1. INTRODUCTION

What constitutes the core of computer science? The answer will vary de-
pending on who vou ask. It will likelv range from a branch of mathematics
to an engineering discipline of constructing hardware and software systems.
The fact is that techniques and systems from computer science have pene-
trated very deeply into other disciplines and often stimulated the develop-
ment of new methods of research. Computers are probably wider used as
part of a research method in other sciences than mathematics.

Computer science can be defined as the theoretical, constructive, and ex-
perimental science of intormation processing syvstems. It is a relatively new
science, which has grown from a small core to a very important discipline
for society 1n a time span of only four decades. Central 1 this development
1s the digital computer. which by its virtue of almost universal applicability
as information processing medium, has placed itself amidst developments in
many organizations.

With the enormous imcrease in the use of computers came the need to
put some order in the developments and to create a sohid theoretical and
methodological basis on which new systems and applications can be devel-
oped. In this. computer science relies on the empirical corpus that has grown
in four decades in constructing and using information processing systemns
'1].

In this article, we will place developments in computer science in perspec-

70

H.J. Sips

tive and 1n relation to theory, construction, and experiment as the basic
constituents of computer science methodology. Of course, there can be no
in-depth treatment or discussion on detailed subjects. Instead, some major
developments and trends will be discussed.

2. MATHEMATICS AND COMPUTER SCIENCE

In its kind, computer science is a bit of a strange science: it does not fol-
low the traditional separation between disciplines studying artificial objects,
such as mathematics, logic, and theology, and those concerned with observ-
able objects or phenomena, such as physics or biology. In fact, computer
science deals with objects from both worlds: 1t shares its interest in for-
malisms, symbolic structures and their properties with mathematics. On
the other hand, it has much in common with constructive sciences such as
electrical engineering when i1t comes to the design and realization of hard-
ware and software systems.

Its common interest with mathematics in artificial objects is the cause
that many computer science faculties have their roots 1n the mathematics
department or be still part of them.

In this respect, the distinction between theoretical computer science and
mathematics is often not very clear. This is in contrast with other disciplines
such as physics, where we have theoretical physics to explain the nature ot
physical phenomena (often in highly mathematical terms) and mathemati-

cal physics, which is a supporting discipline for theory and experiments in
physics.

2.1. Theoretical computer science versus mathematical computer science
Could the same distinction be made in computer science?” Would we be able
to discriminate between theoretical computer science as revealing the na-
ture of information processing systems and mathematical computer science
which is to be supportive to all branches of computer science? Let us try
to make such a distinction as an experiment of thought. Complexity theory
is clearly very much related to the nature of computing itself. Hence we
would have no problem in classifying this field as to belong to theoretical
computer science. But what about for instance Petri nets (see also figure
1) and its theory? Petri nets lend themselves equally well to describing all
kinds of dynamic phenomena outside the domain of computer systems and
1S as such more a general mathematical modeling technique than just re-
vealing the nature of computing. Because Petrl nets are frequently applied
in computer science, such a subject would then accordingly be classified as
belonging to mathematical computer science. On the other hand, the Petri
net model could also be considered as a model of computation serving as a
semantic model for certain programming systems. From these examples it
is clear that to make such a separation is far from trivial.

THE MaNY FACES OF COMPUTER SCIENCE

Figure 1. The German computer scientist Carl Adam Petri developed in the 1960s

a general method—called Petri nets—for modelling distributed systems and processes
(Photo: S. Miinch, GMD).

2.2. Model and reality

Why then try to make such a distinction in the first place? The main reason
1s the problem we have in computer science in the distinction between model
and reality [3]. It is often advocated that the application of more formal
techniques in computer science will allow us to design systems at a higher
level of abstraction, enable proofs of correctness, and lead to robust systems.
While in principle this is true, it can only be done effectively if model and
reality coincide to a considerable extent. But what is reality in computer
science? It is the way we design and build systems. However, we have much
freedom in doing that. There is no such thing as a reality ‘out there’ such as
in other sciences against which a model can be validated. This also implies
that we can make reality look like the model we have. Some researchers
even think that the model is the basis and that reality should shape itself
like that. However, current experience is that if we do this, there is a price
to pay: some applications cannot be realized efficiently anymore in terms
of resource usage and/or time requirements.

k.

/2

M. SIPS

Another problem is that in many cases there is not really a precise notion
available of the objects we use in reality. We use concepts like ‘processes’
and talk about *distributed systems’, but generally define them in a rather
vague way. For some concepts, like processes, theories do exist, but again
these are models and not reality.

2.3. Formalisms

Apart from the progress made, results obtained in the theory of computer
science yet have not had a significant impact on computing practice. One
of the reasons is the existing gap between model and reality as already ex-
plained. A model is necessarily an abstraction of reality. It is in the way
abstractions are chosen, where things usually go wrong. Too often abstrac-
tions are made on the basis of the resulting mathematical elegance. It suits
the mathematician; nicely manipulatable objects result. However, many
essentlal features are abstracted away, leading to formalisms which cannot
really be applied in practical cases. Nice examples are theories of commu-
nicating processes. The first theories only allowed synchronous communica-
tion between processes. This could not hold: asynchronous communication
1s very essentlal in many real-life systems and must be part of any theory
of processes.

Another reason for the low impact of formal techniques is the highly
developed (mathematical) skills that are needed to use them. Most soft-
ware developers designing actual systems are not acquainted with formal
techniques and reasoning. One cannot expect to educate enough people to
master these methods and obtain the necessary mathematical skills. The
only way would be to bring these techniques down to a form understandable
to the average system designer and supported by user-friendly tools.

To overcome the current problems, research in theory should be more
directed towards diminishing the gap between model and reality and less
towards the (mathematical) art of modelling.

3. CONSTRUCTING COMPUTER SYSTEMS

T'he constructive part of computer science deals with methods and tools to
construct hardware and software systems. The hardware side is concerned
with the construction of memories, CPU’s, and interconnects. This field is
conceptually relatively mature in the sense that we know how to construct
computer systems. (See also figure 2.) The progress in terms of capacity
and speed is currently merely of a technological nature.

This does not mean that no progress has been made. The production
of hardware components has become a highly industrialized process. The
enormous investiments required to develop a new generation has forced a
certain standardization of hardware components. These developments make
the construction of computer systems from basic components relatively easy.

THE MaryY FACES OF COMPUTER SCIENCE

b

o Rty

R | =T X T T

i R
o .

3 ;-
e
s ‘Q%??‘”f

PR
B

b
b

N

e

]

I

- .

o rm——r

{

B i

. ou .
[T RRE Y 3 b 3 A ra—————-
o By -

e R Lo T,

. HRRARERL I 1 & F Lot 7] -
.

. . L

- ' 1

° L
b s e A b T T e ik

Figure 2. Contrary to software, hardware technology has considerably matured over
the years: the ARRA computer developed at CWI (1952), (b) a CDC Cyber 995
mainframe (1980's), and (c¢) a high performance graphics workstation (1990's).

On the software side, technology is much less mature. The process of
software development is still dominated by much detailed hand-crafted work R
and, even worse, development time is not diminishing at a pace required to
deliver in time robust software systems with good performance. Software
development time is now becoming the major critical factor in bringing new
products to the market.

This problem has been recognized for some years now and is referred to
as the software crisis. Basically, two approaches have been proposed to
solve the problem. On the one hand, raising the level of abstraction of pro-
gramming languages and systems would give programmers a more powerful
way to express their applications and leave many of the implementation
detaills to smart compilers. The ultimate goal is to be able to automatically

74

H.J. SIPS

generate code from precise specifications.

Another approach is to reuse code. Much too frequently, programmers
implement the same functions and algorithms all over again and do not use
programs that already have implemented the required features.

3.1. Programmaing languages

The two proposed solutions would indeed help to solve the software cri-
sis. However, things have not developed along these lines. There is still a
strong base of third generation imperative programming languages, which
1s not likely to disappear very soon. The original goal of a single powerful
programming language for all purposes has not been achieved. On the con-
trary, powerful programming languages, like ALGOL, have not survived for
various reasons. On the other hand, a proliferation of languages has also
not occurred. We even see a development towards a smaller set of languages
due to the enormous price pressure on software caused by the success of the
personal computer. Good quality compilers for programming languages on
personal computers can only be provided at low cost when there is a very
large user base.

Thus far, higher level languages such as functional languages have not
had their expected (by some) breakthrough. Partly this is caused by the
lack of commercially available, efficient implementations and partly by the
lack of user acceptance of the different model of computation that comes
with the use of such languages. Object-oriented features on the other hand
seem to find their way into the world of programming languages, not as
tully fledged new programming languages, but more as add-on’s to existing
languages like C, COBOL, and Ada. It is not clear whether this popularity
1s due to the fact that objects provide an easy mechanism to create abstract
data types or that features such as inheritance are favoured. The latter
concept 1s certainly more difficult to handle, since it relies on the modelling
capabilities of software designers, and when applied incorrectly, can easily
lead to bad software designs.

Will higher level programming languages be accepted in the near future?
It must be said that at the moment their future as general programming
language 1s not bright. However, for prototyping purposes or as a language
tallored to a specific domain, concepts found in these languages might be
very useful. Systems like MatLab or various script languages show that
domain specific high level programming systems do satisfy user needs. Also,
the popularity of spreadsheets shows that a different programming paradigm
can be attractive for specific applications, but the added value must be very
clear.

THE MaNyY FACES OF COMPUTER SCIENCE

3.2. Software reuse

Complementary to the use of powerful languages, software reuse has the
potential to speed up program development. By applying software reuse
techniques, certain parts of a program are composed from a number of well-
engineered and documented and frequently used code tragments. Although
an appealing idea, the problem of software reuse in part turns out to be an
organizational problem. One can only apply this technique if reuse software
models are accepted on a wide scale and reuse libraries are standardized. For
specific fields this has long been current practice (e.g. numerical libraries),
but in other domains the sheer effort seems to discourage any real progress.

Reuse on a larger grain size level has more of a chance, meaning reusing
larger software components to construct new applications. For example,
a spelling checker could be reused in various editors or word processing
systems. The investment question is in that case a lot simpler: either use
an existing piece of software or completely do the coding yourself. The
remaining question is the interface problem and a possibly not completely
matching functionality.

Related is the recent interest in so-called coordination languages [4]. Co-
ordination languages in effect form a binding component between several
pieces of (existing) software. The coordination language (or system) takes
care of the proper interaction between the various software components. It
is advocated that applications consisting of software objects written in dif-
ferent programming languages can be realized faster and more flexible. As
an example, consider an application working according to a client/server
model. Client/server interaction could be programmed in a coordination
language, while the actual code for the client and server processing is writ-
ten in another language. Also in distributed systems a coordination ap-
proach to system design will often be necessary, as local systems will be

implemented by using different programming languages.

3.5. Conclusion

From the above arguments, one might conclude that no real progress in soft-
ware construction has been made in recent years. This is too negative a con-
clusion. We have seen computers change from large unfriendly mastodons
to user-friendly personal computers and workstations. This is not only due
to hardware developments. Frequently occurring functions in applications
such as user interfaces and databases have developed into powerful reusable
products with standardized interfaces. The desk top metaphor, aithough
first critically received by many computer scientists, can be considered a
true innovation.

75

/6

H.J. SIPS

Figure 3. Upper layers of a protracted ‘hut cluster’, containing about ten thousand
atoms created on a Si(100) 1x2 surface by molecular beam epitaxy. Computer simula-
tions of complex systems like the dynamics of such clusters require considerable (parallel)
computing power and become more and more an essential part of scientific research.

(Courtesy Delft University of Technology, department of Applied Physics/Physics Infor-
matics.)

4. THE EXPERIMENTAL SIDE

The third view on computer science is experimental. In general, any soft-
ware system 1is based on a set of requirements. Some of these require-
ments are functional, some are non-functional (such as performance). Re-
quirements may be explicit or implicit, quantifiable or not quantifiable.
More important, the functionality space is not one-dimensional. Many
non-comparable aspects need to be taken into account before the question
whether an application serves its purposes can be properly answered.

As a consequence, many software systems are so complex that the only
way to validate new concepts is to set up experiments. This is normal
practice in any experimental science and may take the larger share of a
project’s funding. Surprisingly, this is hardly ever done in computer science
12]. There is a lack of experimental evidence in most computer science
projects, mainly because there is no money left (or asked for) for validation.
Here the binding of computer science to mathematics works out negatively.
The main research method in mathematics is analytical and there is no real
tradition in performing experiments as part of the research method. As a
consequence, most computer science results only consist of claims, without

THE Maiy FACES OF COMPUTER SCIENCE

Figure 4. Recent developments such as those around Internet corroborate the ongoing
dramatic influence of computing on communication.

ever proving them to come true in an experimental setting.

Another problem is that building software systems is often a tremendous
task, which usually does not contribute to academic research records. Even
worse, time spent on writing programs cannot be spent on writing papers.
With the current emphasis in academia on the quantity of publications, this
indeed will remain a problem for some time.

5. IMPACT ON OTHER SCIENCES

Apart from internal developments, computer science also has introduced
a new research method in traditional sciences. For instance, in physics
(computer) simulation has become an important third research method,
complementing theory and laboratory experiment (see figure 3). In general,
the field of modelling and simulation has been given a large impulse through
the availability of powerful and relatively cheap computers.

Besides having introduced a new research method, computer science has
also extended the corpus of other sciences. An example is management
science, where information technology is considered a new production factor
along with human resources and capital.

6. WHAT NEXT? COMPUTATION AND COMMUNICATION

Meanwhile research in computer science itself is very much driven by the
astonishing development of computer hardware. It is not that the basic
principles of digital computation have changed so much, in fact nothing re-
ally fundamental has changed since the day of Von Neumann’s conception
of the principle of digital computers, it is the mass production and minia-

/8

H.J. SIPS

turization of basic devices such as memories and processors which is the
main driving force in today’s computer science research.

The above developments are also bringing together the field of computa-
tion and communication (see also figure 4). Research and developments in
both areas have long been quite separate, even each with their own jargon
and terminology. Surely, digital computation did enter the communication
field years ago, but mainly for its internal operation (i.e. in digital branch
exchanges). But the merge of communication with computation opens com-
pletely new fields of application. For the first time computers will be used
to create new economic activities rather than just automating the existing
ones.

The impact on research will be large. Many research questions need to
be addressed. If we can link computers together without (technical) prob-
lems, 1rrespective where they are placed, questions arise whether we can
manage such complex systems. System configurations will become much
more dynamic and will have to be maintained while in operation. The
question of interoperability of systems and languages will have to be ad-
dressed again. The strange thing is that within the sequential computer we
have not been able to realize proper solutions for this problem. However,
distributed systems can simply not be realized without having solutions for
the interoperability problem.

In trying to come up with answers to these questions we are tfaced with the
problem that we really do not know where we are heading with this techno-
logy. And we cannot find out without really building and experimenting
with systems and applications. In short, all faces of Computer Science
are needed, in mutual cooperation, to find the appropriate answers to the
challenges imposed upon us.

REFERENCES
1. A. RAaLsTON, E.D. REILLY (EDS.). (1993). Encyclopedia of Computer
Science, 3rd ed., IEEE Press, Van Nostrand Rheinhold.

2. R.L. GrLAsS (1994). The software research crisis. IEEE Software,
November 1ssue.

3. R. KURKI-SUONIO (1994). Real Time: further misconceptions (or half-
thruths), IEEE Computer, June issue.

4. N. CARRIERO, D. GELERNTER (1992). Coordination languages and
their significance. Communications of the ACM, 35(2).

5. (1994). FEuropean Information Technology Observatory 94, EITO,
Frankfurt.

