
INFORMATION AND COMPUTATION 128, 1-25 (1996)
ARTICLE NO. 0060

Forward and Backward Simulations
II. Timing-Based Systems*

NANCY LYNCH

MIT, Laboratory for Computer Science, Cambridge, Massachusetts 02139
E-mail: lynch@theory.Jcs.mit.edu

AND

FRITS V AANDRAGER t

CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
E-mail: fritsv@cwi.nl

A general automaton model for timing-based systems is presented
and is used as the context for developing a variety of simulation proof
techniques for such systems. These techniques include (1) refine­

ments, (2) forward and backward simulations, (3) hybrid forward­
backward and backward-forward simulations, and (4) history and

prophecy relations. Relationships between the different types of
simulations, as well as soundness and completeness results, are stated
and proved. These results are (with one exception) analogous to the

results for untimed systems in Part I of this paper. In fact, many of
the results for the timed case are obtained as consequences of the
analogous results for the untimed case. lGJ 1996 Academic Press. Inc.

1. INTRODUCTION

Most of the existing semantic models, languages and
logics for describing and reasoning about timing-based
systems implicitly view an execution as an alternating
sequence of instantaneous "discrete" actions and "con­
tinuous" phases during which time advances [2, 5, 7-9, 11,
14, 17, 20, 25-27, 48, 50, 52, 54, 61, 62]. To each system
described in any of these formalisms one can associate a
transition system or automaton consisting of (1) a set of
states, (2) a set of initial states, (3) a set of discrete actions,
(4) a set of discrete s~eps s' ~ s asserting that "from states'
the system can ir . .;tantaneously move to state s via the
occurrence of the discrete action a," and, finally, (5) a set of

*This work was supported by ONR Contracts N00014-85-K-0168 and
NOOOl4-91-J-1988, by AFOSR-ONR contract F49620-94-l-0199, by NSF
Grants CCR-8915206 and 9225124-CCR, and by ARPA Contracts
N00014-89-J-1988 and N00014-92-J-4033. Part of this work took place
while the second author was employed by the Ecole des Mines, CMA,
Sophia Antipolis, France. The second author also received partial support
from ESPRIT Basic Research Action 7166, CONCUR2. Earlier versions of
this paper appeared as [42] (Part I+ II) and as [43].

t Current address: University ofNijmegen, Faculty of Mathematics and
Informatics, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands. E-mail:
Frits.Vaandrager@cs.kun.nl.

time-passage steps s' -5!..... s asserting that "from state s' the
system can move to states during a positive amount of time
din which no discrete action occurs."

These transition systems provide a very abstract view of
the behavior of the original system in which many aspects,
such as the number of parallel components, the communica­
tion between these components, and the way in which a
system evolves during the continuous phases, are no longer
represented. Also, they are in general highly infinite and
may even have uncountable state spaces. Nevertheless, it is
clear that these transition systems play a central role in the
theory of timing-based systems:

• Many important behavioral preorders and equivalen­
ces, for instance those based on traces, failure pairs and
bisimulations, can be defined in terms of states and transi­
tions. Thus transition systems contain enough information
to define what it means that one system implements or is
equivalent to another system. Also, the transition systems
still contain enough information to serve as models for
many temporal and modal logics, i.e., they can be used to
define what it means that a system satisfies a formula.

• Many simulation proof techniques for verification of
implementation and equivalence relations between timing­
based systems can be defined and studied at the level of
transition systems.

• Transition systems provide an excellent framework for
comparing and interrelating a wide variety of different for­
malisms for timing-based systems. Moreover, since they
also play a central role in the "comparative semantics" of
untimed discrete event systems [18], they provide a basis
for comparing timed and untimed formalisms.

In this paper, we define a formal transition system model
for timing-based systems and use it to develop a variety of
simulation proof techniques. The key characteristic of the
transition systems discussed above is the presence of time-

0890-5401/96 $18.00

Copyright © 1996 by Academic Press, Inc.
All rights of reproduction in any form res"_r~d.

2 LYNCH AND VAANDRAGER

passage steps and the specific interpretation of these steps.
The transition systems always satisfy the following two
properties. First, if time can advance by a particular amount
din two steps (with no intervening discrete steps), then it
can also advance by d in a single step. And second, if time
can advance by d in one step from state s' to state s, then
there exists an assignment (a trajectory) that maps all times
in the interval [0, d] to automaton states in a "consistent"
way to explain how the system evolves from s' to s. This
motivates our formal definition of a timed automaton as an
automaton (in the sense of Part I) whose set of actions
includes the set R + of positive reals, and which satisfies the
above two properties for time-passage. We believe that
timed automata, defined in this way, provide an excellent
basis for defining and studying behavioral preorders and
simulation proof techniques for timing based systems. Since
timed automata can be viewed as an underlying semantic
domain for any of the models, languages and logics of[2, 5,
7-9, 11, 14, 17, 20, 25-27, 48, 50, 52, 54, 61, 62], all the
results that we obtain for timed automata carry over
directly to those settings.

For convenience, we use R + as our domain of times in
this paper. The need for dense-time models has been well
discussed in [4]. However, for the purpose of generality we
could have parameterized our timed automata by an
arbitrary (possibly discrete) time domain in the sense of [27,
53, 28]. We do not assume a general lower bound on the
time between events, or an upper bound on the number of
instantaneous actions; this choice is also made in, e.g., [7, 2,
9, 25, 48, 53, 61], but still distinguishes our model from
many others, e.g., [11, 17, 20, 50, 52, 55, 62]. The cost of
this generality is that our timed automata may produce
some annoying "Zeno executions," i.e., infinite executions in
which the sum of the time-passage actions is bounded.

In order to define correctness for timed automata, we
define two notions of external behavior. First, as the finite
behaviors of a timed automaton, we take the finite timed
traces, each of which consists of a finite sequence of timed
visible actions together with a final time of observation.
Second, as the infinite behaviors, we take the admissible
timed traces, each of which consists of a sequence of timed
visible actions that occurs in some execution in which the
time grows unboundedly (i.e., a "non-Zeno" infinite execu­
tion). In [16] it is argued that inclusion of finite and
admissible timed traces is a good notion of implementation,
provided that the implementation automaton has a suf­
ficiently rich collection of admissible executions.

Inclusion of finite and admissible timed traces is implied
by inclusion of finite and infinite traces (if we consider the
R + actions as external/visible). Consequently all the
simulation proof techniques that we developed in Part I are
still "sound" for proving inclusion of timed traces, in the
sense that if one has established a simulation between timed
automata A and B it follows that the timed traces of A are

included in those of B. However, "completeness" is lost in
the sense that it may occur that the timed traces of a timed
automaton A are included in those of a timed automaton B,
but that there exists no simulation from A to B, not even if
it is allowed to use auxiliary intermediate timed automata.
One reason for this is that several of the constructions that
were used in the proofs of completeness results in Part I,
such as the canonical automaton and the unfolding, do not
yield timed automata in general. Also-and this is much
more serious-inclusion of timed traces differs from inclu­
sion of traces in the case of systems with internal actions.

EXAMPLE 1.1. Let A be the timed automaton that per­
forms no discrete actions but just lets time advance: the set
of states of A is R "' 0, with 0 the initial state, and there is a
step t --£4 t + d, for each t E R "' 0 and d E R +. Let B be the
timed automaton that behaves exactly as A, except that it
performs an internal r-step at time 1: the set of states of B
is R ;;,,ox {T, F}, with (0, T) the initial state, and there are
steps

• (t,T)~(t+d,T), for each teR"' 0 and deR+ with
t+d::;;; l;

• (1, T)-4(1, F);

• (t, F) ~ (t + d, F), for each t E R "' 0 and d E R +.

Then A and B have different sets of traces since A has a trace
consisting of the single (time-passage) action 2, which B
does not have.

In our opinion, this example shows that traces are not
the right notion ofbehavior for timed automata: through the
absence of certain traces with large time-passage steps the
presence of certain internal actions in the system is revealed,
and thus internal actions are not truly invisible. Internal
actions have received proper attention in the context of
process algebras based on bisimulation or failures, and
thus the two systems of Example 1.1 are identified in the
approaches of (for instance) [30, 55, 14]. In models based
on linear time semantics, however, internal (or stuttering)
actions have largely been ignored. Abadi and Lamport [2]
advocate the use of untimed trace inclusion (logical impli­
cation in TLA) as an implementation relation for timed
systems. Although this "old-fashioned recipe" works in
many practical cases, the two systems of Example 1.1, which
can easily be translated to the state-based setting of [2],
indicate that it cannot be used in general, and that a serious
effort is required to fully adapt existing formalisms for
untimed systems to the timed setting.

Simulation methods have long been used successfully for
the verification of untimed concurrent systems. In Part I of
this paper [44], we gave a unified, comprehensive presen­
tation of simulation techniques for untimed systems,
including refinements, forward simulations, backward
simulations, forward-backward and backward-forward

FORWARD AND BACKWARD SIMULATIONS, II 3

simulations, history and prophecy relations. We showed
relationships among the different types of simulations and
soundness and completeness theorems. Part I also contains
pointers to examples of uses of simulation methods for
verification.

Because simulations have been so successful for untimed
systems, we believe that they will also prove to be success­
ful for timed systems. (Considerable evidence for this is
described below.) Thus, in writing Part II of this paper, our
goal has been to define timed versions of all the simulations
in Part I (timed refinements, timed forward simulations,
etc.) in terms of timed automata, and to establish the timed
versions of all the soundness, completeness and other results
of Part I.

The definitions of all of our timed simulations are
analogous to the definitions of the corresponding untimed
simulations in Part I, but are based on our new notions of
external behavior. It turns out that the results for timed
simulations are almost entirely analogous to those for the
untimed simulations (even though it requires considerable
effort to prove this). In fact, in many cases, we are able to
derive the results for timed simulations as consequences of
the results for untimed simulations. In the remaining cases,
new proofs analogous to those in Part I are presented. Our
presentation highlights the adaptability of the various
simulation techniques from the untimed to the timed set­
ting. There is just one minor result from Part I, Proposi­
tion 3.12, that does not carry over to the timed setting. We
remark that we found the definitions involving timed
automata and their simulations quite difficult to get "right."
These definitions involve many choices, most of which
either lead to longer proofs or do not yield all the properties
in this paper. The problem to develop a theory of timed
transition systems and timed simulations with analogues of
all results of Part I is still open.

This paper does not contain examples of verifications
carried out using timed simulations. However, our timed
simulations have already been used extensively elsewhere
[12, 23, 32, 34-38, 45, 58, 60]. The algorithms and systems
verified in these papers include toy examples such as coun­
ters and process races, as well as substantial real examples
such as a clock-based at-most-once message delivery
protocol, a clock synchronization algorithm, two mutual
exclusion algorithms, a leader election algorithm, and a
communication protocol used in a consumer electronics
system. They also include a toy process control example
involving control of a railroad crossing gate. An interesting
feature of these proofs is that the simulations have been used
not only to prove "ordinary" safety properties, as in the
untimed setting, but also to prove timing properties, e.g.,
upper and lower bounds on time. In this way, the power of
simulation techniques seems to be much greater in the timed
setting than in the untimed setting. Also, the systems
verified are typically parameterized by arbitrary parameters

representing process speeds, message delivery times, clock
rates, etc., so that the results are very general. In [35, 19],
three of the proofs are automated using the Larch Prover
[22].

We consider the main contributions of this paper to be
the following: (a) The definition of a timed automaton and
of its external behavior. (b) The extension of simulation
notions for untimed systems to the timed setting. (c) The
unified presentation of all the simulation techniques
together with their basic soundness and completeness
properties. (d) The presentation of many auxiliary defini­
tions and results, for instance about sampling of computa­
tions, timed forests, timed unfolding, and a timed version of
the historization construction of [29]. (e) The fact that our
presentation parallels, and is closely based on, a similar
development for untimed systems.

The rest of the paper is organized as follows. Section 2
contains the definitions for timed automata and their execu­
tions and traces. Section 3 contains some definitions and
results for restricted types of timed automata. Section 4 dis­
cusses the structures that can be obtained as the behaviors
of timed automata. Section 5 contains the definitions of all
the timed simulations. Sections 6 and 7 contain the major
results of the paper-the relationships among the timed
simulations and the soundness and completeness results.
Section 6 contains those results that are derived from
corresponding results for the untimed case, while Section 7
contains those results that require new proofs, in parti­
cular, the construction of auxiliary (intermediate) timed
automata. Section 7 also contains the single example of a
result from Part I that does not carry over to the timed set­
ting. Section 8 describes how invariants can be included in
the simulations. Finally, Section 9 contains some conclu­
sions. Appendix A contains a discussion of some alternative
axioms for timed automata, and Appendix B gives a
glossary of notational conventions that we use. Because of
the strong dependence of this paper on Part I [44], we have
not tried to write this paper in a self-contained manner.
Thus, we employ freely the notation and definitions of
Part I, and refer in many places to the results from Part I.

2. TIMED AUTOMATA AND THEIR BEHAVIORS

In this section, we present the timed automaton model.
We define "timed executions," which describe how timed
automata operate, and "timed traces," which describe their
externally-visible behavior. A timed execution includes
information about discrete changes to the automaton's
state, plus information about the evolution of the state as
time passes continuously.

Since timed automata are a special case of the (untimed)
automata defined in Part I of this paper [44], the notions of
"execution" and "trace" for untimed automata also make
sense for timed automata. We relate the notions of execution

4 LYNCH AND VAANDRAGER

and timed execution for a timed automaton: an execution
can be regarded as "sampling" the state information of a
timed execution at a countable number of points in time.
Also, we relate the notion of trace and timed trace.

2.1. Timed Automata

A timed automaton (or timed transition system) A is an
automaton (as defined in Part I) whose set of actions
includes R +, the set of positive reals. 1 Actions from R + are
referred to as time-passage actions, while non-time-passage
actions are referred to as discrete actions. We let d, d', ...
range over R + and more generally, t, t', ... over the set
R "' 0 u { oo} of nonnegative real numbers plus infinity. The
set of visible actions is defined by vis(A) ~ ext(A) - R +. In
this part of the paper, A, B, ... will range over timed
automata. We assume that a timed automaton satisfies two
axioms.

S 1. Ifs' --1!.+ s" and s" ...!!:.. s, then s' d + d' s.

For the second axiom, we need an auxiliary definition of a
trajectory, which describes the state changes that can occur
during time-passage. Namely, if I is any left-closed interval
of R "' 0 beginning with 0, then an I-trajectory is a function
w: I-+ states(A) such that

w(t)~w(t') for all t, t' EI with t < t'.

Thus, a trajectory assigns a state to each time in the interval
I, in a "consistent" manner. We define w. !time, the "last
time" of w, to be the supremum of I. In particular, if I is an
infinite interval then w. !time is oo. We define w ./state to be
w(0), and if I is right-closed, we also define w. !state to be

'.w.ltime). A trajectory with a domain that is the single­
>int interval [O, O] is also called a trivial trajectory. A tra­

.:ctory for a step s' --1!.+ s is a [0, d]-trajectory such that
w ./state= s' and w. !state= s. Now we can state the second
axiom.

S2. Each time-passage step s' --1!.+ s has a trajectory.

Axiom SI allows repeated time-passage steps to be com­
bined into one step. Axiom S2 is a kind of converse to SI;
it says that any time-passage step can be "filled in" with
states for each intervening time, in a consistent way.

1 The decision to use only positive reals as time-passage actions is a
matter of taste. We could have allowed for a 0-action with an additional
axiom

SO. s' -2.. s if and only ifs' = s.
However, we would like to distinguish the discrete action r from the time­
passage action 0, for both conceptual and technical reasons: the definitions
of several process algebraic operations on timed automata, as discussed in
[42], become much more involved if r's are treated as time-passage
actions.

In the modelling of hybrid systems, trajectories are often
used to describe the evolution of physical parameters
such as position, velocity, acceleration, temperature, and
pressure. In such cases, each trajectory w is describable as a
continuous function of time. Several models for hybrid
systems [47, 6] include the assumption that trajectories are
continuous. However, besides the model of this paper there
are also models that do not include such an assumption
[51] , and in fact we do not need continuity of trajectories
for our results.

Axiom S2 is a strengthening of a similar axiom proposed
by Wang [61] and used in [42, 53], which, rephrased in
our terminology, reads:

S2'. Ifs' --1!.+ sand 0 < d' < d, then there is an s" such that
s' -1!:..+s" and s" d-d' s.

The stronger condition seems natural to us-for example, it
provides a direct way of modelling changes in physical
parameters in a hybrid system. Besides, we need it for some
of our results, for instance, Lemma 3.4. In Appendix A, we
discuss the relationship between axioms S2 and S2' in more
detail and show that S2' does not in general imply S2.

It is possible to combine two "compatible" trajectories of
a timed automaton A into one: if w1 is an 11-trajectory,
where 11 is right-closed, if w2 is an / 2-trajectory, if
w1.lstate=w2 .fstate, and if we let l1 =w 1.ltime, then we
can define w1 • w2 to be the least function w such that
w(t) = w1(t) fort E / 1, and w(t + 11) = w 2 (t) fort E / 2 •

LEMMA 2.1. If w = w1 • w2 then w is an I-trajectory,
whereI=I1 u{t+l1 I tE/2}.

Proof Choose t, t' EI with t < t'. We show that
w(t) ~ w(t'). If t' ~ 11, this follows from the fact that w1

is an 11-trajectory, while if t ~ / 1, this follows from the fact
that w2 is an / 2-trajectory.

The remaining case is where t < 11 < t'. In this case, the
fact that w1 is an I 1-trajectory implies that w1(t) ~ w 1 •

!state, which implies that w(t) ~ w 1 .!state. Also, the fact
that w2 is an / 2-trajectory implies that w2.fstate ~
w2(t' - Ii), which implies that w2 ./state~ w(t'). Since
w1 .!state= w2 fstate, axiom SI implies that w(t) ~ w(t'),
as needed. I

Likewise, we may combine a countable sequence of
"compatible" trajectories into one: if w; is an !,trajectory,
for each positive integer i, where all I; are right-closed, if
W;.lstate=w;+ 1-fstate and if we let l;=W;.ltime, for all i,
then the infinite concatenation w 1 • w2 • w 3 ••• is defined to
be the least function w such that w(t + Lj<i lj) = w;(t) for all
tel;.

LEMMA 2.2. If w = w1 • w2 · w3 ••• then w is an I-trajec­
tory, wherel=U;{t+L,j<iljl tel;}·

FORWARD AND BACKWARD SIMULATIONS, II 5

2.2. Timed Executions

Since a timed automaton is a special case of an
automaton (as defined in Part I), we already have a notion
of execution for timed automata; an execution is an alternat­
ing sequence of states and actions (including time-passage
actions as a special case), subject to the natural consistency
constraints. However, this type of execution only describes
the system state at a countable number of points in time.
Since our trajectory axiom gives us the ability to associate
states with all the real times occurring during a time-passage
step, we define a notion of timed execution, which includes
such information. The usual kind of execution can be
regarded as "sampling" a timed execution at countably
many points in time, as we show in Section 2.4.2 below.

2.2.1. Basic Definitions

A timed execution fragment of a timed automaton A is a
finite or infinite alternating sequence W=w 0 a 1 w 1a 2 w2 • ··,

where:

1. Each w; is a trajectory and each a; is a discrete action.

2. If W is a finite sequence then it ends with a trajectory.

3. If w; is not the last trajectory in W then its domain is
a right-closed interval and w;.lstate ~ W;+ 1.fstate.

An execution fragment describes all the discrete changes
that occur, plus the evolution of the state during time­
passage steps. The last property says that each pair
(w;, W;+ 1) of successive trajectories in the fragment
"matches up" properly, in that the intervening discrete
action a;+ 1 spans properly between the last state of w; and
the first state of w; + 1 •

Note that the definition of a timed execution fragment
allows the modelling of consecutive discrete actions,
without intervening time-passage. In this case, the trajectory
between the two discrete actions is trivial.

If W is a timed execution fragment then we let W. ltime
denote L; W;.ltime. Note that we allow the case where the
domain of the final trajectory is of the form [0, oo); in this
case, W. ltime = co. We define the first state of W, W.fstate,
to be w0 ./state. A timed execution is a timed execution
fragment W for which W.fstate is a start state.

Note that the super-dense computations of [47]
correspond closely to our timed executions.

2.2.2. Finite, Admissible, and Zeno Timed Executions

In this paper, we will be interested in certain subclasses of
the set of timed executions: the finite, admissible, and Zeno
timed executions. The distinctions involve whether or not
time passes to infinity, and whether an infinite or finite
amount of activity occurs. Thus, we define a timed execu­
tion fragment W to be

I. finite if W is a finite sequence and the domain of its
final trajectory is a right-closed interval,

2. admissible if W. ltime = oo, and

3. Zeno if W is neither finite nor admissible.

If W is a finite timed execution fragment with final trajec­
tory w;, then W. ltime is finite. In this case, we define
W. lstate, the last state ofo, to be w;. lstate. We define a state
s to be t-reachable in timed automaton A provided that
there is a finite timed execution W such that W. lstate = s.
The following fact follows directly by axiom S2.

LEMMA 2.3. A state s of a timed automaton A is t-reach­
able if and only if it is reachable, i.e., there is an ordinary
finite execution of A that ends in s.

An important implication of Lemma 2.3 is that any
technique that can prove that a property holds for all final
states of (ordinary) finite executions is a sound technique
for proving that a property holds in all t-reachable states of
a timed automaton. In particular, induction on the steps of
ordinary executions is sound in this sense.

If W is a finite timed execution fragment with final trajec­
tory w;, W' is a timed execution fragment with initial trajec­
tory w0, and w;. lstate = w0.fstate, then we define W. W' to
be the timed execution fragment obtained by concatenating
the sequences Wand W', except that the consecutive pair of
trajectories w; and w0 is replaced by w; · w0. Lemma 2.1
implies that W· W' is in fact a timed execution fragment. If
Wand W' are timed execution fragments, then define W' to
be a t-prefix of W, denoted by W' ~ W, if either W' = W, or
else W' is finite and there exists a timed execution fragment
W" such that W' · W" = W. Relation~ is a partial ordering
on timed execution fragments.

The admissible timed execution fragments are those in
which time passes without bound. Since (we believe) time
does pass without bound in the real world, it is reasonable
to restrict attention to the admissible timed executions when
arguing the correctness of a system represented as a timed
automaton. In this paper, we focus on the admissible and
finite timed executions, and mostly ignore Zeno timed
executions. We denote by t-frag*(A), t-frag 00 (A), and
t-frag(A) the sets of finite, admissible, and all timed execu­
tion fragments of A. Similarly, we denote by t-execs*(A),
t-execs 00 (A), and t-execs(A) the sets of finite, admissible,
and all timed executions of A.

The notion of admissibility is the only notion of liveness
that we include in our model. Many untimed automaton
models (e.g., [40, 46, 31]) include facilities for describing
rich classes of liveness properties, for example, various
notions of fairness. In the timed setting, it is often possible
to replace liveness notions with corresponding timing
restrictions. These can be expressed by restrictions on time­
passage steps, so they do not require any special machinery.

6 LYNCH AND VAANDRAGER

The notion of admissibility is in some sense more tractable
mathematically than some other liveness notions, e.g., the
notion of a "fair execution" in the I/O automaton model
[40]. This is because the admissible timed executions of a
timed automaton can be expressed as the limits of infinite
sequences of finite timed executions.

PROPOSITION 2.4. The admissible timed executions are
exactly the limits of the infinite sequences of finite timed
executions, where each timed execution in the sequence of a
t-prefix of the next and the .!time values approach oo.

The characterization in Proposition 2.4 permits the
reduction of questions about infinite behaviors to questions
about their finite prefixes. A similar reduction is not possible
in untimed models that incorporate fairness.

One could extend the timed automaton model presented
here by adding other liveness properties. Such an extended
model is defined, and its properties explored, in [32, 58,
16]. In [32, 58], the extended model is also applied to sub­
stantial communication examples.

Zeno timed executions are a technical anomaly; they
represent an infinite amount of activity occurring in a finite
amount of time, which is (we believe) impossible in reality.
Nevertheless, our definition of timed automata does admit
Zeno executions. There are two types of Zeno timed execu­
tions in our model:

1. those containing infinitely many discrete actions, but
for which . !time is finite, and

2. those containing finitely many discrete actions, but
for which the domain of the final trajectory is a right-open
interval with a finite supremum.

For this second type of Zeno timed execution, the "infinite
amount of activity occurring in a finite amount of time"
corresponds to an infinite number of time-passage steps
needed to span the final interval.

According to our definitions, there are timed automata in
which from some (or even all) states no admissible timed
execution fragment is possible. This can be, for instance,
because from these states time can continue advancing, but
not beyond a certain point (that is, all timed execution
fragments starting from these states are Zeno), or because
time cannot advance at all (that is, a time deadlock occurs).
Our model does allow time deadlocks. However, in several
of our theorems we will require that the timed automata be
"feasible": a timed automaton is feasible provided that each
finite timed execution is a t-prefix of some admissible timed
execution. 2 A feasible timed automaton does not have time
deadlocks, but it will have Zeno timed executions, simply
because each feasible timed execution hast-prefixes that are
Zeno timed excutions.

2 This property is called nonZenoness in [2].

2.3. Timed Traces

Since a timed automaton is an automaton (as defined in
Part I), we already have a notion of trace for timed
automata. However, the traces of timed automata do not
provide a sufficiently abstract notion of external behavior
for timed automata, because they do not reflect the invisible
nature of time-passage actions (see Example 1.1 in the intro­
duction). In this subsection, we define a new notion of exter­
nal behavior for timed automata, which we call timed traces.
These do not include explicit time-passage events, but do
include information about the real time of visible events, as
well as the final time up to which the observation is made.

We first define the auxiliary technical notion of a timed
sequence pair, a general data type that is used in the defini­
tion of a timed trace.

2.3.1. Timed Sequence Pairs

Let Kbe any set with Kn R + = 0. Then a timed sequence
over K is defined to be a (finite or infinite) sequence o over
Kx R "' 0 in which the time components are nondecreasing,
i.e., if (k, t) and (k', t') are consecutive elements in 6 then
t:::::;; t'. We say that o is Zeno if it is infinite and the limit of
the time components is finite.

A timed sequence pair over K is a pair p = (o, t), where o
is a timed sequence over Kand t E R "' 0 u { oo}, such that t
is greater than or equal to the limit of the time components
in 6, and equal to this limit if o is an infinite sequence. We
write p. seq and p. /time for the two respective components
of p, and denote by tsp(K) the set of timed sequence pairs
over K. We say that a timed sequence pair p is finite if both
p. seq and p. ltime are finite, and admissible if p. seq is not
Zeno and p. !time= oo.

Let p and p' be timed sequence pairs over K with p finite.
Then define p ·p' to be the timed sequence pair (p.seq 6,
p.ltime + p' .!time), where o is the modification of p' .seq
obtained by addingp.ltime to all the time components. Ifp
and q are timed sequence pairs over K, then p is a prefix of
q, denoted by p:::::;; q, if either p = q, or p is finite and there
exists a timed sequence pair p' such that p . p' = q. Relation

:::::;; is a partial ordering on the set of timed sequence pairs
over K.

We describe how to translate from a sequence over
Ku R + to a timed sequence pair over K and vice versa.
First, if fJ is any sequence over Ku R +, then we define the
time of occurrence of any K-element in p to be the sum of all
the reals that precede that element in /J. We also define
fJ. /time to be the sum of all the reals in /J. In case fJ is the
empty sequence, we define fJ. ltime = 0. Finally, we define
t-trace((J) to be the timed sequence pair (o, fJ.ltime), where
o is the subsequence of fJ consisting of all the elements of K,
each paired with its time of occurrence.

Conversely, if p is a timed sequence pair over K, then we
define trace(p), a corresponding sequence over Ku R +.

FORWARD AND BACKWARD SIMULATIONS. I! 7

Namely, if p. !time is finite or p. seq is infinite, then let
trace(p) be the unique sequence fJ over Ku R + such that
p = t-trace(/3) and such that f3 does not contain two con­
secutive elements of R +. On the other hand, if p. /time is
infinite and p. seq finite, then let trace(p) be the unique
sequence /3 over Ku R + such that p = t-trace(/J), such that
/3 does not contain two consecutive elements of R + prior to
the last K element, and such that the portion of f3 after the
last K element is the default sequence 111 · . · .

Thus by construction:

LEMMA 2.5. For any timed sequence pair p over K,
t-trace(trace(p)) = p.

Let f3 be a sequence over Ku R +. Then we say that f3 is
admissible if the sum of the positive reals in f3 is infinite.

LEMMA 2.6. /3 is admissible if and only if t-trace(/3) is
admissible.

It is not the case that fJ is finite if and only if t-trace(/J) is
finite. A counterexample is provided by the infinite sequence
1 ~ ~ · · · , of which the associated timed sequence pair (A, 1) is
finite. (Recall that A is the empty sequence.)

2.3.2. Timed Traces of Timed Automata

Suppose that W= w0 a 1 w 1a 2 w2 ·• · is a timed execution
fragment of a timed automaton A. For each a;, define the
time of occurrence t; to be LJ<i w1.ltime, i.e., the sum of the
lengths of all the trajectory intervals preceding a; in W. Let
o = (a 1, t 1)(a2 , t 2) · · · be the sequence consisting of the
actions in W paired with their times of occurrence. Then
t-trace(W), the timed trace of W, is defined to be the pair3

t-trace(W) ~ (o I (vis(A) x R ;;.o), W.ltime).

Thus, t-trace(W) records the occurrences of visible actions
together with their times of occurrence, as well as the last
time. Note that neither internal actions nor time-passage
actions appear explicitly in the timed trace of W.

LEMMA 2.7. If W is a timed execution fragment of A then

t-trace(W) is a timed sequence pair over vis(A).

LEMMA 2.8. If W = W1 • W 2 is a timed execution frag­

ment of A then t-trace(W) = t-trace(W1) · t-trace(W2).

A timed trace of A is the timed trace of any finite or
admissible timed execution of A. Thus, we explicitly exclude
the traces of Zeno executions. We write t-traces(A) for the
set of all timed traces of A, t-traces*(A) for the set of.finite
timed traces, i.e., those that are derived from finite timed
executions of A, and t-tracesco(A) for the admissible timed

3 Recall from Part I that the symbol r denotes the projection of a
sequence on a subset of the domain of its elements.

traces, i.e., those that are derived from admissible timed
executions of A. The following lemma is a direct conse­
quence of the definitions.

LEMMA 2.9. The sets t-traces*(A) and !-traces" (A) con­
sist of finite timed sequence pairs and admissible timed
sequence pairs over vis(A), respectively.

These notions induce three natural preorders on timed
automata. Namely, we define A~~ B to mean that t-traces(A)
£ t-traces(B), A ~~TB to mean that t-traces*(A) £

t-traces*(B), and A ~~TB to mean that t-tracesx:(A) <;;

t-traces~(B). The kernels of these preorders are denoted by

=~, =:T and =~T' respectively.

2.3.3. Moves

We include in this section one last definition, which is
used in all the simulation definitions in Section 5.

Suppose A is a timed automaton, s' and s are states of A,
and p is a timed sequence pair over vis(A). Then we say that

• f d , I p • I p (s', p, s) is at-move o A, an wnte s ··"'As, or JUst s ~·+s
when A is clear, if A has a finite timed execution fragment
W with W.fstate = s', t-trace(W) = p, and W. lstate = s.

LEMMA 2.10. Suppose p, p 1 and p2 are timed sequence

pairs over vis(A) and p = P1 ·P2·

1. {ls'~ As" and s" !3,. As then s' .f~ As.

2. Ifs' .J',, A s then there exists s" such that s' !.;. A s" and

S 11 f.."+ AS.

2A. Relating Timed and Untimed Execution Fragments

In this subsection, we present some close connections
between the timed execution fragments and the (ordinary)
execution fragments of a timed automaton. Roughly speak­
ing, an execution fragment can be regarded as "sampling"
the state information in a timed execution fragment at
a countable number of points in time. This close corre­
spondence allows techniques for reasoning about ordinary
execution fragments to be used for timed execution
fragments (and vice versa).

2.4.1. Execution Fragments of Timed Automata

Suppose that rx is an (ordinary) execution fragment of
timed automaton A. We may define various timing notions
for rx. simply, as follows.

t-trace(rx.) &. t-trace(trace(rx))

rx.. ltime &. trace(rx). /time

As in Part I, rx is defined to be finite if it is a finite sequence.
We define rx to be admissible ifrx. !time= oo, and Zeno if it is
neither finite nor admissible.

8 LYNCH AND VAANDRAGER

2.4.2. Sampling

To see the connections between the timing notions
defined for I ordinary) executions and the corresponding
ones for timed executions, we define a notion of"sampling."

Let cx. = ~"c1 u 1 s1 ••• be an execution fragment of A and let
H'= w11 h 1 11· 1 ... be a timed execution fragment of A. We
define two auxiliary functions: f gives for each index i of ex.
the number of discrete actions that precedes;, and g gives
for each index i of x the amount of time betweens; and the
last discrete action preceding s;. Formally, for all i,

((0)=0.

. . '((i)+l
j(I + 1) = Lv)

g(O) = 0,

f O
g(i +I)=) . .

,g(1) +a;+ i

if a;+ i discrete,
otherwise.

if a;_,. i discrete,
otherwise.

We say that x samples W provided that the following condi­
tions are satisfied.

1. f is a surjective mapping from indices of cx. to indices
of W.

2. For all i, s; = w11 ; 1(g(i)).

3. For all i > 0 with a; discrete, a,= bfli, and g(i - 1) =

W.ru .. ii. /time.

4. cx..ltime= W.ltime.

5. cx. is finite if and only if W is finite.

The function/ maps each states; in cx. to the trajectory of W
to which it belongs. The first condition states that for each
trajectory of W there should be at least one state of ex. that
belongs to it. The second condition specifies how function g
determines the position of s; within the associated trajec­
tory. The third condition guarantees that the discrete
actions match up, and that the amount of idling in between
discrete actions is the same for rx and W. The last two condi­
tions ensure that things match up properly at the end of the
executions. The definition immediately implies that if cx.
samples W then a. is admissible if and only if W is
admissible, and x is Zeno if and only if W is Zeno.

The following two lemmas show the close relationship
between timed execution fragments and ordinary execution
fragments. Note that these connections hold for finite,
admissible and Zeno (timed) executions. The proofs are
routine; the proof of Lemma 2.11 uses Lemmas 2.1 and 2.2.

LEMMA 2.11. If cx. is an execution of A then there is a
timed execution fragment W of A such that cx. samples W.

LEMMA 2.12. If W is a timed execution fragment of A
then there is an execution fragment cx. of A such that ex.
samples W.

Finally, we relate the definition of timed traces for execu­
tion fragments to the corresponding definition for timed
execution fragments.

LEMMA 2.13. If rx samples W then t-trace(rx) = t-trace(W).

3. RESTRICTED KINDS OF TIMED AUTOMATA

In this section, paralleling our development in Part I, we
define certain restricted kinds of timed automata that are
useful in our proofs. Recall that in Part I, we defined what
it meant for an untimed automaton to be deterministic, to
havefinite invisible nondeterminism (fin), and to be aforest.
Now we define analogous notions of !-deterministic, t-fin,
and t-forest.

First, we say that timed automaton A is t-deterministic if
lstart(A)I = l and for any state s' and any finite timed
sequence pair p over vis(A), there is at most one states such
that s' .!.,, A s. It turns out that this notion is equivalent to the
original notion of determinism:

LEMMA 3.1. Timed automaton A is !-deterministic if and
only if it is deterministic.

Proof Recall that the definition of determinism says
that !start(All= 1 and that for any state s' and finite
sequence f3 of actions in ext(A), there is at most one states
such that s' bs.

=: We suppose that A is !-deterministic and show that it
is deterministic. The start condition is immediate. Suppose
for the sake of contradiction that A is not deterministic;
then there exist s', fJ, s1 , and s 2 such that s' bsi, s' bs2
and si #s2 . This means that there are two execution
fragments, CX.i and cx. 2 , each starting with s' and having trace
fJ, one of which ends in s1 and the other in s2 . Then
Lemma 2.11 implies that there are two timed execution
fragments, W 1 and W 2 , that are sampled by cxi and rx2
respectively. By Lemma 2.13, Wi and W2 have the same
timed trace, say p. It follows that s' ~ s 1 and s' -£. s2 , which
violates t-determinism, yielding the needed contradiction.

=: We suppose that A is deterministic and show that it
is !-deterministic. The start condition is immediate. Suppose
for the sake of contradiction that A is not t-deterministic;
then there exists', p, s1 , and s2 such that s' -4 s 1 , s' -4 S2,

and Si #s". This means that there are two timed execution
fragments, W 1 and W2 , each starting with s' and having
timed trace p, one of which ends in s 1 and the other in s 2 .

Then Lemma 2.12 implies that there are two execution
fragments, cx. 1 and cx. 2 , that sample Wi and W 2 respectively.
By Lemma 2.13, cx. 1 and rx 2 have the same timed trace, say p.
By applying axiom S2 to split time-passage actions, we may
assume without loss of generality that cxi and cx., have the

fJ r same trace, say /J. It follows that s' =>si and s' ==>s2 , which
violates determinism, yielding the needed contradiction. I

FORWARD AND BACKWARD SIMULATIONS. 11 9

A simple characterization of t-determinism is then
obtained from Lemma 3.1 and a characterization of deter­
minism in Part I:

LEMMA. 3.2. A timed automaton A is t-deterministic if
and only if lstart(A)I = 1, every r transition is of the form

(s, r, s)for some s, andfor any states' and any action (either

visible, internal or time-passage) a there is at most one state
s such that s' -E.+ s.

Second, we say that A has t-finite invisible nondeterminism

(t-:fin) if start(A) is finite, and for any states' and any finite

timed sequence pair p over vis(A), there are only finitely
many states s such that s' J'.,,,. A s. It is not hard to see that the
analogous result to Lemma 3.1 fort-fin fails:

EXAMPLE 3.3. Let A be the timed automaton with no
visible actions that can do r actions at any time and remem­

bers the times at which it has done these internal actions.
The states of A consist of components now ER "' 0, initially O,
and tau-times s R "' 0, initially empty. The allowed steps are:

• s'--2.+s, where s.now=s'.now and s.tau-times =
s'. tau-times u { s' .now}, plus

• s' __:!_,.s, where s.now=s'.now+d and s.tau-times=
s'. tau-times.

Then A has fin but does not have t-fin.

Third and finally, we say that A is a t-forest if every state
s has a unique timed execution W that leads to it, i.e., such
that W. lstate = s. In the case of timed automata, the
original definition of a forest is trivial: no timed automaton
that contains a time-passage step can be a forest. This is
because if a states is reached by an execution that ends with
a time-passage step, then axiom S2 allows that time-passage
step to be split in two, yielding a different execution leading
to s. We can obtain a characterization of t-forests,
analogous to the characterization in Part I for forests:

LEMMA 3.4. A timed automaton A is a t:forest !land on(v

if all states of A are reachable, start states have no incoming

steps, andfor every states, ~f there are two distinct steps lead­

ing to s, r ~ s and r' -i:'... s, then a and a' are distinct time­

passage actions, and either r a-a' r' or r' ~ r (depending

on whether a> a' or a' >a).

Proof =: All states in a t-forest are reachable by
Lemma 2.3. It is also easy to see that start states have no
incoming steps. So suppose that r-!!..+ s and r' -i:'... s, with
(r, a) i= (r', a'). Let Wand W' be the unique timed execu­

tions leading to rand r', respectively.
We extend W to timed execution W1 by adding the infor­

mation contained in the step r-!!..+ s. Specifically, if a is a dis­
crete action, we append a and a trivial trajectory with the
single state s to W On the other hand, if a E R +, we use
axiom S2 to obtain a trajectory w for the step r-!!..+ s and

combine w with the final trajectory of ~V; Lemma 2. l
implies that the combination of the two trajectories is itself
a trajectory. Likewise, we extend JV' to timed execution 1v;
by adding the information contained in the step r' ~ s.

Since A is at-forest and rv1 and rv; both lead to s, it must
be that W1 = W;. But since (r, a)# (r', a'), the only wav this
can happen is if a and a' are both time-passage a~tion~ and
a i= a'. In this case, the final trajectory w of W i = iv; ends
with a trajectory of the step r ~ s, and also ends with a
trajectory of the step r' ~ s. In particular, if w. /time= t,
then }\,'(t - a') = r' and w(t - a) = r.

If a< a', then t - a'< t - a, so the definition of a trajec­
tory implies that r' I (- a) - " - a') r, i.e., r' a' - a r. Symmetri-

cally, if a'< a, we haver~ r'. Either situation suffices.

=: Because all states of A are reachable we know bv
Lemma 2.3 that for each state s there is at l~ast one timed
execution that leads to it. We show uniqueness. For any
timed execution W, define n(W) to be the sum of the
number ofnontrivial trajectories and the number of actions
occurring in W It suffices to prove the following claim for
allkEN:

If W and W' are two timed executions with
n(W) + n(W') ~ k, and if W and W' lead to the
same state s, then W = W'.

We prove this claim by induction on k.

Basis. k = 0. Then each of Wand W' consists of a trivial
trajectory with the single states, so W = 1-V'.

Inductive Step. k > 0. If W consists of a single trivial
trajectory, then s must be a start state. The fact that W'
leads to s implies that the start states has an incoming step,
which is a contradiction. A similar contradiction is reached
if W' consists of a single trivial trajectory. Thus, neither W
nor W' consists of a single trivial trajectory.

If the last trajectory w of W is trivial, define a to be the last
discrete action in W, and r the last state of the preceding tra­
jectory. Thus, we have r-"-> s. Since each state can have at
most one incoming discrete step, the last trajectory of W'
must also be trivial, a must be the last discrete action in W',
and r the last state of the preceding trajectory of ~V'. If W 1

and w; are the timed executions obtained from Wand rV',
respectively, by omitting the a w fragment at the end, the
induction hypothesis gives W 1 = w;. This implies W = W'.

A similar proof can be given for case in which the last tra­
jectory of W' is trivial. Thus we may assume that neither iv
nor W' ends with a trivial trajectory.

Definer= w(0) and a= w. !time; the definition of a trajec­
tory implies r-!!..+ s. Likewise, definer', a', and w' for W'.

If a= a', then it is easy to prove that 11' = w'. In this case,
let W1 and w; be the results of removing the last trajectory

10 LYNCH AND VAANDRAGER

w from Wand W', respectively, replacing it with the trivial
trajectory with state r. Application of the induction
hypothesis gives W 1 = w;, and this implies W = W'.

Assume without Joss of generality that a' >a. Since r 4 s
and r' ~ s, we have by assumption r' a' -a r. That is, both
timed executions end with nontrivial trajectories, and W
ends with the shorter one.

We claim that w(a - t) = w'(a' - t) for all t e [O, a]. For if
not, then there are two distinct time-passage steps leading
to s with the same amount of time-passage, namely,
w(a - t) -1..+. s and w'(a' - t) -1..+. s. In particular, r = w(O) =
w'(a' -a).

Now let W1 be the result of removing the last trajectory
w from W, replacing it with the trivial trajectory with state
r. Also, let w; be the result ofreducing the last trajectory w'
of W' by removing the portion with domain (a' - a, a'].
Then W 1 and w; are two timed executions, each of which
leads to r, and such that n(W1) + n(w;) is strictly less than
n(W) + n(W'). By induction hypothesis, W1 = w;. Since
the removed portions of Wand W' are identical, this implies
that W= W'. I

We define the relation t-after(A) to consist of those pairs
(p, s) for which there is a finite timed execution of A with
timed trace p and last state s:

t-after(A) ~ {(p,s) I 3Wet-execs*(A):

!-trace(W) = p and W. lstate = s}.

The relation t-past(A) ~ t-after(A)- 1 relates a states of A
to the timed traces of timed executions that lead to s.

LEMMA 3.5.

1. If A is t-deterministic then t-after(A) is a function from
t-traces*(A) to states(A).

2. If A hast-fin then t-after(A) is image-finite.

3. If A is a t-forest then t-past(A) is a function from
states(A) to t-traces*(A).

Proof Parts 1and2 are straightforward from the defini­
tions.

For 3, suppose that A is a t-forest. Because all states
of A are reachable we know that for each state s of A
t-past(A)(s) contains at least one element. But this elemen~
is uniquely determined by the unique timed execution that
leads to s. I

4. TIMED TRACE PROPERTIES

Continuing the analogy with Part I, we define "timed
trace properties," the structures that we consider as external
behaviors for timed automata. We also prove some basic
properties of timed trace properties and some lemmas
relating timed trace properties to timed automata.

A set of timed sequence pairs is prefix-closed if, whenever
a timed sequence pair is in the set, all its prefixes (as defined
in Section 2.3. l) are in the set also. A timed trace property P
is a pair (K, L), where K is a set and Lis a nonempty, prefix­
closed set offinite and admissible timed sequence pairs over
K. We will refer to the constituents of P as sort(P) and
t-traces(P), respectively. Also, we write t-traces*(P) for
the set of finite timed sequence pairs in t-traces(P), and
t-traces 00 (P) for the set of admissible timed sequence pairs
in t-traces(P). For P and Q timed trace properties, we define
P ~~T Q ~ t-traces*(P) £ t-traces*(Q), P ~~T Q ~
t-traces00 (P) s; t-traces 00 (Q), and P ~~ Q ~ t-traces(P) £

t-traces(Q). The kernels of these preorders are denoted by
=~T• =~T' and=~, respectively.

A timed trace property P is limit-closed if each infinite
chainp1 ~p2 ~p3 ~ • • • of elements oft-traces*(P) in which
time grows unboundedly has a limit in t-traces 00 (P), i.e., an
admissible timed sequence pair p such that for all i, p; ~p.

LEMMA 4.1. Suppose P and Qare timed trace properties
with Q limit-closed. Then P :::::;~T Q <=> P ~~ Q.

A timed trace property P is feasible if every element of
t-traces*(P) is a prefix of some element of t-traces 00(P).

LEMMA 4.2. Suppose P and Q are timed trace properties
such that P isfeasible. Then P~~T Q<=>P~~ Q.

The timed behavior of a timed automaton A, t-beh(A), is
defined by

t-beh(A) ~ (vis(A), t-traces(A)).

LEMMA 4.3.

1. t-beh(A) is a timed trace property.

2. If A hast-fin then t-beh(A) is limit-closed.

3. If A is feasible then t-beh(A) is feasible.

4. A~~ B<::;>t-beh(A) ~~ t-beh(B), A ~~TB<:=:> t-beh(A)
~~T t-beh(B), and A ~~TB<=> t-beh(A) ~~T t-beh(B).

Proof Part 1 follows directly from Lemma 2.9. Parts 3
and 4 are immediate from the definitions.

We sketch the proof of 2; it is analogous to that of
Lemma 2.5 of Part I. Suppose A has t-fin and p 1 ~p2 ~ • • •

is an infinite chain of timed sequence pairs in t-traces*(A)
such that the limits of the time components of the p /s is co.
Assume without loss of generality that Pi <Pi+ 1' for all
i~ 1. Let p be the limit of the p/s. We must show that
p E t-traces00 (A).

We use Lemma A.1 of Part I. This time, G is constructed
as follows. The nodes are pairs (p;, s), where P; is one of the
timed sequence pairs in the sequence above, and s is a state
of A, such that (p, s) e t-after(A). There is an edge from
node (p;, s') to node (P;+ 1> s) exactly if s' -54A s, where
P;+1 =p;·q. Using Lemma2.10, it is not difficult to show

FORWARD AND BACKWARD SIMULATIONS, l! !!

that G satisfies the hypotheses of Lemma A.1 of Part I. Th
h 1 . 1· en

t at. emma imp ies the existence of an infinite path in G

start~n~ at a_ root; given this path, it is easy to construct an

admissible timed execution of A having p as its timed trace.

PROPOSITION 4.4.

L If B hast-fin then A ~t T B.:;:;,.A :>:: 1 B * "'T .

2. If A is feasible then A ~~TB.:;:;,. A~~ B.

Proof Part 1 follows from Lemmas 4.1 and 4.3. Part 2 is
a corollary of Lemmas 4.2 and 4.3. I

EXAMPLE 4.5. We present two timed automata B and

B2, which are in a sense the timed analogue; of the

automata A 1 and A 2 of Example 2.1 of Part L The example

i~lustrates the_ necessity of the t-fin condition in Proposi­

tion 4.4(1). Timed automaton B 1 performs an a-action at

each integer time. Each state of B 1 has components

now ER "' 0 and count EN, both initially 0. B 1 has a single

visible action a, and steps

• s' --!!..+ s, where s. now= s'. now+ d ~ s'. count and
s. count= s'. count;

• s'!!.+ s, where s. now= s'. now= s'. count and s. count=

s'.count+ 1.

Timed automaton B 2 performs an a-action at each offinitely

many integer times. Each state of B2 has components

now ER "' 0, initially 0, count EN, initially 0, and total EN,

initially arbitrary. B 1 has a single visible action a and steps

• s' --!!..+ s, where s. now = s'. now+ d ~ s'. count, s. count=

s'. count, and s. total= s'. total;

• s'!!.+ s, where s. now = s'. now= s'. count~ s'. total,

s. count= s'. count+ 1, and s. total= s'. total.

Then it is easy to see that B 1 has t-fin (in fact, it is

t-deterministic). However, B2 does not have t-fin: for

instance, it has infinitely many start states. Also, in each

finite timed trace of B 2 , a occurs at every nonnegative

integer time up to (and possibly including) the last time

total, while in the unique admissible timed trace of B 1 , a

occurs at all nonnegative integer times. Then B 2 has the

same finite timed traces as B 1 but no admissible timed

traces. It follows that B 1 ~~T B2 but B1 :t~T B2.

Note that it is possible to modify B 2 so that it is feasible,

yet still demonstrates the same point. Simply allow time to

pass in B 2 after the last permitted a output.

EXAMPLE 4.6. In order to see that the feasibility condi­

tion in Proposition 4.4(2) is needed, we consider a timed

automaton Z with states drawn from the interval [0, 1),

start state 0, no visible actions, and steps of the form

t' ~ t whenever t' < t. Since Z has no admissible timed

traces, it is trivially the case that z~~TBI. However,

because B 1 does not allow initial time-passage steps,

Z:tiB1.

Again paralleling Part I, we dose this section with the

construction of the canonical timed awomaton for a

timed. trace property. For P a timed trace property, the

associated canonical timed automaton t-rnn(is the

structure A given by

• states(A)= t-traces*(P).

• start(A)={() .. 0)}.

•acts(A) =sort(P) u { r} v R ".and

• forp',pEstates(A)andaEacts(A.),

p' ~A p.:;:;,. a#- r 1\ p' · t-trace(a) = p.

It is not hard to check that t-can(P) is in fact a timed

automaton.

LEMMA 4.7. Suppose Pisa timed trace property. Then

1. t-can(P) is t-deterministic and is a !-forest.

2. t-beh(t-can(P)) =~T P.

3. P ::;;,.i t-beh(t-can(P)).

4. If P is limit-closed then t-beh(t-can(P)) = ~ P.

5. If P is feasible then t-can(P) is feasible.

Proof Part 1 follows easily using Lemmas 3.2 and 3.4.

Part 2 follow from the definitions. Since t-can(P) is

t-deterministic it has t-fin, so it follows by Lemma 4.3 that

t-beh(t-can(P)) is limit-closed. Now 3 and 4 follow by

combination of 2 and Lemma 4.1. Part 5 is straightforward

from the definitions. I

LEMMA 4.8.

1. t-can(t-beh(A)) is !-deterministic and is a t:forest.

2. t-can(t-beh(A})=~TA.

3. A ~;. t-can(t-beh(A)).

4. If A has t-Jin then t-can(t-beh(A)) =~A.

5. If A is feasible then t-can(t-beh(A)) is feasible.

Proof By combining Lemmas 4.3 and 4.7. I

5. SIMULATIONS FOR TIMED AUTOMATA

So far, we have presented the timed automaton model

and its basic properties. In this section, we define simulation

proof methods for timed automata. The properties of these

relations are shown in the following two sections. In the

definitions below, we require that an a step be simulated by

a move t-trace(a). This means that a r step is simulated by

the timed sequence pair (A, 0), a visible action a is simulated

by the timed sequence pair ((a, 0). 0), and a time-passage

step dis simulated by the timed sequence pair()., d).

12 LYNCH AND VAANDRAGER

Suppose A and B are timed automata.
A timed refinement from A to B is a function

r: states(A)~ states(B) that satisfies:

1. Ifs E start(A) then r(s) E start(B).

2. Ifs'-=:.. As then r(s') J',~8 r(s), where p = t-trace(li).

A timedforward simulation from A to Bis a relation/ over
states(A) and states(B) that satisfies:

l. Ifs E start(A) then/[s] n start(B) ¥- 0.
2. If s'::.. A s and u' Ef[s'], then there exists a state

uEf[s] such that u' .L,8 u, where p = t-trace(d).

A timed backward simulation from A to Bis a tota14 rela­
tion h over states(A) and states(B) that satisfies:

1. If sEstart(A) then b[s] Sstart(B).

2. If s'::.. A s and u E b[s], then there exists a state
u' E b[s'] such that u' -~8 u, where p = t-trace(a).

A timed forward-backward simulation from A to B is a
relation g over states(A) and N(states(B)) that satisfies:

1. If s E start(A) then there exists SE g[s] such that
S s start(B).

2. If s' ~A s and S' E g[s'], then there exists a set
SE g[s J such that for every u ES there exists u' ES' with
u' -~ 8 u, where p = t-trace(ll).

A timed backward-forward simulation from A to B is
a total relation g over states(A) and P(states(B)) that
satisfies:

1. Ifs E start(A) then for all SE g[s], Sn start(B) ¥- 0.
2. If s' ~A s and SE g[s], then there exists a set

S' E g[s'] such that for every u' ES' there exists u E S with
u' .!'..,8 u, where p == t-trace(li).

For each of the above simulations, we will refer to the first
condition in the definition as the start condition, and to the
second condition as the transfer condition.

A relation hover states(A) and states(B) is a timed history
relation from A to B ifit is a timed forward simulation from
A to Band h 1 is a timed refinement from B to A. A relation
p over states(A) and states(B) is a timed prophecy relation
from A to B if it is a timed backward simulation from A to
B and p- 1 is a timed refinement from B to A.

Analogously to Part I, we write A :(kB, A:(~ B, etc., to
indicate that there is a timed refinement, timed forward
simulation, etc., from A to B.

Without working out the details, we note here that,
analogously to the untimed case, there is a full corre­
spondence between timed history /prophecy relations and
the obvious notions of timed history /prophecy variables.

4 For the definitions of"total", N(), P(), (i- 1, etc., we refer the reader
to Appendix A of Part I.

We close this section with a technical lemma. The transfer
condition of each simulation definition is stated for
individual steps of A. It is straightforward to deduce a
similar condition for moves rather than steps.

LEMMA 5.1. Suppose that A and B are timed automata
and s' 4A s.

1. Jf r is a timed refinement fi"om A to B then
r(s') 4B r(s).

2. If f is a timed forward simulation from A to B and
u' Ef[s'], then there exists a state u Ef[s J such that u' ~fr> 8 u.

3. If b is a timed backward simulation from A to B and
u Eb[s], then there exists a state u' E b[s'] such that u' 4 8 u.

4. Jf g is a timedforward-backward simulationfrom A to
Band S' E g[s'], then there exists a set SE g[s] such that for
every u ES there exists u' ES' with u' J~,..s u.

5. If g is a timed backward-forward simulation from A to
Band SE g[s], then there exists a set S' E g[s'] such that for
every u' ES' there exists u ES with u' 4 8 u.

Proof Let W be a timed execution fragment from A
such that s' = W fstate, s = W.lstate, and p = t-trace(W).
All parts are proved by induction on k = n(W), where, as in
the proof of Lemma 3.4, n(W) is the sum of the number of
nontrivial trajectories and the number of discrete actions
occurring in W. As an example, we prove the result for
timed refinements; the other cases are similar.

Basis. k = 0.
Then s' = s, W consists of the trivial trajectory containing
the single states, and p =(A., 0). Since r(s) 1 ~~ r(s), we have
r(s') !! . .,8 r(s).

Basis. k = 1.
This case follows easily from the transfer condition in the
definition of a timed refinement.

Inductive step. k > 1.
Then W can be written as W1 · W 2 , where n(W1) = k- 1
and n(W2) = 1. Let s" denote W 1 • lstate (= W2 fstate).
Let p 1 = t-trace(W1) and P2 = t-trace(W2). Then s' !;J. As"

and s" !;3.A s. By inductive hypothesis, r(s') !;;. 8 r(s") and
r(s")!~8 r(s). By Lemma 2.8, p=p 1 ·p2 . Then Lemma
2.10(1) implies that r(s') J:,..8 r(s). I

6. TIMED RESULTS FROM UNTIMED RESULTS

In this and the next section we give soundness and com­
pleteness results for the various simulations defined in
Section 5, as well as implication results among them. The
distinction between the results in this section and those in
Section 7 is that the ones given here are all derived from
corresponding results for the untimed case. The statements
of the results in Section 7 are also analogous to results of

FORWARD AND BACKWARD SIMULATIONS, JI 13

<t -R

l
<t ----H <t -F

<~p - <t
-1 -P

-<~B -I
<t
-B

l
- :::;fBF--- :::;~F

1 1l

1t l l
<t -+--- <t
-T -- -*T

FIG. 1. Classification of basic relations among timed automata.

Part I, but these timed results are not derived from the
untimed results, for instance because they require the con­
struction of an intermediate timed automaton.

Most of the results in this section are presented in the
form of a diagram, Fig. 1. This is the same diagram that
appears in Part I for the untimed setting, except for the t
superscripts.

The machinery needed to prove the results in this section
is developed in Section 6.1. In particular, we define an
untimed automaton called the closure automaton, cl(A), for
every timed automaton A. We then show close corre­
spondences between A and cl(A), involving both external
behavior notions and simulation relations. These corre­
spondences allow us to derive the results in Section 6.2 from
the corresponding results for untimed automata.

6.1. The Closure Automaton

In this section, we define the closure of a timed
automaton, the basic technical device that we will used to
derive results about timed automata from corresponding
results about untimed automata. Section 6.1.l contains the
definition, Section 6.1.2 gives the relationships between
timed traces of a timed automaton and traces of its closure,
and Section 6.1.3 gives the relationships between timed
simulations between timed automata and simulations
between their closures.

6.1.1. Definition

The closure ofa timed automaton A, denoted by cl(A), is
the automaton B given by

643/128/1·2

• states(B) =states(A),

• start(B) =start(A),

• acts(B) = acts(A), and

• steps(B) consists of steps(A) together with all steps
I d h h ,fA.,d) s ---+ 8 s, sue t at s w~4 s.

~hus, the closure construction augments A by adding new
time-passage steps to short-circuit the effects of any number
of r and time-passage actions of A.

PROPOSITION 6.1. cl(A) is a timed automaton.

6.1.2. Relating Timed and Untimed Traces

In this section, we describe some close connections
between A and cl(A). We begin with a preliminary lemma
showing the relationship between moves of A and of cl(A).

LEMMA 6.2. Supposes' and s are states of A.

1. If fJ is a finite sequence of actions in ext(A) then

1 Jb. if d [if 1 l·traalPI s di Al s 1 an on y 1 s ~ As.

2. If p is a finite timed sequence pair over vis(A) then

, trc.u·e(p) . . , p
s =c1iAi s if and only ifs ~'~As.

Proof Part 1 is straightforward. Part 2 follows from
Part l and Lemma 2.5. I

From this we can prove:

LEMMA 6.3. l. If fJ is a finite sequence of actions in
ext(A) then

fJ E traces*(cl(A)) if and only if t-trace(/J) E t-traces*(A).

2. If p is a finite timed sequence pair over vis(A) then

trace(p) E traces*(cl(A)) if and only if p Et-traces*(A).

Proof We show Part l. Suppose that P is a finite
sequence of actions in ext(A), and let p = t-trace(p).

=>: Suppose that fJ E traces*(cl(A)). Then there exis1
s' estart(cl(A)) and sestates(cl(A)) such that s' k,.11 A 1 s.
Then Lemma 6.2 implies that s' -f.~ A s. This implies that
p E t-traces*(A).

<=: Suppose that pet-traces*(A). Then there exist
s' E start(A) and s Estates(A) such that s' .!.. As. Then
Lemma 6.2 implies that s' b citA 1 s. This implies that
fJ E traces*(cl(A)).

Part 2 follows from Part 1 and Lemma 2.5. I

14 LYNCH AND VAANDRAGER

A similar result holds for admissible sequences:

LEMMA 6.4.

l. {ffJ is an admissible sequence of actions in ext(A) then

fJ E traces'"(cl(A)) if and only !l t-trace(/3) E t-tracesw(A).

2. If p is an admissible timed sequence pair over vis(A)
then

trace(p) E tracesw(c!(A)) ((and only if p E t-tracesoc(A).

We now show that t-determinism of A corresponds to
determinism of cl(A), and likewise for t-lin and fin.

LEMMA 6.5.

I. A is t-deterministic if and only if cl(A) is deterministic.

2. A has t-fin if and only if cl(A) has Jin.

Proof We first prove part 1:

=: Suppose A is t-deterministic. Then, by Lemma 3.2,
all r steps of A are of the form s--'-+ s. But this means that
cl(A) and A are identical. And thus both A and cl(A) are
deterministic by Lemma 3.1.

<=: Suppose cl(A) is deterministic. Then all r steps of
cl(A) are of the forms--'-+ s. But since cl(A) is obtained from
A by adding time-passage steps only, also all r steps of A are
of the forms--'-+ s. This again implies that cl(A) and A are
identical. And thus both A and c!(A) are t-deterministic by
Lemma 3.1.

Next we prove part 2:

=: Suppose A has t-fin. Then start(A) is finite and
hence start(cl(A)) is finite. Supposes' is a state of cl(A) and
fJ is a finite sequence over ext(cl(A)). We show that the set
S = { s I s' k c1(A 1 s} is finite. Suppose s ES. Then Lemma
6.2 implies that s EU, where U = { u I s'r-rr~(/llA u}. Thus
S £; U. Since A has t-fin, U is finite. Thus S is finite, as
required.

<=: Suppose that cl(A) has fin. Then start(cl(A)) is
finite and hence start(A) is finite. Suppose s' is a state
of A and p is a finite timed sequence pair over vis(A).
We show that the set S = { s I s' .f..., A s} is finite. Suppose
s ES. Then Lemma 6.2 implies that s E U, where U =
r I ' rrace(p) } s· l fi \u s =c11A 1u. mcec(A)has m, Vis finite. Thus Sis
finite, as required. I

Now we relate finite timed trace inclusion for timed
automata to ordinary finite trace inclusion for their closure
automata.

Proof =: Suppose that fJ E traces*(cl(A)). Then Lemma
6.3 implies that p E t-traces*(A), where p = t-trace(fJ). The
hypothesis then implies that also p E t-traces*(B). Again by
Lemma 6.3, we have fJ E traces*(cl(B)).

<=: Suppose that pEt-traces*(A). Then Lemma 6.3
implies that fJ E traces*(cl(A)), where fJ = trace(p). The
hypothesis then implies that also fJ E traces*(cl(B)). Again
by Lemma 6.3, we have p E t-traces*(B). I

We can also obtain a one-way relationship between
general timed trace inclusion for timed automaton and
general trace inclusion for their closure automata.

LEMMA 6.7. lf cl(A) ~T cl(B) then A~~· B.

Proof Suppose cl(A) ~T cl(B). Then certainly cl(A) ~fl
cl(B), so by Lemma 6.6, A ~~TB. It remains to show
that A ~~TB. For this, suppose that p E t-traces 00 (A).
Then Lemma 6.4 implies that fJ E traces0 '(cl(A)), where fJ =
trace(p). The hypothesis then implies that fJ E traces<0 (cl(B)).
Again by Lemma 6.4, we have p E t-tracesw(B). I

EXAMPLE 6.8. The converse of Lemma 6.7 does not
hold in general. For a counterexample, let B be a timed
automaton that nondeterministically chooses a positive
natural number n, then performs action a at times
1 - 2 -- 1, 1 - 2 - 2, .. ., 1 - 2 -n, and then idles forever, allow­
ing time to pass. Since each finite timed execution can be
extended to an admissible one, B is feasible; since it has
infinitely many start states B has infinite invisible nondeter­
minism. Let A be the same as B, except that it may also
choose w at the beginning, in which case it subsequently
performs action a at times 1 - 2 - 1, 1 - 2 - 2, .. ., 1 - 2 -n, ...
Timed automaton A is not feasible because by choosing w
it reaches a state from which only a Zeno execution, and no
admissible execution, is possible. Timed automata A and B
have the same timed traces, but cl(A) also has an infinite
trace (a, 1-2- 1), (a, 1-2-2), .. ., (a, 1-2-n), ... which
cl(B) does not have.

It turns out that the converse of Lemma 6.7 does hold if
B hast-fin.

LEMMA 6.9. Suppose B hast-fin. Then cl(A) ~T cl(B)-=
A~~B.

Proof

cl(A) ~T cl(B)-= (by Lemma6.5, and Proposition2.6 of Part I)

cl(A)~ fl c!(B) =-(by Lemma 6.6)

A ~~TB-= (by Proposition 4.4)

A ~~B. I

FORWARD AND BACKWARD SIMULATIONS, ll 15

Finally, we obtain a corollary that relates timed trace
inclusions for timed t au omata to simulations for their
closures.

Section 5. For this, we proceed in the next subsection to

r~late timed simulations to corresponding untimed simula­
tions for closure automata.

COROLLARY 6.10. The following statements are equiv-
alent. 6.1.3. Relating Timed and Untimed Simulations

1. A ~~TB.

2. c/(A)~FBcl(B).

3. cl(A) ~BF c/(B).

lfB hast-fin then also the following statements are equivalent

to each other and to the three statements above.

1. A~!rB.

2. c/(A) ~iFB cl(B).

Proof

A ~~TB=- (by Lemma 6.6)

cl(A) ~*T cl(B) =-(by Theorems 4.5 and 4.6 of Part I)

cl(A) ~FB cl(B) =-(by Proposition 4.10 of Part I)

cl(A) ~BF c/(B).

If B has t-fin then

A :S~T B =(by Lemma 6.6)

cl(A) ~*T cl(B) =(by Lemma 6.5, and Theorem4.6 of Part I)

cl(A) :S iFB cl(B) = (by Theorem 4.5 of Part I)

cl(A) ~T cl(B) =(by Lemma 6.7)

Corollary 6.10 already provides one method for proving

that the finite timed traces of a timed automaton A are

included among those of another timed automaton B:
produce an ordinary forward-backward or backward­

forward simulation from cl(A) to cl(B). Of course, any

simpler type of simulation from Part I, such as a forward or

backward simulation, will do as well. Similarly, Corollary

6.10 provides a method for proving that all the timed traces

of A are included among those of B, in case B has t-fin.

This approach is analogous to that followed for Milner's

CCS [49], where the problem of establishing a weak

bisimulation is reduced to the problem of finding a strong

bisimulation. Another example of this approach appears in

[38], where the problem of showing inclusion of timed

behaviors of certain kinds of timed automata is reduced to

that of proving inclusion between sets of admissible

behaviors of certain derived I/O automata.
However, this is not the approach we emphasize in this

paper. Instead, we will use the closure automata as a techni­

cal device to help us prove soundness, completeness and

implication results for the new timed simulations defined in

In Section 6.1.2, we showed that (under certain finiteness

conditions) inclusion of timed traces for timed automata is

equivalent to inclusion of ordinary traces for the closures

of these automata. Now we demonstrate strong relation­

ships between timed simulations for timed auto";uata, and

ordinary simulations for the closures of these automata.

LEMMA 6.11. A relation from states(A) to states(B) is a

timed refinement from A to B if and only !/'it is a refinement

from cl(A) to cl(B). l'vforeoiw, the same correspondence

also holds for forward simulations, backward simulations,

forward-backward simulations, hackward-jimrard simula­

tions, history relations, and prophecy relations.

Proof We prove the result for refinements.

= : Suppose that r is a timed refinement from A to B.

We show that r is a refinement from cl(A) to cl(B). The start

condition carries over immediately; we con~ider the step

condition. Suppose that s' ~, 11 .4 1 s. Then s' ~c1iA 1 sand so
Lemma 6.2 implies that s'):~4 s, where p = t-trace(c1). Since

r is a timed refinement, Lemma 5.1 implies that r(s') ?,,8 r(sl.
Then Lemma 6.2 implies that r(s') rraa•pi " 18 i r(s). But case

analysis based on whether a is a visible, internal or time­

passage action shows that trace(p) =cl, so this is as needed.

<=: Suppose that r is a refinement from cl(A) to c/IB).

We show that r is a timed refinement from A to B. The start

condition carries over immediately; we consider the step

condition. Suppose that s'£.,A s. Then s'E..,c11A 1 s, by

definition of cl(A). Since r is a refinement, we have that

r(s') bct(Bi r(s). Then Lemma 6.2 implies that r(s') E,,s r(s),

where p = t-trace(cl), as needed.

The proofs for forward, backward. forward backward

and backward-forward simulations are entirely analogous.

using the appropriate parts of Lemma 5.1. The results for

history and prophecy relations follow from those for for­
ward simulations, backward simulations, and refinements. I

Therefore, we have:

COROLLARY 6.12. Suppose X represl!nts any 1~/ { R, F, B.

iB, FB, iFB, BF, iBF, H, P, iP}. Then A :S ~ B if and only if'
cl(A) :Sx cl(B).

PROPOSJTION 6.13. The relations :S :l' ::;; ~·' ::;; ~' :S :ll,
:S~ 8 , ~:FB• ~kF· ::;;\1 , ~~. and <P are all preorders.

(H oJVever, :S :BF is not a preorder.)

Proof This follows from Corollary 6.12, since the

corresponding untimed simulations are preorders. The same

counterexample that we used to show that ~mF is not a

16 LYNCH AND VAANDRAGER

preorder (the automata A 11 and A 12 of Example 4.11 in Part
I) can be used to show that :::;;:BF is not a preorder. One can
turn the automata from this counterexample into feasible
timed automata via the patient construction of [41]. This
construction introduces arbitrary time delays at each state
by simply attaching, for each d, steps s -..:!..+ s to each
states. I

6.2. Soundness and Implication Results for Timed
Automaton Simulation Relations

In this section, we give those results about timed auto­
mata that follow from corresponding results about untimed
automata, using the results in the previous two sections. We
present most of these results in a single theorem, which is
entirely analogous to a classification given in Section 7 of
Part I.

THEOREM 6.14. Suppose M, NE {T, *T, R, F, (i)B,
(i)FB, (i)BF, H, (i)P}, where the (i) indicates that i is
optional.

1. If there is a path from ::;;;;~ to ~ ~ in Fig. 1 consisting
of thin arrows only, and if A~~ B, then A ~ ~ B.

2. If there is a path from ::;;;;~ to ~~ consisting of thin
and/or thick arrows, if A::;;;;~ B and if B has t-fin, then
A~~B.

Proof Note that Fig. 1 is identical to Fig. 6 of Part I,
which gives an overview of the relationships in the untimed
case, except for the superscripts t. It is enough to prove:

1. If there is a thin arrow from ~~ to ~~ and if
A~~ B, then A::;;;;~ B.

2. If there is a thick arrow from ~ ~ to :::;;; ~. if A ~ ~ B
and if B hast-fin, then A::;;;;~ B.

For part 1, suppose that there is a thin arrow from ~~ to
~~and that A~~B. If {M,N}n{T,*T}=0, then
Corollary 6.12 implies that cl(A) ~M cl(B). Then the
corresponding result for the untimed case implies that
cl(A) ~N cl(B), which implies by Corollary 6.12 that
A~~ B, as needed. There are four remaining thin arrows to
consider.

1. M = iFB and N = T. Corollary 6.12 implies that
cl(A) ~iFB cl(B). The untimed result implies that
cl(A) ~T cl(B), which implies by Lemma 6.7 that A::;;;;~ B.

2. M = T and N = *T. This is immediate from the
definitions.

3. M = * T and N = FB. Corollary 6.10 implies that
c/(A) ~FB c/(B), which implies by Corollary 6.12 that
A~hB.

4. M = FB and N = *T. Corollary 6.12 implies that
cl(A) ~FB cl(B), which implies by Corollary 6.10 that
A ~~TB.

For part 2, suppose that there is a thick arrow from ~:.i to
~~.that A~~ Band that B has t-fin. There are only two
thick arrows to consider:

1. M = * T and N = T. This follows from Proposition 4.4.

2. M = T and N = iFB. Corollary 6.10 implies that
cl(A) ~iFB cl(B), which implies by Corollary 6.12 that
A~1FaB· I

In order to show that all the inclusions are strict, one can
use essentially the same counterexamples as in the untimed
setting. Again one can turn these untimed counterexamples
into feasible timed automata via the patient construction of
[41], i.e., by introducing arbitrary time delays at each state
by attaching, for each d, steps s-..:!..+ s to each states.

We close this section with three more results that are
derived from the analogous results for the untimed case
using the correspondences.

THEOREM 6.15 (Partial Completness of Timed Forward
Simulations). Suppose B is t-deterministic and A~ ~TB.
Then A ::;;;~B.

Proof By Lemma 6.5 (1), cl(B) is deterministic, and by
Lemma 6.6, cl(A) ~ *T cl(B). Thus by the partial complete­
ness result for forward simulations (Theorem 3.11, Part I),
cl(A) ~ F cl(B). Then Corollary 6.12 allows us to conclude
that A~~ B, as required. I

PROPOSITION 6.16. Suppose all states of A are reachable,
Bis t-deterministic and A ~kB. Then A ~RB.

Proof Lemma 6.2 implies that all states of cl(A) are
reachable, Lemma 6.5 implies that cl(B) is deterministic,
and Corollary 6.12 implies that cl(A) ~ 8 cl(B). By Proposi­
tion 3.19 of Part I, the untimed version of the fact we are
proving, cl(A) ~R cl(B). Then Corollary 6.12 allows us to
conclude that A ~kB, as required. I

PROPOSITION 6.17. Suppose all states of A are reachable,
B hast-fin, and A ~kB. Then A ~:s B.

Proof Similar to the proof of Proposition 6.16. I

7. REMAINING RESULTS FOR TIMED AUTOMATA

In Section 6, we showed how some simple corresponden­
ces enable most of the results for untimed automata to be
extended to timed automata. In this section, we consider
what happens to all the other results of Part I. We begin
with the results about untimed automata that do not extend
in this way but are nonetheless true. In Section 7 .1 we pre­
sent partial completeness results that involve t-forests.
These do not carry over using the correspondences because
the closure of a t-forest need not be a forest: in a t-forest
(and hence also in its closure) a state may have multiple
incoming time-passage steps, something that is not

FORWARD AND BACKWARD SIMULATIONS, 11 ! ..,
I

allowed in a forest. In Sections 7.2 and 7.3, we present
results that assert the existence of timed automata with par­
ticular properties, including the completeness results for the
combination of timed forward and timed backward simula­
tions and the Abadi-Lamport completeness result. We
prove all of these results directly for timed automata. In
most cases, the proof is analogous to the corresponding
proof in Part I. Finally, in Section 7.4, we demonstrate that
the one remaining result of Part I, Proposition 3.12, is not
true in the timed setting.

7.1. Partial Completeness Results fort-Forests

THEOREM 7.1 (Partial Completeness of Timed Refine­
ments). Suppose A is a t-forest, B is t-deterministic, and
A ~~TB. Then A ;;;;.il B.

Proof Analogous to the proof of Theorem 3.5 in Part I.
Define r ~ t-after(B) o t-past(A). Lemma 3.5 and the fact
that t-traces*(A) ~ t-traces*(B) together imply that r is a
function from states(A) to states(B). We claim that r is a
timed refinement from A to B.

The start condition is straightforward.
For the transfer condition, suppose that s'--.!!..+ As.

Let p = t-trace(a); then s' -4 As. We must show that
r(s') -I'~>8 r(s). Since A is a forest, there exist timed traces q'
and q leading to s' and s, respectively. Lemma 2.10 implies
that q' . p leads from a start state of A to s. Since A is a forest
and q and q' · p both lead to s, it must be that q' · p = q.

By definition of r, we have u0 "48 r(s) for some start state
u0 of B. Then Lemma 2.10 implies that there is a state u of
B such that u0 s:,, B u and u 4 8 r(s). Since q' leads from a
start state of A to s', the definition of r then implies that
u = r(s'). Thus, r(s') !;,,,. 8 r(s), as needed. I

THEOREM 7.2 (Partial Completeness of Timed Backward
Simulations). Suppose A is a t-forest and A ~~TB. Then

1. A;;;;.kB,and

2. if B has t-fin then A ~:a B.

Proof Analogous to the proof of Theorem 3.18 in
Part I. We define a relation b over states(A) and states(B).
For a given state s of A, Lemma 3.5 implies that there is a
unique timed trace leading to s, say p. Define

b[s] = { u I 3 WE t-execs*(B): t-trace(W) = p,

W.lstate = u, and VW' E t-execs*(B):

[W'-< W-> t-trace(W') i=p]}.

Lemma 3.5 and the fact that t-traces*(A) £ t-traces*(B)
imply that relation b is total. The start condition follows as
in the proof of Theorem 3.18 in Part I. .

For the transfer condition, suppose that s' -'3..+~4 s,
uEb[s], and p=t-trace(a); then s'-4As. We dehne

u' E b[s'] so that u' J'..,8 u. As in the proof of 7. l,
we obtain timed traces q' and q leading to s' and s ro::spec­
tively, and conclude that q' · p =q. Since u E l we have
u0 5.,9 u for some start state u0 of B. Then Lemma 2.IO
implies that there is a state u' of B such that 11 0 u' and
u' -f'.,8 u. Moreover, it is possible to select u' in a "minimal"
way so that there is an execution from u0 to u' with timed
trace q' that does not end with a r step. Since q' leads from
a start state of A to s', the definition of b implies that
u' E b[s']. This suflices.

Lemma 15 implies that if B has t-fin then relation b is
image-finite. I

7.2. Combined Timed Forward and Backward Simulations

In this subsection, we give the completeness results for the
combination of timed forward and timed backward simula­
tions. In order to prove these results, we use variants of the
classic subset construction from automata theory, and a
variant of the dual historization construction of Klarlund
and Schneider [29].

The backward power of a timed automaton A, notation
b-power(A), is the automaton B defined by

• states(B) = N(states(A)),

• start(B)=N(start(A.)),

• acts(B) =acts(A), and

• for S', SE states(B) and a E acts(El.

1 , , t·trun:i .l 1

S' _:_.8 S ~ Vs ES 3s ES': s • As.

The jlnitary backward power of A, notation .fin-b-power(A).
is defined in exactly the same way, except that instead of all
non-empty subsets of states(A) and start(A) only the finite
non-empty subsets are used. The jimnml power or histori:::a­
tion of A, notation fpvwer(A), is the automaton F defined

by

• states(F) = P(states(A)),

• start(F) = { S s states(A) I Sn start(A) 7" 0},

• acts(F)=acts(A),and

• for S', SE states(F) and a E al'ts(F),

t·tra.t 't'(~r i
S'~Fs~vs'ES'3seS:s' -•As.

LEMMA 7.3. Suppose B = b-power(A.), I =.fln-b-power(A).
and F = fpower(A). Then B, I, and Fare timed automata and

l. A ~kB and B~~ A,

2. A ~k I and I ~:a A,

3. A~kFandF~~A.

18 LYNCH AND VAANDRAGER

Proof: First we show that B satisfies axioms Sl and S2.
For Sl·, suppose that S 1 -.-:!....8 S" and S" ...!I.+8 S. Then

'r:/s" ES" 3s' ES': s' 1 ;::~ 1 A s", and

\.J S3 II S" II [,\.d'i vS E S E : S ···-> AS.

It follows, using Lemma 2.10, that

\.J S3 I S' , 1;..d+d') vs E S E : S w> AS,

i.e., that S' "+ "' 8 S, as needed for S 1.
For S2, suppose that S' -.-:!.... 8 S. Define w: [0, d] -->

states(B) as follows: let w(O) = S', w(d) = S, and for any t,
0 < t < d, let w(t) = { u Estates(A) I 3s' ES': s' 1 ~'~.~ u}. Sup­
pose 0:::; t 1 < t 2 ,;;;;_ d; we must show that w(t i) ~8 w(t 2).

There are three nontrivial cases:

1. 0 = t 1 < t 2 <d. We must show that S' _!l:_,8 w(t2), that
is, that

But this is immediate from the definition of w(t 2).

2. 0<t 1 <t2 =d. We must show that w(t 1)~8 S,
that is, that

So suppose that sE S. Since S' ~8 S, there exists a state
/ ES' such that s' 1 ;-:v~.~ s. Then Lemma 2.10 implies that
h · l h ,u.,111 d 1J .. d-r11 Th' ere eXIStS U SUCl t at S '""AU an U '"·-> AS. IS U

atisfies all our requirements.

3. 0<t 1 < t 2 <d. The argument is similar to that for
Case 2.

The mapping that relates to each state s of A the state { s}
of Bis a timed refinement from A to B; hence A ,;;;;_kB. The
mapping that relates each state S of B to all its elements is
a timed backward simulation from B to A; hence B ,;;;;_k A.

The proofs for I and F are similar to those for B, except
for the proof that I satisfies axiom S2. Suppose that
S' ~1 S. Then there exists, for each s ES, a finite timed
execution fragment W, of A with Ws -fstate ES',
!-trace(W,) = (Jc, d) and W, · !state = s. Define w: [0, d] -->
states(!) as follows: let w(O) = S', w(d) = S, and for any t,
0 < t < d, let w(t) be the finite set which, for each s ES, con­
tains the last state of the shortest prefix of Ws with limit
time t. Then it is routine to prove that w is a trajectory for
S' -3...1 S. I

THEOREM 7.4.

1. A ~~ .. 8 B-= (3C: A~~· C,;;;;_k B).

2. A~:FBB-=(3C:A:(~.C,;;;;_l8 B).

3. A~kFB=-(3C:A~kC~~·B).

4. A ~:BFB=-(3C: A :::;;BC:(~ B).

Proof The proof of the implications "<=" is easy. We
sketch the proof of" =" in 3 and 4. The proofs of" =" in
1 and 2 are similar.

Let g be a timed backward-forward simulation from A to
B, which is image finite if A ~'.BF B. Let C = f-power(B).
Then it is straightforward to check that g is also a timed
backward simulation from A to C (and is image-finite if
A ~lsF B). Moreover, Lemma 7.3 gives C ~~B. I

It is interesting to note the difference between the above
proof of Theorem 7.4 and the corresponding proofs of
Theorems 4.1 and 4.8 in Part I. In those proofs the inter­
mediate automata are "smaller" than the power construc­
tions that we use here, since as states they only contain
those sets of states of B that are in the range of g. It is not
possible to use the constructions from Part I here because in
general the resulting automata do not satisfy the trajectory
axiom S2. However, we could have used the power con­
structions in Part I as well. In fact, one can even argue that
in some sense this would have been less ad-hoe.

THEOREM 7.5 (Completeness of Timed Forward and
Timed Backward Simulations). Suppose A ~~TB. Then

l. 3C:A~~.C,;;;;_kB,

2. if B hast-fin then 3C: A~~ C ~:a B, and

3. 3C:A~kC~~B.

Proof Immediate from Theorems 6.14 and 7.4.
Parts I and 2 can alternatively be shown using a proof

analogous to that of Theorem 3.22 of Part I. Let
C=t-can(t-beh(A)). By Lemma 4.8, C is at-deterministic
t-forest and A =~TC. Since C is t-deterministic, A~~ C
by partial completeness of timed forward simulations
(Theorem 6.15), and because C is at-forest, C ~kB follows
by partial completeness of timed backward simulations
(Theorem 7.2(1)) Similarly, if B has t-fin then C ~:B B
follows by Theorem 7.2(2). I

7.3. Timed History and Prophecy Relations

In this section, we present additional results about the
timed auxiliary variable constructions.

7.3.1. Timed History Relations

We begin with a timed analogue to the unfolding con­
struction of Part I.

The timed unfolding of A, notation t-unfold(A), is the
timed automaton B defined by

• states(B) = t-execs*(A),

• start(B) = [O, OJ--> start(A),

FORWARD AND BACKWARD SlMULATIONS, II 19

• acts(B) = acts(A), and

•for W', WEstates(B),dER+ andaEacts(B)-R+,

W' _::_.8 W ~ 3w: W' · w = W /\ w.ltime = d

W'~B w~ W'aw'= W,

where w' is the trivial trajectory that maps 0 to W.lstate.

We leave it to the reader to verify that t-unfold(A) is a
timed automaton.

PROPOSITION 7.6. t-unfold(A) is a t-forest and A ~k
t-unfold(A).

Proof Using Lemma 3.4 it follows easily that
t-unfold(A) is a t-forest. The function .!state, which maps
each finite timed execution of A to its last state, is a timed
refinement from t-unfold(A) to A, and the relation .lstate- 1

is a timed forward simulation from A to t-unfold(A).
Thus, .lstate- 1 is a timed history relation from A to
t-unfold(A). I

We are now in a position to prove a timed version of
Sistla's [57] completeness result.

THEOREM 7.7 (Completeness of Timed History Relations
and Timed Backward Simulations). Suppose A ~~TB.
Then

1. 3C: A ~k C~k B, and

2. ifB hast-fin then 3C: A ~k c~:B B.

Proof Analogous to the proof of Theorem 5.6 in Part I;
choose C = t-unfold(A). I

We next define a notion of timed superposition, analogous
to the notion of superposition in Part I. Suppose R is a
relation over states(A) and states(B) with Rn (start(A) x
start(B)) -:f. 0. The timed superposition t-sup(A, B, R) of B
onto A via R is the timed automaton C given by

• states(C) = R,

• start(C)=Rn(start(A)xstart(B)),

• acts(C) =acts(A) n acts(B), and

• for (s', u'), (s, u) Estates(C) and a E acts(C),

(s', u')~c(s, u)~s' !:,,,As/\ u' g>8 u, wherep= t-trace(a).

Again we leave it to the reader to check that t-sup(A, B, R)
is a timed automaton.

THEOREM 7.8. A~~ B~ (3C: A ~i1 C~k B).

Proof Suppose A~~ B. Let f be a timed forward
simulation from A to B, let C = t-sup(A, B,f), and let n 1

and n1 be the projection functions that map states of C to
their first and second components, respectively. Then it is

easy to check that n 1- 1 is a timed history relation from A to
C and n 2 is a timed refinement from C to B.

The reverse implication also follows via a standard
argument. I

7.3.2. Timed Prophecy Relations

Finally, we describe the additional results about timed
prophecy relations. We give a timed analogue to the guess
construction of Part I. This can be regarded as a dual to the
timed unfolding construction of the previous subsection.

The timed guess of A, notation t-guess(A), is the timed
automaton B defined by

• states(B) = t-frag*(A),

• start(B) = t-execs*(A),

• acts(B) =acts(A), and

• for W', W Estates(B), dE R +,and a E acts(B)- R +,

W' _::_.s W ~ 3w: W' = w · W /\ w.ltime = d

W'~Bw~W'=w'aW,

where w' is the trivial trajectory that maps 0 to W' .fstate.

As before, we leave it to the reader to verify that t-guess(A)

is a timed automaton.

PROPOSITION 7.9. A~~ t-guess(A).

Proof Similar to the proof of Proposition 7.6. I

THEOREM 7.10.

1. A <kB<=> (3C: A~~ C ~kB).

2. A ~:B B <=> (3C: A ~:PC ~kB).

Proof Similar to the proof of Theorem 7.8, using timed
backward simulations instead of timed forward simula­
tions. I

We finish this subsection with a dual version of Sistla's
completeness result [57] and variants of the completeness
results of Abadi and Lamport [1].

THEOREM 7.11 (Completeness of Timed Prophecy Rela­
tions and Timed Forward Simulations). A ::::;~TB=
3C: A~~ C~~B.

Proof Analogous to the proof of Theorem 5.17 in Part I.

THEOREM 7.12 (Completeness of
Prophecy Relations and Refinements).
Then

1. 3C,D:A~kC~~D~kB.

I
Timed History/
Suppose A ~~TB.

2. If B hast-fin then 3C, D: A ~k C ~:PD ~k_ B.

3. 3C, D: A~~ C~_i D~kB.

20 LYNCH AND VAANDRAGER

Proc~(Analogous to the proofa of Theorems 5.18 and
5. i 9 in Part I. I

7.4. A Result That Does l'ot Carry Over

Proposition 3.12 of Part I does not carry over to our
timed setting, i.e., there exist timed automata A and B such
that A is at-forest and A~~· B but not A ~kB.

EXAMPLE 7.13. Timed automaton A may perform a
single visible action a at any rational time, and then stops.
Timed automaton B may only perform a single action a at
integer times. However, whereas A measures time with a
"perfect clock," B measures time with a clock that may run
either too slow or too fast, in an arbitrary fashion. The set
of states of A is R " 0 x { T. F}, with (0, T) the initial state,
and there are steps

• (t, T) ..-!!...,. (t + d, T), for each tE R :-~o and dE R +;

• (t, T) ~ (t, F), for each t E Q ;.o.

The set of states of Bis also R " 0 x {T. F}, with (0, T) the
initial state. The steps of B are

• (t, T) ..-!!...,. (t', T), for all t, t' ER ;.o with t < t' and all
dE R+;

• (t, TJ ~ (t. F), for each t EN.

Using Lemma 3.4 it is easy to see that A is a t-forest. Also,
it is easy to check that the relation/ given by

f ~ {((t,b),(t',b')) ltER;;. 0,t'ENandb=b'}

timed forward simulation from A to B. However, there
s not exist a timed refinement from A to B. The proof is
contradiction. Suppose that r is a timed refinement.

nen, by the start condition of a timed refinement, r maps
the start state (0, T) of A to the start state (0, T) of B. The
state (1, T) of A has an outgoing a step, so it must be
mapped to a state of B that also has an outgoing a step,
i.e., a state (n, T) for some n EN. Since A has a step
(0, T) __!_, (1, T), but B does not have a step (0, T) __!_, (0, T),
it follows using the transfer condition of a timed refinement
that n > 0. Let, for 0 ~ i ~ 2n. si be the image under r of state
(i/2n, T) of A. By definition of A and by the transfer condi­
tion of a timed refinement. si ~ si + 1, for all i < 2n.
Further all si must be of the form (mi, T), for some mi EN.
By definition of B, this means that 0 = m 0 < m 1 <
>rl2 < · · · < m1n ... i < m 2n = n. This is a contradiction, as
there are only n - 1 naturals strictly between O and n, and
not 2n - 1.

. An interesting question (wide open to us) is to come up
with some plausible additional axioms for timed automata
such that in the resulting setting all the results on simula~
tions that we proved in Part I of this paper do carry over.

8. INCLUDING INVARIANTS

We show how to introduce invariants into the timed
simulations, just as we introduced them into the untimed
simulations in Section 6 of Part I. An invariant of a timed
automaton A is defined to be a superset of the set of
reachable states of A, i.e., a property that is true of all the
reachable states of A. Let A and B be timed automata with
invariants IA and Is' respectively.

A weak timed refinement from A to B, with respect to I A
and ls, is a function r: states(A)-+ states(B) that satisfies:

I. If SE Start(A) then r(s) Estart(B).

2. Ifs' ~As, s', s El A, and r(s') E ls, then r(s') J'~sr(s),
where p = t-trace(a).

A weak timed forward simulation from A to B, with
respect to IA and ls, is a relation f over states(A) and
states(B) that satisfies:

1. Ifs E start(A) thenf[s] n start(B) =I= 0.
2. If s' __!:..,.A s, s', s EI A, and u' Ef[s'] n Is, then there

exists a state u Ef[s] such that u' 4 s u, where
p = t-trace(a).

A weak timed backward simulation from A to B, with
respect to IA and ls, is a relation b over states(A) and
states(B) that satisfies:

I. Ifs E start(A) then b[s] n I B <:;;, start(B).

2. If s'~As, s',sEIA, and uEb[s] nls, then there
exists a state u' E b[s'] n Is such that u' 4s u, where
p = t-trace(a).

3. IfsEIAthenb[s]nls=l=0.

A weak timed forward-backward simulation from A to B,
with respect to I A and IS• is a relation g over states(A) and
P(states(B)) that satisfies:

1. If s E start(A) then there exists SE g[s] such that
Sn Is<:;;, start(B).

2. Ifs'~As,s',sEIA, and S'Eg[s'], then there exists
a set SE g[s] such that for every u E Sn I 8 there exists
u' ES' n ls such that u' J'.,.8 u, where p = t-trace(a).

3. If sEIA and SEg[s] then Sn ls=I= 0.

A weak timed backward-forward simulation from A to B,
with respect to I A and Is, is a relation g over states(A) and
P(states(B)) that satisfies:

1. Ifs E start(A) then, for all SE g[s], Sn start(B) =f. 0.
2. Ifs'_!:..,.As,s',sEIA, and SEg[s], then there exists a

set S' E g[s'] such that for every u' ES' n I 8 there exists a
u ES n ls such that u' -4B u, where p = t-trace(a).

3. IfsE!Atheng[s]=l=0.

FORWARD AND BACKWARD SIMULATIONS, 11 21

A relation hover states(A) and states(B) is a weak timed
history relation from A to B, with respect to I and I
provided that h is a weak timed forward simulati~n from~
to B, with respect to I A and I B' and h - 1 is a weak timed
refineme~t from B to A, with respect to Is and I A.

A relat10n p over states(A) and states(B) is a weak timed
prophecy relation from A to B, with respect to I and I
provided that p is a weak timed backward simula~ion fro~
A to B, with respect to I A and I B' and p - 1 is a weak timed
refinement from B to A, with respect to Is and I A.

We write A ::::; 1 RB A ::::; 1 B A :::::: 1 B A::::::' B
w ' wF ' -....::::wB ., ~wiB '

A ::;:::t B A ~t B A-- 1 B A 1 1
'-"'wFB ' '-"wiFB ' "=::wBF ' ::::;wiBf' B, A::::; H B

A t d w '
::::; wP B an A ::::; ~iP B to denote the existence of a weak

refinement, weak forward simulation, weak backward
simulation, weak image-finite backward simulation, etc.,
from A to B, with respect to some invariants IA and Is.

PROPOSITION 8.1. The relations ::::;~R' :(~F' :(~B'
,;::t. ~t ::;:::t __.t _.-t _.-t d _.-t ll
'-"'w1B• '-"wFB' '-"'wiFB' ""=wBF' "=::wH' "=::wp, an "=::wiP are a

preorders. (However, :s;~iBF is not apreorder.)

THEOREM 8.2 (Soundness of Weak Simulations).

l. If A :s;~R B, A :s;~F B, A <~iB B, A :(~iFB B,
A <~iBF B, A :s;~H B, or A :s;~iP B, then A::::;~ B.

2. If A ::::;~B B, A <~FB B, A <~aF B, or A::;;;' PB, then
A t w

<*TB.

9. DISCUSSION

In this paper, we have presented an automata-theoretic
model for timing-based systems, and have used it to develop
a variety of simulation proof techniques for such systems.
These include timed refinements, timed forward and back­
ward simulations and combinations thereof, and timed
history and prophecy relations. These techniques are
analogous to those described in Part I, [44], for untimed
systems. As in that paper, we present basic results for all of
the simulations, including soundness and completeness
results. The development is organized so that the proofs are
based on the results of Part I. In fact, we have shown that
all the results of Part I carry over to Part II, except for
Proposition 3.12.

The definitions of timed automata and their simulations
involve many choices, such as the choice of the basic axioms
for time-passage steps, whether non-time-passage steps
have nonzero duration or are instantaneous, whether
instantaneous time-passage steps are allowed, whether
or not automata are required to have finitely many (or
countably many) states, whether time-passage should be
represented absolutely or incrementally, what the notion of
external behavior should be, whether the simulations
should require state reachability, etc. Most choices either
lead to longer proofs (see for instance an earlier version of
this paper [43] in which time-passage was represented
absolutely) or do not yield all the properties in this paper.

Our notion of a timed automaton is related to the models
of Merritt, et al. [48] and of Lynch and Attiya [38].
However, these models have more structure than ours, since
they assume that the system being modelled is describable in
terms of a collection of separate tasks, each with associated
upper and lower bounds on its speed. Also, the model of
[48] includes treatment ofliveness, whereas our model does
not. The absence of liveness considerations makes our
model simpler; moreover, we do not lose much power
because many properties of practical interest for timing­
based systems can be expressed as safety properties, given
the admissibility assumption that time increases without
bound (cf. [24]). Lynch and Attiya [38) also extend
simulation techniques to timing-based systems. That work,
however, only considers forward simulations. The extra task
structure of the model of Lynch and Attiya supports the
development of a useful progress measure proof method,
which we do not develop here. On the other hand, the basic
theorems about forward simulations that appear in [38]
are stated in a setting that has more structure than is really
necessary for those theorems.

Lynch and Vaandrager [41] show how a whole class of
process algebraic operators can be defined on timed
automata using the general notion of action transducers.
Bosscher, Polak, and Vaandrager [12] define a language of
linear hybrid systems, inspired by the work of [5, 8], and
provide it with a semantics in terms of timed automata. Our
timed automata can also be used to define the semantics 1

the timed safety automata of Alur and Dill [7, 26]. In •
latter model a finite state restriction is used in order
enable the use of effective model-checking methods, som
thing which is of course not possible in our much mm
general model.

By using our timed automata model as a common seman­
tic basis for several other models for timing-based systems.
we get into a situation where we can easily use a variet)
of formal proof methods, including assertional methods
algebraic methods, and finite-state state exploration
("model-checking") methods. These methods are usable
individually or in combination. It remains to further
develop the various proof methods for timed automata. In
particular, we are interested in extending the methods of
process algebra to our timed automaton model. Our paper
[41] contains the beginning of such work, including defini­
tions of interesting operators on timed automata, and
proofs of substitutivity results for the timed trace semantics,
but it remains to provide useful algebraic laws for reasoning
about the operators.

Our timed simulations have already been used extensively
elsewhere [12, 23, 32, 34-38, 45, 58, 60] for verification of
timed algorithms and systems. More work is needed in
applying timed simulations to additional practical verifica­
tion examples. In particular, nearly all of the examples that
have been carried out so far involve refinements, forward

22 LYNCH AND VAANDRAGER

simulations and history variables. Only [58, 32] involve
backward simulations and combinations of forward and
backward simulations.

Finally, although the timed automaton model presented
here is very general, it has become clear that there are at
least three ways in which it can be extended: to include
treatment of liveness properties, to include probabilistic
transitions, and to include treatment of hybrid systems,
including continuously-communicating components. Some
work on integrating liveness into the present model appears
in [16], and work on integrating probabilistic transitions
appears in [39, 3, 56]. Both liveness and probabilities intro­
duce their own sets of additional proof methods, e.g., tem­
poral logic and Markov analysis. In [12], it has been shown
how linear hybrid systems can be defined in terms of our
timed automata. It remains to develop the treatment of
general hybrid systems, and to integrate all three extensions,
with their proof tools, into a sensibly coordinated whole.

APPENDIX A: OTHER AXIOMS
FOR TIMED AUTOMATA

We consider the relationship between axioms S2 and S2',
as defined in Section 2.1. The relationship between the two
axioms is also investigated in [28]. Define a semi-timed
autornaton to be a timed automaton, except that it does not
have to satisfy S2, but only the weaker (and simpler) axiom
S2'. It is immediate from the definition of a trajectory that
each timed automaton is semi-timed. In this appendix, we
consider the reverse implication.

A.1. Time Determinism

In the original paper [61] of Wang in which the axiom
,2' is proposed, the axiom of time determinacy is also intro­

duced. In our setting this axiom can be formulated as
follows:

TD. Ifs---!!.+ s' and s---!!.+ s", then s' = s".

Axiom TD says that time is deterministic in the sense
that after a certain amount of time has elapsed since the
system arrived in some state, the new state is uniquely deter­
mined provided no internal or visible action has taken
place. We say that a semi-timed automaton is time deter­
ministic if it satisfies axiom TD. The following theorem is
easy to prove.

THEOREM A. I. Each time deterministic semi-timed
automaton is a timed automaton.

Thus, Wang's axiom S2' is equivalent to the trajectory
axiom S2 in a context where the time determinacy axiom
TD is assumed. In our timed automaton model we do not
require the axiom TD: we find it unnatural to allow non­
determinism for discrete actions but not for time-passage
actions. As pointed out in [12], time nondeterministic

timed automata arise naturally in the semantics of linear
hybrid systems, for instance in the modelling of drifting
clocks. Also, several of the constructions in this paper, such
as the /-power, b-power, and superposition construction,
introduce time nondeterminism.

A.2. Countable Time Domains

One way to obtain equivalence between timed and semi­
timed automata is to change the underlying time domain. In
this paper, we have chosen elements of the set R "' 0 of non­
negative real numbers as time-passage actions for timed
automata. Instead, we could have proved all our results for
automata parameterized with an arbitrary time domain as in
[27, 53, 28]. A time domain !?i! = (T, +, 0) consists of a set
T of points in time, equipped with a binary operator + and
constant 0 such that, for all t, u, v E T,

Tl. t+O=O+t=t

T2. t + (u + v) = (t + u) + v

T3. t + u = t + v => u = v

T4. t + u = 0 => t= u = 0

T5. u ~ t /\ v ~ t => u ~ v v v ~ u

where ~ is the precedence relation on T defined by
t ~ u <=>:Iv: t + v = u. Axioms Tl and T2 say that !?i! is a
monoid. Axiom T3 states that 0'J is left-cancellative, axiom
T4 that @is anti-symmetric, and axiom T5 that !?i! is locally
linear. It follows from axioms Tl-T4 that ~ is a partial
ordering with a unique minimal element 0. Axiom T3 allows
us to define the subtraction operator that is required for the
trajectory axiom: if u ~ t then t - u is defined to be the
unique v with u + v = t. Axiom TS implies that ~ is total on
each interval. This last axiom does not occur in [27, 53, 28],
but we fail to have a clear intuition about trajectories
without it. Examples of time domains are the nonnegative
reals, rationals and integers with addition and 0, but also
the sets of finite sequences with concatenation and the
empty sequence.

THEOREM A.2. Suppose A is a semi-timed automaton
over a countable time domain. Then A is a timed automaton.

Proof Suppose that s' ---!!.+A s. We construct a trajectory
w from s' to s. As required, w(0) = s' and w(d) = s. Let
t 1 , t 2 , ... be some arbitrary enumeration of all the times in
the interval (0, d).We define won elements of this sequence,
in order. Let In be the set {O, d, t 1 , ... , tn}· We will induc­
tively construct w so that after w has been defined on In, we
will have that w(t') ~ w(t) for all t', t E In, t' < t. This is
enough to show that w is a trajectory from s' to s.

So suppose that, for some n ~ 0, w has been defined on In,
and that w(t') ~ w(t) for all t', t E In, t' < t. Let u' be the
largest time in In that is smaller than t 11 + 1 , and let u be the
smallest time in In that is larger than t n +I. By the hypothesis

FORWARD AND BACKWARD SIMULATIONS, II 23

about I,,, we have that w(u') ~ w(u). Since u' < t 11 + 1 < u,

axiom S2' implies that there exists a state s such that
(')''"I 11 d u--t >I (D -

wu __________,.sans " wu). elmew(tn+i)=s.
We claim that with this definition of w(t,. + 1), we have

w(t')-~ w(t) for all t', tEln+I• t'<t. Since we already
know this for t', t E I,,, it is enough to consider the case

where one oft', t is equal tot,,+ 1 • We give the argument for

t = tn 1 1 ; the argument for t' = t,, + 1 is analogous.

So suppose t = t,, + 1 • If t' = u' then we already have the
needed claim, w(u') 'n+i -u' w(t,,+ 1). The other possibility

is that t' < u'. But then the claim for I,, implies that
w(t') w(u'). Since also w(u') In+ I - u' w(t n + I), axiom

SI implies that w(t') 1"' 1 · ,. w(t..+i), as needed. I

The above proof relies heavily on the assumption that the

time domain is countable: since the interval [t', t] is

countable we can construct a trajectory from s' to s in an

inductive fashion, state by state. Such a construction is no

longer possible if the time domain is uncountable, as in the
case of R 0

A.3. A Counterexample

At the time we first defined axiom S2, we constructed

a complex counterexample to show that it was stronger

than S2'. The simpler counterexample described below was
subsequently discovered by Steve Schneider.

THEOREM A.3. Let automaton D he defined hy

• statl!s(D) = R :oo X Q ;, 0 ,

• start(D) = { (0, 0)},

• acts(D) = { r} u R +, and

• steps(D) is .1pec!(ied hy (t',q')~n(t,q)~

d E R . /\ t' +cl= t /\ q' < q.

771m D is sen1i-timed, hut not timed.

Proof: One can easily check that D is semi-timed.

H owe~cr, it is not timed: D does not satisfy the trajectory

axiom S2 hccause that would imply, for instance, that the

interval r 0, I] of reals can be injectivcly mapped into the
rationals. I

In the context of the present paper, there is no compelling

technical reason why one should use S2 instead of S2'. In

fact, in an earlier version of this paper [42] we have

developed a theory of simulations for semi-timed automata.

However, we find the theory for semi-timed automata less

natural. For instance, the semi-timed automaton D of

Theorem A.3 is a t-forest according to the definitions of

[42], which is strange since an execution that ends in (1, 1)

may pass through state (~, ~)or through state (~' ~_), b~t not
through both. Also, the appealing local charactenzat10n of

t-forcsts of Lemma 3.4 does not hold fort-forests as defined

in (42]. Trajectories play a vital role in the t?eory of h~brid
systems (21] . Since we would like to view our timed

automata as an underlying semantic domain for both timed

and hybrid systems, this provides additional motivation for
our choice for the axiom S2.

APPENDIX B: GLOSSARY OF CONVENTIONS

a Actions

b Backward simulations

c Choice functions

d Positive real numbers

f Forward simulations

g Forward--backward and backward-forward simulations

h History relations

Indices
k Symbols

n Natural numbers

p Timed sequence pairs and prophecy relations

r Refinements
s States

Real numbers plus infinity

u States
w
A,B

G

I
K
L
M,N
P,Q

R

Trajectories

Timed automata
Digraphs

Internals (and also invariants)

Sets of symbols

Sets of sequences

Types of timed simulation mappings

Timed trace properties
Relations

S, U Sets of states

W Timed execution fragments

X, Y, Z Sets
ix Execution fragments

(J Sequences of external actions (traces)

y Sequences of actions

i5 Timed sequence

ii. The empty sequence

n Projections

a, p Sequences

r The internal action

ACKNOWLEDGMENTS

We thank the referees, Alan Jeffrey, David Griffioen, Albert Meyer, Jeff

Sanders, Roberto Segala, Steve Schneider, J!llrgen S(l)gaard-Andersen,

Eugene Stark, and George Varghese for their valuable criticism and useful

comments on this paper and on [44]. We also thank the organizers of the

1991 REX Workshop for providing the environment for an active research

interchange that led to many improvements in our work.

Received March 2, J 993; final manuscript received October 4, 1995

REFERENCES

1. Abadi, M., and Lamport, L. (1991), The existence of refinement

mappings, Theoret. Comput. Sci. 82 (2): 253-284.

24 LYNCH AND VAANDRAGER

2. Abadi, M., and Lamport, L. (1994), An old-fashioned recipe for
real time, ACM Trans. Programming Languages Systems 16 (5),
1543-1571.

3. Aggarwal, S. (1994), "Time Optimal Self-Stabilizing Spanning Tree
Algorithms," Master's thesis, MIT Electrical Engineering and Com­
puter Science.

4. Alur, R. (1991), "Techniques for Automatic Verification of Real­
time Systems," Ph.D. Thesis, Dept. of Computer Science, Stanford
University.

5. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T. A., Ho,
P.-H., Nicollin, X., Olivero, A., Sifakis, J., and Yovine, S. (1995), The
algorithmic analysis of hybrid systems, Theoret. Comput. Sci. 138,
3-34.

6. Alur, R., Courcoubetis, C., Henzinger, T. A., and Ho, P.-H. (1993),
Hybrid automata: An algorithmic approach to the specification and
verification of hybrid systems, in "Grossman et al. [21],"pp. 209-229.

7. Alur, R., and Dill, D. L., (1995), A theory of timed automata, Theoret.
Comput. Sci. 126, 183-235.

8. Alur, R., Henzinger, T. A., and Ho, P.-H., (1993), Automatic symbolic
verification of embedded systems, in "Proceedings of the 14 th Annual
IEEE Real-Time Systems Symposium."

9. Beaten, J.C. M., and Bergstra, J. A. (1991), Real time process algebra,
J. Formal Aspects Comput. Sci. 3 (2), 142-188.

10. Baeten, J. C. M., and Klop, J. W., Eds. (1990), "Proceedings
CONCUR 90, Amsterdam," Lecture Notes in Computer Science,
Vol. 458, Springer-Verlag, Berlin/New York.

11. Berry, G., and Cosserat, L. (1984), The Esterel synchronous program­
ming language and its mathematical semantics, in (S. D. Brookes,
A. W. Roscoe, and G. Winskel, Eds.), "Seminar on Concurrency"
Vol. 197, pp. 389-448, Lecture Notes in Computer Science, Springer­
Verlag, Berlin/New York.

12. Bosscher, D. J. B., Polak, I., and Vaandrager, F. W. (1994), Verifica­
tion of an audio control protocol, in Langmaack et al. [33],
pp. I 7G-192; Full version available as Report CS-R9445, CW!,
Amsterdam.
Cleaveland, W. R., Ed. (1992), "Proceedings CONCUR 92, Stony
Brook, NY," Lecture Notes in Computer Science, Vol. 630, Springer­
Verlag, Berlin/New York.

A. Davies, J., and Schneider, S., (1995), A brief history of Timed CSP,
Theoret. Comput. Sci. 138, 243-271.

15. De Bakker, J. W., Huizing, C., de Roever, W. P., and Rozenberg, G.,
Eds. (1992), "Proceedings, REX Workshop on Real-Time: Theory in
Practice, Mook, The Netherlands, June 1991," Lecture Notes in
Computer Science, Vol. 600, Springer-Verlag, Berlin/New York.

16. Gawlick, R., Segala, R., S1<1gaard-Andersen, J. F., and Lynch, N.
(1994), Liveness in timed and untimed systems, in "Proceedings 21 st
ICALP, Jerusalem," Volume 820 of Lecture Notes in Computer
Science (S. Abiteboul and E. Shamir, Eds.), Springer-Verlag, Berlin/
New York; full version appears as MIT Technical Report
MIT/LCS(TR-587.

17. Gerber, R., and Lee, I. (1989), The formal treatment of priorities in
real-time computation, in "Proceedings, 6th IEEE Workshop on Real­
Time Software and Operating Systems."

18. van Glabbeek, R. J. (1990), "Comparative Concurrency Semantics and
Refinement of Actions," Ph.D. thesis, Free University, Amsterdam.

19. Griffioen, W. 0. D. (1995), "Proof-Checking an Audio Control
Protocol with LP, Report CS-R9570, CW!, Amsterdam.

20. Groote, J. F. (1990), Specification and verification ofreal time systems
in ACP, Report CS-R9015, CW!, Amsterdam; an extended abstract
appeared in "Protocol Specification, Testing and Verification, X,
Ottawa" (L. Logrippo, R. L. Probert and H. Ural, Ed.), pp. 261-274.

21. Grossman, R. L., Nerode, A., Ravn, A. P., and Rische!, H., Eds. (1993),
"Hybrid Systems," Lecture Notes in Computer Science, Vol. 736,
Springer-Verlag, Berlin/New York.

22. Guttag, J. V., and Homing, J. J. (1993), "Larch: Languages and Tools
for Formal Specification," Springer-Verlag, Berlin/New York.

23. Heitmeyer, C., and Lynch, N. A. (1994), The generalized railroad
crossing-A case study in formal verification of real-time systems, in
"Proceedings, 15th IEEE Real-Time Systems Symposium, San Juan,
Puerto Rico, December 1994," pp. 120-131.

24. Henzinger, T. A. (1992), Sooner is safer than later, Inform. Process.
Lett. 43, 135-141.

25. Henzinger, T. A., Manna, Z., and Pnueli, A. (1992), Timed transition
systems, in de Bakker et al. [15], pp. 226-251.

26. Henzinger, T. A., Nicollin, X., Sifakis, J., and Yovine, S. (1994),
Symbolic model checking for real-time systems, Inform. and Comput.

111, 193-244.
27. Jeffrey, A. (1992), A linear time process algebra, in "Proceedings of the

3rd International Workshop on Computer Aided Verification,
Aalborg, Denmark" (K. G. Larsen and A. Skou, Eds.), pp. 432-442,
Lecture Notes in Computer Science, Vol. 575, Springer-Verlag, Berlin/
New York.

28. Jeffrey, A. S. A., Schneider, S. A., and Vaandrager, F. W. (1993),
"A Comparison of Additivity Axioms in Timed Transition Systems,"
Report CS-R9366, CWI, Amsterdam.

29. Klarlund, N., and Schneider, F. B. (1993), Proving nondeterrninisti­
cally specified safety properties using progress measures, Inform. and
Comput. 107, 151-170.

30. Klusener, A. S. (1992), The silent step in time, in Cleaveland [13],
pp. 421-435.

31. Lamport, L. (1994), The temporal logic of actions, ACM Trans.
Programming Languages Systems 16 (3), 872-923.

32. Lampson, B. W., Lynch, N. A., and S0gaard-Andersen, J. F. (1993),
Correctness of at-most-once message delivery protocols, in
"FORTE'93-Sixth International Conference on Formal Description
Techniques, Boston, October 1993," pp. 387-402.

33. Langmaack, H., de Roever, W.-P., and Vytopil, J., Eds. (1994),
"Proceedings of the Third International School and Symposium on
Formal Techniques in Real Time and Fault Tolerant Systems, Lubeck,
Germany, September 1994," Lecture Notes in Computer Science,
Vol. 863, Springer-Verlag, Berlin/New York.

34. Luchango, V. (1994), "Using Simulation Techniques to Prove Timing
Properties," Master's thesis, MIT Electrical Engineering and Com­
puter Science.

35. Luchango, V., Siiylemez, E., Garland, S., and Lynch, N. A. (1994),
Verifying timing properties of concurrent algorithms, in "Proceedings
of the Seventh International Conference on Formal Description
Techniques for Distributed Systems and Communications Protocols,
Berne, Switzerland, October 1994," pp. 239-259, IFIP WG6.I,
Elsevier, Amsterdam (preliminary version; final version to be pub­
lished by Chapman & Hall).

36. Lynch, N. A. (1994), Simulation techniques for proving properties of
real-time systems, in "Proceedings REX School/Symposium: A Decade
of Concurrency, Noordwijkerhout, The Netherlands, June 1993"
(J. W. de Bakker, W. P. de Roever, and G. Rozenberg, Eds.),
pp. 375-424, Lecture Notes in Computer Science, Vol. 803, Springer­
Verlag, Berlin/New York.

37. Lynch, N. A. (1996), "Distributed Algorithms," Morgan Kaufmann,
San Mateo, CA.

38. Lynch, N. A., and Attiya, H. (1992), Using mappings to prove timing
properties, Distrib. Comput. 6 (2), 121-139.

39. Lynch, N. A., Saias, I., and Segala, R. (1994), Proving time bounds for
randomized distributed algorithms, in "Proceedings of the 13th
Annual ACM Symposium on the Principles of Distributed Computing,
Los Angeles, CA," pp. 314-323.

40. Lynch, N. A., and Tuttle, M. R., A hierachical correctness proofs
for distributed algorithms, in "Proceedings of the 6th Annual ACM
Symposium on Principles of Ditributed Computing," pp. 137-151;

FORWARD AND BACKWARD SIMULATIONS, !I 25

a full version is available as MIT Technical Report MIT/LCS/
TR-387.

41. Lynch, N. A., and Vaandrager, F. W. (1994), Action transducers and

timed automata, in Cleaveland [13], pp. 436 455; full version

available as CWI Report CS-R9460, Amsterdam. November 1994, and

as Technical Memo MIT/LCS/TM-480.b, MIT LCS, Cambridge, MA,
October 1994.

42. Lynch, N. A., and Vaandrager, F. W. (1992), Forward and backward

simulations for timing-based systems, in de Bakker et al. [15],
pp. 397-446.

43. Lynch, N. A., and Vaandrager, F. W., "Forward and Backward

Simulations. II. Timing-Based Systems," Report CS-R9314, CWI,

Amsterdam, March 1993; also, MIT/LCS/TM487.b, Laboratory

for Computer Science, Massachusetts Institute of Technology.

Cambridge, MA.

44. Lynch, N. A., and Vaandrager, F. W. (1995), Forward and backward

simulations. I. Untimed systems, Inform. and Comput. 121, 214--233;

also Technical Memo MIT/LCS/TM-486.b (new version ofTM-486),

Laboratory for Computer Science, Massachusetts Institute of Tech­

nology, Cambridge, MA, August 1994.

45. Lynch, N. A., and Weinberg, H. B. (1995), Proving correctness of a

vehicle maneuver: Deceleration, in "Proceedings, Second European

Workshop on Real-Time and Hybrid Systems, Grenoble, France,"

May/June 1995, pp. 196-203.
46. Manna, Z., and Pnueli, A. (1992), "The Temporal Logic of Reactive

and Concurrent Systems: Specification," Springer-Verlag, Berlin/

New York.
47. Manna, Z., and Pnueli, A. (1993), Verifying hybrid systems, in

Grossman et al. [21], pp. 4--35.
48. Merritt, M., Modugno, F., and Tuttle, M. (1991), Time constrained

automata, in "Proceedings CONCUR 91, Amsterdam" (J. C. M.

Baeten and J. F. Groote, Eds.), pp. 408-423, Lecture Notes in Com­

puter Science, Springer-Verlag, Berlin/New York.

49. Milner, R. (1989), "Communication and Concurrency," Prentice-Hall

International, Englewood Cliffs, NJ.
50. Moller, F., and Tofts, C. (1990), A temporal calculus of communi­

cating systems, in Baeten and Kl op [10], pp. 401-415.

51. Nicollin, X., Olivero, A., Sifakis, J., and Yovine, S. (1993), An

approach to the description and analysis of b) brid systems. ill

Grossman et al. [21], pp. 149-178.

52. Nicollin. X .. Richier, J.-L., Sifakis. Land Voiron, J., ATP: An algebra
for timed processes. in "Proceedings IFIP TC2 Working Conference

on Programming Concepts and Methods, Sea of Gaiilea, Israel"

(M. Broy and C. B. Jones, Eds.). pp. 402-429.

53. Nicollin, X., Sifakis, J., and Yovine, S. I 19931. From ATP to timed

graphs and hybrid systems, Acta lnjimn. 30121. 181 ·202.
54. Pnueli, A. I 1994 l. Development of hybrid systems, in Langmaack ~I ,if.

[33], pp. 77-85.
55. Reed, G. M., and Roscoe. A. W. (1988 l. A timed model for

communicating sequential processes, Theoret. Comput. Sci. 58,
249-261.

56. Segala, R. (1995), "Modelling and Verification of Randomized Dis­

tributed Real-Time Systems," Ph.D. thesis, Department of Electrical

Engineering and Computer Science, Massachusetts Institute of

Technology, May, 1995.
57. Sistla, A. P. (1991), Proving correctness with respect to non­

deterministic safety specifications, il!form. Process. Leu. 39 I l l,

45-49.
58. Sogaard-Andersen, J. (1993). "Correctness of Protocols in Distributed

Systems," Ph.D. thesis. Technical University of Denmark, Lyngby,

Denmark (ID-TR: 1993-131); also, [59].
59. Sogaard-Andersen, J. F., Lampson, B. W., and Lynch. N. A. (1993),

"Correctness of Communication Protocols---A Case Study," Technical

Report MIT/LCS/TR-589, Laboratory for Computer Science, MIT,

Cambridge, MA.
60. Soylemez, E. (1994), "Automatic Verification of the Timing Properties

of MMT Automata," Master's thesis, Department of Electrical

Engineering and Computer Science, Massachusetts Institute of

Technology.
61. Wang Yi (1990), Real-time behaviour of asynchronous agents, in

Baeten and Klop [10], pp. 502-520.
62. Zwarico, A. (1988), "Timed Acceptance: An Algebra of Time

Dependent Computing," Ph.D. thesis, Department of Computer and

Information Science, University of Pennsylvania.

