Images of SMC Research 1996

Functional Analysis and Optimization Problems in
Hydrodynamic Propulsion

J.A. Sparenberg, P. Sijtsma, H.P. Urbach

1. INTRODUCTION

Hydrodynamic propulsion is of mterest in the biological sciences for the
study of swimming creatures, but it i1s also important in technics, already
since ships came mto use. We direct here our attention to the propulsion of
ships as it is studied at (technical) universities, at ship research institutes
and sometimes at shipyards and screw factories. The research described
below was inspired by the desire in the shipbuilding industry in the late
1970’s to diminish propulsion costs in view of rising energy prices. In gen-
eral the theoretical research is directed to the solution of practical problems.
Analysis in the form of ‘classical’ applied mathematics in combination with
extensive computer programs is employed for the application of lifting sur-
face theories to propellers. By a propeller we mean not only the well-known
screw propeller, but also periodically moving wings which cause a thrust.
An example of the latter is the Voith-Schneider propeller.

Most propellers are placed at the stern of a ship for the tollowing reason.
By its slight viscosity the water flowing along the hull of the ship is dragged
with it and obtains kinetic energy with respect to the water at large distance.
It can be shown that by placing the propeller at the stern of the ship, part of
this kinetic energy can be regained by which the efficiency of the propeller
Increases.
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Figure 1. Four-bladed screw propeller with endplates. (Photo: Groningen Propeller
Technology B.V., The Netherlands.

 now mention two difficulties for the calculation of the performance of
the propeller which are caused by its above mentioned efficiency increasing
position at the stern. First, at the stern of a ship the flow of the water 1is
‘untidy’. The water dragged with the hull becomes turbulent and becaus
it has to follow the shape of the hull, it has to converge at the stern. Besides
this the wave pattern at the free surface above the propeller causes a ve-
locity field which varies with depth. Second, the stern forms partly a rigid
boundary of the flow domain and hampers the water to be set into motion
by the propeller. The same holds for the rudder and also the free surface
acts as part of the boundary of the region in which the propeller operates.
Besides the foregoing ones, another type of difficulty can occur, perhaps
more specifically with respect to the screw propeller, namely when the pro-
peller is heavily loaded. Then the interaction between vortices (which causes
the nonlinear roll-up of the shed vorticity) becomes important and also time-
dependent cavitation can be present at the blades.
These are not ideal circumstances for the application of elegant math-
ematics in order to describe the performance of the propeller. For that
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sake we have to make simplifications. However, in that case we have to be
careful with the application of the results to reality. A rather accessible situ-
ation occurs when we suppose that the propeller acts in an incompressible,
inviscid, unbounded and otherwise undisturbed fluid and translates with
constant velocity and delivers a prescribed thrust. Often it is also assumed
that this thrust is sufhciently small so that a (semi-)linearized theory can
be used in which squares of velocities induced by the shed vorticity can be
neglected with respect to these velocities themselves.

Hence, one of the simplifications is the neglect of viscosity of the fluid.
However, loss of efficiency of the propeller caused by viscosity can be very
important, especially with respect to optimization problems. Luckily we can
introduce in an inviscid optimization theory experimentally or theoretically
obtained results of the viscous resistance of plates, by which the viscosity
can often be incorporated satisfactorily.

In technically useful optimization calculations it is, for instance with re-
spect to the screw propeller, not always necessary to use functional analytic
methods, because by experience built up in the course of time it is known
that optimum screw propellers do exist under certain simple constraints.
However, there are propeller types for which we are not sure that an op-
timum propeller does exist within a ‘set’ of admitted propellers. This can
happen rather easily with propellers consisting of periodically moving thrust
producing wings, of which we shall discuss two examples. Both examples are
two-dimensional, because besides the mentioned simplifications it is also as-
sumed that the wings are infinitely long. First, the small amplitude motion
of a thrust producing flat profile and, second, the large amplitude motion of
a lifting line (i.e., a line on which the forces are assumed to be concentrated)
for which there is an unequality constraint on its lateral force action. It is
clear that both models are highly idealized versions of a practically possible
propeller. Nevertheless it is very elucidating to understand their working in
the simplified case.

2. OPTIMIZATION OF SMALL AMPLITUDE MOTIONS OF A FLAT PROFILE
We shall discuss small amplitude motions of a rigid profile through a previ-
ously undisturbed fluid {1]. With respect to the Cartesian coordinate system
(x,vy) shown in figure 2 the motion is given by

y = h(x,t) = —ga(t) +a(t)(x—-Ut), -0 <z <Y, (2.1)
where 2¢ is the length of the profile, —ga(t) and «(t) are the so-called heaving
and pitching parts of the motion, and U is the constant velocity of the profile
in the positive x-direction.

Let T'(h) be the mean thrust generated by the periodic motion A with
period 1y and let E'(h) be the mean increase of kinetic energy of the fluid
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Figure 2. Flat profile of length 2/ moving through a previously undisturbed fluid at
velocity U..

during one period. The efficiency of the motion A is useful work divided by
total work, hence

_ Ut
- UT(h) + E(h)
T'he aim of the optimization is to minimize the lost energy E subject to the
constraint that a prescribed mean thrust 7 is generated and furthermore
subject to some additional constraints, e.g., on the amplitude of the mo-
tion. The thrust is obtained by summing the integrated z-component of the
pressure jump across the profile and the suction force at the leading edge.
The suction torce always acts as a positive thrust. The relative contribution
of the suction force to the total thrust will be constrained. The reason is
that 1n certain cases it can be shown that without this constraint optimum
motions do not exist. The constraint on the suction is also useful from the
mechanical point of view, because large suction forces cause the separation
of flow from the profile.

Furthermore, from the engineering point of view it is desirable to constrain
the amplitude of a point of the profile. Hence the optimization problem that
we shall consider is for given T > 0, 7 > 0 and C, > 0.

minimize E(h), subject to T(h) =T, T°(h) < T,
heH

n(h) (2.2)

(2.3)
max h(z,, t)] < Cu,

-
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where 'H is the function space in which the optimum motion 1s sought,
T%(h) is the mean suction force, and r, 18 the r-coordinate of the point
whose amplitude is constrained.

We assume that the motions have small amplitudes so that a linearized
theory can be applied. In this theory all flow quantities can be explicitly
expressed in terms of a and «, more precisely in terms of their Fourier
coefficients. By writing

>0
a(t) = Z a(n)exp(2mint/7mg).,
== 0
(2.4)
O
a(t) = Z a(n)exp(2mint/ ),
nN=—oo

we find for example

E(h) = Z (a(n),a(n)) &(nop) ( g((z)) ) , (2.5)

TL==— 2

where * denotes complex conjugation, oy = 27¢/(moU) and £(¢) is for all
o # 0 a nonnegative selfadjoint (2, 2)—matrix, and therefore F is a convex
quadratic functional. Analogous expressions hold for T(k) and T%(h) with
selfadjoint matrices 7 (0) and 7°(o) instead of £(o). 7¢(0) has one posi-
tive and one vanishing eigenvalue, whereas 7 (o) has one positive and one
negative eigenvalue, in agreement with the fact that the suction is always
nonnegative, whereas the total thrust can be negative as well as positive.
Hence T° is convex, whereas 7 is not.

In order to prevent unessential constraints on the smoothness of the mo-
tions, one should choose for H the largest function space for which all func-
tionals occurring in the optimization problem are well-defined and norm-
continuous. Because the nonzero eigenvalues of the matrices £(o) and 7°%(o)
are ~ ¢* for o — oo, this means that we require a, and « to be in the
Sobolev space H; defined by

HY = {f € L} (R); f €L}, (R), and
(2.6)
f(t+ 1) = f(t) for all t}.

With the standard scalar product H}D 1s a Hilbert space. It is well known
that the functional A — max|A(x,,?)| is continuous with respect to the
weak topology of this space.

In studying the existence of optimum motions it is natural to attempt to
apply the general theorem which says that a lower semi-continuous (l.s.c.)
functional attains its infimum on a compact set. Now the constraint set in
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(2.3) is bounded and norm-closed, but not norm-compact. One would like
to choose a smaller topology on the space H ,}.“, such that the set i1s compact
and such that F is l.s.c. Because F is convex and norm-continuous, it is
l.s.c. with respect to the weak topology on H 7{“, and this weak topology is in
practice the smallest topology for which E has this property. Nevertheless,
the set in (2.3) is not compact in this topology either. As is often the case
in infinite-dimensional optimization problems of hydrodynamic propulsion,
the trouble is caused by the equality constraint on the mean thrust.

In spite of the fact that the set in (2.3) is not compact in the weak
topology, 1t 1s possible to prove the existence of an optimum motion. The
idea of the proof is based on the important observation that the difference
G(h) between the useful work and the lost energy:

G(h) =UT(h)— E(h) (2.7)

can be shown to be weakly continuous. Problem (2.3) is equivalent to

maximize G(h), subject to T(h) =T, T*(h) < rT,

1
(L,,le E HT{) (2.8)

max h(xp, t)] < Cx.
In addition to (2.8) we introduce the optimization problem obtained by
replacing the equality constraint on the generated thrust by an inequality:

maximize G(h), subject to T(h) <T, T*(h) <rT,

1 T
CL:,Oi E HTO (2'9)

A ——

max h(z,,t)| < Cx.

T'his problem is not necessarily equivalent to (2.8), because it could have a
solution with T'(h) < T. It follows from UT(h) = G(h) + E(h) and from the
mentioned properties of G and E that 7T is l.s.c. with respect to the weak
topology. Because 7 is convex and norm-continuous, it has this property
also. Therefore, the set in (2.9) is weakly closed and since it can be shown to
be bounded also, it is weakly compact. We conclude therefore that problem
(2.9) has at least one solution. Furthermore, one can prove that at least
one solution satisfies T'(h) = T and therefore is also a solution of problem
(2.8). Because problems (2.3) and (2.8) are equivalent, we conclude that
optimization problem (2.3) has indeed at least one solution.

When the required mean thrust is smaller than a treshold value T, the
solution is a pure harmonic with lowest frequency 1/7,. When the required
mean thrust is larger than 7';, the constraint on the amplitude of the motion
becomes active and both the heaving and the pitching components consist of
infinitely many nonvanishing harmonics. The amplitude constraint is active
for two intervals of time per period during which the point x, is at rest at
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Figure 3. The motion of the quarter-chord point as function of time for optimum
motions corresponding to oy = 7/3, x,, = 0.5], r = 0.4, C = 0.35] and for

four values of the required mean thrust: 7' =7, = 0.066, 7 = 0.200, T = 0.352

and 1" = 0.600. All optimum motions shown in the left figure have dominant lowest
harmonic, whereas those shown at the right have dominant second harmonic.
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Figure 4. The pitching «(t) of the optimum motions of figure 3.
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the maximum stroke while the profile slowly pitches around it. For » = 0.4,
r, = 0.5¢ (quarter-chord point), ('« = 0.3525¢ and for several values of the
thrust, hA(x,,t) and the pitching «(#) of the optimum motion are shown in
figures 3 and 4. For T, < T < 0.3525 the lowest harmonic is dominant. For
T = 0.3525, a second optimum exists having dominant second harmonic,
and for larger required thrust the second harmonic remains dominant until
the third takes over at a certain higher treshold value. All computed opti-
mum motions generate the maximum allowed mean suction force 7', even
when 7 1s much larger than 1.

Several properties of the optimum motions can be derived from a La-
grange multiplier rule that is obtained by the application of a Kuhn-Tucker
type of theorem (which provides a method to solve certain minimization
problems with inequality constraints). However, the classical Kuhn-Tucker
Theorem cannot be used because the functional h — max|h(x,,t)| is not
Gateaux differentiable. When this type of constraint occurs, the theory of
generalized differentials has to be applied.

3. OPTIMUM LARGE AMPLITUDE SCULLING PROPULSION WITH AN INEQUAL-
ITY CONSTRAINT ON THE SIDE FORCE

Next, we consider the large amplitude motion of a lifting line [2], which

can represent a one-wing sculling propeller, mounted vertically at the stern

of a ship (see figure 5). The sculling wing W moves sideways back and

forth, while its angle is adjusted such that a thrust is created. From the

hydrodynamical point of view, a large lateral amplitude is profitable, since

this can result in a high efficiency.

The lifting line or concentrated bound vortex I'(¢), which represents this
sculling wing, moves through the water along a line G (see figure 6). The
strength of the vortex varies with time, corresponding with the blade angle
variation of the wing. Since the bound vorticity I'(#) varies with time, free

| vorticity is shed mto the water. In other words, the fluid behind the lifting
136 line 1s put into motion and its kinetic energy increases with time. It is clear
that the lost kinetic energy should be kept as small as possible.

By the motion of the lifting line a ‘lift’ force is evoked, acting perpendic-
ularly to the local direction of motion, hence normal to G. By Joukowski’s
law, the magnitude of this force is proportional to the product of the vortex
strength and the velocity of the lifting line. The lift force can be decomposed
Into two components: a thrust component 7' in the direction of motion of
the ship and a side force component S perpendicular to it. The mean value
of the thrust should be equal to the ship’s hull drag at a desired speed. The
most efficient propulsor is the one that produces the least kinetic energy
under the constraint of a prescribed mean thrust.

The fluctuating side force is an evident drawback of a one-wing sculling
propeller. It can have a disturbing influence on the course of the ship.
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Figure 5. Stern of a ship, equipped with
a one-wing sculling propeller W1/.

Therefore, it 1s studied what the et-
fect i1s on the optimum motion if
a constraint 1s put on this lateral
force. To be more precise, a max-
unum 1s put on its absolute value.
The optimization problem we con-
sider 18 to hnd an optimum time-
dependent bound vorticity of the
lifting line for which the kinetic en-
ergy generated per period of time 1s
minimal, under the constraints of a
thrust with a prescribed mean value
and a side force with a maximum
value. Contrary to the previous sec-
tion, the path ' is chosen in ad-
vance.

The problem that we are con-
fronted with consists of two parts.

First, it has to be proved that an optimuin bound vorticity erists. Second,
the optimum bound vorticity has to be constructed. In the following, an
outline is given of the procedure that is followed to solve these problems
and which role is played by functional analysis. Since the mathematical
1mplications are rather complex, a two-dimensional model is used. This
means that the lifting line is assumed to be infinitely long, having a con-

stant strength in spanwise direction. Furthermore, a linearized theory of

an inviscid fluid is adopted, implying that the shed free vorticity keeps its
strength and remains on the place where it is formed, that is on G.

1)
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Figure 6. The motion of the lifting line G(t).
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T'he first step, before we can prove the existence of an optimum motion, is
to state the optimization problem unambiguously in a proper mathematical
sense. For that purpose, let us consider a Cartesian reference frame r, y, in
which the positive x-direction is defined by the direction of motion of the
ship (which is assumed to move in a straight line).

Now let us say that we find ourselves at a certain position ., y. The ship
passed by a very long time ago and disappeared behind the horizon (x = o0),
so we do not experience the unsteady motion of the lifting line. On the other
hand, the ship started its motion somewhere behind the opposite horizon
(r = —o0), so starting effects can be neglected as well. What remains is a
steady flow induced by the free vorticity on . During one time period of
the wing motion, an amount of kinetic energy is added to the fluid which is
equal to the kinetic energy in the strip:

Q= {(x,y) e R*;0 < x < b}, (3.1)

where b 1s the distance covered by the ship during one period.

Returning to our steady state model, the only vorticity that is present in
the fluid 1s on . So, outside G a velocity potential ¢ exists. The kinetic
energy, produced per tume period can then be expressed as:

E(¢) / / | ¢l dady. (3.2)
(2

The potential ¢ is not continuous over (. The free vortices on G induce a
jump [¢], which is such that the derivative of [¢] along G is equal to the
strength of the free vorticity. We can choose the potential ¢ such that the
jump [¢] at a certain location on G is equal to the vortex strength I'(¢) of
the lifting line at the time it passed by.

Since the location of (G is prescribed, it is allowed to treat |[¢] as a function
of x only. The constraint of the prescribed mean thrust can be expressed
as a weighted integral of |¢|, symbolically written as:

—

r'(lo]) =T. (3.3)

The inequality constraint on the side force can be expressed, directly in
terms of [¢], as:

-5 < [¢](x) < S, for every . (3.4)

Summarized, our aim is to find a potential ¢, satisfying (3.3) and (3.4), for
which the lost energy E(¢), (3.2), 1s as small as possible.

To define the optimization problem well in the mathematical sense, we
have to identity a convenient function space tor ¢, in which the optimization
can be carried out. This space has to be such that (3.2), (3.3) and (3.4) are

well-defined. An appropriate candidate for this is the Sobolev space H! (),
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consisting of square-summable functions on €2, of which the derivatives are
square-summable too. In this space, (3.2) is automatically well-defined.

At the upper and lower side of (G, boundary values of ¢ € H L)) exist
In the sense of the so-called ‘trace’. These boundary values are elements
of the Sobolev space H/ 2(0, b), which is defined using derivatives of non-
integer order. Since H!/2(0, b) is contained in the space of square-summable
functions L»(0,0) = HY(0,b), it is clear that (3.3) is also well-defined. The
side force constraint (3.4) has to be slightly weakened as:

—S < [@](x) < S, for almost every z. (3.5)

.

T'his is because Sobolev spaces, in fact, consist of equivalence classes of
functions.

S0, we can formulate the problem as the minimization of E(¢), (3.2), on
the set

P={¢ e H'(Q); ¢ satisfies (3.2) and (3.4)}. (3.6)

1o prove the existence of a solution we use the well-known fact that a closed,
convex subset of a Hilbert space possesses a unique element which minimizes
the norm. Indeed, P is a closed, convex subset of the Hilbert space H().
Here we benefit from the fact that the path G is fixed, in contrast with the
previous section, where the counterpart of P is not convex.

T'he energy E(¢) is in general not equivalent with the H'-norm. However,
if we equip H' () with some evident symmetry and periodicity properties,
then E'(¢) can be proved to be equivalent with the usual norm on H Q).
By this strategy, the existence of an optimum motion of the lifting line 1s
proved. Moreover, it follows that there is only one optimum motion.

It 1s noted that, up to now, we have completely ignored the incompress-
1ibility of the fluid. It turns out, however, that this omission is not essential.
By disturbing the optimum potential ¢y with test functions which are con-
tinuous over G, it is seen that A¢y = 0 (A is the Laplace operator), which
means that the velocity field of the optimum potential is free of divergence.
Moreover, it follows that the normal velocity is continuous across G, as it
should be. 50, although we admitted divergence, the solution of the opti-
mization problem is free of divergence.

One of the constraints, namely (3.5), is defined on an infinite set. Con-
sequently, one of the Lagrange multipliers is not a scalar, but a function.
T'hen, 1t is not evident that (a generalized version of) the Kuhn-Tucker the-
orem 18 applicable. The classical generalized Kuhn-Tucker theorem requires
the set P, in which the optimization is carried out (cf. (3.6)), to be a so-
called ‘positive cone’ (a semi-infinite set). Furthermore, for P the ‘regularity
condition’ should hold, which means that this cone must have a non-empty
interior. It 1s indeed possible to reformulate the optimization problem, such
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that P is a positive cone. However, the set of positive functions of H!/2(R),
the space in which (3.5) is defined, has no interior points.

To overcome this difficulty, an other version of the Kuhn-Tucker theorem,
without regularity condition, would be useful. However, in the open liter-
ature some variants were found. However, in these theorems the regularity
condition was replaced by other, complicated conditions, of which the va-
lidity could not be proved in our situation. Therefore, a new Kuhn-Tucker
theorem was developed [3] with less complicated requirements, which ap-
peared to hold in our optimization problem.

Herewith, the optimization problem is solved. In other words, in our sim-
ple, two-dimensional model, a unique optimum motion ezxists of a sculling
wing (represented by a lifting line) with prescribed mean thrust and bounded
side force. Moreover, we are able to construct this optimum motion.
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