ibles

Splines in Two Vari

Ce

. Traas

1. INTRODUCTION

The SMC research project *Numerical and Fundamental Aspects of Polyvio-
mial Splines in Two Variables’ was focussed on the special tvpe of functions
referred to as splines. These functions do have profitable properties with
respect to operations like interpolation, approximation and geometric mod-
elling, which make them outstandingly suitable for applications in various
fields of industrial design and numerical mathematics. For example, splines
are popular tools tor the description of curves and surfaces or, more general.
shapes. In industrial design they are applied to visuallv represent all kinds
of industrial products on the computer screen (cars, acroplanes, ships, bot-
tles, shoe-soles. tableware, ete.). Also the shapes of natural configurations
like landscapes or earth layvers can be adequately described. Not only such
geometrical objects, but also functional dependencies obtained from, e.g..
measurements can be easily represented: radar reflection patterns, thermo-
dynamic functions, tomographic data, ete. In addition, spline functions are
often used in numerical mathematics as basis functions in Ravleigh-Ritz-
Galerkin processes for solution of boundarv value problems for ordinary
and partial differential equations.

Historically. splines were motivated as tools for interpolation due to poor
behaviour of polyvnomials in this respect. First steps on a higher level were
done by l.J. Schoenberg in the 1940°s. With the advent of the computer in
the 1950°s/60°s, the development accelerated dramatically and resulted in a
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Figure 1. Originally splines were long strips made of very flexible strong material,
used as an engineer's tool at the drawing-table. Nowadays the computer has almost
completely taken over this design function.

fairly complete theory and practice for splines in one variable. In particular
the various recursive algorithms as initiated by, e.g., C. de Boor were of great
importance. Much effort also was put in the research concerning splines
in two and more variables. However, notwithstanding a lot of progress,
many problems are still open. For example, the problem of shape-preserving
approximation is still far away from a general solution. In the current
research project a number of these problems were studied in depth.
spline function in s variables is a piecewise analytic function on its
domain of definition 2 which i1s part of the s-dimensional space R”. If Q
1s bounded, then the subdomains on which the spline is analytic form a
finite partition of {2. In the one-dimensional situation the points where the
spline 1s not analytic are called ‘knots’. In the current project mathematical
techniques were investigated to construct spaces of spline functions having
tavourable properties with respect to the desired applications. Also the
omputability of such splines has been dealt with extensively. In the project
the analytical parts of the splines were restricted to be of polynomial nature.
This class of splines is called the class of polynomial splines.
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Problems arise when the spline is required to be several times differen-
tiable while the domain € C R" is arbitrarily shaped and s > 1. Other
types of problems arise when closed bodies in R” are required to be de-
scribed using a high degree of (geometric) continuity. In this latter case
one uses parametric spline surtaces, and the problem is connected to the
tact that the surface of a closed body can not be mapped in a continuous
one-to-one way 1nto R-.

Finally, the problem of the shape-preserving description of a surface has
been addressed in the project. These latter investigations were of mainly
theoretical nature.

2. POLYNOMIAL SPLINES

2.1. B-splines in one dimension

One of the basic contributions to the theory of polynomial splines in one
dimension is the discovery of basis functions with compact support, the
so-called B-splines, by H.B. Curry and Schoenberg in 1966 [1]. These are
piecewlse polynomial functions with a support of n + 1 consecutive subin-
tervals, where n is the degree of the polynomial parts, and with n — 1 times
continuously differentiable connections at the knots. A support of length
n + 1 subintervals 1s the smallest possible support for non-trivial splines of
degree n and of class C"~!. The number n + 1 is called the order of the
B-spline. The B-splines form a basis in the space of polynomial splines
defined over a given partition of the considered domain © C R. Their im-
portance is found in the fact of their very simple computability, which is
due to the existence of a recursion relation (De Boor and M.G. Cox, 1972).
This relation admits a numerically stable way of building up the higher-
order B-splines, starting with B-splines of order 1. Also for differentiation
and 1ntegration simple rules exist. The derivative of a B-spline can be
computed as a weighted difference of two B-splines of one order lower (De
Boor, 1972). An expression for the integral of a given spline was found by
De Boor, T. Lyche and L.L. Schumaker (1976). With these rules the basics
for practical computing with polynomial splines in one dimension are avail-
able. Further improvements could be attained by giving special attention
to the specific properties of splines and their algorithms. For example, it
1s possible to let coincide, purposedly, several consecutive knots, which can
be Interpreted as admitting subintervals of length zero. At such a multiple
knot the spline will have a lower order of continuity compared with the
continuity order at single knots. The above mentioned recursion, however,
can still be applied without any special measure. The computability is thus
not affected by introducing multiple knots. Furthermore the B-splines can
be normalized such that they form a partition of unity at every point in the
domain. A consequence is a close relationship in shape between a spline
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Figure 2. A cubic B-spline (order=4), and its derivatives.

s(x), written as a linear combination of B-splines, and the so-called control
polygon; this is the polygon which connects the consecutive control points
by straight line segments. The control points are defined as the points in
the z, y-plane which represent the coefficients in the B-spline expansion of
s(x): the y-coordinates are the values of the coefficients themselves, and the
x-coordinates are the values of the coefficients in the B-spline expansion of
the function x over the same knot partition. The similarity in shape allows
predictable change of shape of s(z) by changing coefficient values. This is of
great importance for shape design purposes. For these latter purposes is also
of great importance the possibility to insert additional knots at pre-selected
positions, for which a number of simple and elegant algorithms exist.

In figure 2 the normalized cubic B-spline over the set of knots {0, 1,2, 3,4}
1s shown (solid line), together with its first derivative (dashed line) and
second derivative (dotted line). In figure 3 a cubic spline is depicted over
the same set of knots, together with its control polygon. Due to multiplicity
of the boundary-knots, the first and last control points coincide with the
begin point and end point, respectively, of the curve.

From a theoretical point of view the relation that exists between divided
differences of polynomial half-space functions (truncated power functions)
and B-splines is of great importance. Properties of B-splines can be derived
from this relation in an elegant way. This opens perspectives with respect
to the research to B-splines in more than one dimension if the notion of
‘divided differences’ can be extended to more dimensions in a suitable way.
In the present project this item was an important subject of research.
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Figure 3. A cubic spline and its control polygon.

2.2. B-splines tn more dimensions

B-splines in more dimensions have been topic of research already since sev-
eral years. An obvious extension to the higher dimensional situation is
obtained by constructing tensor products of univariate splines. This type
of extension is of practical advantage in the sense that it allows the use
of repeated univariate algorithms. An obvious drawback, however, is the
very limited flexibility with respect to the shape of the domain and the den-
sity distribution of the set of knots. A more general extension arises from
the notion of polyhedral spline. The definition of B-splines, based upon
this notion, is strongly geometrical: B-splines in s dimensions are defined
as functions, the values of which are proportional to the volumes of cor-
responding intersections through polyhedra in higher-dimensional spaces.
The first actual construction of a B-spline on the basis of this geometrical
principle and with a simplex chosen for the polyhedron, was performed by
De Boor (1976) [2]. Later on other types of polyhedra were used, result-
ing in the construction of, e.g., box splines and cone splines. The tensor
product splines, mentioned above, could be interpreted as special cases of
box splines. Recurrence relations were found soon (L.A. Micchelli, 1980),
guaranteeing the relatively simple computability ot the splines.

The possibilities for practical use of simplex B-splines were for the first
time extensively investigated by R.H.J. Gmelig Meyling (1986). These B-
splines appeared to be suitable for high quality approximations of functions
in two variables over arbitrary finite domains. However, the computing
effort appeared to be high. A further improvement of computing efficiency
1s needed in order to render these splines really useful for practice. In figure
4 a bivariate quadratic simplex B-spline of class C'' is shown. Its support
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Figure 4. A bivariate quadratic simplex B-spline.

1s the convex hull of 5 knots in the plane.

Another extension of splines to more than one dimension, which is not
based on polyhedra in higher-dimensional spaces, uses a triangulation of the
domain and the definition of Bernstein polynomials on each of the elements
of this triangulation. Using Bernstein polynomials allows in a relatively
simple way the construction of a surface of class C!, or even class CZ,
by 1mposing side conditions on the control points. Pioneering work has
been done by Schumaker (1979 and later), in particular with respect to the
dimensions of such spline spaces [3]. Also for these splines the practical
utility was investigated extensively by Gmelig Meyling (1986).

3. THE RESEARCH IN THE PROJECT

T'he aim was to consider polynomial splines in two variables. A major part
of the fundamental research was devoted to bivariate simplex splines. A first
step was the generalization of the notion of univariate divided differences
to the higher-dimensional situation. This generalization is based upon a
pointwise evaluation of a multivariate function. Next, the simplex spline is
expressed as the multivariate divided difference of a generalized polynomaial
half-space function. The properties of the multivariate simplex splines could
be derived from the properties of the multivariate divided differences. Also
new proois were formulated for a number of already known results.

Much attention was paid to the computability of the simplex spline. Us-
ing as starting point a publication of E.T. Cohen among others (1987), in
which an alternative recurrence relation was presented for evaluation of mul-
tivariate simplex splines, new recurrence relations were found for directional
derivatives and for inner products of simplex splines. The numerical prop-
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Figure 5. A triangulation (left) and a quintic interpolant.

erties of these new algorithms are investigated (stability, computing effort)
and compared with the older algorithms. It appears that progress has been
made 1n particular with respect to the complexity of the algorithins.

An alternative for the computation of simplex splines is based on the
concept of subdiviston. In the case of box splines this is an accepted and
practically very useful technique, due to its efficiency and simplicity. For
the case of simplex splines little was known about this topic. For this reason
the notion of discrete simplexr spline is introduced and some properties are
derived. Discrete B-splines arise when continuous B-splines, defined with
respect to a given net of knots, are expressed as linear combinations of
continuous B-splines which are defined with respect to another net of knots
1n the same domain. The latter net usually is a refinement of the first net.
It will then be obvious that discrete B-splines take a central position in
subdivision processes. The investigations have led to the formulation of an
algorithm for subdivision of simplex splines.

Another topic of research was the smooth interpolation of scattered data
in three-dimensional space, using spline surfaces. A suitable method was
designed using degenerated triangular Bézier-Bernstein patches. This de-
generation has to be understood as a multiplicity of some of the control
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polnts. The necessity of the use of degenerated patches is a direct conse-
quence of the imposed requirements: (1) the method should be local, (2)
the patches should be polynomial, and (3) the geometric continuity should
be ot order 1 at least. Locality means that only local information is used to
construct the accessory local part of the surface. Results were obtained for
the polynomial degrees 4 and 5. It appeared that the method is suitable for
the description of closed bodies as well. In fieure 5 an example is given of an
object which is described by using degenerated quintic polynomial patches
and which is of geometric continuity class C'!'. The data set coincides with
the vertices of the triangulation.

Finally, attention was given to the smooth approximation and Interpo-
lation of convex functions, preserving the convexity. These investigations
were mainly of theoretical nature. One result that was obtained is a proof
that, whenever a finite-dimensional approximation space is used, the use of
local operators for interpolation in general will not result in preservation of
convexity. Thus an interpolation method which is such that preservation of
convexity 1s guaranteed must be global.

T'he major part of the above research was done by M. Neamtu in the
framework of his Ph.D. thesis.
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