
t i. ?\ A '
: , ' ,/ ' .

• e 1ence

H.J. Sips

1. IN'I'f{OI'>l'(''I'•Io~

\\i'l1c1t ('()ttst itlltf•s t l1(i ('()l'f 1 <>f' <.'(.ltr1p11tElI' s<·it'll('<•'! 1~il(' JlllS\\'t•r· \Vill \~r11·y <1f"­
I>(lt1<li11g; <111 \\'it<• _\'()ll (tsk. It \\1ill likt•l.\' 1·,111g(1 fr<)Ill et l>1·,i11t·l1 <>f 111,tt l1t\111<1ti<·s

tc) tlll <:•11gi11t.=-(~r·i11g clis<'iI)lirit:. <>f' (·tlr1st rtl('t i11g l1a.1·(i \\'I1r·t• <lil(l S(_>ft \\'clff• S),'St{'ltls.

ffl1(:1 f'cic·t is tl1c1,t tE:-~c·l111ic111(•s <llt<l S)'·stt'IllS f1·t»111 <·<>IIlJllltf::i.r :-;c·i(1 tl<'t• 11,l\'E• 1>t·11t:·­

t rfl t t~(i \l(~ry (it·•t'I> l.)' i r tt <> < >t l1 <"I' <i is.<·i I> l i 11 ~·s ,111<1 <)ft t•11 st i111 i1 l,1 t t·<i t l1,.· (l t· \'f' lt> 1>-
111i~r1t (,)f I.lt:~ \\,' lll(... t lt<><ls () f' f(lSt"ctl'(' lt. c~() Ill I> l.l t (' I'S ti,f(' J)t'() t),-tl) l :v· wi (l (• r llS(•<i }\,S

r>ctrt c>f' ;1 1·~st•c1rt·l1 r11t: ... t l1<)(i i11 <)tl1<-.1· s<·it,11<·t~s t l1ii11 Illclt lit,r11,ttic·s.
C1

c> r11 {) ll t t::.r sc· i E" ll('f" c· <ill l·1t· (l f1 fi Ilt"<l ,ts t lit· t lit•<) r·t•t i<· <tl ~ <'<>11s t rt1c·t i \'t-. <ill(l t:·x­
I)<·•1·i 111t"I1 t.l1l sc·it:"11c•() <)f ir1f'<:trttt,1tic>11 J.>r<)<'t•ssi11g S)'St< .. r11s. It is cl. rE1 la.t.iv(1 l.)' 11t:1v'\I'

S('if•!l('(1
, vvl1il·l1 ri:ts gr()'\\'ll fr·c)Ill cl Sill£i,ll ('()!'(• t<) ,l. \'('l'j,' irtl{)()l"t<.l,llt. (list·i1)lir1€·

fc)t' S()<·it}t:r· i11 cl t itll(l SJ><·\Il <>f' <>111:v· f<>tlr <i<·~<'ct<lt·s. (1
<\11t r <ll ir1 t l1is <i(2 VE:1 l<)J>tllt~r1t,

is tl1c~ ciigit<tl ('(>IllJ)tlt(lr·. \v·l1i(·l1 t))' its \'ir·tt1(1 <>f ctl11t<>st 1111ivt"1·sc:tl ftI)l')li<·,1l:>ilit,y•
as ir1fc:)r111<1tic>11 l)I.<.)('E::•ssir1g 111(•<lit1111. l1<ts 1>l,t<'f1<i it.sc1 lf' <t111ic_lst <lt~v·c1 l<)(>lllE't1t.s i11

• • 1r·ta11y (,) 1·gclll lZct t l(:) IlS.

\\Titlt t lit.· t'Il<)rtll<>trs i11<·r·E:'<t.~t:• i11 tl1E:, 11se:_• ()f. c·c.)r111_>l1t.<'t·s <:ct111<1 tl1<' 11c-,t::.ci t<)

1>11t. S<>IllE" <>I'(l<·r i11 tl1t:· <l<ll\7E•l<>I)Ill("Ilts ,·tll<l t,<> c·r•c)cl,t<-' it sc)licl tl1f:.<)I'f)tic·al etll<l

r11c:~t l1<J<l<}l<·;gi<·ci.l l>c1.sis <>11 \e\'l1i<·l1 tlE"W S)'Stt•111s a11<i clI>1>lic:·,1t.i()tls c·ii11 l)<:) (1(:"•vel­

C>I>fci(l. Ir1 tl1is. <·<.)IllJ)llt<1 1· s<·i<·tl<'t• r•t;\lit)s <)Il tl1t} t1 lllJ>ir·ic··rtl <'<lrI>t1s tlliit l1<1s g1·c>wr1
i11 f'<)llI' <lt:('('l(i(•S i11 ('()llSt I'\l('t i11g <iil<i 11si11g i11f(,)I'lllctt i<>ll J)I'()(•(\ssir1g S)'St.('IllS

[1] .
Ir1 tl1is <lr·ti<·lt:·~ \\'(' \vill (>lit.<'<' ci<)\'(~l<>J)Illt·r1t.s i11 <~(>llll)lltf'r s<·it•11c·t· i111.>t·1·s1>t~c·-

H.J. S!PS

tive and in relatio11 to theory, co11st,ruction, arid experirnent as the basic:
constituents of con1pute1· science 111etl1odology. Of course, there car1 lJe 110
in-depth treat,1nent or discussio11 011 detailed subjects. Instead, s0111E.~ 111ajor·
developn1ents and trends will be discussed.

2. MATHEI'v1ATICS AND C011PUTER SCIENCE

111 its ki11d, co111pute1· science is a bit of a str·a11ge scie11c:e: it does not fol­
low the tradit,ional separation betwee11 disciplir1es studyi11g a1·tificial objects,
such as 1nathematics, logic, a11d theology, and tl1ose concer11ed witl1 obser·v­
able objects or phenon1ena, sucl1 as physics or biology. In fact, con1puter
science deals with objects from both wor·lds: it sl1ares its interest i11 for­
malisms, symbolic structures a11d their properties with 111athen1atics. 011

the other hand, it has n1uch in co111111on with constructive sciences such as
electrical engi11eering wl1e11 it cor11es to the desig11 arid 1·ealizatio11 of hard­
ware and software systerns.

Its common interest with 111athe111atics in artificial objects is tl1e cause
that many co1nputer scie11ce faculties l1ave their root,s in the 111athe111atics
department or be still part of them.

In this respect, the distinctio11 between theoretical co111puter science and
mathematics is often not very clear. This is in contrast with ot11er discipli11es
such as physics, where we have tl1eoretical physics to explain the nature of
physical phenomena (often in higl1ly matl1ematical terms) and mathemati­
cal physics, which is a supporting discipline for theory and experin1ents in
physics.

2.1. Theoretical computer science ver·sus mathematical computer science
Could the san1e disti11ction be made ir1 computer scie11ce? Would we be able
to discriminate betwee11 theoretical con1puter science as revealing the 11a­
ture of inforn1ation processing systen1s and 1nathen1atical co1nputer scie11ce
which is to be supportive to all brancl1es of computer science? Let us try

70 to make such a distinction as an experiment of thought. Complexity theo1~y
is clearly very much 1·elated to the nature of cor11puting itself. He11ce we
would have no problen1 in classifyi11g this field as to belong to theoretical
computer science. But what about for i11stance Petri 11et,s (see also figure
1) and its theory? Petri nets lend then1selves equally well to describing all
kinds of dynamic phenomena outside the do111ain of co1nputer systen1s and
is as sucl1 more a general mathernatical rr1odelir1g t.echnique than just re­
vealing the nature of cornputing. Because Petri nets are frequer1tly applied
in computer scie11ce, sucl1 a subject would tl1en acco1~dingly be classified as
belonging to mathen1atical co111pute1~ scie11ce. On the otl1er ha11d, tl1e Petri
net model could also be considered as a model of computation serving as a
semantic r11odel for certain progra1n1ni11g syste111s. From these exa1nples it
is clear that to n1ake Sl1ch a separation is far from trivial.

, .

. ·>
,.;;.

, ,

-.;.,,:;:,::,,;.._,.,:_v .. , . r~.,
. ,--::_-~;}';

/ ,'.'•,~---;.;i;\. -,,-.-;;r:\J.

:ii:;i\\[!)i~i- ;)~-
,;,!\ <,. ,; ·.: .-.:'., . ·. "'.b< ,,,.
·_,;, ·_ : . ' :_ -_ - ,,;~· .
,,_.:_, -,,. /;:/ [;;;•,>· , .
"\ ,· ,•-J • ·a, ;',ir'--" '?,' • . ';:'. ::,•.{·/:.:.-··_,_-.

THE MANY FACES OF CC-)lv~PlJTER SC!ENC:E

Figure 1. The German computer scientist Carl Adam Petri developed in the 1960s
a general method--called Petri nets:-for modelling distributed systems and processes
(Photo: S. Munch, GMO).

2. 2. Model and reality
Wl1y tl1er1 try to n1ake suc'.11 a distir1ctio11 ir1 tl1e first J)lac'.e'? Tl1e 111ai11 r·easo11
is tl1e J)robler11 we l1ave i11 c:0111pt1te1· scie11c'.e i11 tl1e distir1c'.tio11 l)etwee11 111odel
arid reality [3]. It is ofter1 advOC'.c1tecl tl1at tl1e apJ)lic;atio11 of 1·11ore for1r1al 71
techniques in co111pl1t,er· scier1ce will allow us to desig11 syst.e111s c1t a l1ighe1·
level of abst1·ac~tio11, e11c1ble JJroofs of· c:01·r·ect.11ess, a11d lead t,o robl1st; syst.e111s.
While ir1 pri11ci1)le this is t1·11e, it, ca11 011ly l)e clo11e ett·ectively if 111oclel and
r·eality c~oi11cide to a c:011sider·able ext.e11t,. B11t whc1t is realit.y i11 co111r)t1t.e1·
SC'.ience;? It is t,l1e way we desigr1 a11(i l)uilcl syste111s. Hc)wc~ver, we l1ave 111uc:l1
freedo111 in doi11g tl1at. Tl1ere is 110 s11c:l1 tl1i11g cl..S a r·eality 'out tl1ere' st.1c.:l·1 as
i11 otl1er· sc:ier1ces agai11st w l1ic:l1 a 111oclel (:c111 l)e validat.eci. Tl1is also i111 plies
tl1c1t we c:a11 111ake I'E}c1lity look lil<e tl1e 1r1odel Wt; l1ave. S011·1e resear·c·l1ers
eve11 tl1i11k tl1at tl1e 111odel is tl1e bc1sis ctr1d tl1at realit,y sl1011lcl sl1a1)e itself
like tl1a.t. However·, c:11r·1·e11t ex1)er·ie11(:e is t,l1atj if' we do tl1is, t1l1e1·e is a J)1·ic:e
to pc1.y: s01r1c~ aJ)I)lic~at,i()11s c:a1111ot. lJe realizeci effic~iently clll)'lllOI'E:~ i11 t€~1"111s
of r·esot11·c·:e 11sa.ge a11cl/ 01· tir11e req1.1irer11e11ts.

72

H.J. SIPS

A11ot.l1c.:.1• l)l'C)l)le111 is tl1c1t i11111c111y c·,ts<'S tl1t·1·<· is Il(>t: r·c~,t.11.,r et µr·E·c·isc~ tl<>t.i()ll

clvailc1l_)le ()f t,l1t~ <)l)jc~c·ts we l_1se i11 1·(~c1lit.:;r. \V(' llSE· ('()lt<·<•J)t·.s lik<l ~l)I'C)('E1 SSt·s'

c111cl tc1lk ctl)c)11t. ~clist,r·il)11t,ed s1·ste111s', l>lit. ger1t~1·c1lly" <lc·fi11c1 t.11<:~111 i11 c:l 1·c1t.l1E~r·
vag11e Wct_y". Fc>r sc)111<:1 c~o11c:e1)t,s, lik<:. 1>1·c><:'.(~ss('S, t.l1t'(>1·i<ls cl<> <:xist., l>11t ,lg,1i11
t,l1t;se ar·e 111c)clE~ls ,t11cl 11c)t. 1·eali ty.

2. 3. Fo·r··rriali.c,rri,.s
A1)art, f1·or11 t,l1e l)I"<)gr·ess 111,tcle, 1·es11lt.s c)l)t.,1i11E:·cl i11 t.l1e t.l1eo1·y <)f c··c)1111>11t.t~r·
scie11ce yet l1c1ve 11ot l1,1cl cl sig11ifi<·c1.11t, i111pa(~t 01·1 c·'.01111)11t.i11g r)1·act.i<·<;. 011e
of tl1e reaso11s is tl1e exist.i11g gel!) l)etvvee11 111c)clel ,111ci 1·ec1lit.y c1S al1·(~c-1cly (\x­
J)lc:1i11E:~d. A 111c)d(~l is r1ec:essarily ,111 tl.l)st,r·ac:tio11 of 1·(~alit.y. It is i11 t.l1e W<tY
abstr·actio11s ,1.re cl1c>se11, wl1e1~e tl1i11gs llSl1ally go vvro11g. Too of'te1·1 ,1bst,1·ac­
tio11s are 111ade C)ll tl1e l)cisis of tl1e r·est1lt,i11g 111,"1t,l1t')111c1tic·c1l Ellega11c:E:~. It, suit,s
the 111atl1e111atic~ic111; 11ic:(:\ly 111a11i1J11lc1tctl)l(_) c)l)_jE--c·t,s rE:~st1lt,. Hc)\\i'CVE:'I', 111c1.11y
esse1·1tial fe,1t,11res are c1.l)st.1·c1c:te<l c1way, leaclir1g t,o f'or111c1lis111s wl1ic:l1 c:ctr111ot
r·eally l)e a1)pliecl i11 J)t·c1ct.ic'.ctl c:(1.ses. Nic'.e <.~xc1111ples ctr·f~ t.l1ec)ries c)f co11111111-
11ic:at,i11g prc)c:esses. Tl1t~ fir~st, t.l·1ec)1·ies <)11ly ctllowE.-.c·l sJr11c~l1ro11c)us c:c)1111111111iC'.ct­
t,io11 l)et,ween J)1·oc:esses. Tl1is c:011lcl 11ot l1olcl: ctsy11c·l1r·c)11ot1s c:0111111t111ic:at,io11
is very essential i11 111a11y r·eal-life syste111s c111(i 11111st, l)E' J),11·t. of ct11y t,l1eo1·y
of processes.

Anot.l1er 1·easo11 for· t,l1e low i1111Jac:t, of fo1·111c1l tecl111ic1l1es is t,l1e l1igl1ly
cleveloped (111atl1er11c1tic'.c1,l) skills t,l1at, ar·e 11E~E.~clecl t,o tise tl1c~1r1. IVIost, soft­
ware developers clesig11i11g ac".t,ual S)'St.e111s c1r·e riot, c1c~c1l1ai11te(:l witl1 for·111al
tecl1r1iq11es arid rec1s011i11g. 011e c·ar111ot expec:t t,o E.~cl 11c:c1t.e e11()t1gl1 l)('l()ple t,o
rr1c1st0~r tl1ese 1·11E~t,l1ocls a11d obt,ai11 til1e 11ec:essa1·y 111atl1t"l111atic:t1l skills. Tl1E~
011ly way vvo11ld be t,o l)ri11g t,hese tec:l111ic1ues clowr1 to et for111 tt11clt:rstc111dc1ble
to tl1e ctverage systie1r1 clesig11er c111cl s111)pc)1·t,ecl by 11se1~-f1~ier1clly tiools.

To overcon1e tl1e cu1·re11t proble111s, resear·c~l1 i11 tlreor·y sl1ot1lcl be 11101·e
dir·ected towarcls cli111i11ishir1g the gap bet.vvee11 111oclel a11cl r·t~ali t,y' arid less
towards the (111,1tl1e111aticc:1l) ar·t of 111odelli11g.

3. CONS'fRUC;'l-.INC; C;QI\1PUTF~R S'r'S"I'EivIS

Tl1e co11strt1c:tive pa1·t of co1r1put,e1· scie11ce dec1ls \vit,11 111etl1ods c111cl tools t,o
cor1strt1ct hardware a11cl software syst,e111s. Tl1e l1c11·clwct1·e sicle is c~o11c'.e1·11ed
wit,h the co11st1~11c~tion of 111en101·ies, (;PU's, c111cl i11t,er·co1111ec'.t.s. Tl1is field is
co11ce1)tt1ally relat,ively 111at.u1~e i11 t,l1e se11sE~ t.l1c1t Wt: k11ow l1ow t.o constr·t1ct;
cor11put,er syste111s. (See also fig11re 2.) Tlre p1·og1·ess ir1 ter111s of C'.apacity
a11cl speed is curre11tly r11e1·ely of a tec·'.}111olc)gic'.ctl 11c1.t.t1re.

Tl1is does 11ot 111ec1n that 110 p1·ogress lras t)€.)e11 111acle. Tl1e 1)rodt1ctio11
of l1a1·dware c:or11por1e11ts l1as l)eC'.0111e <1. l1igl1ly i11dt1st,rialized pr·ocess. Tl1e
er1or1:r1ot1s invest,111er1ts 1·eql1i1·ed to develop cl. new ge11eration l1as f orc:ed a
certai11 stc1r1dardizat,io11 of' l1a1·dwc1re C'.0111po11er1ts. Tl1ese clevelop1·11e11t.s n1ake
t.l1e co11st,1·t1c~tion c)f C;0111puter syster11s fro1r1 l)asic: co1111)011ents relat,ively easy.

b 'ti}

ff;.: ,.·. '

' ' - ",._

a

Figure 2. Contrary to software, hardware technology has considerably matured over

the years: (a) the ARRA computer developed at CWI (1952), (b) a CDC Cyber 995
mainframe (1980's), and (c) a high performance graphics workstation (1990's).

011 the software side, te(:hnology is 1r1uch less n1ature. Tl1e process of
software developn1e11t is st,ill dor11i11ated by n1uch detailed hand-c'.rafted wor·k
and, even wor·se, developrne11t ti111e is 11ot di1ni11isl1i11g at a pace rec1uirecl to
deliver in ti111e robust software syste111s with good perfor1na11ce. Software
clevelopn1e11t ti111e is 110w becor11i11g the n1ajor· cr·itical factor· i11 bri11gi11g 11ew
prodt1cts to the 111arket.

Tl1is problerr1 l1as bee11 r·ecognized for some years 110w ar1cl is refe1·1·ecl to
as the software crisis. Basically, two approaches l1ave beer1 proposecl to
solve the prol)le111. 011 the 011e l1a11d, raisir1g the level of abstractior1 of J)ro­
g1·an1n1ir1g langl1ages and systerr1s would give program111e1·s a rr1ore powerft1l
way to express their· c:1pplicatio11s a11d leave 111any of tl1e i111plerr1e11tat,io11
details to s1r1art compilers. Tl1e ultin1ate goal is to be able to auton1atically

C

73

H.J. SIPS

ge11erate code f1·orn p1~ecise specificc1t.io11s.
A11otl1er appr·oach is to 1·euse code. M uc'.11 too f1·eql1e11tly, p1·og1·a1r1111e1·s

i111ple111e11t tl1e san1e functio11s a11cl algor·it.11111s all over again c111d do riot use
prograr11s tl1at already have imple111e11t.ecl t,l1e r·ec1uir·e(l featiures.

3.1. Pr·ogramrn,ing languages
Tl1e two p1·01)osed solutio11s wol1ld i11deed l1elp to solve t1l1e soft.war·e c~ri­
sis. Howeve1·, tl1ings l1ave 11ot develo1)ed alo11g tl1ese li11es. Tl1ere is still a
stro11g base of tl1ird ge11eratio11 i111perative p1·ogr·a111n1ir1g la11gt1ages, wl1icl1
is 11ot, likely to disap1)ear very s0011. The origi11al goal of' a si11gle powerful
progra111r11i11g language for all puri)oses l1as 11ot beer1 acl1ieved. On the co11-
trary, powerful prograr11111ing lang11ages, like ALGOL, l1ave 11ot sur·vived for·
various reasons. 011 tl1e otl1er l1ar1d, a prolife1·atio11 of la11guages l1as also
11ot oc:cur1·ed. We even see a developn1e11t towa1·ds a srr1c1ller set of lar1guages
d 11e to tl1e er1or·111ous p1·ice pressure 011 soft\vt1re ctt11secl by t.l1E:~ s11cc~ess of tl1e
perso11al cornputer·. Good quality co111J)ilers for· 1)r·ogr·a11·1111i11g lar1g11ages 011
perso11al co111puters C'.a11 only l)e pr·ovided at low cost, wl1e11 tl1e1·e is a ve1·y
large llSer· rJase.

Tl1us far, l1igl1er level languages such as functio11al la11guages l1ave 11ot
l1ad tl1eir expected (by sorr1e) breakthrougl1. Par·tly this is caused by tl1e
lack of con1111ercially available, efficie11t i111ple111e11t,atior1s a11d partly by tl1e
lack of user acceptance of the different model of co1nputatio11 tl1at co111es
witl1 the use of sucl1 la11guages. Object-orie11ted features 011 tl1e ot,}1er l1and
see111 to fir1d their way into the world of progran1n1i11g languages, not, as
fully fledged 11ew progra1nmi11g la11gt1ages, b11t 111ore as add-011's t,o existing
languages like C, COBOL, a11d Ada. It is 11ot clear wl1etl1er this J)opularity
is due to t,he fact tl1at objects provide a11 easy r11ecl1a11is111 to c:r·eate abstract
data types or that feat,ures sucl1 as inherita11ce a1·e f'avour·ed. Tl1e latter
concept is certai11ly 111ore difficult, t,o ha11dle, si11ce it r·elies 011 tl1e r11odelli11g
capabilities of software desig11ers, arid wl1e11 aJ)plied i11cor1·ectly, c~a11 easily

7 4 lead to bad software designs.
Will higher level p1·ogra1n1nir1g lar1gl1ages be accepted ir1 the r1ear future'?

It must be said that at the n10111e11t tl1eir fut,u1·e as ger1er·al pr·ogra111n1ir1g
lar1guage is not bright. However, for prototypi11g purposes or as a la11guage
tailored to a specific do111ai11, concepts fou11d i1·1 tl1ese languages n1ight be
very l1seful. Syste1ns like MatLab or various script languages sl1ow tl1at
do1nai11 specific high level progra1111r1ing syste111s do satisf), 11ser needs. Also,
the popl1larit,y of spreadsheets sl1ows tl1at a diffe1·er1t progra111r11ing pa1·adigm
can be attractive for specific applicatio11s, l)t1t t,he added value r11ust be very
clear.

THE MANY FACf:S OF COtviPUTER SCIENCE

3.2. Software reuse
Compler11entary to tl1e use of powerful la11guages, sof·twa1·e 1·et1se l1as the
pote11tial to speed up pr·ogram de\relo1)111e11t,. By apJ)lying softwar·e reuse
tecl1niqt1es, certair1 pa1·ts of a progra1n ar·e c:0111posed f'ro111 c:1 11u111l_)er of \vell­
engineered and docu111e11ted arid frequer1tly used code frag111e11ts. Altl1()l1gl1
a11 appeali11g idea, tlre proble111 of softwar·e 1·euse i11 par·t tl1r11s out to be ar1
01·ga11izatio11al p1·oblen1. 011e ca11 only apply tl1is tecl111ique if ret1se softwar·e
rnodels are accepted 011 a, wide scale a11d r·euse libraries are sta11da1·dized. For·
specific fields this lras long been curre11t practice (e.g. nu111erical lib1·a1·ies),
but in otl1er do111ains the sl1eer effort see111s to discourage a11y real progress.

Reuse 011 a larger grain size level l1as 111or·e of a cl1a11ce, 111ea11i11g reusi11g
larger· softwa1·e compo11er1ts to constr·uct nevv applicatio11s. For· exa111ple,
a spelling cl1ecker could be reused ir1 various editor·s or word processir1g
systems. The ir1vest1nent question is ir1 t,l1at case a lot/ si1111)ler: eit,l1e1· use
a11 existing piece of software or co111pletely do tl1e codir1g yo111·self. Tl1e
re1nai11ing questio11 is tl1e ir1te1·face proble111 a11d a possibly 11ot co111pletely
mat,ching fu11ctionalit,y.

Relat,ed is tl1e rece11t i11terest in so-c:alled c:oordinatio11 la11guages [4]. Co­
ordination la11guages in effect for111 a bi11di11g cornpor1e11t bet.ween several
pieces of (existi11g) software. The coordir1ation language (or syste111) takes
car·e of the proper i11teraction between the various soft,var·e co111 po11ents. It,
is advocated that applicatio11s co11sisti11g of soft,va1·e objects written i11 dif­
ferent programming languages car1 be realized faster· and rnore flexible. As
an example, consider an application wor·king according t,o a clie11t/server
n1odel. Clie11t / server interaction could be prog1·a111111ed i11 a coordir1ation
language, while tl1e actual c:ode for tl1e clie11t a11cl server processi11g is writ­
ten in a11other language. Also i11 distribut,ed syste111s a coordinatio11 ap­
proach to system design will often be 11ecessary, as local syste111s will be
i111pleme11ted by using differe11t program1ni11g languages.

3. 3. Conclusion
From the above argu1ne11ts, 011e rnigl1t co11clude tl1at no real progress in soft­
ware construction l1as bee11 111ade in rece11t yea1·s. This is too negative a con­
clusio11. We have see11 computers change frorn large ur1f1·ie11dly 1nastodor1s
to user-friendly perso11al cornputers a11d ,vorkstatio11s. This is not only due
to hardware developrr1e11ts. Freque11tly occurri11g fu11ctions ir1 applications
such as user interfaces and databases have developed i11t,o power·ful reusable
products witl1 standardized i11terfac:es. The desk top rnetaphor·, altl-1ot1gl1
fi.1·st critically received by 1nany co111puter scie11tists, can be c:onsider·ed a
true innovatior1.

75

H.J. SIPS

Figure 3. Upper layers of a protracted 'hut cluster', containing about ten thousand

atoms created on a Si(lOO) lx2 surface by molecular beam epitaxy. Computer simula­

tions of complex systems like the dynamics of such clusters require considerable (parallel)

computing power and become more and more an essential part of scientific research.

(Courtesy Delft University of Technology, department of Applied Physics/Physics Infor­

matics.)

4. THE EXPERIMENTAL SIDE

Tl1e tl1ird view 011 c:0111put.er science is experir11e11tal. 111 ger1eral, any soft­
,vare syster11 is based 011 a set of rec1uire1ne11ts. Sarne of these require­
rr1er1ts are f1111c:t,io11al, so111e are r1011-f1111ctior1al (SlIC'.h as perforrr1a11ce). Re­
quire1nents 111ay be explicit or i1,r1plicit, qua11tifiable or 11ot quantifiable.

76 More i111portc:1nt, t,he fu11ctio11alit,y space is 11ot, 011e-dirr1ensional. 11any
r1or1-c:01npa1~able aspects need to be taken into accour1t before the questior1
wl1ether an application serves its pu1·poses ca11 be pr·oper·ly a11svvered.

As a c~o11seque11ce, 111any software syster11s are so complex that tl1e only
way to validate new c~o11cepts is to set up experirr1ents. Tl1is is 1101·1nal
practice in c111y experir11e11t,al scie11ce arid 1r1ay take tl1e larger~ sl1are of a
J)roject's funding. Surprisingly, tl1is is l1c1,rdly eve1· do11e i11 corr1pl1te1· sc:ie11c'.e
[2]. Tl1ere is a lack of experi111er1t,ctl evide11ce i11 1r1ost c:01111)11te1· scie11ce
pr·ojects, 111ainly bec'.ause tl1er·e is 110 111011ey lef't (or askecl for~) for validatio11.
Here the bi11ding of' C'.on1p11ter sc:ie11ce to 111c1the111atic'.S wor·ks ot1t negatively.
Tl1e 1·11air1 researcl1 111etl1od i11 1natl1err1at,ics is ar-ictlytic'.cll c111cl tlrere is no real
tradition ir1 per·f or·111ir1g exper·i111e11t,s c1S par·t of tl1e 1~esea1·cl1 11·1etl1ocl. As a
consequence, 111ost co1npute1~ scie11ce rest1lts 011ly c:011sist. of clc1i111s, without

THE /V\Ar~Y FACES OF COrv\PUTER SCIENCE

, , ,
, , ,

' . '. , , ,

' . . ' ' ,. ' . .. ·- ' . . '

' _, . ' .. - ,'· . . ' .. ' ., . . . ' ' ' .
. ' ' ,·

,'. ' - . . '· - . '. . : . .

· WHATISINTE&NET:PUONE?.
,' . . -, . ' •. ',,,_ .• ~••.,_ • -. ,- ,"·"-··.-- ,, - . '

' ' ' .

Figure 4. Recent developments such as those around Internet corroborate the ongoing

dramatic influence of computing on communication.

ever proving tl1em to come true in an experimental setti11g.
Another problem is that buildi11g software systems is often a tremendous

task, which usually does not contribute to academic research records. Even
worse, time spent on writing programs cannot be spent on writing papers.
With the current emphasis in academia on the quantity of publications, this
indeed will remain a problem for some time.

5. IMPACT ON OTHER SCIENCES

Apart from internal developments, con1puter science also has introduced
a new research method in traditional sciences. For instance, in physics
(computer) simulation has become an important third research method,
complementing theory and laboratory experiment (see figure 3). In general,
the field of modelling and simulation has been given a large impulse through
the availability of powerful and relatively cheap computers.

Besides having introduced a new research 1nethod, computer science has
also extended the corpus of other sciences. An example is n1a11agement
science, where information technology is considered a new production factor
along with human resources and capital.

6. WHAT NEXT? COMPUTATION AND COMMUNICATION

Meanwhile research in computer science itself is very much driven by the
astonishing development of computer hardware. It is not that the basic
principles of digital computation have changed so much, in fact nothing re­
ally fundamental has changed since the day of Von Neumann's conception

•

of the principle of digital computers, it is the mass production and minia-

77

,, ,

H.J. SIPS

turization of basic devices such as r11e11101·ies a11d p1·ocessors ivhich is the
n1ai11 dr·iving force in today's co111pt1ter· scier1c'.e resecir·c'.11.

The above developn1e11ts are also b1·i11gir1g togetl1er· t,he field of co111pl1ta­
tio11 a11d co111n1u11ication (see also figur·e 4). Resear·ch a11d developr11e11ts in
both areas have long been quite separate, eve11 each wit,11 t,l1eir ow11 jargon
a11d terrnir1ology. Surely, digital co111p11tat,io11 did e11ter tl1e co11111·1u11icatio11
field)rears ago, but 111ainly for its int,er·nal operatio11 (i.e. i11 digital br·a11cl1
excha11ges). But the 111e1·ge of co1111111111icatio11 with cor11putation opens co111-
pletely new fields of applicatio11. For the first tirne con1puters will be used
to create ne,v econo111ic activities ratl1e1· tl1a11 just aut,0111ating t,l1e existi11g
ones.

The impact on research will be lar·ge. Marry resear·ch questions need to
be addr·essed. If' we ca11 link cor11puter·s togetl1er witl1011t (technical) prob­
len1s, irrespective wl1ere they are placed, c1uestio11s arise whethe1· we ca11
manage sucl1 con1plex syste111s. Systern co11figt1ratio11s will beco111e 11111cl1
rnore dyna1nic a11d \vill l1a.ve to be r11aintai11ed wl1ile in operat.ion. Tl1e
questio11 of interoperability of syster11s a11cl lar1guages will have to be ad­
dressed agai11. The strange tl1ing is tl1at, withi11 the sequer1tial co111puter we
have not bee11 able to 1~ealize proper solutior1s fo1~ this proble111. However,
distribt1ted systen1s ca11 si111ply 11ot be realizecl wit.hout l1avi11g sol11tions for
tl1e ir1teroperability problem.

Ir1 trying to co111e up with a11swers to these questions we a1·e faced witl1 the
problerr1 that ,ve really do riot k11ow where we are heading with this tech110-
logy. Arid we can11ot find out wit.l1out really bt1ildi11g a11d experi111enting
witl1 syst,erns and applications. I11 short, all faces of Co111pute1~ Scie11ce
are needed, in n1utual cooperatio11, to find t,he appropriate answers to tl1e
challenges in1posed upon 11s.

REFERENCES

1. A. RALSTON, E.D. REILLY (EDS.). (1993). Encyclopedia of Computer
78 Science, 3rd ed., IEEE Press, Van Nostr·and Rheinl1old.

2. R.L. GLASS (1994). The software research c1·isis. IEEE Software,
November issue.

3. R. KURKI-SUONIO (1994). Real Time: further 111isco11ceptions (or half­
thrutl1s), IEEE Cornp·uter, Jur1e issue.

4. N. CARRIERO, D. GELERNTER (1992). Coordi11atio11 la11guages and
tl1ei1~ sig11ificance. Cornmunication.s of tlie A CM, 35 {2_).

5. (1994). European Information Technology Obser·i1atory 94, EITO,
Frankfurt.

