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Infinite-Dimensional Linear Systems Theory

R.F. Curtain

1. INTRODUCTION

Systems theory is the study of mathematical properties of dynamical sys-
tems under the mfluence of external inputs of two distinct types: one which
cannot be influenced (the disturbance input) and one which is to be chosen
so as to influence the system in some desired manner (the control input).
Usually, the performance objective is expressed in terms of the property of
an output (the to-be-controlled output) and additional information is avail-
able 1 terms of another output (the ohservation). In figure 1, we illustrate
schematically the general situation of a dynamical system ¥ which we aim
to influence by another dynamical system X, called the controller. The dy-
namical system > denotes the physical system we wish to influence and the
dynamical system 2. denotes the controller we seek to design to achieve
our objectives. Notice that considered as a dynamical system, >, has as its
imput the observation, and, as its output, the input to 2. A typical control
problem 1is to assume that one has a mathematical description of the system
2., together with how the inputs and outputs interact with i1t, and to ask
how to design a controller ¥, (in terms of a mathematical description) so
as to achieve certain desired performance objectives under the influence of
the inputs. It 1s important to note that everything depends on time, and
in mathematical systems theory, both the system ¥ and the controller ¥..
are described in terms of time-dependent equations. In most applications,
the system is modelled either by a system of coupled ordinary differential
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Figure 1. System and controller in closed-loop.

equations (or difference equations) whose solutions depend on the inputs.
The outputs are modelled as combinations of the solutions of the ordinary
differential equations (or difference equations). Typical problems posed are
to design a controller X as in figure 1, so that the resulting closed-loop sys-
tem has some desired behaviour; for example, so that the to-be-controlled
output z tracks a given trajectory in the presence of unknown disturbances
d. The controller produces the input u to the system on the basis of the
observation y. An application of such a result would be to devise a strat-
egy to keep a satellite in a prescribed orbit in the presence of atmospheric
disturbances.

There are many other problems which have been posed and solved and
re-solved in the literature. Moreover, one can pose the same problem for
a different class of mathematical descriptions of the system. Not all sys-
tems can be adequately described by linear differential or difference equa-
tions; many exhibit nonlinear, hysteresis or distributed properties. Below
we discuss two particular types of control problems for a particular class of
systems, mfinite-dimensional linear systems.
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2. INFINITE-DIMENSIONAL LINEAR SYSTEMS

Concrete examples are systems described by linear partial differential equa-
tions (PDE’s) or by delay equations, the solutions of which depend linearly
on the inputs. These arise, for example, in modelling the feedback control
of large flexible space structures, chemical processes with delayed control
action and noise suppression of engines in modern aircraft. The outputs
will be linear functionals of the solutious to the partial differential or delay
equation. This explains the modifier ‘linear’ and the ‘infinite-dimensional’
arises from the fact that the mathematical description is with respect to
a Hilbert space, an infinite-dimensional vector space in which the vector
represents the state of the system. Often, the term distributed parame-
ter systems 1s used instead, especially in the engineering literature. In the
early sixties there appeared several papers on system theoretic properties,
such as controllability and observability, and on some time-optimal control
problems. However, two seminal books which had a special impact on the
field are |1] by A.G. Butkovskiy and [2] by J.L. Lions. Both considered
versions of the classic optimal control problems for systems described by
linear partial differential equations, and obtained nice generalizations of the
known solutions for ordinary differential equations. In fact, this linear opti-
mal control problem dominated the literature for two decades. One reason
for this is that introducing control on the boundary or delayed control ac-
tion results i a complicated mathematical description that presented an
interesting challenge to PDE experts. The motivation ot the two research
projects described below was to get away from this overstudied problem
and to mvestigate different system theoretic problems which had already
had considerable success in the finite-dimensional literature, that is, for
systems described by ordinary differential equations. The first project was
on Geometric theory and resulted in the publication [3|; the second was
on H -Optimal control theory and resulted in the publication [4]. It is
imteresting to compare these topics in one article, because, while both ex-
ist as elegant, complete mathematical theories for finite-dimensional linear
systems, only one generalizes to a useful theory for infinite-dimensional sys-
tems. Fortunately, both are interesting mathematical structures and both
have increased our understanding of the now established field of Infinite-
dimensional linear systems theory.

3. GEOMETRIC THEORY
A classic problem 1n this area is the following disturbance decoupling prob-
lem: for the system 2 in figure 1 construct a controller >. such that the
imput u (depending on the observation y) produces an output z which is
independent of the disturbance input d.

It we can achieve such a disturbance decoupling, it clearly has usetul ap-
plications, for example, in the process industry. Think of > as a model of
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a distillation column, u as the flow-rate of the liquid stream input, d as
the fluctuations in the composition of the feedstream. y as the observed
difference in the composition of the products and z as the difference in the
composition of the main product. If we could construct a controller X,. to
produce a time-dependent input « so that z becomes independent of the fluc-
tuations in the composition of the feedstream, this would be an extremely
useful device. Clearly, it is too much to expect that one can always achieve
disturbance decoupling. So the mathematical problem is to investigate un-
der which conditions this is achievable. For linear finite-dimensional systems
there is a very elegant necessary and sufficient algebraic-geometric condition
for disturbance decoupling in terms of the system operators (A, B, E, (', D)
and a certain (A, B)-invariant subspace, V( A, B).

(Giiven n X n and n X m matrices A and B, we say that a subspace V of R"
is (A, B) wnvariant if AV(A, B) CV(A,B) + ImB, where ImB = {x € R" :
r = Bu,u € R"}.

Moreover, (A, B)-invariance can be readily tested and a controller achiev-
mg the decoupling can be constructed. It is also possible to design con-
trollers with additional properties, such as the stability of the closed-loop
system. An additional pleasing aspect of this geometric theory for finite-
dimensional systems is that the mathematical and system theoretic concepts
also turn up m completely different control problems, i.e., they have an in-
trinsic system theoretic significance. While the early work on geometric
theory was done in Canada and Italy, some interesting later developments
had taken place in The Netherlands, and so it was natural to ask whether
any of these problems also have solutions for infinite-dimensional systems.
At the time, there was little on this in the literature, but it was clear that
all the algebraic properties would carry over. However, there had been
sonle counter-examples in the literature which indicated that there would
be problems with the topological aspects. This proved indeed to be the case:
the basic catch was that while the (A, B)-invariant subspace V always ex-
1sts, 1t 18 not always closed, and the disturbance decoupling problem is only
solvable if V' 1s closed (in that case the whole finite-dimensional theory can
be generalized). In spite of the lack of a nice generalization, [3] comprises a
detalled analysis of the probleni, an explanation of the lack of a solution and
several examples which give insight into the complex situation for some typ-
1cal PDE and delay equations. To this day this is the most complete account
of geometric control in infinite dimmensions. It seems likely that one could
obtain a more elegant theory by relaxing the requirement that the output
z 1s completely decoupled trom the disturbance to the requirement that it
be almost decoupled. This, however, remains an interesting conjecture, and
a topic for future research.
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Figure 3. Weighted-mixed-sensitivity design.

Using clever algebraic manipulations, other problems can be formulated
Just as in figure 1, except that the system ¥ is now an abstract system
containing the physical system and various weighting transfer matrices, de-
pending on the particular control problem considered. Examples of prob-
lems which can be formulated in this abstract way include designing robust
controllers, (i.e., controllers which stabilize a whole family of systems) and
controllers which also allow for performance objectives such as reduced sen-
sitivity to disturbances in a given frequency band. One such popular con-
troller design is called the weighted-mized-sensitivity design (see [6]). The
alm 1s to design a controller such that in the configuration of fieure 3 influ-
ence of the disturbance signal w on the output

&

1

2

(2

1s minimized. The weighting transfer matrices W, W, and V are designed
to enhance the performance with respect to robustness and other charac-
teristics of the output. This can be reformulated as a standard problem as
in figure 1 with as new extended system ¥, with transfer matrix

WLV |W, G
_0 1 W
V| G

G 1s the transfer matrix of the original system ¥. This is the compelling
feature of the H -formulation; it covers many problems simultaneously.
After the publication of [4], or rather at the time of preprints of earlier re-
sults, the H,.-control problem attracted considerable interest in the United
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