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Intuitionistic Logic and Topos Theory

. Moerdijk

1. BROUWER

Any scientific activity is governed by logic. The word ‘logic’ here usually
refers to ‘sound’ reasoning, and the forms of reasoning which are sound may
differ somewhat from one discipline to another. For example, the logic of
ethics, dealing with statements about what actions should or should not be
performed, and the logic governing reasoning involving probabilities, both
differ from the one pure descriptive, factual reasoning. The latter logic is
usually thought of as the logic which applies to mathematics, which, after
all, 1s the prime example of a scientific discipline where statements are clear
and unambiguous, hence either true or false.

This, however, tacitly assumes agreement on the nature of mathemati-
cal knowledge, on what 1t means to ‘know’ that a mathematical statement
is true. It was convincingly shown by the Dutch mathematician L.E.J.
Brouwer (1881-1966, see figure 1) that there is no unique unambiguous
approach to mathematical truth. Brouwer developed a constructive toun-
dation of mathematics, in which a mathematical statement 1s only viewed
as established when constructions are given for all the objects asserted to
exist by the statement. To see how this affects the logic, note that from
this point of view, ‘classical’ rules of logic such as Tertium non datur (‘p or
not p’) and proof by contradiction (‘if the assumption that not p leads to a
contradiction, then p’) are no longer valid. This becomes particularly clear
for existential statements. For Brouwer, a statement of the form ‘there
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Figure 1. L.E.J. Brouwer (Photo: Brouwer archive).

exists an object x with property p’ 1s established only when one can de-
scribe an explicit construction of such an object x; thus, it doesn’t suffice
to prove that the assumption that no object x can have property p leads to
a contradiction.

Brouwer’s ideas were later formalized and made into a clear logical system
of axioms, called ‘intuitionistic logic’, first and notably by A. Heyting. This
system, and variants of it, led to several interesting early developments,
such as Godel’s embedding of intuitionistic logic into modal logic (around
1933), Kleene’s algorithmic interpretation of intuitionistic logic (where the
‘constructions’ of Brouwer are interpreted as algorithims for numerical func-
tions, around 1945), and Kripke’s completeness proof (1965) using what are
now called Kripke models.

[t 1s often thought that intuitionistic logic, and the mathematics based
on it, are properly contained in ordinary, ‘classical’ logic and mathematics.
Now 1t is indeed true that intuitionistic logic per se is weaker than classical
logic, but this also implies that there is room for new concepts and theorems,
perhaps inconsistent with ordinary logic. For example, based on a suitable
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analysis of the notion of a real number, Brouwer argued that all functions
from the reals to itself are continuous. This result was later made mor
rigorous by G. Kreisel and A.S. Troelstra, who extended Heyting's axioms
to a system for analysis, containing so-called ‘choice ¢

' equences’. In this

system, Brouwer’s continuity result is formally derivable.

Thus, mntuitionistic logic turned out to be very rich in mathematical
ent, by giving rise to new methods and models of formal logic, and in
ays 1t deviates from and possibly extends classical mathematics. Neverthe-
less, 1t seems fair to say that it was not part of the mainstream activities in
mathematics in general, and within mathematical logic in particular. This

situation changed drastically in the
past two decades, for two reasons.
First, with the increasing interac-
tion between logic and computer sci-
ence, mtuitionistic logic turned out
to play a central role, in semantics
of programs as well as in proof the-
ory (program extraction from for-
mal derivations). Secondly, the re-
lation to sheaves and topoi, discov-
ered 1n the early seventies, gave an
enormous impulse to intuitionisti
logic, and started a whole new and
broader line of development, now
enerally retered to as categorical
logic. It 1s this second reason that

I wish to explore here.
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2. GROTHENDIEC

The work of the French mathemati-
cian A. Grothendieck (see figure :
in the sixties and seventies formed
a revolution in algebraic geometry,
and later led to the solution by P.
Deligne of the tamous Weil conjec-
tures. Central among the many new
concepts and methods introduced
by Grothendieck was his generaliza-
tion of the notion of ‘space’. The
basic idea was that for the construc-
tion of many invariants of a space,
1t suffices to know the system of all Figure 2. A. Grothendieck (Courtesy

Birkhauser, Inc., Boston).
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‘sheaves’ which can be defined over the space. A sheaf is something like
a continuously varying tunction on the space whose values are sets- -or
more often, sets with some algebraic structure. such as abelian groups.
Grothendieck then observed that such sheaves could be defined not only
for spaces, but for much more general structures. This gave rise to the
notion of a ‘site’. A site is a category, to be thought of as a system of
‘neighbourhoods’, equipped with an a priori given notion of when a family
of such neighbourhoods covers another neighbourhood. For any such site
one can define the system of all sheaves on the site. Such a system defined
from a site is called a topos. According to Grothendieck topoi——and not just
spaces—are the central geometric objects to be studied.

The relation to logic and set theory arose from the work of F.W. Lawvere
and M. Tierney, concerned with simplifications of Grothendieck’s axioms for
sheaves and sites. Lawvere and Tierney discovered that many of the prop-
erties of topoi could be derived from a very simple set of axioms. These
axioms describe elementary properties of sheaves: for example, that for any
two sheaves S and 7" one can formm the product sheat S x T, the ‘function
sheaf” T of all maps from S to 7', and the ‘powersheaf’ PSS of all subsheaves
of S. They also discovered that any topos can be viewed as a ‘universe of
sets’. This means that one can interpret the axioms of set theory in a topos,
and view this topos as a world in which one can do mathematics. Such a
topos world is exactly like the ordinary world of sets in which mathemati-
cians work, except that the logical rules of Tertium non datur and proot by
contradiction do not hold. In fact, it is a world with a logic which differs
from ordinary, classical logic: a world with precisely the intuitionistic logic
of Brouwer and Heyting!

3. T'OPOS MODELS FOR INTUITIONISTIC LOGIC

The discovery of this striking coincidence between geometric structures and
intuitionistic logic immediately led to the construction of a great variety
of natural mathematical models of specific intuitionistic theories. For ex-
ample, the principle mentioned above of continuity of all real functions, at
first thought of as a rare phenomenon, turned out to be true in many of
Grothendieck’s most general topoi (the so-called topological gros topoi). Us-
ing these topol, one discovers natural models of the Kreisel-Troelstra theory
of choice sequences (G.F. van der Hoeven and I. Moerdijk, 1984).

The use of topoi as models for logic and set theory also led to new ex-
planations of classical independence results for Zermelo-Fraenkel set theory.
Thus, Tierney showed (1972) how to interpret Cohen’s famous proof of the
independence of the Continuum Hypothesis as a topos theoretic construc-
tion, and later (1980) P. Freyd gave a strikingly simmple proof, based on topos
theory, of the independence of the axiom of choice. Around the same time,
J.M.E. Hyland showed that Kleene’s algorithmic interpretation of intuition-
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istic logic can also be viewed as the construction of a topos, thus providing
an extension of Kleene’s interpretation to higher order logic. Hyland’s topos
has various properties which make it strikingly different from ordinary set-
theoretic universes. For example, it contains a large class of countable sets
which has the remarkable property that the product of all its members 1s
again a member of the class, while avoiding the paradoxes of set theory that
such phenomena usually give rise to. This property has applications to the
semantics of certain strong functional programming languages (versions ot
the so-called polymorphic lambda calculus).

The Continuum Hypothesis, formulated by G. Cantor in 1878, states that
every infinite subset of the continuum R (i.e., the set of all real numbers) is ei-
ther equivalent to the set of natural numbers or to R itself. D. Hilbert posed,
in his celebrated list of problems presented at the International Congress of
Mathematicians in 1900 in Paris, as Problem nr.1 that of proving this hy-
pothesis. The independence of the Continuum Hypothesis, proven in 1963
by P.J. Cohen, means that it neither can be deduced from, nor contradicts
the other axioms of set theory (e.g. the Zermelo-Fraenkel system), assuming
these axioms to be non-contradictory. The Axiom of Choice (E. Zermelo,
1904) states that if S is a system of non-empty sets, then there exists a set A
having exactly one element in common with every set S of 5. This axiom was
put forward in connection with the question, posed by Cantor, whether of two
sets there is always a largest. With the Axiom of Choice there is. The axiom
met with considerable resistance, because it produced some counter-intuitive
results. The independence in the above sense of the Axiom of Choice was also
proved by Cohen. These independence results bear some similarity to the
famous parallel postulate in Euclidean geometry, the discussion about which
led to the discovery of non-Euclidean geometry. However, the independence
proofs in logic are very different from those in geometry.

The newly discovered relation between intuitionistic logic and topos the-
ory also led to an effective and well-motivated development of parts of in-
tuitionistic mathematics. Notably, P.T. Johnstone and others developed a
version of intuitionistic topology which avoids the use of points, and is now
known as locale theory. This theory immediately went far beyond what
was known up to then in intuitionistic topology. Furthermore, by applying
the theory inside a topos (remember, a topos ‘is’ an intuitionistic universe
in which one can do mathematics), various new presentation theorems for
topoi were discovered. For example, Freyd proved that any topos allows a
particularly nice embedding into the category of (Q-equivariant sheaves on
a locale X equipped with the action by the group Q of rational numbers.
A. Joyal proved with Tierney (1984) that any topos can be described as
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a more general category ot equivariant sheaves on a locale. Later (1990),
Joyal and Moerdijk proved that for any topos there exists a locale with the
same weak homotopy type.

4. FURTHER DEVELOPMENTS

The discovery of the relation between topoil and logic stood at the origin
of an entirely new subject within logic, now called ‘categorical logic’. In
categorical logic, one tries to study logical systems in a way independent
from their description in a specific language. Instead, a logical system is
described by certain closure conditions on categories. The ‘free’ category
possessing these closure conditions then replaces the older description of
the logical system by a formal language, while more concrete, mathematical
categories possessing these closure conditions correspond to models of the
system. Semantics is now simply a functor between categories. (In hind-
sight, this is somewhat analogous to group theory, where abstract groups
come Instead of generators and relations, and representations of groups are
homomorphisms into ‘concrete’ groups of automorphisms.) In categorical
logic, the notion ot a topos replaces that of a logical system for (a weak
form of) set theory.

Similarly, logical systems for the typed lambda calculus correspond to
cartesian closed categories |3|. First order logic corresponds to Grothen-
dieck’s theory of pretopoi (or coherent topoi). Grothendieck’s fibered cat-
egories also have turned out to be very usetul, 1n particular for describing
type theories with so-called dependent types; see the Ph.D.-theses of D.
Pavlovic (Utrecht, 1990) and B.P.F. Jacobs (Nijmegen, 1991).

This formulation of logic using categories has turned out to be very flex-
ible and useful, in discovering analogies between logical systems, in finding
new models, and, perhaps most importantly, in making methods of central
parts of mathematics such as algebra and topology applicable to logic. By
way of example, I may mention the work of M. Makkai (1993) and M. Za-
wadowski (1995) on descent theory. Descent theory in algebraic geometry is
concerned with conditions under which one can ‘descend’ structures defined
for a space X along a mapping X — Y to similar structures defined over
Y. Descent theory was also used in the work of Joyal-Tierney and Joyal-
Moerdijk mentioned above. The work of Makkai and Zawadowski relates
descent theory, via the methods ot categorical logic, to classical results in
logic concerning definability and interpolation, some of which go back to
the Dutch logician E.W. Beth (1909-1964).

Using the correspondence between suitable categories (pretopoi) and first
order logic, Makkai and Zawadowski have been able to develop a descent
theory for first order logic, and show that this theory leads to definabil-
ity and interpolations theorems which are considerably stronger than the
classical ones just mentioned.
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This is one of many examples of an active and highly interesting inter-
action between logic and geometry, which has led and will lead to many
new concepts and results in mathematical logic, and from which a fruitful
teedback to geometry in general and topos theory in particular is emerging.
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