of Quicksort

166 MING LI, PAUL VITANYI

is typically reached if the list is already sorted or almost sorted, that is, exactly
in cases where we actually should not have to do much work at all. Since in
practice the lists to be sorted occurring in computer computations are often
sorted or almost sorted, programmers often prefer other sorting algorithms
which might run faster with almost sorted lists. Without loss of generality
we identify inputs of length n with the natural numbers corresponding with
binary strings of length n.

Definition 1 Consider a discrete sample space A" with probability density
function P. Let t(z) be the running time of algorithm A on problem instance
%. Define the worst-case time complesity of A as T(n) = max{t(z) : [{z) = n}.
Define the P-everage time complexity of A

Lizy=n £ (@)t(T)
Zl(:):n P(:E)

We compare the average time complexity for Quicksort under the Uniform
Distribution L{z) and under the Universal distribution m(z). Define L(z) =
272(=)=1 such that the conditional probability L(z}l{z) = n) = 27% We
encode the list of elements to be sorted as nonnegative integers in some standard
way.

For Quicksort, T'(n|L) = ©(nlogn). We may expect the same complexity
under m, that is, T(njm) = Q(nlogn). But Theorem 8 will tell us much more,
namely, T'(njm) = Q(n?). Let us give some insight why this is the case.

With the low average time complexity under the Uniform Distribution, there
can only be o{(logn)2"/n) strings = of length n with £(z) = Q(n?). Therefore,
given n, each such string can be described by its sequence number in this small
set, and hence for each such = we find K(z|n) < n —logn + 3loglogn. (Since
n is known, we can find each n — k by coding k self-delimiting in 2logk bits.
The inequality follows by setting k > logn — loglogn.)

Therefore, no really random z’s, with K{z|{n) > n, can achieve the worst-
case run time Q(n?). Ounly strings = which are nonrandom, with K(zjn) < n,
among which are the sorted or almost sorted lists, and lists exhibiting other
regularities, can have Q(n?) running time. Such lists = have relatively low
Kolmogorov complexity K () since they are regular (can be shortly described),
and therefore m(z) = 275} is very high. Therefore, the contribution of these
strings to the average running time is weighted very heavily.

T(n|P) =

Theorem 8 (m-Average Complexity) Let A be an algorithm with inputs
in M. Let the inputs to A be distributed according to the universel distribution
m. Then, the average case time complexity is of the same order of magnitude
as the corresponding worst-case time complezity.

Proof: We define a probability distribution P(z) on the inputs that assigns
high probability to the inputs for which the worst-case complexity is reached,
and zero probability for other cases.

AVERAGE-CASE ANALYSIS USING KOLMOGOROV COMPLEXITY 167

Let A be the algorithm involved. Let T'(n) be the worst-case time complexity
of A. Clearly, T'{n) is recursive {for instance by running A on all z's of length
n}. Define the probability distribution P{z} by

Step 1 Foreachn = 0,1,..., set @, := 3, ;... m(z).

Step 2 If l{x) = n and z s lexicographically least with t{z) = T{n} then
Plr) o= ay, else Plz) = 0.

It is easy to see that a, s enumerable since miz) is enumerable. Therefore,
P(z) is enumerable. Below we use a fact from [15], Theorem 4.1 and the
following Example 4.5, that cpmiz) > Plz), where ¢p = K(F) + 01} is
a constant depending on P but not on . We have defined P{x) such that
Tren Plr) 2 ¥, 4 m(2), and P{z) is an enumerable probability distribution.
The average case time complexity T{nlm) with respect to the m distribution
on the inputs, is now obtained by

T{nlm) = _l_n(ﬂt(x?

{imimn Elizh\m m(:t)

> Loy PE o
ep Hxhmn zt{a)." m(':3

1 Plx) 1

= = ¥ v—pp T =T,

P I{z}=n Z‘(’an P(z) (m) cp
The inequality T'{n) > T{n|m) holds vacuously. -

The analogue of the theorem holds for other complexity measures (like space
complexity), by about the same proof. Further research has been done on
related measures that exhibit similar behaviour. See for example [16, 12, 11].

6 Acknowledgement

We thank our coauthors for papers [3, 4): R. Beigel, H. Buhrman, W. Gasarch,
J.H. Hoepman, L. Zhang, We have used the proofs from these two papers to
demonstrate our points.

References

{1] B.E. Briley, Some new results on average worst case carry, [EEE Trans.
Computers, C-22:5(1973).

168 MING LI, PAUL VITANYI

{2] A.W.Burks, H.H. Goldstine, J. von Neumann, Preliminary discussion of
the logical design of an electronic computing instrument. Institute for Ad-
vanced Studies, Report {1946). Reprinted in John von Neumann Collected
Works, vol 5 (1961).

(3] H. Buhrman, J.H. Hoepman, P.M.B. Vitinyi, Optimal routing tables, Proc.
15th ACM Symp. Principles Distribut. Comput., ACM Press, 1996, 134-
142.

[4] R. Beigel, W. Gasarch, M. Li, and L. Zhang, Addition in log, n steps on
average, maenuscript.

[5] T. Cormen, C. Leiserson, and R. Rivest, Introduction to algorithms. MIT
Press, 1990.

[6] K. Culik II, D. Wood, A note on some tree similarity measures, Inform.
Process. Leit., 15(1982), 39-42.

{7} R.W. Floyd, Treesort 3: Algorithm 245, Comm. ACM, T(1964}, T01.

[8] D. Foulser, M. Li, and Q. Yang, Theory and algorithms for plan merging.
Artificial Intelligence, 57(1992), 143-181.

[9] K. Hwang, Computer arithmetic: principles, architecture, and design. Wi-
ley, New York, 1979.

[10] T. Jiang and M. Li, On the approximation of shortest common superse-
quences and longest common subsequences. STAM J. Comput., 24:5(1995),
1122-1139.

[11] AX. Jagota and K.W. Regan, Testing Neural Net Algorithms on Gen-
eral Compressible Data, In Proceedings of the International Conference on
Neural Information Processing, Hong Kong, 1996, Springer-Verlag.

{12] K. Kobayashi, On malign input distributions for algorithms, JEICE Truns.
Inform. and Syst., ET6-D:6(1993), 634-640.

{13] M. Li, J. Tromp, and L. Zhang, On the nearest neighbor interchange dis-
tance, COCOON'96, Hong Kong, 1996. Final version to appear in J. The-
oret. Biology, 1996.

[14] M. Li and P. Vitdnyi, Average case complexity equals worst-case com-
plexity under the Universal Distribution. Inform. Process. Lett., 42(1992),
145-149.

[15] M. Li and P. Vitdnyi, An Introduction to Kolmogorov Complezity and Iis
Applications. Springer-Verlag, New York, 1993.

~AVERAGE-CASE ANALYSIS USING KOLMOGOROV COMPLEXITY 169

{16] P.B. Miltersen, The complexity of malign ensembles, SIAM J. Comput.,
22:1(1993), 147-156.

[17] L. Muaro, Personal communication, 1993.

[18] G. Schay, How to add fast-on average. American Mathematical Monthly,
102:8 (1995), T25-730.

[19] R. Schaffer and R. Sedgewick, J. Algorithms, 15(1993}, 76-100.

{20] D. Sleator, R. Tarjan, and W. Thurston, Short encodings of evolving struc-
tures, SIAM J. Discr. Meth., 5(1992), 428-450.

[21] J.W.J. Williams, Algorithm 232: HEAPSORT, Comm. ACM, 7(1964),
347-348.

