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A general automaton model for timing-based systems is presented 
and is used as the context for developing a variety of simulation proof 
techniques for such systems. These techniques include ( 1) refine­

ments, ( 2) forward and backward simulations, ( 3) hybrid forward­
backward and backward-forward simulations, and ( 4) history and 

prophecy relations. Relationships between the different types of 
simulations, as well as soundness and completeness results, are stated 
and proved. These results are (with one exception) analogous to the 

results for untimed systems in Part I of this paper. In fact, many of 
the results for the timed case are obtained as consequences of the 
analogous results for the untimed case. lGJ 1996 Academic Press. Inc. 

1. INTRODUCTION 

Most of the existing semantic models, languages and 
logics for describing and reasoning about timing-based 
systems implicitly view an execution as an alternating 
sequence of instantaneous "discrete" actions and "con­
tinuous" phases during which time advances [2, 5, 7-9, 11, 
14, 17, 20, 25-27, 48, 50, 52, 54, 61, 62]. To each system 
described in any of these formalisms one can associate a 
transition system or automaton consisting of ( 1) a set of 
states, ( 2) a set of initial states, ( 3) a set of discrete actions, 
( 4) a set of discrete s~eps s' ~ s asserting that "from states' 
the system can ir . .;tantaneously move to state s via the 
occurrence of the discrete action a," and, finally, (5) a set of 
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time-passage steps s' -5!..... s asserting that "from state s' the 
system can move to states during a positive amount of time 
din which no discrete action occurs." 

These transition systems provide a very abstract view of 
the behavior of the original system in which many aspects, 
such as the number of parallel components, the communica­
tion between these components, and the way in which a 
system evolves during the continuous phases, are no longer 
represented. Also, they are in general highly infinite and 
may even have uncountable state spaces. Nevertheless, it is 
clear that these transition systems play a central role in the 
theory of timing-based systems: 

• Many important behavioral preorders and equivalen­
ces, for instance those based on traces, failure pairs and 
bisimulations, can be defined in terms of states and transi­
tions. Thus transition systems contain enough information 
to define what it means that one system implements or is 
equivalent to another system. Also, the transition systems 
still contain enough information to serve as models for 
many temporal and modal logics, i.e., they can be used to 
define what it means that a system satisfies a formula. 

• Many simulation proof techniques for verification of 
implementation and equivalence relations between timing­
based systems can be defined and studied at the level of 
transition systems. 

• Transition systems provide an excellent framework for 
comparing and interrelating a wide variety of different for­
malisms for timing-based systems. Moreover, since they 
also play a central role in the "comparative semantics" of 
untimed discrete event systems [ 18 ], they provide a basis 
for comparing timed and untimed formalisms. 

In this paper, we define a formal transition system model 
for timing-based systems and use it to develop a variety of 
simulation proof techniques. The key characteristic of the 
transition systems discussed above is the presence of time-
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passage steps and the specific interpretation of these steps. 
The transition systems always satisfy the following two 
properties. First, if time can advance by a particular amount 
din two steps (with no intervening discrete steps), then it 
can also advance by d in a single step. And second, if time 
can advance by d in one step from state s' to state s, then 
there exists an assignment (a trajectory) that maps all times 
in the interval [ 0, d] to automaton states in a "consistent" 
way to explain how the system evolves from s' to s. This 
motivates our formal definition of a timed automaton as an 
automaton (in the sense of Part I) whose set of actions 
includes the set R + of positive reals, and which satisfies the 
above two properties for time-passage. We believe that 
timed automata, defined in this way, provide an excellent 
basis for defining and studying behavioral preorders and 
simulation proof techniques for timing based systems. Since 
timed automata can be viewed as an underlying semantic 
domain for any of the models, languages and logics of[2, 5, 
7-9, 11, 14, 17, 20, 25-27, 48, 50, 52, 54, 61, 62], all the 
results that we obtain for timed automata carry over 
directly to those settings. 

For convenience, we use R + as our domain of times in 
this paper. The need for dense-time models has been well 
discussed in [ 4]. However, for the purpose of generality we 
could have parameterized our timed automata by an 
arbitrary (possibly discrete) time domain in the sense of [27, 
53, 28]. We do not assume a general lower bound on the 
time between events, or an upper bound on the number of 
instantaneous actions; this choice is also made in, e.g., [7, 2, 
9, 25, 48, 53, 61 ], but still distinguishes our model from 
many others, e.g., [11, 17, 20, 50, 52, 55, 62]. The cost of 
this generality is that our timed automata may produce 
some annoying "Zeno executions," i.e., infinite executions in 
which the sum of the time-passage actions is bounded. 

In order to define correctness for timed automata, we 
define two notions of external behavior. First, as the finite 
behaviors of a timed automaton, we take the finite timed 
traces, each of which consists of a finite sequence of timed 
visible actions together with a final time of observation. 
Second, as the infinite behaviors, we take the admissible 
timed traces, each of which consists of a sequence of timed 
visible actions that occurs in some execution in which the 
time grows unboundedly (i.e., a "non-Zeno" infinite execu­
tion). In [ 16] it is argued that inclusion of finite and 
admissible timed traces is a good notion of implementation, 
provided that the implementation automaton has a suf­
ficiently rich collection of admissible executions. 

Inclusion of finite and admissible timed traces is implied 
by inclusion of finite and infinite traces (if we consider the 
R + actions as external/visible). Consequently all the 
simulation proof techniques that we developed in Part I are 
still "sound" for proving inclusion of timed traces, in the 
sense that if one has established a simulation between timed 
automata A and B it follows that the timed traces of A are 

included in those of B. However, "completeness" is lost in 
the sense that it may occur that the timed traces of a timed 
automaton A are included in those of a timed automaton B, 
but that there exists no simulation from A to B, not even if 
it is allowed to use auxiliary intermediate timed automata. 
One reason for this is that several of the constructions that 
were used in the proofs of completeness results in Part I, 
such as the canonical automaton and the unfolding, do not 
yield timed automata in general. Also-and this is much 
more serious-inclusion of timed traces differs from inclu­
sion of traces in the case of systems with internal actions. 

EXAMPLE 1.1. Let A be the timed automaton that per­
forms no discrete actions but just lets time advance: the set 
of states of A is R "' 0, with 0 the initial state, and there is a 
step t --£4 t + d, for each t E R "' 0 and d E R +. Let B be the 
timed automaton that behaves exactly as A, except that it 
performs an internal r-step at time 1: the set of states of B 
is R ;;,,ox {T, F}, with (0, T) the initial state, and there are 
steps 

• (t,T)~(t+d,T), for each teR"' 0 and deR+ with 
t+d::;;; l; 

• (1, T)-4(1, F); 

• ( t, F) ~ ( t + d, F ), for each t E R "' 0 and d E R +. 

Then A and B have different sets of traces since A has a trace 
consisting of the single (time-passage) action 2, which B 
does not have. 

In our opinion, this example shows that traces are not 
the right notion ofbehavior for timed automata: through the 
absence of certain traces with large time-passage steps the 
presence of certain internal actions in the system is revealed, 
and thus internal actions are not truly invisible. Internal 
actions have received proper attention in the context of 
process algebras based on bisimulation or failures, and 
thus the two systems of Example 1.1 are identified in the 
approaches of (for instance) [30, 55, 14]. In models based 
on linear time semantics, however, internal (or stuttering) 
actions have largely been ignored. Abadi and Lamport [2] 
advocate the use of untimed trace inclusion (logical impli­
cation in TLA) as an implementation relation for timed 
systems. Although this "old-fashioned recipe" works in 
many practical cases, the two systems of Example 1.1, which 
can easily be translated to the state-based setting of [2], 
indicate that it cannot be used in general, and that a serious 
effort is required to fully adapt existing formalisms for 
untimed systems to the timed setting. 

Simulation methods have long been used successfully for 
the verification of untimed concurrent systems. In Part I of 
this paper [ 44], we gave a unified, comprehensive presen­
tation of simulation techniques for untimed systems, 
including refinements, forward simulations, backward 
simulations, forward-backward and backward-forward 
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simulations, history and prophecy relations. We showed 
relationships among the different types of simulations and 
soundness and completeness theorems. Part I also contains 
pointers to examples of uses of simulation methods for 
verification. 

Because simulations have been so successful for untimed 
systems, we believe that they will also prove to be success­
ful for timed systems. (Considerable evidence for this is 
described below.) Thus, in writing Part II of this paper, our 
goal has been to define timed versions of all the simulations 
in Part I (timed refinements, timed forward simulations, 
etc.) in terms of timed automata, and to establish the timed 
versions of all the soundness, completeness and other results 
of Part I. 

The definitions of all of our timed simulations are 
analogous to the definitions of the corresponding untimed 
simulations in Part I, but are based on our new notions of 
external behavior. It turns out that the results for timed 
simulations are almost entirely analogous to those for the 
untimed simulations (even though it requires considerable 
effort to prove this). In fact, in many cases, we are able to 
derive the results for timed simulations as consequences of 
the results for untimed simulations. In the remaining cases, 
new proofs analogous to those in Part I are presented. Our 
presentation highlights the adaptability of the various 
simulation techniques from the untimed to the timed set­
ting. There is just one minor result from Part I, Proposi­
tion 3.12, that does not carry over to the timed setting. We 
remark that we found the definitions involving timed 
automata and their simulations quite difficult to get "right." 
These definitions involve many choices, most of which 
either lead to longer proofs or do not yield all the properties 
in this paper. The problem to develop a theory of timed 
transition systems and timed simulations with analogues of 
all results of Part I is still open. 

This paper does not contain examples of verifications 
carried out using timed simulations. However, our timed 
simulations have already been used extensively elsewhere 
[ 12, 23, 32, 34-38, 45, 58, 60]. The algorithms and systems 
verified in these papers include toy examples such as coun­
ters and process races, as well as substantial real examples 
such as a clock-based at-most-once message delivery 
protocol, a clock synchronization algorithm, two mutual 
exclusion algorithms, a leader election algorithm, and a 
communication protocol used in a consumer electronics 
system. They also include a toy process control example 
involving control of a railroad crossing gate. An interesting 
feature of these proofs is that the simulations have been used 
not only to prove "ordinary" safety properties, as in the 
untimed setting, but also to prove timing properties, e.g., 
upper and lower bounds on time. In this way, the power of 
simulation techniques seems to be much greater in the timed 
setting than in the untimed setting. Also, the systems 
verified are typically parameterized by arbitrary parameters 

representing process speeds, message delivery times, clock 
rates, etc., so that the results are very general. In [35, 19], 
three of the proofs are automated using the Larch Prover 
[22]. 

We consider the main contributions of this paper to be 
the following: (a) The definition of a timed automaton and 
of its external behavior. (b) The extension of simulation 
notions for untimed systems to the timed setting. ( c) The 
unified presentation of all the simulation techniques 
together with their basic soundness and completeness 
properties. ( d) The presentation of many auxiliary defini­
tions and results, for instance about sampling of computa­
tions, timed forests, timed unfolding, and a timed version of 
the historization construction of [ 29]. ( e) The fact that our 
presentation parallels, and is closely based on, a similar 
development for untimed systems. 

The rest of the paper is organized as follows. Section 2 
contains the definitions for timed automata and their execu­
tions and traces. Section 3 contains some definitions and 
results for restricted types of timed automata. Section 4 dis­
cusses the structures that can be obtained as the behaviors 
of timed automata. Section 5 contains the definitions of all 
the timed simulations. Sections 6 and 7 contain the major 
results of the paper-the relationships among the timed 
simulations and the soundness and completeness results. 
Section 6 contains those results that are derived from 
corresponding results for the untimed case, while Section 7 
contains those results that require new proofs, in parti­
cular, the construction of auxiliary (intermediate) timed 
automata. Section 7 also contains the single example of a 
result from Part I that does not carry over to the timed set­
ting. Section 8 describes how invariants can be included in 
the simulations. Finally, Section 9 contains some conclu­
sions. Appendix A contains a discussion of some alternative 
axioms for timed automata, and Appendix B gives a 
glossary of notational conventions that we use. Because of 
the strong dependence of this paper on Part I [ 44], we have 
not tried to write this paper in a self-contained manner. 
Thus, we employ freely the notation and definitions of 
Part I, and refer in many places to the results from Part I. 

2. TIMED AUTOMATA AND THEIR BEHAVIORS 

In this section, we present the timed automaton model. 
We define "timed executions," which describe how timed 
automata operate, and "timed traces," which describe their 
externally-visible behavior. A timed execution includes 
information about discrete changes to the automaton's 
state, plus information about the evolution of the state as 
time passes continuously. 

Since timed automata are a special case of the ( untimed) 
automata defined in Part I of this paper [ 44 ], the notions of 
"execution" and "trace" for untimed automata also make 
sense for timed automata. We relate the notions of execution 
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and timed execution for a timed automaton: an execution 
can be regarded as "sampling" the state information of a 
timed execution at a countable number of points in time. 
Also, we relate the notion of trace and timed trace. 

2.1. Timed Automata 

A timed automaton (or timed transition system) A is an 
automaton (as defined in Part I) whose set of actions 
includes R +, the set of positive reals. 1 Actions from R + are 
referred to as time-passage actions, while non-time-passage 
actions are referred to as discrete actions. We let d, d', ... 
range over R + and more generally, t, t', ... over the set 
R "' 0 u { oo} of nonnegative real numbers plus infinity. The 
set of visible actions is defined by vis( A) ~ ext( A) - R +. In 
this part of the paper, A, B, ... will range over timed 
automata. We assume that a timed automaton satisfies two 
axioms. 

S 1. Ifs' --1!.+ s" and s" ...!!:.. s, then s' d + d' s. 

For the second axiom, we need an auxiliary definition of a 
trajectory, which describes the state changes that can occur 
during time-passage. Namely, if I is any left-closed interval 
of R "' 0 beginning with 0, then an I-trajectory is a function 
w: I-+ states(A) such that 

w(t)~w(t') for all t, t' EI with t < t'. 

Thus, a trajectory assigns a state to each time in the interval 
I, in a "consistent" manner. We define w. !time, the "last 
time" of w, to be the supremum of I. In particular, if I is an 
infinite interval then w. !time is oo. We define w ./state to be 
w( 0 ), and if I is right-closed, we also define w. !state to be 

'.w.ltime). A trajectory with a domain that is the single­
>int interval [O, O] is also called a trivial trajectory. A tra­

.:ctory for a step s' --1!.+ s is a [ 0, d ]-trajectory such that 
w ./state= s' and w. !state= s. Now we can state the second 
axiom. 

S2. Each time-passage step s' --1!.+ s has a trajectory. 

Axiom SI allows repeated time-passage steps to be com­
bined into one step. Axiom S2 is a kind of converse to SI; 
it says that any time-passage step can be "filled in" with 
states for each intervening time, in a consistent way. 

1 The decision to use only positive reals as time-passage actions is a 
matter of taste. We could have allowed for a 0-action with an additional 
axiom 

SO. s' -2.. s if and only ifs' = s. 
However, we would like to distinguish the discrete action r from the time­
passage action 0, for both conceptual and technical reasons: the definitions 
of several process algebraic operations on timed automata, as discussed in 
[ 42 ], become much more involved if r's are treated as time-passage 
actions. 

In the modelling of hybrid systems, trajectories are often 
used to describe the evolution of physical parameters 
such as position, velocity, acceleration, temperature, and 
pressure. In such cases, each trajectory w is describable as a 
continuous function of time. Several models for hybrid 
systems [ 47, 6] include the assumption that trajectories are 
continuous. However, besides the model of this paper there 
are also models that do not include such an assumption 
[ 51 ] , and in fact we do not need continuity of trajectories 
for our results. 

Axiom S2 is a strengthening of a similar axiom proposed 
by Wang [61] and used in [42, 53], which, rephrased in 
our terminology, reads: 

S2'. Ifs' --1!.+ sand 0 < d' < d, then there is an s" such that 
s' -1!:..+s" and s" d-d' s. 

The stronger condition seems natural to us-for example, it 
provides a direct way of modelling changes in physical 
parameters in a hybrid system. Besides, we need it for some 
of our results, for instance, Lemma 3.4. In Appendix A, we 
discuss the relationship between axioms S2 and S2' in more 
detail and show that S2' does not in general imply S2. 

It is possible to combine two "compatible" trajectories of 
a timed automaton A into one: if w1 is an 11-trajectory, 
where 11 is right-closed, if w2 is an / 2-trajectory, if 
w1.lstate=w2 .fstate, and if we let l1 =w 1.ltime, then we 
can define w1 • w2 to be the least function w such that 
w(t) = w1(t) fort E / 1, and w(t + 11 ) = w 2 ( t) fort E / 2 • 

LEMMA 2.1. If w = w1 • w2 then w is an I-trajectory, 
whereI=I1 u{t+l1 I tE/2}. 

Proof Choose t, t' EI with t < t'. We show that 
w(t) ~ w(t'). If t' ~ 11, this follows from the fact that w1 

is an 11-trajectory, while if t ~ / 1, this follows from the fact 
that w2 is an / 2-trajectory. 

The remaining case is where t < 11 < t'. In this case, the 
fact that w1 is an I 1-trajectory implies that w1(t) ~ w 1 • 

!state, which implies that w(t) ~ w 1 .!state. Also, the fact 
that w2 is an / 2-trajectory implies that w2.fstate ~ 
w2(t' - Ii), which implies that w2 ./state~ w( t' ). Since 
w1 .!state= w2 fstate, axiom SI implies that w(t) ~ w( t'), 
as needed. I 

Likewise, we may combine a countable sequence of 
"compatible" trajectories into one: if w; is an !,trajectory, 
for each positive integer i, where all I; are right-closed, if 
W;.lstate=w;+ 1-fstate and if we let l;=W;.ltime, for all i, 
then the infinite concatenation w 1 • w2 • w 3 ••• is defined to 
be the least function w such that w(t + Lj<i lj) = w;(t) for all 
tel;. 

LEMMA 2.2. If w = w1 • w2 · w3 ••• then w is an I-trajec­
tory, wherel=U;{t+L,j<iljl tel;}· 
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2.2. Timed Executions 

Since a timed automaton is a special case of an 
automaton (as defined in Part I), we already have a notion 
of execution for timed automata; an execution is an alternat­
ing sequence of states and actions (including time-passage 
actions as a special case), subject to the natural consistency 
constraints. However, this type of execution only describes 
the system state at a countable number of points in time. 
Since our trajectory axiom gives us the ability to associate 
states with all the real times occurring during a time-passage 
step, we define a notion of timed execution, which includes 
such information. The usual kind of execution can be 
regarded as "sampling" a timed execution at countably 
many points in time, as we show in Section 2.4.2 below. 

2.2.1. Basic Definitions 

A timed execution fragment of a timed automaton A is a 
finite or infinite alternating sequence W=w 0 a 1 w 1a 2 w2 • ··, 

where: 

1. Each w; is a trajectory and each a; is a discrete action. 

2. If W is a finite sequence then it ends with a trajectory. 

3. If w; is not the last trajectory in W then its domain is 
a right-closed interval and w;.lstate ~ W;+ 1.fstate. 

An execution fragment describes all the discrete changes 
that occur, plus the evolution of the state during time­
passage steps. The last property says that each pair 
(w;, W;+ 1) of successive trajectories in the fragment 
"matches up" properly, in that the intervening discrete 
action a;+ 1 spans properly between the last state of w; and 
the first state of w; + 1 • 

Note that the definition of a timed execution fragment 
allows the modelling of consecutive discrete actions, 
without intervening time-passage. In this case, the trajectory 
between the two discrete actions is trivial. 

If W is a timed execution fragment then we let W. ltime 
denote L; W;.ltime. Note that we allow the case where the 
domain of the final trajectory is of the form [ 0, oo ); in this 
case, W. ltime = co. We define the first state of W, W.fstate, 
to be w0 ./state. A timed execution is a timed execution 
fragment W for which W.fstate is a start state. 

Note that the super-dense computations of [ 47] 
correspond closely to our timed executions. 

2.2.2. Finite, Admissible, and Zeno Timed Executions 

In this paper, we will be interested in certain subclasses of 
the set of timed executions: the finite, admissible, and Zeno 
timed executions. The distinctions involve whether or not 
time passes to infinity, and whether an infinite or finite 
amount of activity occurs. Thus, we define a timed execu­
tion fragment W to be 

I. finite if W is a finite sequence and the domain of its 
final trajectory is a right-closed interval, 

2. admissible if W. ltime = oo, and 

3. Zeno if W is neither finite nor admissible. 

If W is a finite timed execution fragment with final trajec­
tory w;, then W. ltime is finite. In this case, we define 
W. lstate, the last state ofo, to be w;. lstate. We define a state 
s to be t-reachable in timed automaton A provided that 
there is a finite timed execution W such that W. lstate = s. 
The following fact follows directly by axiom S2. 

LEMMA 2.3. A state s of a timed automaton A is t-reach­
able if and only if it is reachable, i.e., there is an ordinary 
finite execution of A that ends in s. 

An important implication of Lemma 2.3 is that any 
technique that can prove that a property holds for all final 
states of (ordinary) finite executions is a sound technique 
for proving that a property holds in all t-reachable states of 
a timed automaton. In particular, induction on the steps of 
ordinary executions is sound in this sense. 

If W is a finite timed execution fragment with final trajec­
tory w;, W' is a timed execution fragment with initial trajec­
tory w0, and w;. lstate = w0.fstate, then we define W. W' to 
be the timed execution fragment obtained by concatenating 
the sequences Wand W', except that the consecutive pair of 
trajectories w; and w0 is replaced by w; · w0. Lemma 2.1 
implies that W· W' is in fact a timed execution fragment. If 
Wand W' are timed execution fragments, then define W' to 
be a t-prefix of W, denoted by W' ~ W, if either W' = W, or 
else W' is finite and there exists a timed execution fragment 
W" such that W' · W" = W. Relation~ is a partial ordering 
on timed execution fragments. 

The admissible timed execution fragments are those in 
which time passes without bound. Since (we believe) time 
does pass without bound in the real world, it is reasonable 
to restrict attention to the admissible timed executions when 
arguing the correctness of a system represented as a timed 
automaton. In this paper, we focus on the admissible and 
finite timed executions, and mostly ignore Zeno timed 
executions. We denote by t-frag*(A ), t-frag 00 (A ), and 
t-frag( A) the sets of finite, admissible, and all timed execu­
tion fragments of A. Similarly, we denote by t-execs*(A), 
t-execs 00 (A), and t-execs(A) the sets of finite, admissible, 
and all timed executions of A. 

The notion of admissibility is the only notion of liveness 
that we include in our model. Many untimed automaton 
models (e.g., [ 40, 46, 31 ] ) include facilities for describing 
rich classes of liveness properties, for example, various 
notions of fairness. In the timed setting, it is often possible 
to replace liveness notions with corresponding timing 
restrictions. These can be expressed by restrictions on time­
passage steps, so they do not require any special machinery. 
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The notion of admissibility is in some sense more tractable 
mathematically than some other liveness notions, e.g., the 
notion of a "fair execution" in the I/O automaton model 
[ 40]. This is because the admissible timed executions of a 
timed automaton can be expressed as the limits of infinite 
sequences of finite timed executions. 

PROPOSITION 2.4. The admissible timed executions are 
exactly the limits of the infinite sequences of finite timed 
executions, where each timed execution in the sequence of a 
t-prefix of the next and the .!time values approach oo. 

The characterization in Proposition 2.4 permits the 
reduction of questions about infinite behaviors to questions 
about their finite prefixes. A similar reduction is not possible 
in untimed models that incorporate fairness. 

One could extend the timed automaton model presented 
here by adding other liveness properties. Such an extended 
model is defined, and its properties explored, in [ 32, 58, 
16]. In [ 32, 58], the extended model is also applied to sub­
stantial communication examples. 

Zeno timed executions are a technical anomaly; they 
represent an infinite amount of activity occurring in a finite 
amount of time, which is (we believe) impossible in reality. 
Nevertheless, our definition of timed automata does admit 
Zeno executions. There are two types of Zeno timed execu­
tions in our model: 

1. those containing infinitely many discrete actions, but 
for which . !time is finite, and 

2. those containing finitely many discrete actions, but 
for which the domain of the final trajectory is a right-open 
interval with a finite supremum. 

For this second type of Zeno timed execution, the "infinite 
amount of activity occurring in a finite amount of time" 
corresponds to an infinite number of time-passage steps 
needed to span the final interval. 

According to our definitions, there are timed automata in 
which from some (or even all) states no admissible timed 
execution fragment is possible. This can be, for instance, 
because from these states time can continue advancing, but 
not beyond a certain point (that is, all timed execution 
fragments starting from these states are Zeno), or because 
time cannot advance at all (that is, a time deadlock occurs). 
Our model does allow time deadlocks. However, in several 
of our theorems we will require that the timed automata be 
"feasible": a timed automaton is feasible provided that each 
finite timed execution is a t-prefix of some admissible timed 
execution. 2 A feasible timed automaton does not have time 
deadlocks, but it will have Zeno timed executions, simply 
because each feasible timed execution hast-prefixes that are 
Zeno timed excutions. 

2 This property is called nonZenoness in [ 2]. 

2.3. Timed Traces 

Since a timed automaton is an automaton (as defined in 
Part I), we already have a notion of trace for timed 
automata. However, the traces of timed automata do not 
provide a sufficiently abstract notion of external behavior 
for timed automata, because they do not reflect the invisible 
nature of time-passage actions (see Example 1.1 in the intro­
duction). In this subsection, we define a new notion of exter­
nal behavior for timed automata, which we call timed traces. 
These do not include explicit time-passage events, but do 
include information about the real time of visible events, as 
well as the final time up to which the observation is made. 

We first define the auxiliary technical notion of a timed 
sequence pair, a general data type that is used in the defini­
tion of a timed trace. 

2.3.1. Timed Sequence Pairs 

Let Kbe any set with Kn R + = 0. Then a timed sequence 
over K is defined to be a (finite or infinite) sequence o over 
Kx R "' 0 in which the time components are nondecreasing, 
i.e., if (k, t) and (k', t') are consecutive elements in 6 then 
t:::::;; t'. We say that o is Zeno if it is infinite and the limit of 
the time components is finite. 

A timed sequence pair over K is a pair p = (o, t), where o 
is a timed sequence over Kand t E R "' 0 u { oo}, such that t 
is greater than or equal to the limit of the time components 
in 6, and equal to this limit if o is an infinite sequence. We 
write p. seq and p. /time for the two respective components 
of p, and denote by tsp(K) the set of timed sequence pairs 
over K. We say that a timed sequence pair p is finite if both 
p. seq and p. ltime are finite, and admissible if p. seq is not 
Zeno and p. !time= oo. 

Let p and p' be timed sequence pairs over K with p finite. 
Then define p ·p' to be the timed sequence pair (p.seq 6, 
p.ltime + p' .!time), where o is the modification of p' .seq 
obtained by addingp.ltime to all the time components. Ifp 
and q are timed sequence pairs over K, then p is a prefix of 
q, denoted by p:::::;; q, if either p = q, or p is finite and there 
exists a timed sequence pair p' such that p . p' = q. Relation 

:::::;; is a partial ordering on the set of timed sequence pairs 
over K. 

We describe how to translate from a sequence over 
Ku R + to a timed sequence pair over K and vice versa. 
First, if fJ is any sequence over Ku R +, then we define the 
time of occurrence of any K-element in p to be the sum of all 
the reals that precede that element in /J. We also define 
fJ. /time to be the sum of all the reals in /J. In case fJ is the 
empty sequence, we define fJ. ltime = 0. Finally, we define 
t-trace((J) to be the timed sequence pair (o, fJ.ltime), where 
o is the subsequence of fJ consisting of all the elements of K, 
each paired with its time of occurrence. 

Conversely, if p is a timed sequence pair over K, then we 
define trace(p), a corresponding sequence over Ku R +. 
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Namely, if p. !time is finite or p. seq is infinite, then let 
trace(p) be the unique sequence fJ over Ku R + such that 
p = t-trace( /3) and such that f3 does not contain two con­
secutive elements of R +. On the other hand, if p. /time is 
infinite and p. seq finite, then let trace(p) be the unique 
sequence /3 over Ku R + such that p = t-trace( /J), such that 
/3 does not contain two consecutive elements of R + prior to 
the last K element, and such that the portion of f3 after the 
last K element is the default sequence 111 · . · . 

Thus by construction: 

LEMMA 2.5. For any timed sequence pair p over K, 
t-trace( trace(p)) = p. 

Let f3 be a sequence over Ku R +. Then we say that f3 is 
admissible if the sum of the positive reals in f3 is infinite. 

LEMMA 2.6. /3 is admissible if and only if t-trace( /3) is 
admissible. 

It is not the case that fJ is finite if and only if t-trace( /J) is 
finite. A counterexample is provided by the infinite sequence 
1 ~ ~ · · · , of which the associated timed sequence pair (A, 1) is 
finite. (Recall that A is the empty sequence.) 

2.3.2. Timed Traces of Timed Automata 

Suppose that W= w0 a 1 w 1a 2 w2 ·• · is a timed execution 
fragment of a timed automaton A. For each a;, define the 
time of occurrence t; to be LJ<i w1.ltime, i.e., the sum of the 
lengths of all the trajectory intervals preceding a; in W. Let 
o = (a 1, t 1 )(a2 , t 2 ) · · · be the sequence consisting of the 
actions in W paired with their times of occurrence. Then 
t-trace( W), the timed trace of W, is defined to be the pair3 

t-trace( W) ~ (o I (vis(A) x R ;;.o), W.ltime). 

Thus, t-trace( W) records the occurrences of visible actions 
together with their times of occurrence, as well as the last 
time. Note that neither internal actions nor time-passage 
actions appear explicitly in the timed trace of W. 

LEMMA 2.7. If W is a timed execution fragment of A then 

t-trace( W) is a timed sequence pair over vis( A). 

LEMMA 2.8. If W = W1 • W 2 is a timed execution frag­

ment of A then t-trace( W) = t-trace( W1) · t-trace( W2). 

A timed trace of A is the timed trace of any finite or 
admissible timed execution of A. Thus, we explicitly exclude 
the traces of Zeno executions. We write t-traces(A) for the 
set of all timed traces of A, t-traces*(A) for the set of.finite 
timed traces, i.e., those that are derived from finite timed 
executions of A, and t-tracesco( A) for the admissible timed 

3 Recall from Part I that the symbol r denotes the projection of a 
sequence on a subset of the domain of its elements. 

traces, i.e., those that are derived from admissible timed 
executions of A. The following lemma is a direct conse­
quence of the definitions. 

LEMMA 2.9. The sets t-traces*( A) and !-traces" (A) con­
sist of finite timed sequence pairs and admissible timed 
sequence pairs over vis( A), respectively. 

These notions induce three natural preorders on timed 
automata. Namely, we define A~~ B to mean that t-traces(A) 
£ t-traces(B), A ~~TB to mean that t-traces*(A) £ 

t-traces*(B), and A ~~TB to mean that t-tracesx:(A) <;; 

t-traces~(B). The kernels of these preorders are denoted by 

=~, =:T and =~T' respectively. 

2.3.3. Moves 

We include in this section one last definition, which is 
used in all the simulation definitions in Section 5. 

Suppose A is a timed automaton, s' and s are states of A, 
and p is a timed sequence pair over vis( A). Then we say that 

• f d , I p • I p (s', p, s) is at-move o A, an wnte s ··"'As, or JUst s ~·+s 
when A is clear, if A has a finite timed execution fragment 
W with W.fstate = s', t-trace( W) = p, and W. lstate = s. 

LEMMA 2.10. Suppose p, p 1 and p2 are timed sequence 

pairs over vis( A) and p = P1 ·P2· 

1. {ls'~ As" and s" !3,. As then s' .f~ As. 

2. Ifs' .J',, A s then there exists s" such that s' !.;. A s" and 

S 11 f.."+ AS. 

2A. Relating Timed and Untimed Execution Fragments 

In this subsection, we present some close connections 
between the timed execution fragments and the (ordinary) 
execution fragments of a timed automaton. Roughly speak­
ing, an execution fragment can be regarded as "sampling" 
the state information in a timed execution fragment at 
a countable number of points in time. This close corre­
spondence allows techniques for reasoning about ordinary 
execution fragments to be used for timed execution 
fragments (and vice versa). 

2.4.1. Execution Fragments of Timed Automata 

Suppose that rx is an (ordinary) execution fragment of 
timed automaton A. We may define various timing notions 
for rx. simply, as follows. 

t-trace( rx.) &. t-trace(trace( rx)) 

rx.. ltime &. trace( rx). /time 

As in Part I, rx is defined to be finite if it is a finite sequence. 
We define rx to be admissible ifrx. !time= oo, and Zeno if it is 
neither finite nor admissible. 
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2.4.2. Sampling 

To see the connections between the timing notions 
defined for I ordinary) executions and the corresponding 
ones for timed executions, we define a notion of"sampling." 

Let cx. = ~"c1 u 1 s1 ••• be an execution fragment of A and let 
H'= w11 h 1 11· 1 ... be a timed execution fragment of A. We 
define two auxiliary functions: f gives for each index i of ex. 
the number of discrete actions that precedes;, and g gives 
for each index i of x the amount of time betweens; and the 
last discrete action preceding s;. Formally, for all i, 

((0)=0. 

. . '((i)+l 
j(I + 1) = Lv) 

g(O) = 0, 

f O 
g(i +I)=) . . 

,g(1) +a;+ i 

if a;+ i discrete, 
otherwise. 

if a;_,. i discrete, 
otherwise. 

We say that x samples W provided that the following condi­
tions are satisfied. 

1. f is a surjective mapping from indices of cx. to indices 
of W. 

2. For all i, s; = w11 ; 1( g(i) ). 

3. For all i > 0 with a; discrete, a,= bfli, and g( i - 1) = 

W.ru .. ii. /time. 

4. cx..ltime= W.ltime. 

5. cx. is finite if and only if W is finite. 

The function/ maps each states; in cx. to the trajectory of W 
to which it belongs. The first condition states that for each 
trajectory of W there should be at least one state of ex. that 
belongs to it. The second condition specifies how function g 
determines the position of s; within the associated trajec­
tory. The third condition guarantees that the discrete 
actions match up, and that the amount of idling in between 
discrete actions is the same for rx and W. The last two condi­
tions ensure that things match up properly at the end of the 
executions. The definition immediately implies that if cx. 
samples W then a. is admissible if and only if W is 
admissible, and x is Zeno if and only if W is Zeno. 

The following two lemmas show the close relationship 
between timed execution fragments and ordinary execution 
fragments. Note that these connections hold for finite, 
admissible and Zeno (timed) executions. The proofs are 
routine; the proof of Lemma 2.11 uses Lemmas 2.1 and 2.2. 

LEMMA 2.11. If cx. is an execution of A then there is a 
timed execution fragment W of A such that cx. samples W. 

LEMMA 2.12. If W is a timed execution fragment of A 
then there is an execution fragment cx. of A such that ex. 
samples W. 

Finally, we relate the definition of timed traces for execu­
tion fragments to the corresponding definition for timed 
execution fragments. 

LEMMA 2.13. If rx samples W then t-trace(rx) = t-trace( W). 

3. RESTRICTED KINDS OF TIMED AUTOMATA 

In this section, paralleling our development in Part I, we 
define certain restricted kinds of timed automata that are 
useful in our proofs. Recall that in Part I, we defined what 
it meant for an untimed automaton to be deterministic, to 
havefinite invisible nondeterminism (fin), and to be aforest. 
Now we define analogous notions of !-deterministic, t-fin, 
and t-forest. 

First, we say that timed automaton A is t-deterministic if 
lstart(A)I = l and for any state s' and any finite timed 
sequence pair p over vis( A), there is at most one states such 
that s' .!.,, A s. It turns out that this notion is equivalent to the 
original notion of determinism: 

LEMMA 3.1. Timed automaton A is !-deterministic if and 
only if it is deterministic. 

Proof Recall that the definition of determinism says 
that !start( All= 1 and that for any state s' and finite 
sequence f3 of actions in ext( A), there is at most one states 
such that s' bs. 

=: We suppose that A is !-deterministic and show that it 
is deterministic. The start condition is immediate. Suppose 
for the sake of contradiction that A is not deterministic; 
then there exist s', fJ, s1 , and s 2 such that s' bsi, s' bs2 
and si #s2 . This means that there are two execution 
fragments, CX.i and cx. 2 , each starting with s' and having trace 
fJ, one of which ends in s1 and the other in s2 . Then 
Lemma 2.11 implies that there are two timed execution 
fragments, W 1 and W 2 , that are sampled by cxi and rx2 
respectively. By Lemma 2.13, Wi and W2 have the same 
timed trace, say p. It follows that s' ~ s 1 and s' -£. s2 , which 
violates t-determinism, yielding the needed contradiction. 

=: We suppose that A is deterministic and show that it 
is !-deterministic. The start condition is immediate. Suppose 
for the sake of contradiction that A is not t-deterministic; 
then there exists', p, s1 , and s2 such that s' -4 s 1 , s' -4 S2, 

and Si #s". This means that there are two timed execution 
fragments, W 1 and W2 , each starting with s' and having 
timed trace p, one of which ends in s 1 and the other in s 2 . 

Then Lemma 2.12 implies that there are two execution 
fragments, cx. 1 and cx. 2 , that sample Wi and W 2 respectively. 
By Lemma 2.13, cx. 1 and rx 2 have the same timed trace, say p. 
By applying axiom S2 to split time-passage actions, we may 
assume without loss of generality that cxi and cx., have the 

fJ r same trace, say /J. It follows that s' =>si and s' ==>s2 , which 
violates determinism, yielding the needed contradiction. I 
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A simple characterization of t-determinism is then 
obtained from Lemma 3.1 and a characterization of deter­
minism in Part I: 

LEMMA. 3.2. A timed automaton A is t-deterministic if 
and only if lstart(A)I = 1, every r transition is of the form 

(s, r, s)for some s, andfor any states' and any action (either 

visible, internal or time-passage) a there is at most one state 
s such that s' -E.+ s. 

Second, we say that A has t-finite invisible nondeterminism 

(t-:fin) if start(A) is finite, and for any states' and any finite 

timed sequence pair p over vis( A), there are only finitely 
many states s such that s' J'.,,,. A s. It is not hard to see that the 
analogous result to Lemma 3.1 fort-fin fails: 

EXAMPLE 3.3. Let A be the timed automaton with no 
visible actions that can do r actions at any time and remem­

bers the times at which it has done these internal actions. 
The states of A consist of components now ER "' 0, initially O, 
and tau-times s R "' 0, initially empty. The allowed steps are: 

• s'--2.+s, where s.now=s'.now and s.tau-times = 
s'. tau-times u { s' .now}, plus 

• s' __:!_,.s, where s.now=s'.now+d and s.tau-times= 
s'. tau-times. 

Then A has fin but does not have t-fin. 

Third and finally, we say that A is a t-forest if every state 
s has a unique timed execution W that leads to it, i.e., such 
that W. lstate = s. In the case of timed automata, the 
original definition of a forest is trivial: no timed automaton 
that contains a time-passage step can be a forest. This is 
because if a states is reached by an execution that ends with 
a time-passage step, then axiom S2 allows that time-passage 
step to be split in two, yielding a different execution leading 
to s. We can obtain a characterization of t-forests, 
analogous to the characterization in Part I for forests: 

LEMMA 3.4. A timed automaton A is a t:forest !land on(v 

if all states of A are reachable, start states have no incoming 

steps, andfor every states, ~f there are two distinct steps lead­

ing to s, r ~ s and r' -i:'... s, then a and a' are distinct time­

passage actions, and either r a-a' r' or r' ~ r (depending 

on whether a> a' or a' >a). 

Proof =: All states in a t-forest are reachable by 
Lemma 2.3. It is also easy to see that start states have no 
incoming steps. So suppose that r-!!..+ s and r' -i:'... s, with 
(r, a) i= (r', a'). Let Wand W' be the unique timed execu­

tions leading to rand r', respectively. 
We extend W to timed execution W1 by adding the infor­

mation contained in the step r-!!..+ s. Specifically, if a is a dis­
crete action, we append a and a trivial trajectory with the 
single state s to W On the other hand, if a E R +, we use 
axiom S2 to obtain a trajectory w for the step r-!!..+ s and 

combine w with the final trajectory of ~V; Lemma 2. l 
implies that the combination of the two trajectories is itself 
a trajectory. Likewise, we extend JV' to timed execution 1v; 
by adding the information contained in the step r' ~ s. 

Since A is at-forest and rv1 and rv; both lead to s, it must 
be that W1 = W;. But since ( r, a)# ( r', a'), the only wav this 
can happen is if a and a' are both time-passage a~tion~ and 
a i= a'. In this case, the final trajectory w of W i = iv; ends 
with a trajectory of the step r ~ s, and also ends with a 
trajectory of the step r' ~ s. In particular, if w. /time= t, 
then }\,'( t - a' ) = r' and w( t - a) = r. 

If a< a', then t - a'< t - a, so the definition of a trajec­
tory implies that r' I ( - a) - " - a') r, i.e., r' a' - a r. Symmetri-

cally, if a'< a, we haver~ r'. Either situation suffices. 

=: Because all states of A are reachable we know bv 
Lemma 2.3 that for each state s there is at l~ast one timed 
execution that leads to it. We show uniqueness. For any 
timed execution W, define n( W) to be the sum of the 
number ofnontrivial trajectories and the number of actions 
occurring in W It suffices to prove the following claim for 
allkEN: 

If W and W' are two timed executions with 
n( W) + n( W') ~ k, and if W and W' lead to the 
same state s, then W = W'. 

We prove this claim by induction on k. 

Basis. k = 0. Then each of Wand W' consists of a trivial 
trajectory with the single states, so W = 1-V'. 

Inductive Step. k > 0. If W consists of a single trivial 
trajectory, then s must be a start state. The fact that W' 
leads to s implies that the start states has an incoming step, 
which is a contradiction. A similar contradiction is reached 
if W' consists of a single trivial trajectory. Thus, neither W 
nor W' consists of a single trivial trajectory. 

If the last trajectory w of W is trivial, define a to be the last 
discrete action in W, and r the last state of the preceding tra­
jectory. Thus, we have r-"-> s. Since each state can have at 
most one incoming discrete step, the last trajectory of W' 
must also be trivial, a must be the last discrete action in W', 
and r the last state of the preceding trajectory of ~V'. If W 1 

and w; are the timed executions obtained from Wand rV', 
respectively, by omitting the a w fragment at the end, the 
induction hypothesis gives W 1 = w;. This implies W = W'. 

A similar proof can be given for case in which the last tra­
jectory of W' is trivial. Thus we may assume that neither iv 
nor W' ends with a trivial trajectory. 

Definer= w( 0) and a= w. !time; the definition of a trajec­
tory implies r-!!..+ s. Likewise, definer', a', and w' for W'. 

If a= a', then it is easy to prove that 11' = w'. In this case, 
let W1 and w; be the results of removing the last trajectory 
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w from Wand W', respectively, replacing it with the trivial 
trajectory with state r. Application of the induction 
hypothesis gives W 1 = w;, and this implies W = W'. 

Assume without Joss of generality that a' >a. Since r 4 s 
and r' ~ s, we have by assumption r' a' -a r. That is, both 
timed executions end with nontrivial trajectories, and W 
ends with the shorter one. 

We claim that w(a - t) = w'(a' - t) for all t e [O, a]. For if 
not, then there are two distinct time-passage steps leading 
to s with the same amount of time-passage, namely, 
w(a - t) -1..+. s and w'(a' - t) -1..+. s. In particular, r = w(O) = 
w'(a' -a). 

Now let W1 be the result of removing the last trajectory 
w from W, replacing it with the trivial trajectory with state 
r. Also, let w; be the result ofreducing the last trajectory w' 
of W' by removing the portion with domain (a' - a, a']. 
Then W 1 and w; are two timed executions, each of which 
leads to r, and such that n( W1) + n( w;) is strictly less than 
n( W) + n( W'). By induction hypothesis, W1 = w;. Since 
the removed portions of Wand W' are identical, this implies 
that W= W'. I 

We define the relation t-after(A) to consist of those pairs 
(p, s) for which there is a finite timed execution of A with 
timed trace p and last state s: 

t-after(A) ~ {(p,s) I 3Wet-execs*(A): 

!-trace( W) = p and W. lstate = s}. 

The relation t-past(A) ~ t-after(A )- 1 relates a states of A 
to the timed traces of timed executions that lead to s. 

LEMMA 3.5. 

1. If A is t-deterministic then t-after(A) is a function from 
t-traces*(A) to states(A). 

2. If A hast-fin then t-after(A) is image-finite. 

3. If A is a t-forest then t-past(A) is a function from 
states(A) to t-traces*(A). 

Proof Parts 1and2 are straightforward from the defini­
tions. 

For 3, suppose that A is a t-forest. Because all states 
of A are reachable we know that for each state s of A 
t-past(A)(s) contains at least one element. But this elemen~ 
is uniquely determined by the unique timed execution that 
leads to s. I 

4. TIMED TRACE PROPERTIES 

Continuing the analogy with Part I, we define "timed 
trace properties," the structures that we consider as external 
behaviors for timed automata. We also prove some basic 
properties of timed trace properties and some lemmas 
relating timed trace properties to timed automata. 

A set of timed sequence pairs is prefix-closed if, whenever 
a timed sequence pair is in the set, all its prefixes (as defined 
in Section 2.3. l) are in the set also. A timed trace property P 
is a pair (K, L ), where K is a set and Lis a nonempty, prefix­
closed set offinite and admissible timed sequence pairs over 
K. We will refer to the constituents of P as sort(P) and 
t-traces(P), respectively. Also, we write t-traces*(P) for 
the set of finite timed sequence pairs in t-traces(P), and 
t-traces 00 (P) for the set of admissible timed sequence pairs 
in t-traces(P). For P and Q timed trace properties, we define 
P ~~T Q ~ t-traces*(P) £ t-traces*(Q), P ~~T Q ~ 
t-traces00 (P) s; t-traces 00 (Q), and P ~~ Q ~ t-traces(P) £ 

t-traces( Q). The kernels of these preorders are denoted by 
=~T• =~T' and=~, respectively. 

A timed trace property P is limit-closed if each infinite 
chainp1 ~p2 ~p3 ~ • • • of elements oft-traces*(P) in which 
time grows unboundedly has a limit in t-traces 00 (P), i.e., an 
admissible timed sequence pair p such that for all i, p; ~p. 

LEMMA 4.1. Suppose P and Qare timed trace properties 
with Q limit-closed. Then P :::::;~T Q <=> P ~~ Q. 

A timed trace property P is feasible if every element of 
t-traces*(P) is a prefix of some element of t-traces 00(P). 

LEMMA 4.2. Suppose P and Q are timed trace properties 
such that P isfeasible. Then P~~T Q<=>P~~ Q. 

The timed behavior of a timed automaton A, t-beh(A), is 
defined by 

t-beh(A) ~ (vis(A), t-traces(A)). 

LEMMA 4.3. 

1. t-beh(A) is a timed trace property. 

2. If A hast-fin then t-beh(A) is limit-closed. 

3. If A is feasible then t-beh( A) is feasible. 

4. A~~ B<::;>t-beh(A) ~~ t-beh(B), A ~~TB<:=:> t-beh(A) 
~~T t-beh(B), and A ~~TB<=> t-beh(A) ~~T t-beh(B). 

Proof Part 1 follows directly from Lemma 2.9. Parts 3 
and 4 are immediate from the definitions. 

We sketch the proof of 2; it is analogous to that of 
Lemma 2.5 of Part I. Suppose A has t-fin and p 1 ~p2 ~ • • • 

is an infinite chain of timed sequence pairs in t-traces*(A) 
such that the limits of the time components of the p /s is co. 
Assume without loss of generality that Pi <Pi+ 1' for all 
i~ 1. Let p be the limit of the p/s. We must show that 
p E t-traces00 (A). 

We use Lemma A.1 of Part I. This time, G is constructed 
as follows. The nodes are pairs (p;, s), where P; is one of the 
timed sequence pairs in the sequence above, and s is a state 
of A, such that (p, s) e t-after(A). There is an edge from 
node (p;, s') to node (P;+ 1> s) exactly if s' -54A s, where 
P;+1 =p;·q. Using Lemma2.10, it is not difficult to show 
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that G satisfies the hypotheses of Lemma A.1 of Part I. Th 
h 1 . 1· en 

t at. emma imp ies the existence of an infinite path in G 

start~n~ at a_ root; given this path, it is easy to construct an 

admissible timed execution of A having p as its timed trace. 

PROPOSITION 4.4. 

L If B hast-fin then A ~t T B.:;:;,.A :>:: 1 B * "'T . 

2. If A is feasible then A ~~TB.:;:;,. A~~ B. 

Proof Part 1 follows from Lemmas 4.1 and 4.3. Part 2 is 
a corollary of Lemmas 4.2 and 4.3. I 

EXAMPLE 4.5. We present two timed automata B and 

B2, which are in a sense the timed analogue; of the 

automata A 1 and A 2 of Example 2.1 of Part L The example 

i~lustrates the_ necessity of the t-fin condition in Proposi­

tion 4.4( 1 ). Timed automaton B 1 performs an a-action at 

each integer time. Each state of B 1 has components 

now ER "' 0 and count EN, both initially 0. B 1 has a single 

visible action a, and steps 

• s' --!!..+ s, where s. now= s'. now+ d ~ s'. count and 
s. count= s'. count; 

• s' ....!!.+ s, where s. now= s'. now= s'. count and s. count= 

s'.count+ 1. 

Timed automaton B 2 performs an a-action at each offinitely 

many integer times. Each state of B2 has components 

now ER "' 0, initially 0, count EN, initially 0, and total EN, 

initially arbitrary. B 1 has a single visible action a and steps 

• s' --!!..+ s, where s. now = s'. now+ d ~ s'. count, s. count= 

s'. count, and s. total= s'. total; 

• s' ....!!.+ s, where s. now = s'. now= s'. count~ s'. total, 

s. count= s'. count+ 1, and s. total= s'. total. 

Then it is easy to see that B 1 has t-fin (in fact, it is 

t-deterministic). However, B2 does not have t-fin: for 

instance, it has infinitely many start states. Also, in each 

finite timed trace of B 2 , a occurs at every nonnegative 

integer time up to (and possibly including) the last time 

total, while in the unique admissible timed trace of B 1 , a 

occurs at all nonnegative integer times. Then B 2 has the 

same finite timed traces as B 1 but no admissible timed 

traces. It follows that B 1 ~~T B2 but B1 :t~T B2. 

Note that it is possible to modify B 2 so that it is feasible, 

yet still demonstrates the same point. Simply allow time to 

pass in B 2 after the last permitted a output. 

EXAMPLE 4.6. In order to see that the feasibility condi­

tion in Proposition 4.4(2) is needed, we consider a timed 

automaton Z with states drawn from the interval [ 0, 1 ), 

start state 0, no visible actions, and steps of the form 

t' ~ t whenever t' < t. Since Z has no admissible timed 

traces, it is trivially the case that z~~TBI. However, 

because B 1 does not allow initial time-passage steps, 

Z:tiB1. 

Again paralleling Part I, we dose this section with the 

construction of the canonical timed awomaton for a 

timed. trace property. For P a timed trace property, the 

associated canonical timed automaton t-rnn( is the 

structure A given by 

• states( A)= t-traces*(P). 

• start( A)={() .. 0)}. 

•acts( A) =sort(P) u { r} v R ".and 

• forp',pEstates(A)andaEacts(A.), 

p' ~A p.:;:;,. a#- r 1\ p' · t-trace( a) = p. 

It is not hard to check that t-can( P) is in fact a timed 

automaton. 

LEMMA 4.7. Suppose Pisa timed trace property. Then 

1. t-can(P) is t-deterministic and is a !-forest. 

2. t-beh(t-can(P)) =~T P. 

3. P ::;;,.i t-beh( t-can( P) ). 

4. If P is limit-closed then t-beh(t-can( P)) = ~ P. 

5. If P is feasible then t-can( P) is feasible. 

Proof Part 1 follows easily using Lemmas 3.2 and 3.4. 

Part 2 follow from the definitions. Since t-can( P) is 

t-deterministic it has t-fin, so it follows by Lemma 4.3 that 

t-beh( t-can(P)) is limit-closed. Now 3 and 4 follow by 

combination of 2 and Lemma 4.1. Part 5 is straightforward 

from the definitions. I 

LEMMA 4.8. 

1. t-can( t-beh( A)) is !-deterministic and is a t:forest. 

2. t-can(t-beh(A})=~TA. 

3. A ~;. t-can(t-beh(A)). 

4. If A has t-Jin then t-can(t-beh( A)) =~A. 

5. If A is feasible then t-can(t-beh( A)) is feasible. 

Proof By combining Lemmas 4.3 and 4.7. I 

5. SIMULATIONS FOR TIMED AUTOMATA 

So far, we have presented the timed automaton model 

and its basic properties. In this section, we define simulation 

proof methods for timed automata. The properties of these 

relations are shown in the following two sections. In the 

definitions below, we require that an a step be simulated by 

a move t-trace(a). This means that a r step is simulated by 

the timed sequence pair (A, 0), a visible action a is simulated 

by the timed sequence pair ( (a, 0 ). 0 ), and a time-passage 

step dis simulated by the timed sequence pair()., d). 
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Suppose A and B are timed automata. 
A timed refinement from A to B is a function 

r: states( A)~ states( B) that satisfies: 

1. Ifs E start( A) then r(s) E start( B). 

2. Ifs'-=:.. As then r(s') J',~8 r(s), where p = t-trace(li). 

A timedforward simulation from A to Bis a relation/ over 
states(A) and states(B) that satisfies: 

l. Ifs E start( A) then/[ s] n start(B) ¥- 0. 
2. If s' ....::.. A s and u' Ef[ s'], then there exists a state 

uEf[s] such that u' .L,8 u, where p = t-trace(d). 

A timed backward simulation from A to Bis a tota14 rela­
tion h over states( A) and states( B) that satisfies: 

1. If sEstart(A) then b[s] Sstart(B). 

2. If s' ....::.. A s and u E b[ s], then there exists a state 
u' E b[s'] such that u' -~8 u, where p = t-trace(a). 

A timed forward-backward simulation from A to B is a 
relation g over states( A) and N(states(B)) that satisfies: 

1. If s E start( A) then there exists SE g[ s] such that 
S s start( B). 

2. If s' ~A s and S' E g[ s'], then there exists a set 
SE g[s J such that for every u ES there exists u' ES' with 
u' -~ 8 u, where p = t-trace(ll). 

A timed backward-forward simulation from A to B is 
a total relation g over states( A) and P(states(B)) that 
satisfies: 

1. Ifs E start( A) then for all SE g[s ], Sn start(B) ¥- 0. 
2. If s' ~A s and SE g[ s], then there exists a set 

S' E g[ s'] such that for every u' ES' there exists u E S with 
u' .!'..,8 u, where p == t-trace(li). 

For each of the above simulations, we will refer to the first 
condition in the definition as the start condition, and to the 
second condition as the transfer condition. 

A relation hover states( A) and states(B) is a timed history 
relation from A to B ifit is a timed forward simulation from 
A to Band h 1 is a timed refinement from B to A. A relation 
p over states( A) and states( B) is a timed prophecy relation 
from A to B if it is a timed backward simulation from A to 
B and p- 1 is a timed refinement from B to A. 

Analogously to Part I, we write A :(kB, A:(~ B, etc., to 
indicate that there is a timed refinement, timed forward 
simulation, etc., from A to B. 

Without working out the details, we note here that, 
analogously to the untimed case, there is a full corre­
spondence between timed history /prophecy relations and 
the obvious notions of timed history /prophecy variables. 

4 For the definitions of"total", N( ), P( ), ( i- 1, etc., we refer the reader 
to Appendix A of Part I. 

We close this section with a technical lemma. The transfer 
condition of each simulation definition is stated for 
individual steps of A. It is straightforward to deduce a 
similar condition for moves rather than steps. 

LEMMA 5.1. Suppose that A and B are timed automata 
and s' 4A s. 

1. Jf r is a timed refinement fi"om A to B then 
r(s') 4B r(s). 

2. If f is a timed forward simulation from A to B and 
u' Ef[ s' ], then there exists a state u Ef[ s J such that u' ~fr> 8 u. 

3. If b is a timed backward simulation from A to B and 
u Eb[s], then there exists a state u' E b[s'] such that u' 4 8 u. 

4. Jf g is a timedforward-backward simulationfrom A to 
Band S' E g[s' ], then there exists a set SE g[s] such that for 
every u ES there exists u' ES' with u' J~,..s u. 

5. If g is a timed backward-forward simulation from A to 
Band SE g[ s], then there exists a set S' E g[ s'] such that for 
every u' ES' there exists u ES with u' 4 8 u. 

Proof Let W be a timed execution fragment from A 
such that s' = W fstate, s = W.lstate, and p = t-trace( W). 
All parts are proved by induction on k = n( W), where, as in 
the proof of Lemma 3.4, n( W) is the sum of the number of 
nontrivial trajectories and the number of discrete actions 
occurring in W. As an example, we prove the result for 
timed refinements; the other cases are similar. 

Basis. k = 0. 
Then s' = s, W consists of the trivial trajectory containing 
the single states, and p =(A., 0). Since r(s) 1 ~~ r(s), we have 
r(s') !! . .,8 r(s). 

Basis. k = 1. 
This case follows easily from the transfer condition in the 
definition of a timed refinement. 

Inductive step. k > 1. 
Then W can be written as W1 · W 2 , where n( W1 ) = k- 1 
and n( W2 ) = 1. Let s" denote W 1 • lstate ( = W2 fstate). 
Let p 1 = t-trace( W1) and P2 = t-trace( W2 ). Then s' !;J. As" 

and s" !;3.A s. By inductive hypothesis, r(s') !;;. 8 r(s") and 
r(s")!~8 r(s). By Lemma 2.8, p=p 1 ·p2 . Then Lemma 
2.10(1) implies that r(s') J:,..8 r(s). I 

6. TIMED RESULTS FROM UNTIMED RESULTS 

In this and the next section we give soundness and com­
pleteness results for the various simulations defined in 
Section 5, as well as implication results among them. The 
distinction between the results in this section and those in 
Section 7 is that the ones given here are all derived from 
corresponding results for the untimed case. The statements 
of the results in Section 7 are also analogous to results of 
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FIG. 1. Classification of basic relations among timed automata. 

Part I, but these timed results are not derived from the 
untimed results, for instance because they require the con­
struction of an intermediate timed automaton. 

Most of the results in this section are presented in the 
form of a diagram, Fig. 1. This is the same diagram that 
appears in Part I for the untimed setting, except for the t 
superscripts. 

The machinery needed to prove the results in this section 
is developed in Section 6.1. In particular, we define an 
untimed automaton called the closure automaton, cl( A), for 
every timed automaton A. We then show close corre­
spondences between A and cl(A), involving both external 
behavior notions and simulation relations. These corre­
spondences allow us to derive the results in Section 6.2 from 
the corresponding results for untimed automata. 

6.1. The Closure Automaton 

In this section, we define the closure of a timed 
automaton, the basic technical device that we will used to 
derive results about timed automata from corresponding 
results about untimed automata. Section 6.1.l contains the 
definition, Section 6.1.2 gives the relationships between 
timed traces of a timed automaton and traces of its closure, 
and Section 6.1.3 gives the relationships between timed 
simulations between timed automata and simulations 
between their closures. 

6.1.1. Definition 

The closure ofa timed automaton A, denoted by cl(A), is 
the automaton B given by 

643/128/1·2 

• states( B) =states( A), 

• start( B) =start( A), 

• acts( B) = acts( A), and 

• steps( B) consists of steps( A ) together with all steps 
I d h h ,fA.,d) s ---+ 8 s, sue t at s w~4 s. 

~hus, the closure construction augments A by adding new 
time-passage steps to short-circuit the effects of any number 
of r and time-passage actions of A. 

PROPOSITION 6.1. cl( A) is a timed automaton. 

6.1.2. Relating Timed and Untimed Traces 

In this section, we describe some close connections 
between A and cl(A). We begin with a preliminary lemma 
showing the relationship between moves of A and of cl( A). 

LEMMA 6.2. Supposes' and s are states of A. 

1. If fJ is a finite sequence of actions in ext( A) then 

1 Jb. if d [ if 1 l·traalPI s di Al s 1 an on y 1 s ~ As. 

2. If p is a finite timed sequence pair over vis( A ) then 

, trc.u·e(p) . . , p 
s =c1iAi s if and only ifs ~'~As. 

Proof Part 1 is straightforward. Part 2 follows from 
Part l and Lemma 2.5. I 

From this we can prove: 

LEMMA 6.3. l. If fJ is a finite sequence of actions in 
ext(A) then 

fJ E traces*(cl(A)) if and only if t-trace(/J) E t-traces*(A ). 

2. If p is a finite timed sequence pair over vis( A) then 

trace(p) E traces*( cl( A)) if and only if p Et-traces*( A). 

Proof We show Part l. Suppose that P is a finite 
sequence of actions in ext( A), and let p = t-trace( p). 

=>: Suppose that fJ E traces*( cl( A)). Then there exis1 
s' estart(cl(A)) and sestates(cl(A)) such that s' k,.11 A 1 s. 
Then Lemma 6.2 implies that s' -f.~ A s. This implies that 
p E t-traces*(A). 

<=: Suppose that pet-traces*(A). Then there exist 
s' E start( A) and s Estates( A) such that s' .!.. As. Then 
Lemma 6.2 implies that s' b citA 1 s. This implies that 
fJ E traces*( cl( A)). 

Part 2 follows from Part 1 and Lemma 2.5. I 
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A similar result holds for admissible sequences: 

LEMMA 6.4. 

l. {ffJ is an admissible sequence of actions in ext( A) then 

fJ E traces'"( cl( A)) if and only !l t-trace( /3) E t-tracesw(A ). 

2. If p is an admissible timed sequence pair over vis( A) 
then 

trace(p) E tracesw( c!(A)) ((and only if p E t-tracesoc(A ). 

We now show that t-determinism of A corresponds to 
determinism of cl( A ), and likewise for t-lin and fin. 

LEMMA 6.5. 

I. A is t-deterministic if and only if cl( A) is deterministic. 

2. A has t-fin if and only if cl( A) has Jin. 

Proof We first prove part 1: 

=: Suppose A is t-deterministic. Then, by Lemma 3.2, 
all r steps of A are of the form s--'-+ s. But this means that 
cl( A) and A are identical. And thus both A and cl( A) are 
deterministic by Lemma 3.1. 

<=: Suppose cl(A) is deterministic. Then all r steps of 
cl( A) are of the forms--'-+ s. But since cl( A) is obtained from 
A by adding time-passage steps only, also all r steps of A are 
of the forms--'-+ s. This again implies that cl( A) and A are 
identical. And thus both A and c!(A) are t-deterministic by 
Lemma 3.1. 

Next we prove part 2: 

=: Suppose A has t-fin. Then start( A) is finite and 
hence start( cl( A)) is finite. Supposes' is a state of cl( A) and 
fJ is a finite sequence over ext( cl( A)). We show that the set 
S = { s I s' k c1( A 1 s} is finite. Suppose s ES. Then Lemma 
6.2 implies that s EU, where U = { u I s'r-rr~(/llA u}. Thus 
S £; U. Since A has t-fin, U is finite. Thus S is finite, as 
required. 

<=: Suppose that cl( A) has fin. Then start( cl( A)) is 
finite and hence start( A) is finite. Suppose s' is a state 
of A and p is a finite timed sequence pair over vis( A). 
We show that the set S = { s I s' .f..., A s} is finite. Suppose 
s ES. Then Lemma 6.2 implies that s E U, where U = 
r I ' rrace(p) } s· l fi \u s =c11A 1u. mcec(A)has m, Vis finite. Thus Sis 
finite, as required. I 

Now we relate finite timed trace inclusion for timed 
automata to ordinary finite trace inclusion for their closure 
automata. 

Proof =: Suppose that fJ E traces*(cl(A )). Then Lemma 
6.3 implies that p E t-traces*(A ), where p = t-trace( fJ). The 
hypothesis then implies that also p E t-traces*(B). Again by 
Lemma 6.3, we have fJ E traces*( cl(B) ). 

<=: Suppose that pEt-traces*(A). Then Lemma 6.3 
implies that fJ E traces*( cl( A)), where fJ = trace(p ). The 
hypothesis then implies that also fJ E traces*( cl(B) ). Again 
by Lemma 6.3, we have p E t-traces*(B). I 

We can also obtain a one-way relationship between 
general timed trace inclusion for timed automaton and 
general trace inclusion for their closure automata. 

LEMMA 6.7. lf cl(A) ~T cl(B) then A~~· B. 

Proof Suppose cl(A) ~T cl(B). Then certainly cl(A) ~fl 
cl(B), so by Lemma 6.6, A ~~TB. It remains to show 
that A ~~TB. For this, suppose that p E t-traces 00 (A ). 
Then Lemma 6.4 implies that fJ E traces0 '( cl( A)), where fJ = 
trace(p). The hypothesis then implies that fJ E traces<0 (cl(B)). 
Again by Lemma 6.4, we have p E t-tracesw(B). I 

EXAMPLE 6.8. The converse of Lemma 6.7 does not 
hold in general. For a counterexample, let B be a timed 
automaton that nondeterministically chooses a positive 
natural number n, then performs action a at times 
1 - 2 -- 1, 1 - 2 - 2, .. ., 1 - 2 -n, and then idles forever, allow­
ing time to pass. Since each finite timed execution can be 
extended to an admissible one, B is feasible; since it has 
infinitely many start states B has infinite invisible nondeter­
minism. Let A be the same as B, except that it may also 
choose w at the beginning, in which case it subsequently 
performs action a at times 1 - 2 - 1, 1 - 2 - 2, .. ., 1 - 2 -n, ... 
Timed automaton A is not feasible because by choosing w 
it reaches a state from which only a Zeno execution, and no 
admissible execution, is possible. Timed automata A and B 
have the same timed traces, but cl( A) also has an infinite 
trace (a, 1-2- 1), (a, 1-2-2 ), .. ., (a, 1-2-n), ... which 
cl(B) does not have. 

It turns out that the converse of Lemma 6.7 does hold if 
B hast-fin. 

LEMMA 6.9. Suppose B hast-fin. Then cl(A) ~T cl(B)-= 
A~~B. 

Proof 

cl(A) ~T cl(B)-= (by Lemma6.5, and Proposition2.6 of Part I) 

cl( A)~ fl c!(B) =-(by Lemma 6.6) 

A ~~TB-= (by Proposition 4.4) 

A ~~B. I 
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Finally, we obtain a corollary that relates timed trace 
inclusions for timed t au omata to simulations for their 
closures. 

Section 5. For this, we proceed in the next subsection to 

r~late timed simulations to corresponding untimed simula­
tions for closure automata. 

COROLLARY 6.10. The following statements are equiv-
alent. 6.1.3. Relating Timed and Untimed Simulations 

1. A ~~TB. 

2. c/(A)~FBcl(B). 

3. cl(A) ~BF c/(B). 

lfB hast-fin then also the following statements are equivalent 

to each other and to the three statements above. 

1. A~!rB. 

2. c/(A) ~iFB cl(B). 

Proof 

A ~~TB=- (by Lemma 6.6) 

cl( A) ~*T cl(B) =-(by Theorems 4.5 and 4.6 of Part I) 

cl( A) ~FB cl(B) =-(by Proposition 4.10 of Part I) 

cl(A) ~BF c/(B). 

If B has t-fin then 

A :S~T B =(by Lemma 6.6) 

cl( A) ~*T cl(B) =(by Lemma 6.5, and Theorem4.6 of Part I) 

cl( A) :S iFB cl( B) = (by Theorem 4.5 of Part I) 

cl( A) ~T cl(B) =(by Lemma 6.7) 

Corollary 6.10 already provides one method for proving 

that the finite timed traces of a timed automaton A are 

included among those of another timed automaton B: 
produce an ordinary forward-backward or backward­

forward simulation from cl( A) to cl(B). Of course, any 

simpler type of simulation from Part I, such as a forward or 

backward simulation, will do as well. Similarly, Corollary 

6.10 provides a method for proving that all the timed traces 

of A are included among those of B, in case B has t-fin. 

This approach is analogous to that followed for Milner's 

CCS [ 49], where the problem of establishing a weak 

bisimulation is reduced to the problem of finding a strong 

bisimulation. Another example of this approach appears in 

[ 38 ], where the problem of showing inclusion of timed 

behaviors of certain kinds of timed automata is reduced to 

that of proving inclusion between sets of admissible 

behaviors of certain derived I/O automata. 
However, this is not the approach we emphasize in this 

paper. Instead, we will use the closure automata as a techni­

cal device to help us prove soundness, completeness and 

implication results for the new timed simulations defined in 

In Section 6.1.2, we showed that (under certain finiteness 

conditions) inclusion of timed traces for timed automata is 

equivalent to inclusion of ordinary traces for the closures 

of these automata. Now we demonstrate strong relation­

ships between timed simulations for timed auto";uata, and 

ordinary simulations for the closures of these automata. 

LEMMA 6.11. A relation from states( A) to states(B) is a 

timed refinement from A to B if and only !/'it is a refinement 

from cl( A) to cl( B). l'vforeoiw, the same correspondence 

also holds for forward simulations, backward simulations, 

forward-backward simulations, hackward-jimrard simula­

tions, history relations, and prophecy relations. 

Proof We prove the result for refinements. 

= : Suppose that r is a timed refinement from A to B. 

We show that r is a refinement from cl( A) to cl(B). The start 

condition carries over immediately; we con~ider the step 

condition. Suppose that s' ~, 11 .4 1 s. Then s' ~c1iA 1 sand so 
Lemma 6.2 implies that s' ):~4 s, where p = t-trace( c1 ). Since 

r is a timed refinement, Lemma 5.1 implies that r(s') ?,,8 r(sl. 
Then Lemma 6.2 implies that r(s') rraa•pi " 18 i r(s). But case 

analysis based on whether a is a visible, internal or time­

passage action shows that trace(p) =cl, so this is as needed. 

<=: Suppose that r is a refinement from cl(A) to c/IB). 

We show that r is a timed refinement from A to B. The start 

condition carries over immediately; we consider the step 

condition. Suppose that s' ....£.,A s. Then s' .....E..,c11A 1 s, by 

definition of cl( A). Since r is a refinement, we have that 

r(s') bct(Bi r(s). Then Lemma 6.2 implies that r(s') E,,s r(s), 

where p = t-trace(cl), as needed. 

The proofs for forward, backward. forward backward 

and backward-forward simulations are entirely analogous. 

using the appropriate parts of Lemma 5.1. The results for 

history and prophecy relations follow from those for for­
ward simulations, backward simulations, and refinements. I 

Therefore, we have: 

COROLLARY 6.12. Suppose X represl!nts any 1~/ { R, F, B. 

iB, FB, iFB, BF, iBF, H, P, iP}. Then A :S ~ B if and only if' 
cl(A) :Sx cl(B). 

PROPOSJTION 6.13. The relations :S :l' ::;; ~·' ::;; ~' :S :ll, 
:S~ 8 , ~:FB• ~kF· ::;;\1 , ~~. and <P are all preorders. 

( H oJVever, :S :BF is not a preorder.) 

Proof This follows from Corollary 6.12, since the 

corresponding untimed simulations are preorders. The same 

counterexample that we used to show that ~mF is not a 
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preorder (the automata A 11 and A 12 of Example 4.11 in Part 
I) can be used to show that :::;;:BF is not a preorder. One can 
turn the automata from this counterexample into feasible 
timed automata via the patient construction of [ 41]. This 
construction introduces arbitrary time delays at each state 
by simply attaching, for each d, steps s -..:!..+ s to each 
states. I 

6.2. Soundness and Implication Results for Timed 
Automaton Simulation Relations 

In this section, we give those results about timed auto­
mata that follow from corresponding results about untimed 
automata, using the results in the previous two sections. We 
present most of these results in a single theorem, which is 
entirely analogous to a classification given in Section 7 of 
Part I. 

THEOREM 6.14. Suppose M, NE {T, *T, R, F, (i)B, 
(i)FB, (i)BF, H, (i)P}, where the (i) indicates that i is 
optional. 

1. If there is a path from ::;;;;~ to ~ ~ in Fig. 1 consisting 
of thin arrows only, and if A~~ B, then A ~ ~ B. 

2. If there is a path from ::;;;;~ to ~~ consisting of thin 
and/or thick arrows, if A::;;;;~ B and if B has t-fin, then 
A~~B. 

Proof Note that Fig. 1 is identical to Fig. 6 of Part I, 
which gives an overview of the relationships in the untimed 
case, except for the superscripts t. It is enough to prove: 

1. If there is a thin arrow from ~~ to ~~ and if 
A~~ B, then A::;;;;~ B. 

2. If there is a thick arrow from ~ ~ to :::;;; ~. if A ~ ~ B 
and if B hast-fin, then A::;;;;~ B. 

For part 1, suppose that there is a thin arrow from ~~ to 
~~and that A~~B. If {M,N}n{T,*T}=0, then 
Corollary 6.12 implies that cl(A) ~M cl(B). Then the 
corresponding result for the untimed case implies that 
cl(A) ~N cl(B), which implies by Corollary 6.12 that 
A~~ B, as needed. There are four remaining thin arrows to 
consider. 

1. M = iFB and N = T. Corollary 6.12 implies that 
cl(A) ~iFB cl(B). The untimed result implies that 
cl( A) ~T cl(B), which implies by Lemma 6.7 that A::;;;;~ B. 

2. M = T and N = *T. This is immediate from the 
definitions. 

3. M = * T and N = FB. Corollary 6.10 implies that 
c/(A) ~FB c/(B), which implies by Corollary 6.12 that 
A~hB. 

4. M = FB and N = *T. Corollary 6.12 implies that 
cl(A) ~FB cl(B), which implies by Corollary 6.10 that 
A ~~TB. 

For part 2, suppose that there is a thick arrow from ~:.i to 
~~.that A~~ Band that B has t-fin. There are only two 
thick arrows to consider: 

1. M = * T and N = T. This follows from Proposition 4.4. 

2. M = T and N = iFB. Corollary 6.10 implies that 
cl(A) ~iFB cl(B), which implies by Corollary 6.12 that 
A~1FaB· I 

In order to show that all the inclusions are strict, one can 
use essentially the same counterexamples as in the untimed 
setting. Again one can turn these untimed counterexamples 
into feasible timed automata via the patient construction of 
[ 41 ], i.e., by introducing arbitrary time delays at each state 
by attaching, for each d, steps s-..:!..+ s to each states. 

We close this section with three more results that are 
derived from the analogous results for the untimed case 
using the correspondences. 

THEOREM 6.15 (Partial Completness of Timed Forward 
Simulations). Suppose B is t-deterministic and A~ ~TB. 
Then A ::;;;~B. 

Proof By Lemma 6.5 (1 ), cl( B) is deterministic, and by 
Lemma 6.6, cl(A) ~ *T cl(B). Thus by the partial complete­
ness result for forward simulations (Theorem 3.11, Part I), 
cl( A) ~ F cl( B). Then Corollary 6.12 allows us to conclude 
that A~~ B, as required. I 

PROPOSITION 6.16. Suppose all states of A are reachable, 
Bis t-deterministic and A ~kB. Then A ~RB. 

Proof Lemma 6.2 implies that all states of cl( A) are 
reachable, Lemma 6.5 implies that cl( B) is deterministic, 
and Corollary 6.12 implies that cl( A) ~ 8 cl( B). By Proposi­
tion 3.19 of Part I, the untimed version of the fact we are 
proving, cl(A) ~R cl(B). Then Corollary 6.12 allows us to 
conclude that A ~kB, as required. I 

PROPOSITION 6.17. Suppose all states of A are reachable, 
B hast-fin, and A ~kB. Then A ~:s B. 

Proof Similar to the proof of Proposition 6.16. I 

7. REMAINING RESULTS FOR TIMED AUTOMATA 

In Section 6, we showed how some simple corresponden­
ces enable most of the results for untimed automata to be 
extended to timed automata. In this section, we consider 
what happens to all the other results of Part I. We begin 
with the results about untimed automata that do not extend 
in this way but are nonetheless true. In Section 7 .1 we pre­
sent partial completeness results that involve t-forests. 
These do not carry over using the correspondences because 
the closure of a t-forest need not be a forest: in a t-forest 
(and hence also in its closure) a state may have multiple 
incoming time-passage steps, something that is not 
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allowed in a forest. In Sections 7.2 and 7.3, we present 
results that assert the existence of timed automata with par­
ticular properties, including the completeness results for the 
combination of timed forward and timed backward simula­
tions and the Abadi-Lamport completeness result. We 
prove all of these results directly for timed automata. In 
most cases, the proof is analogous to the corresponding 
proof in Part I. Finally, in Section 7.4, we demonstrate that 
the one remaining result of Part I, Proposition 3.12, is not 
true in the timed setting. 

7.1. Partial Completeness Results fort-Forests 

THEOREM 7.1 (Partial Completeness of Timed Refine­
ments). Suppose A is a t-forest, B is t-deterministic, and 
A ~~TB. Then A ;;;;.il B. 

Proof Analogous to the proof of Theorem 3.5 in Part I. 
Define r ~ t-after(B) o t-past(A ). Lemma 3.5 and the fact 
that t-traces*(A) ~ t-traces*(B) together imply that r is a 
function from states(A) to states(B). We claim that r is a 
timed refinement from A to B. 

The start condition is straightforward. 
For the transfer condition, suppose that s'--.!!..+ As. 

Let p = t-trace(a); then s' -4 As. We must show that 
r(s') -I'~>8 r(s). Since A is a forest, there exist timed traces q' 
and q leading to s' and s, respectively. Lemma 2.10 implies 
that q' . p leads from a start state of A to s. Since A is a forest 
and q and q' · p both lead to s, it must be that q' · p = q. 

By definition of r, we have u0 "48 r(s) for some start state 
u0 of B. Then Lemma 2.10 implies that there is a state u of 
B such that u0 s:,, B u and u 4 8 r(s). Since q' leads from a 
start state of A to s', the definition of r then implies that 
u = r(s' ). Thus, r(s') !;,,,. 8 r(s), as needed. I 

THEOREM 7.2 (Partial Completeness of Timed Backward 
Simulations). Suppose A is a t-forest and A ~~TB. Then 

1. A;;;;.kB,and 

2. if B has t-fin then A ~:a B. 

Proof Analogous to the proof of Theorem 3.18 in 
Part I. We define a relation b over states(A) and states(B). 
For a given state s of A, Lemma 3.5 implies that there is a 
unique timed trace leading to s, say p. Define 

b[s] = { u I 3 WE t-execs*(B): t-trace( W) = p, 

W.lstate = u, and VW' E t-execs*(B): 

[ W'-< W-> t-trace( W') i=p]}. 

Lemma 3.5 and the fact that t-traces*(A) £ t-traces*(B) 
imply that relation b is total. The start condition follows as 
in the proof of Theorem 3.18 in Part I. . 

For the transfer condition, suppose that s' -'3..+~4 s, 
uEb[s], and p=t-trace(a); then s'-4As. We dehne 

u' E b[ s'] so that u' J'..,8 u. As in the proof of 7. l, 
we obtain timed traces q' and q leading to s' and s ro::spec­
tively, and conclude that q' · p =q. Since u E l we have 
u0 5.,9 u for some start state u0 of B. Then Lemma 2.IO 
implies that there is a state u' of B such that 11 0 u' and 
u' -f'.,8 u. Moreover, it is possible to select u' in a "minimal" 
way so that there is an execution from u0 to u' with timed 
trace q' that does not end with a r step. Since q' leads from 
a start state of A to s', the definition of b implies that 
u' E b[ s']. This suflices. 

Lemma 15 implies that if B has t-fin then relation b is 
image-finite. I 

7.2. Combined Timed Forward and Backward Simulations 

In this subsection, we give the completeness results for the 
combination of timed forward and timed backward simula­
tions. In order to prove these results, we use variants of the 
classic subset construction from automata theory, and a 
variant of the dual historization construction of Klarlund 
and Schneider [ 29]. 

The backward power of a timed automaton A, notation 
b-power(A ), is the automaton B defined by 

• states(B) = N(states(A)), 

• start(B)=N(start(A.)), 

• acts( B) =acts( A), and 

• for S', SE states( B) and a E acts( El. 

1 , , t·trun:i .l 1 

S' _:_.8 S ~ Vs ES 3s ES': s • As. 

The jlnitary backward power of A, notation .fin-b-power( A). 
is defined in exactly the same way, except that instead of all 
non-empty subsets of states( A) and start( A) only the finite 
non-empty subsets are used. The jimnml power or histori:::a­
tion of A, notation fpvwer(A ), is the automaton F defined 

by 

• states(F) = P(states( A)), 

• start(F) = { S s states( A) I Sn start( A) 7" 0}, 

• acts(F)=acts(A),and 

• for S', SE states( F) and a E al'ts( F ), 

t·tra.t 't'( ~r i 
S'~Fs~vs'ES'3seS:s' -•As. 

LEMMA 7.3. Suppose B = b-power(A. ), I =.fln-b-power(A ). 
and F = fpower( A). Then B, I, and Fare timed automata and 

l. A ~kB and B~~ A, 

2. A ~k I and I ~:a A, 

3. A~kFandF~~A. 
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Proof: First we show that B satisfies axioms Sl and S2. 
For Sl·, suppose that S 1 -.-:!....8 S" and S" ...!I.+8 S. Then 

'r:/s" ES" 3s' ES': s' 1 ;::~ 1 A s", and 

\.J S3 II S" II [,\.d'i vS E S E : S ···-> AS. 

It follows, using Lemma 2.10, that 

\.J S3 I S' , 1;..d+d') vs E S E : S w> AS, 

i.e., that S' "+ "' 8 S, as needed for S 1. 
For S2, suppose that S' -.-:!.... 8 S. Define w: [ 0, d] --> 

states(B) as follows: let w(O) = S', w(d) = S, and for any t, 
0 < t < d, let w(t) = { u Estates( A) I 3s' ES': s' 1 ~'~.~ u}. Sup­
pose 0:::; t 1 < t 2 ,;;;;_ d; we must show that w(t i) ~8 w( t 2 ). 

There are three nontrivial cases: 

1. 0 = t 1 < t 2 <d. We must show that S' _!l:_,8 w(t2 ), that 
is, that 

But this is immediate from the definition of w( t 2 ). 

2. 0<t 1 <t2 =d. We must show that w(t 1)~8 S, 
that is, that 

So suppose that sE S. Since S' ~8 S, there exists a state 
/ ES' such that s' 1 ;-:v~.~ s. Then Lemma 2.10 implies that 
h · l h ,u.,111 d 1J .. d-r11 Th' ere eXIStS U SUCl t at S '""AU an U '"·-> AS. IS U 

atisfies all our requirements. 

3. 0<t 1 < t 2 <d. The argument is similar to that for 
Case 2. 

The mapping that relates to each state s of A the state { s} 
of Bis a timed refinement from A to B; hence A ,;;;;_kB. The 
mapping that relates each state S of B to all its elements is 
a timed backward simulation from B to A; hence B ,;;;;_k A. 

The proofs for I and F are similar to those for B, except 
for the proof that I satisfies axiom S2. Suppose that 
S' ~1 S. Then there exists, for each s ES, a finite timed 
execution fragment W, of A with Ws -fstate ES', 
!-trace( W,) = (Jc, d) and W, · !state = s. Define w: [ 0, d] --> 
states(!) as follows: let w(O) = S', w(d) = S, and for any t, 
0 < t < d, let w( t) be the finite set which, for each s ES, con­
tains the last state of the shortest prefix of Ws with limit 
time t. Then it is routine to prove that w is a trajectory for 
S' -3...1 S. I 

THEOREM 7.4. 

1. A ~~ .. 8 B-= (3C: A~~· C,;;;;_k B). 

2. A~:FBB-=(3C:A:(~.C,;;;;_l8 B). 

3. A~kFB=-(3C:A~kC~~·B). 

4. A ~:BFB=-(3C: A :::;;BC:(~ B). 

Proof The proof of the implications "<=" is easy. We 
sketch the proof of" =" in 3 and 4. The proofs of" =" in 
1 and 2 are similar. 

Let g be a timed backward-forward simulation from A to 
B, which is image finite if A ~'.BF B. Let C = f-power(B). 
Then it is straightforward to check that g is also a timed 
backward simulation from A to C (and is image-finite if 
A ~lsF B). Moreover, Lemma 7.3 gives C ~~B. I 

It is interesting to note the difference between the above 
proof of Theorem 7.4 and the corresponding proofs of 
Theorems 4.1 and 4.8 in Part I. In those proofs the inter­
mediate automata are "smaller" than the power construc­
tions that we use here, since as states they only contain 
those sets of states of B that are in the range of g. It is not 
possible to use the constructions from Part I here because in 
general the resulting automata do not satisfy the trajectory 
axiom S2. However, we could have used the power con­
structions in Part I as well. In fact, one can even argue that 
in some sense this would have been less ad-hoe. 

THEOREM 7.5 (Completeness of Timed Forward and 
Timed Backward Simulations). Suppose A ~~TB. Then 

l. 3C:A~~.C,;;;;_kB, 

2. if B hast-fin then 3C: A~~ C ~:a B, and 

3. 3C:A~kC~~B. 

Proof Immediate from Theorems 6.14 and 7.4. 
Parts I and 2 can alternatively be shown using a proof 

analogous to that of Theorem 3.22 of Part I. Let 
C=t-can(t-beh(A)). By Lemma 4.8, C is at-deterministic 
t-forest and A =~TC. Since C is t-deterministic, A~~ C 
by partial completeness of timed forward simulations 
(Theorem 6.15), and because C is at-forest, C ~kB follows 
by partial completeness of timed backward simulations 
(Theorem 7.2(1)) Similarly, if B has t-fin then C ~:B B 
follows by Theorem 7.2(2). I 

7.3. Timed History and Prophecy Relations 

In this section, we present additional results about the 
timed auxiliary variable constructions. 

7.3.1. Timed History Relations 

We begin with a timed analogue to the unfolding con­
struction of Part I. 

The timed unfolding of A, notation t-unfold(A), is the 
timed automaton B defined by 

• states(B) = t-execs*(A), 

• start(B) = [O, OJ--> start( A), 
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• acts( B) = acts( A), and 

•for W', WEstates(B),dER+ andaEacts(B)-R+, 

W' _::_.8 W ~ 3w: W' · w = W /\ w.ltime = d 

W'~B w~ W'aw'= W, 

where w' is the trivial trajectory that maps 0 to W.lstate. 

We leave it to the reader to verify that t-unfold(A) is a 
timed automaton. 

PROPOSITION 7.6. t-unfold(A) is a t-forest and A ~k 
t-unfold(A ). 

Proof Using Lemma 3.4 it follows easily that 
t-unfold(A) is a t-forest. The function .!state, which maps 
each finite timed execution of A to its last state, is a timed 
refinement from t-unfold(A) to A, and the relation .lstate- 1 

is a timed forward simulation from A to t-unfold(A ). 
Thus, .lstate- 1 is a timed history relation from A to 
t-unfold(A ). I 

We are now in a position to prove a timed version of 
Sistla's [57] completeness result. 

THEOREM 7.7 (Completeness of Timed History Relations 
and Timed Backward Simulations). Suppose A ~~TB. 
Then 

1. 3C: A ~k C~k B, and 

2. ifB hast-fin then 3C: A ~k c~:B B. 

Proof Analogous to the proof of Theorem 5.6 in Part I; 
choose C = t-unfold( A). I 

We next define a notion of timed superposition, analogous 
to the notion of superposition in Part I. Suppose R is a 
relation over states(A) and states(B) with Rn (start(A) x 
start(B)) -:f. 0. The timed superposition t-sup(A, B, R) of B 
onto A via R is the timed automaton C given by 

• states( C) = R, 

• start(C)=Rn(start(A)xstart(B)), 

• acts( C) =acts( A) n acts(B), and 

• for (s', u'), (s, u) Estates( C) and a E acts( C), 

(s', u')~c(s, u)~s' !:,,,As/\ u' g>8 u, wherep= t-trace(a). 

Again we leave it to the reader to check that t-sup(A, B, R) 
is a timed automaton. 

THEOREM 7.8. A~~ B~ (3C: A ~i1 C~k B). 

Proof Suppose A~~ B. Let f be a timed forward 
simulation from A to B, let C = t-sup(A, B,f), and let n 1 

and n1 be the projection functions that map states of C to 
their first and second components, respectively. Then it is 

easy to check that n 1- 1 is a timed history relation from A to 
C and n 2 is a timed refinement from C to B. 

The reverse implication also follows via a standard 
argument. I 

7.3.2. Timed Prophecy Relations 

Finally, we describe the additional results about timed 
prophecy relations. We give a timed analogue to the guess 
construction of Part I. This can be regarded as a dual to the 
timed unfolding construction of the previous subsection. 

The timed guess of A, notation t-guess(A), is the timed 
automaton B defined by 

• states(B) = t-frag*(A ), 

• start(B) = t-execs*(A), 

• acts(B) =acts( A), and 

• for W', W Estates(B), dE R +,and a E acts(B)- R +, 

W' _::_.s W ~ 3w: W' = w · W /\ w.ltime = d 

W'~Bw~W'=w'aW, 

where w' is the trivial trajectory that maps 0 to W' .fstate. 

As before, we leave it to the reader to verify that t-guess(A) 

is a timed automaton. 

PROPOSITION 7.9. A~~ t-guess(A). 

Proof Similar to the proof of Proposition 7.6. I 

THEOREM 7.10. 

1. A <kB<=> (3C: A~~ C ~kB). 

2. A ~:B B <=> (3C: A ~:PC ~kB). 

Proof Similar to the proof of Theorem 7.8, using timed 
backward simulations instead of timed forward simula­
tions. I 

We finish this subsection with a dual version of Sistla's 
completeness result [ 57] and variants of the completeness 
results of Abadi and Lamport [ 1]. 

THEOREM 7.11 (Completeness of Timed Prophecy Rela­
tions and Timed Forward Simulations). A ::::;~TB= 
3C: A~~ C~~B. 

Proof Analogous to the proof of Theorem 5.17 in Part I. 

THEOREM 7.12 (Completeness of 
Prophecy Relations and Refinements). 
Then 

1. 3C,D:A~kC~~D~kB. 

I 
Timed History/ 
Suppose A ~~TB. 

2. If B hast-fin then 3C, D: A ~k C ~:PD ~k_ B. 

3. 3C, D: A~~ C~\_i D~kB. 
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Proc~( Analogous to the proofa of Theorems 5.18 and 
5. i 9 in Part I. I 

7.4. A Result That Does l'ot Carry Over 

Proposition 3.12 of Part I does not carry over to our 
timed setting, i.e., there exist timed automata A and B such 
that A is at-forest and A~~· B but not A ~kB. 

EXAMPLE 7.13. Timed automaton A may perform a 
single visible action a at any rational time, and then stops. 
Timed automaton B may only perform a single action a at 
integer times. However, whereas A measures time with a 
"perfect clock," B measures time with a clock that may run 
either too slow or too fast, in an arbitrary fashion. The set 
of states of A is R " 0 x { T. F}, with ( 0, T) the initial state, 
and there are steps 

• (t, T) ..-!!...,. (t + d, T), for each tE R :-~o and dE R +; 

• (t, T) ~ (t, F ), for each t E Q ;.o. 

The set of states of Bis also R " 0 x {T. F}, with (0, T) the 
initial state. The steps of B are 

• (t, T) ..-!!...,. (t', T), for all t, t' ER ;.o with t < t' and all 
dE R+; 

• (t, TJ ~ (t. F ), for each t EN. 

Using Lemma 3.4 it is easy to see that A is a t-forest. Also, 
it is easy to check that the relation/ given by 

f ~ {((t,b),(t',b')) ltER;;. 0,t'ENandb=b'} 

timed forward simulation from A to B. However, there 
s not exist a timed refinement from A to B. The proof is 
contradiction. Suppose that r is a timed refinement. 

nen, by the start condition of a timed refinement, r maps 
the start state (0, T) of A to the start state (0, T) of B. The 
state (1, T) of A has an outgoing a step, so it must be 
mapped to a state of B that also has an outgoing a step, 
i.e., a state (n, T) for some n EN. Since A has a step 
( 0, T) __!_, ( 1, T), but B does not have a step ( 0, T) __!_, (0, T), 
it follows using the transfer condition of a timed refinement 
that n > 0. Let, for 0 ~ i ~ 2n. si be the image under r of state 
(i/2n, T) of A. By definition of A and by the transfer condi­
tion of a timed refinement. si ~ si + 1, for all i < 2n. 
Further all si must be of the form (mi, T), for some mi EN. 
By definition of B, this means that 0 = m 0 < m 1 < 
>rl2 < · · · < m1n ... i < m 2n = n. This is a contradiction, as 
there are only n - 1 naturals strictly between O and n, and 
not 2n - 1. 

. An interesting question (wide open to us) is to come up 
with some plausible additional axioms for timed automata 
such that in the resulting setting all the results on simula~ 
tions that we proved in Part I of this paper do carry over. 

8. INCLUDING INVARIANTS 

We show how to introduce invariants into the timed 
simulations, just as we introduced them into the untimed 
simulations in Section 6 of Part I. An invariant of a timed 
automaton A is defined to be a superset of the set of 
reachable states of A, i.e., a property that is true of all the 
reachable states of A. Let A and B be timed automata with 
invariants IA and Is' respectively. 

A weak timed refinement from A to B, with respect to I A 
and ls, is a function r: states(A)-+ states(B) that satisfies: 

I. If SE Start( A) then r(s) Estart(B). 

2. Ifs' ~As, s', s El A, and r(s') E ls, then r(s') J'~sr(s), 
where p = t-trace(a). 

A weak timed forward simulation from A to B, with 
respect to IA and ls, is a relation f over states(A) and 
states( B) that satisfies: 

1. Ifs E start( A) thenf[s] n start(B) =I= 0. 
2. If s' __!:..,.A s, s', s EI A, and u' Ef[ s'] n Is, then there 

exists a state u Ef[ s] such that u' 4 s u, where 
p = t-trace(a). 

A weak timed backward simulation from A to B, with 
respect to IA and ls, is a relation b over states(A) and 
states( B) that satisfies: 

I. Ifs E start(A) then b[s] n I B <:;;, start(B). 

2. If s'~As, s',sEIA, and uEb[s] nls, then there 
exists a state u' E b[s'] n Is such that u' 4s u, where 
p = t-trace(a). 

3. IfsEIAthenb[s]nls=l=0. 

A weak timed forward-backward simulation from A to B, 
with respect to I A and IS• is a relation g over states( A) and 
P(states(B)) that satisfies: 

1. If s E start( A) then there exists SE g[ s] such that 
Sn Is<:;;, start(B). 

2. Ifs'~As,s',sEIA, and S'Eg[s'], then there exists 
a set SE g[ s] such that for every u E Sn I 8 there exists 
u' ES' n ls such that u' J'.,.8 u, where p = t-trace(a). 

3. If sEIA and SEg[s] then Sn ls=I= 0. 

A weak timed backward-forward simulation from A to B, 
with respect to I A and Is, is a relation g over states( A) and 
P(states(B)) that satisfies: 

1. Ifs E start( A) then, for all SE g[ s], Sn start( B) =f. 0. 
2. Ifs'_!:..,.As,s',sEIA, and SEg[s], then there exists a 

set S' E g[ s'] such that for every u' ES' n I 8 there exists a 
u ES n ls such that u' -4B u, where p = t-trace(a). 

3. IfsE!Atheng[s]=l=0. 
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A relation hover states(A) and states(B) is a weak timed 
history relation from A to B, with respect to I and I 
provided that h is a weak timed forward simulati~n from~ 
to B, with respect to I A and I B' and h - 1 is a weak timed 
refineme~t from B to A, with respect to Is and I A. 

A relat10n p over states( A) and states( B) is a weak timed 
prophecy relation from A to B, with respect to I and I 
provided that p is a weak timed backward simula~ion fro~ 
A to B, with respect to I A and I B' and p - 1 is a weak timed 
refinement from B to A, with respect to Is and I A. 

We write A ::::; 1 RB A ::::; 1 B A :::::: 1 B A::::::' B 
w ' wF ' -....::::wB ., ~wiB ' 

A ::;:::t B A ~t B A-- 1 B A 1 1 
'-"'wFB ' '-"wiFB ' "=::wBF ' ::::;wiBf' B, A::::; H B 

A t d w ' 
::::; wP B an A ::::; ~iP B to denote the existence of a weak 

refinement, weak forward simulation, weak backward 
simulation, weak image-finite backward simulation, etc., 
from A to B, with respect to some invariants IA and Is. 

PROPOSITION 8.1. The relations ::::;~R' :( ~F' :(~B' 
,;::t. ~t ::;:::t __.t _.-t _.-t d _.-t ll 
'-"'w1B• '-"wFB' '-"'wiFB' ""=wBF' "=::wH' "=::wp, an "=::wiP are a 

preorders. (However, :s;~iBF is not apreorder.) 

THEOREM 8.2 (Soundness of Weak Simulations). 

l. If A :s;~R B, A :s;~F B, A <~iB B, A :(~iFB B, 
A <~iBF B, A :s;~H B, or A :s;~iP B, then A::::;~ B. 

2. If A ::::;~B B, A <~FB B, A <~aF B, or A::;;;' PB, then 
A t w 

<*TB. 

9. DISCUSSION 

In this paper, we have presented an automata-theoretic 
model for timing-based systems, and have used it to develop 
a variety of simulation proof techniques for such systems. 
These include timed refinements, timed forward and back­
ward simulations and combinations thereof, and timed 
history and prophecy relations. These techniques are 
analogous to those described in Part I, [ 44 ], for untimed 
systems. As in that paper, we present basic results for all of 
the simulations, including soundness and completeness 
results. The development is organized so that the proofs are 
based on the results of Part I. In fact, we have shown that 
all the results of Part I carry over to Part II, except for 
Proposition 3.12. 

The definitions of timed automata and their simulations 
involve many choices, such as the choice of the basic axioms 
for time-passage steps, whether non-time-passage steps 
have nonzero duration or are instantaneous, whether 
instantaneous time-passage steps are allowed, whether 
or not automata are required to have finitely many (or 
countably many) states, whether time-passage should be 
represented absolutely or incrementally, what the notion of 
external behavior should be, whether the simulations 
should require state reachability, etc. Most choices either 
lead to longer proofs (see for instance an earlier version of 
this paper [ 43] in which time-passage was represented 
absolutely) or do not yield all the properties in this paper. 

Our notion of a timed automaton is related to the models 
of Merritt, et al. [ 48] and of Lynch and Attiya [ 38]. 
However, these models have more structure than ours, since 
they assume that the system being modelled is describable in 
terms of a collection of separate tasks, each with associated 
upper and lower bounds on its speed. Also, the model of 
[ 48] includes treatment ofliveness, whereas our model does 
not. The absence of liveness considerations makes our 
model simpler; moreover, we do not lose much power 
because many properties of practical interest for timing­
based systems can be expressed as safety properties, given 
the admissibility assumption that time increases without 
bound (cf. [ 24] ). Lynch and Attiya [ 38) also extend 
simulation techniques to timing-based systems. That work, 
however, only considers forward simulations. The extra task 
structure of the model of Lynch and Attiya supports the 
development of a useful progress measure proof method, 
which we do not develop here. On the other hand, the basic 
theorems about forward simulations that appear in [ 38] 
are stated in a setting that has more structure than is really 
necessary for those theorems. 

Lynch and Vaandrager [ 41] show how a whole class of 
process algebraic operators can be defined on timed 
automata using the general notion of action transducers. 
Bosscher, Polak, and Vaandrager [ 12] define a language of 
linear hybrid systems, inspired by the work of [ 5, 8], and 
provide it with a semantics in terms of timed automata. Our 
timed automata can also be used to define the semantics 1 

the timed safety automata of Alur and Dill [ 7, 26]. In • 
latter model a finite state restriction is used in order 
enable the use of effective model-checking methods, som 
thing which is of course not possible in our much mm 
general model. 

By using our timed automata model as a common seman­
tic basis for several other models for timing-based systems. 
we get into a situation where we can easily use a variet) 
of formal proof methods, including assertional methods 
algebraic methods, and finite-state state exploration 
("model-checking") methods. These methods are usable 
individually or in combination. It remains to further 
develop the various proof methods for timed automata. In 
particular, we are interested in extending the methods of 
process algebra to our timed automaton model. Our paper 
[ 41] contains the beginning of such work, including defini­
tions of interesting operators on timed automata, and 
proofs of substitutivity results for the timed trace semantics, 
but it remains to provide useful algebraic laws for reasoning 
about the operators. 

Our timed simulations have already been used extensively 
elsewhere [ 12, 23, 32, 34-38, 45, 58, 60] for verification of 
timed algorithms and systems. More work is needed in 
applying timed simulations to additional practical verifica­
tion examples. In particular, nearly all of the examples that 
have been carried out so far involve refinements, forward 
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simulations and history variables. Only [ 58, 32] involve 
backward simulations and combinations of forward and 
backward simulations. 

Finally, although the timed automaton model presented 
here is very general, it has become clear that there are at 
least three ways in which it can be extended: to include 
treatment of liveness properties, to include probabilistic 
transitions, and to include treatment of hybrid systems, 
including continuously-communicating components. Some 
work on integrating liveness into the present model appears 
in [ 16], and work on integrating probabilistic transitions 
appears in [ 39, 3, 56]. Both liveness and probabilities intro­
duce their own sets of additional proof methods, e.g., tem­
poral logic and Markov analysis. In [ 12], it has been shown 
how linear hybrid systems can be defined in terms of our 
timed automata. It remains to develop the treatment of 
general hybrid systems, and to integrate all three extensions, 
with their proof tools, into a sensibly coordinated whole. 

APPENDIX A: OTHER AXIOMS 
FOR TIMED AUTOMATA 

We consider the relationship between axioms S2 and S2', 
as defined in Section 2.1. The relationship between the two 
axioms is also investigated in [ 28]. Define a semi-timed 
autornaton to be a timed automaton, except that it does not 
have to satisfy S2, but only the weaker (and simpler) axiom 
S2'. It is immediate from the definition of a trajectory that 
each timed automaton is semi-timed. In this appendix, we 
consider the reverse implication. 

A.1. Time Determinism 

In the original paper [ 61] of Wang in which the axiom 
,2' is proposed, the axiom of time determinacy is also intro­

duced. In our setting this axiom can be formulated as 
follows: 

TD. Ifs---!!.+ s' and s---!!.+ s", then s' = s". 

Axiom TD says that time is deterministic in the sense 
that after a certain amount of time has elapsed since the 
system arrived in some state, the new state is uniquely deter­
mined provided no internal or visible action has taken 
place. We say that a semi-timed automaton is time deter­
ministic if it satisfies axiom TD. The following theorem is 
easy to prove. 

THEOREM A. I. Each time deterministic semi-timed 
automaton is a timed automaton. 

Thus, Wang's axiom S2' is equivalent to the trajectory 
axiom S2 in a context where the time determinacy axiom 
TD is assumed. In our timed automaton model we do not 
require the axiom TD: we find it unnatural to allow non­
determinism for discrete actions but not for time-passage 
actions. As pointed out in [ 12], time nondeterministic 

timed automata arise naturally in the semantics of linear 
hybrid systems, for instance in the modelling of drifting 
clocks. Also, several of the constructions in this paper, such 
as the /-power, b-power, and superposition construction, 
introduce time nondeterminism. 

A.2. Countable Time Domains 

One way to obtain equivalence between timed and semi­
timed automata is to change the underlying time domain. In 
this paper, we have chosen elements of the set R "' 0 of non­
negative real numbers as time-passage actions for timed 
automata. Instead, we could have proved all our results for 
automata parameterized with an arbitrary time domain as in 
[27, 53, 28]. A time domain !?i! = ( T, +, 0) consists of a set 
T of points in time, equipped with a binary operator + and 
constant 0 such that, for all t, u, v E T, 

Tl. t+O=O+t=t 

T2. t + ( u + v) = ( t + u) + v 

T3. t + u = t + v => u = v 

T4. t + u = 0 => t= u = 0 

T5. u ~ t /\ v ~ t => u ~ v v v ~ u 

where ~ is the precedence relation on T defined by 
t ~ u <=>:Iv: t + v = u. Axioms Tl and T2 say that !?i! is a 
monoid. Axiom T3 states that 0'J is left-cancellative, axiom 
T4 that @is anti-symmetric, and axiom T5 that !?i! is locally 
linear. It follows from axioms Tl-T4 that ~ is a partial 
ordering with a unique minimal element 0. Axiom T3 allows 
us to define the subtraction operator that is required for the 
trajectory axiom: if u ~ t then t - u is defined to be the 
unique v with u + v = t. Axiom TS implies that ~ is total on 
each interval. This last axiom does not occur in [ 27, 53, 28 ], 
but we fail to have a clear intuition about trajectories 
without it. Examples of time domains are the nonnegative 
reals, rationals and integers with addition and 0, but also 
the sets of finite sequences with concatenation and the 
empty sequence. 

THEOREM A.2. Suppose A is a semi-timed automaton 
over a countable time domain. Then A is a timed automaton. 

Proof Suppose that s' ---!!.+A s. We construct a trajectory 
w from s' to s. As required, w( 0) = s' and w( d) = s. Let 
t 1 , t 2 , ... be some arbitrary enumeration of all the times in 
the interval (0, d).We define won elements of this sequence, 
in order. Let In be the set {O, d, t 1 , ... , tn}· We will induc­
tively construct w so that after w has been defined on In, we 
will have that w(t') ~ w(t) for all t', t E In, t' < t. This is 
enough to show that w is a trajectory from s' to s. 

So suppose that, for some n ~ 0, w has been defined on In, 
and that w(t') ~ w(t) for all t', t E In, t' < t. Let u' be the 
largest time in In that is smaller than t 11 + 1 , and let u be the 
smallest time in In that is larger than t n +I. By the hypothesis 
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about I,,, we have that w( u') ~ w( u ). Since u' < t 11 + 1 < u, 

axiom S2' implies that there exists a state s such that 
( ')''"I 11 d u--t >I ( D -

wu __________,.sans " wu). elmew(tn+i)=s. 
We claim that with this definition of w( t,. + 1 ), we have 

w(t')-~ w(t) for all t', tEln+I• t'<t. Since we already 
know this for t', t E I,,, it is enough to consider the case 

where one oft', t is equal tot,,+ 1 • We give the argument for 

t = tn 1 1 ; the argument for t' = t,, + 1 is analogous. 

So suppose t = t,, + 1 • If t' = u' then we already have the 
needed claim, w(u') 'n+i -u' w(t,,+ 1). The other possibility 

is that t' < u'. But then the claim for I,, implies that 
w(t' ) w( u' ). Since also w( u') In+ I - u' w(t n + I), axiom 

SI implies that w(t') 1"' 1 · ,. w(t..+i), as needed. I 

The above proof relies heavily on the assumption that the 

time domain is countable: since the interval [ t', t] is 

countable we can construct a trajectory from s' to s in an 

inductive fashion, state by state. Such a construction is no 

longer possible if the time domain is uncountable, as in the 
case of R 0 

A.3. A Counterexample 

At the time we first defined axiom S2, we constructed 

a complex counterexample to show that it was stronger 

than S2'. The simpler counterexample described below was 
subsequently discovered by Steve Schneider. 

THEOREM A.3. Let automaton D he defined hy 

• statl!s( D) = R :oo X Q ;, 0 , 

• start( D) = { (0, 0)}, 

• acts( D) = { r} u R +, and 

• steps(D) is .1pec!(ied hy (t',q')~n(t,q)~ 

d E R . /\ t' +cl= t /\ q' < q. 

771m D is sen1i-timed, hut not timed. 

Proof: One can easily check that D is semi-timed. 

H owe~cr, it is not timed: D does not satisfy the trajectory 

axiom S2 hccause that would imply, for instance, that the 

interval r 0, I] of reals can be injectivcly mapped into the 
rationals. I 

In the context of the present paper, there is no compelling 

technical reason why one should use S2 instead of S2'. In 

fact, in an earlier version of this paper [ 42] we have 

developed a theory of simulations for semi-timed automata. 

However, we find the theory for semi-timed automata less 

natural. For instance, the semi-timed automaton D of 

Theorem A.3 is a t-forest according to the definitions of 

[ 42 ], which is strange since an execution that ends in ( 1, 1) 

may pass through state ( ~, ~)or through state ( ~' ~_), b~t not 
through both. Also, the appealing local charactenzat10n of 

t-forcsts of Lemma 3.4 does not hold fort-forests as defined 

in ( 42]. Trajectories play a vital role in the t?eory of h~brid 
systems ( 21 ] . Since we would like to view our timed 

automata as an underlying semantic domain for both timed 

and hybrid systems, this provides additional motivation for 
our choice for the axiom S2. 

APPENDIX B: GLOSSARY OF CONVENTIONS 

a Actions 

b Backward simulations 

c Choice functions 

d Positive real numbers 

f Forward simulations 

g Forward--backward and backward-forward simulations 

h History relations 

Indices 
k Symbols 

n Natural numbers 

p Timed sequence pairs and prophecy relations 

r Refinements 
s States 

Real numbers plus infinity 

u States 
w 
A,B 

G 

I 
K 
L 
M,N 
P,Q 

R 

Trajectories 

Timed automata 
Digraphs 

Internals (and also invariants) 

Sets of symbols 

Sets of sequences 

Types of timed simulation mappings 

Timed trace properties 
Relations 

S, U Sets of states 

W Timed execution fragments 

X, Y, Z Sets 
ix Execution fragments 

(J Sequences of external actions (traces) 

y Sequences of actions 

i5 Timed sequence 

ii. The empty sequence 

n Projections 

a, p Sequences 

r The internal action 
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