Images of SMC Research 1996

Computers: (Ac)counting for Mathematical Proofs

A.M. Cohen

1. INTRODUCTION

Some forty-five years ago, it became apparent that one could count on
computers for computing. Many engineers, physicists and others, but few
mathematicians, seemed to be aware of it.

For instance, numerical analysis arose from the need outside of mathe-
matics to perform elaborate computations. The finite element method has
been conceived by engineers (cf. e.g. [10]). Many numerical results dating
from before 1950 are due to physicists. Not until forty years ago, numerical
analysis came alive as a part of mathematics.

History repeated itseltf about thirty years ago, when it became clear to
physicists and computer scientists that exact (symbolic) computations could
be carried out successtully on a computer. Again, it took a few years before
software and computer power had been developed to the point where even
mathematicians could be impressed to the extent that they wanted to use
it. In 1985 that point was reached, and subsequently computer algebra
was being incorporated into mathematics. Over the last decade, computer
algebra has grown into a part of mathematics.

A pattern emerges, according to which computers are being used in dis-
ciplines outside of mathematics, in a way that mathematicians will learn to
appreciate only several years later, when others have shown its success.

A third to follow in line with this pattern might be automatic proof veri-
fication. Except for a single, although quite significant, exception like N.G.

16

A M Com

L

b b
:

R

de Bruijn, formal proof checking was not taken seriously by mathemati-
cians over the last twenty years. In the meantime. logicians and computer
scientists have developed software tools for verifving formal proofs quite
thoroughly. So much so that the use is becoming of some interest to math-
ematicians.

Extrapolating from the experiences with numerical analysis and computer
algebra, it seems only natural to predict that. if the imminent success of
these automatic proof verifiers persists, mathematicians will also count this
fleld as a part of mathematics.

Each of these three disciplines, numerical analysis, computer algebra and
proof verification, comes with field specific software. In this article I want
to highlight just one aspect of this software, namely the question how the
classical notion of proof should be interpreted now that, due to computers,
new methods of computation and verifyving proofs become available.

I1.1. Numerical mathematics

The last few years we have seen an increase of interactions between computer
algebra systems and numerical software. Usually the numerical software is
used as a library in a computer algebra environment. In the context of
proofs it is of considerable interest to explore how numerical mathematics
can be used to compose both eflicient and exact computations.

For example, inding the sign of a certain real algebraic number can be
done by purely algebraic methods which are far more inferior in time per-
formance than numerical methods. The optimmal strategy seems to use exact
arithmetic to determine the precision necessary for computations with an
approximation ot the algebraic number to result in the same sign as the ex-
act computation. Numerical software with the required precision will then
finish the job much more efficiently than exact arithmetic can.

Because nuinerical software is not made for exact computations, but also
because of my ignorance regarding the topic, I will leave out numerical math-
ematics from most of the discussion and concentrate on proofs in computer
algebra and verification.

2. 1TWO KINDS OF PROOFS

As opposed to the early times of computers, when their use demanded
a thorough knowledge of commands, idiom, a plethora of patience and
perseverance, computers are now pleasant, playtul, instructive, and some-
times even efficient tools for mathematicians. The computer lends itselt
to all kinds of mathematical experiments, computations and visualizations,
which can lead to interesting conjectures and experimmental circumstantial
evidence. But, next to striking claims, our strong mathematical tradition
also demands proofs, and my interest is in finding out what help the com-
puter can offer in this direction.

COMPUTERS: [ACICOUNTING FOR MATHEMATICAL PROOFS

466 EVCLIDIS ELEMENT,
PROP. XXXI. THEOR.
- In rellangulis
triangulis BA C fi-
 gura E, quae fir a

latere B C, relfum
angulum A [ubten-

Y D‘ ~C dente, aequalis ¢ff
‘ 0 ¢15 F =~ G, quac a4
- lateribus yectum an.-

* — Lulum compyehen-

dentibus fiunt , fimilibus & fomiliter defcriptis,
e cor.8. 6. Duc perpendicularem AD: & erit * <~BC,
§. 2. cor. BA, BD, item <=~ BC, CA, DC. ~Hinc # BC!
20. ©. BD:.:-*.;.._ E: G, & BC: DC = E:F, vel inuerfe
; DC: BC—=F:E, &BD:BC—=—=G:E. Fr=
y.24. 5. go” BD 4+ DC:BC==F 4~ G:E. SedBD
3. fch, 142 6.~ DC=BC: ergo® F 4~ G = E. Q.E.D.

Aliter,
¢. 1. COL. F:E ==¢t(CA: BC)*=¢ CAq:BCq, &G
0. 6. E— (AB: BC)2 = ABq: BCq. Ergo” F
A 4+ G: E== CAq <~ ABq: BCq. Sed CAq
g 4 L = ABq = BCq. Ergo F ~}- G — % E. -

PROP. XXXI. THEOR,
St duo triangula ABC,
DCE, guae¢ duo latera duobus

lateribus proportionalia bar
3 \ . bemt (BA: AC == CD: DE),

.. ... B C K componantur [ecundum vnups-
f “” | dngulum ita , vt bomalaga latera ipﬁ)rum BA &
CD, item AC & DE, fint parallela : reliqua
N 1rian-

O

Figure 1. Fragment of Euclid's Elements (around 300 B.C.), the classical book based
on deductive proof with the axiomatic method (J.F. Gleditsch, Leipzig, 1743. Courtesy

W.J.L. Nieland).

77

18

A.M. COHEN

The classical notion of proof (see also figure 1) is that of a chain of steps,
each of which 1s understandable to our colleagues, forming a deduction of
a given assertion from axioms according to a certain logic. A necessary
condition for the acceptance of an assertion as a theorem is the validation
of a proof of it by a number of colleagues. My starting point is not so much
to overthrow this classical notion as to examine how it should be interpreted
in the context of new appearances of proofs due to the surge of powerful
computers.

T'he most obvious appearance lies in arithmetic: a proof based on a certain
amount of arithmetic, so enormous that it cannot be performed by hand, will
be called a computational proof if it can be worked out by computer. But
should any series of computations be accepted as proof? To this question I
will devote considerable attention.

The second appearance is in the form of formal proofs, which are so elab-
orate and precise that they can actually be read and verified by a computer
program (often called the proof checker, the procedure is called automated
verification). Here the question I want to address is: of what use could such
a system be for mathematics or mathematicians?

3. AUTOMATED VERIFICATION

I will start with formal proofs. FEach step in such a proof follows from
precisely indicated axioms by use of precisely indicated deduction rules. It
1s characteristic of the elaborate texts representing such a proof that they
can be verified automatically, with existing software like LEGO.

3.1. Example

By way of illustration, I present a formal proof for the claim that 13 is a
prime number.

definitions:
divides(m : N, n: N) =3 p: N. pxm = n.
prime(p : N) =V ¢ : N. divides(q,p) — (¢ =1) V
axioml: V2,5, k[:N. (l=7xk+1) AN (0<I <K
axiom?2: Vi : N. (Vj:N. 1 < j < Sqrt(7)
— —(divides(y,%))) — prime(z).
axiom3d: V::N. 1 <1< Sqrt(13) — (¢ =2) V (i = 3).
axiom4: Vi:N. (1=2) - (13=6x71+1) A (0< 1 <1).
lemmas: Vi : N. (i =2) — —(divides(z,13)). (axioml, axiom4)
z
(

q=0D).

(
k)) — —(divides(k, 7)).

axiom6: Vi :N. 1 =3) = (13 =4*xi1+ 1) A (0< 1 <1).
lemma7: V¢:N. (i =3) — —(divides(7, 13)). (axioml, axiom6)
lemma8: Vi:N. 1 <i<Sqrt(13) — —(divides(z,13)).

(axiom3, lemmab, lemma7)
conclusion: prime(13). (axiom?2, lemmag8)

COMPUTERS: [AC)COUNTING FOR MATHEMATICAL PROOFS

In order to bound the size of this example, I have allowed for 1 to be a
prime, and have made the following assumnptions, which appear as axioms
1n the prootf:

o It 1= xhk+[and 0 <[<k, then & does not divide ¢ (axiom1),

o [t suffices for the proof of our claim to check that no natural number

less than or equal to (the floor of) v/13 and bigger than 1 divides 13
(axiom?2),

e the only natural numbers less than or equal to (the floor of) v/13 and
bigger than 1 are 2 and 3 (axiom3),

o 13 =6x%2+ 1 (axiom4), and

e 13=4x%3+ 1 (axiomb).

In order to increase human readability, I have not given the literal input
into the proof checker LEGO, but a palatable version that still gives the
flavour. After reading the text, LEGO will return a ‘check mark’, saying
that the proot is accepted. If some step in the proof has not been derived
using the specified deduction rules, the program stops and reports where it
got stuck.

This example might give the impression that formal proofs consist of
unwanted compilations of trivia. But, regardless how big the bulk of for-
malities may seem in the above example, in general it is expected to be a
linear function of the length of the classical proof. Thus, when the first
classical proofs can be dealt with in formal guise, much bigger ones will
follow suit.

Also, there are clear indications that formal proot checkers, just like peo-
ple, can work with meta-theorems, which will cater for considerable size
reductions of the formal proof. (Compare with the use of macros in source
texts of programs like TEX.)

In short, due to such favourable developments proof checkers may turn
into serious candidates for everyday mathematical use.

3.2. The use of proof checkers

But, you may wonder, what then is the use mathematicians can make of
these automated verifiers? I will list four ways in which I envisage a role for
the proof checker.

1. There are indications of the practical use that automated verification may
have. In computer science for instance, simple communication protocols
which are being used have been proved correct (cf. [4, 8 9]). Especially
for hardware like processor chips, which are produced in large quantities, it
can be economically justified to devote plenty of time, energy and money to

19

20

A.M. COHEN

increase the reliability of the procedures that are being baked into the chip.
Automated verification may be laborious, calling the whole production back
to the factory is likely to cost excessively more. If the well-publicized mistake
with the Pentium chip was indeed due to an error in the mathematical
design for division, an automated verifier might have detected it before
production. On the other hand, if, as other rumours have it, the mistake
was due to some pieces of data falling off the blueprint when being copied,
no automated verifier would have helped.

2. The mere fact that it is possible to verify a proof automatically, brings
about a challenge to actually supply such a proot. If proof verification were
to enable mathematicians, in exchange for somewhat greater precision and
elaboration, to formalize their work in a new generation of ‘Bourbakism’,
then this might well become the standard. Let us not forget that today’s
proofs are much more rigorous than those of previous eras.

3. The formal proof verifier can be of service when putting together or
restructuring a complicated proof. By using the proof checker interactively,
and declaring axioms all intermediate steps that haven’t been proved yet
and are deemed necessary (in much the same way we did in the proot that
13 is prime), we can dynamically develop a strategy for finding the proof of
the tull claim.

4. This interactive use can also be of significance to education. In a com-
puter learning environment, the proof checker might offer the necessary
structure for helping the student to realize a proof and for verifying inter-
medilate results.

Presently, good human interfaces are lacking. Before the mathematician
will successfully employ formal proof checkers, the link with daily mathe-
matical use should be much more direct. One of the necessary ingredients for
achieving this is ‘the mathematical vernacular’, as suggested by De Bruijn:
a language so formal that it can be used as input for a proof checker, yet so
close to everyday language that it produces human readable texts.

4. THE COMPUTATIONAL PROOF

The characteristic property of a computational proof is that a lot of arith-
metic is involved of the kind that is easy to automate. On the one hand,
invoking such a proof implicitly acknowledges the lack of a better one: the
mathematician’s sense of beauty favours a short proof with little arithmetic
involved over a computational proof.

On the other hand, it does not imply that the proof is necessarily a dull
chain of calculations. For instance, there are much more subtle computa-
tional proofs of the claim ‘n is prime’ for a specified natural number n than
the most obvious one, which is based on the equivalence of primality of n
with the truth of the assertion:

for each natural number k between 1 and /n we have gecd (n, k) = 1.

COMPUTERS: [ACICOUNTING FOR MATHEMATICAL PROOFS

We then let the computer determine all possible values for & and verify, for
each of those values of k&, that gcd (k,n) = 1. If the primme number n is a
31 digit number, then this verification entails more than 10'° ged compu-
tations, amounting to more than 10 years of computation. But present
day software provides a verification of this fact in a few seconds.It is an art
to develop such fast computational proofs; experience has shown that, as a
byproduct of this activity, surprising mathematical theorems may emerge.
I have already asserted that a classi-
cal proot is accepted only after a num-
ber of colleagues have read it and con-
vinced themselves of the validity of each
step. 'T'he multiplication 2 x 3 = 6 1s
an acceptable step, but a proof consist-
ing of 10°! such steps is not. For well-
known computer results such as the Four
Color Theorem (cf. |1, 2]) and the non-
existence of the projective plane of or-
der 10, this is the core of the problem:
the outline of the proof was known long
before the computational proof was fin- T
ished. The tremendous amount of dull Figure 2. N.G. de Bruijn originated
repetitive work, far too much for an or- n 1968 the idea of machine veri-
dinary work station, gives a kind of proof fied proofs, using the Automath lan-
that is rather reluctantly received. guages. Courtesy Birkhauser inc.

............

4.1. Projective planes of order 10

A projective plane of order 10 is a configuration consisting of a set of 111
points and just as many subsets of size 11 of the point set, called lines, such
that each pair of distinct points is on exactly one line, and each pair of
distinct lines meets in precisely one point.

The theorem by C.W.H. Lam, L.H. Thiel and S. Swiercz (cf. {12, 13}) says
that such a projective plane does not exist. At the time they finished the
non-existence proof on computer, coding theoretic arguments had led to the
observation that if a projective plane of order 10 existed, it would have at
least one of 66 different well-specified subconfigurations on 19 points. Very
crudely, the proof of Lam c.s. consists of an exhaustive search for possible
extensions of each of these 66 subconfigurations to a projective plane of
order 10.

So here each error in the proof could have blocked a conceivable road
to finding a projective plane. In their announcement [13], the authors are
extremely careful in formulating their result. I quote:

21

22

A.M. COHEN

T'his note reports the result of a computer search for 19-point
configurations, which, when taken together with previous re-
sults, implies that a plane of order 10 does not exist.

Part of the proof is carried out on one of the fastest supercomputers
avallable at the time (1989): the CRAY-1A. Months of computer tinie have
been used on that machine. Thus, the search cannot easily be repeated by
a colleague (at least not as of 1995). Also, the slim chance of a shocking
result does not motivate other researchers to repeat the effort. After all, the
odds are high that the projective plane of order 10 does not exist indeed!

4.2. Oracles

The possibility to repeat the computational proof came up as a criterion
for acceptance. Similarly to the case of a classical proof, it is of partic-
ular importance that colleagues involved in the validation procedure of a
computational proot will be able to perform their verifications on their own
machines with relative ease. In particular, if the result of a computation
can be verified in a way that has little or (even better) nothing to do with
the computation itself, and is much quicker to verify than the original com-
putation, this condition is satisfied. A simple but typical instance of an
independent verification is the factorization of large numbers like RSA-129.

Theorem (A.K. Lenstra et al.) RSA-129:

1143816257578888676692357799761466120102182967212423625625618429
30706935245733897830597123563958705058989075147599290026879543541

b
———

3490529510847650949147849619903898133417764638493387843990820577 *
32769132993266709549961988190834461413177642967992942539798288533

It took Lenstra et al. several months to factor this 129 digit number,
whereas the verification of the result is a single multiplication of two large
numbers. Borrowing the terminology from circles in which the study of
non-deterministic polynomial time algorithms is popular, I will call this the
oracle function of the algorithm: it delivers, in a way that is irrelevant to the
user, a result that we can check ourselves for correctness. In everyday use
of computer algebra systems, the oracle function is not always so blatantly
prominent.

4.8. Algorithms
Of course, in a computational proof, the possibility of hardware failures also
needs to be considered. As we have recently seen in the case of the pentium

COMPUTERS: [ACJCOUNTING FOR MATHEMATICAL PROOFS

chip, even the basic arithmetic of a (new) processor may be erroneous.
Also, the chance of a spontaneous error in computer arithmetic, for example
caused by a speck of dust, is small but not inconceivable. Lam c¢.s. mention
a detection of such an error on the CRAY. This is another reason why
repetition or, even better, repeatability of a computational proof on different
processors should be a necessary condition.

But what holds for hardware and basic arithmetic, also holds for software,
for the implementation of an algorithm. If we accept the result of a mul-
tiplication on computer, then why should we not accept more complicated
programs? Here too, different incarnations of the algorithm will enhance
the acceptability of a computational proof if they provide the same output.

4.4. The Buchberger algorithm

In order to go into somewhat greater depth regarding the use of software,
[will discuss the use of one of the key results of computer algebra: the
Buchberger algorithm. This algorithm takes as input a system of polyno-
mial equations in several unknown, and outputs an equivalent system of
equations, from which the solutions can be read off almost immediately (in
general after use of a factorization algorithm for polynomials in a single
variable). The output is often called a Grébner basis. This ‘normal form’
tor polynomial equations has many useful applications. There are imple-
mentations of the Buchberger algorithm in the systems Bergman, CoCoa,
Felix, Ganith, GB, KAN, Macaulay, Maple, Mathematica, Reduce, Saclib2.
Singular,...

The Buchberger algorithm is a beautiful generalization of both the ged
algorithm for polynomials in a single variable and Gauss elimination for
linear equations in several unknown. But here I do not want to go into the
theory of the Buchberger algorithm; that has been done quite frequently
lately; see for instance [6]. I would rather deal with its use in two examples
from my own experience. One of the reasons why the algorithm has become
such a great success, lies in the fact that many mathematical problems can
be formulated as solving polynomial equations.

5. THE ICOSAHEDRAL GROUP
For the first example, consider the well-known icosahedron (see also figure
3). The icosahedral group is by definition the group of all symmetries (or,
if you prefer, isometries) of the icosahedron. I will show how, using the
Buchberger algorithm, we can transform the purely geometric description
into algebraic data, namely a matrix form for each of three reflections gen-
erating the group. This in turn can be used for an algebraic description of
the points of the dodecahedron.

All reflections leaving the icosahedron invariant, are of the same type:
they reflect in a hyperplane as indicated in figure 4.

213

A.M. COHEN

pEFH R
e A
AT

Figure 3. The icosahedron: as a graph (left) and 3D (right).

We can now choose three reflections x, y and z in such a way that the
1cosahedral group is generated by them. To this end, we take the angles

between the various pairs of reflecting hyperplanes to be 60° for x and v,
90°, for x and z, and 36° for v and =z.

Figure 4. Reflections leaving the icosahedron invariant.

COMPUTERS: [ACICOUNTING FOR MATHEMATICAL PROCFS

Figure 5. A Cayley graph of the icosahedral group.

We then have the following relations for z, y, and =z:

5:’
:z:‘“:yzwzz:l.

(zy)® = (y2)° = (z2)* = 1.

The first line expresses the fact that the reflections z, y, and z each
have order 2. The second line holds because the product of two reflections
is a rotation along twice the angle between the corresponding reflecting
hyperplanes.

According to Coxeter the relations given are defining relations for the
icosahedral group. To elaborate on this, we shall from here on view the
icosahedral group as the abstract group generated by abstract elements x, y,
and z subject to the relations given above. To see that this definition of
the icosahedral group coincides with the former, one can invoke a procedure
known as ‘Todd-Coxeter’ enumeration, which results in a so-called Cayley
oeraph. From a free construction of this graph, in which each edge 1s labeled
with one of the three reflections, figure 5 results.

25

26

AM. COHEN

Here, the labeling is as follows: a dotted line segment corresponds with
xr, an ordinary segment with y, and a fat segment with -.

The number of vertices of this graph is 120, the number of elements of the
1cosahedral group. These points can be identified (in a meaningful manner)
with the elements of the group. By the way, the icosahedron itself can be
recovered from this picture by fusing each of the twelve 10-gons to a point.

5.1. Embedding of the icosahedral group
But our goal is to show how, by use of the Buchberger algorithm, we can
find orthogonal matrices for the elements of the icosahedral group. We can
restrict ourselves to a search for matrices of the reflections x, y, z. Since
they generate the whole group, every element can be written as a product
of these (and all products are elements of the group).

Because r and z commute, we can choose them, without loss of generality,
as follows:

-1 0 0 1 0 O
e O 1 0}, 2=10 1 O
O 0 1 0 0 -1
Thus, it remains to find the matrix ¥y = (y; ;j)i1<i j<3. Here are some

excerpts of a Maple program in which Buchberger’s algorithm is called to
solve the equations for the 9 coefficients of y deduced from the defining
relations for the generators x, y, and z of the icosahedral group.

1. We load the linear algebra package, and input the 3 matrices x, y and

>
P

2. As a turther preparation, we put the unknown entries of the matrix vy
in a list
> vars := [yl11,y12,y21,y13,y31,y22,y23,y32,y33]:

and create the identity matrix of size 3:
> idm := matrix(3,3,[[1,0,0],[0,1,0],[0,0,1]1]1):

3. We have written a routine mkeq that, given a matrix, puts its coefhi-
clents 1mto a set. Using this routine, we put the equations resulting
from y* = 1 into the set eqy.

The expression evalm stands for ‘evaluate as a Matrix’. When exe-
cuted, 1t will write out the formal object y = 2 as a matrix. The expres-
sion idm stands for the identity matrix of size 3.
> y2 := evalm(evalm(y~2) - idm): eqy := mkeq(y2);
eqy = {y31 y12 + y32 y22 + y33 y32,y21 y18 + y22 y23 + y23 y33,
y31 y11 + y32 y21 + y33 y51,y21 y11 + y22 y21 + y23 y31,

3|

COMPUTERS: [ACICOUNTING FOR MATHEMATICAL PROOFS

yll yls + yl2 y23 + y13 y33,yll y12 + y12 y22 + y13 y32,
yl2 y21 + y?f?g + Y23 y32 — 1, y13 ys1 + y23 y32 + y33° — 1.
yl1° + y12 y21 + y13 y31 — 1}

. Similarly for the equations coming from (xy)® = 1. Here the relation

1s rewrltten to xyxr = yxy so as to keep the degree of the polynomials
as low as possible. The set, of equations is called eqxy.

> xyx = evalm(x &* y &* x): yxy:= evalm(y &*x x &* y):

> eqxy := mkeq(evalm(xyx - yxy)):

. . . 24 | »
. We continue with the equations from (yz)° = 1, calling the result eqyz.

. Because y 1s a reflection, it has trace 1. Also, the matrix xy of order

3 should have trace 0 (the order cannot be 1 as r and y are distinct).
T'his gives two linear equations for the coefficients of y. They can be
obtained as follows:

> lineqs := {trace(evalm(y)) -1, trace(evalm(x &* y))};

linegqs := { y11 + y22 + y33 — 1, —yl1 + y22 + y33 }

T'heoretically, these linear equations are superfluous. But experience
tells us that whenever possible, linear equations should be added to
reduce the complexity of the problem as much as possible.

. T'he orthogonality conditions are also being translated into equations:

> yo := evalm(y &* transpose(y) - idm): eqo := mkeq(yo);
eqo = {y21°* + y22° + y23°% — 1, y31°% + y32% + y33% — 1,
yl1% + y12° + y18% — 1,y21 y11 + y12 y22 + y13 123,
y31 yll 4+ y12 y32 + y13 y33, y21 y31 + y32 y22 + y23 y33}

. We now collect all equations found so far:

> egs := eqy unlion egxy union eqyz union lineqs union eqo;
eqs 1= {yll + y22 + y33 — 1, y21° + y22°% + y23°% — 1,
y31° + y32° + y332% — 1, y11° + y12°% + y13% — 1,

Y33 + y13 y31 — y23 y32 — y33%,y11 + y11? — y12
y21 — yl3 y31,
—yl2 4+ y11 y12 — y12 y22 — y13 y32,—yll + y22 + y33}

28

A.M,

10.

11.

COHEN

. 1t 1s time to load the Grobner bhasis package, and invoke the Buchberger

algorithm. Here, the ordering of the variables in the list vars plays a
role.

T'he Grobmner basis found by Maple is

{ 2y11 — 1,

Y12 + 4yssysays1 + 2y31y32,
Y21 + 4Y33y32y31 + 2Y31Y302,
Y13 — Y31,

25 + Y33 — 1,
2y20 + 2y33 — 1,

Y23 — Y32,

—1 + 4y§2,

—2y33 + 4y35 — 1 }
Notice that the matrix y is symmetric. This we could have known in

advance as it has order 2 and is orthogonal.

From the upper triangular structure of this Grobner basis we can read
off the general form of a solution. The last equation is quadratic in the
single unknown ys3 and so can easily be solved.

> gbo[9];
—2 938 +4y33° — 1

> solve("):

V5

W |t
AN IS

> y33 := "[1];

1 1
Y33 = 1 +- 1 V5
In general, we need to factor the polynomial. Each irreducible factor
then describes the algebraic numbers which the variable can take as
values in an algebraic extension field. In our case the quadratic equa-
tion tor ys3 gives directly that, up to algebraic conjugates, vy equals
—cos(47/5) = lié—*—@? a tfamiliar number in the context of the icosahe-
dron.

COMPUTERS: {AC]ICOUNTING FOR MATHEMATICAL PROOFS

12. By successively solving the equations one by one in the opposite order
to which they are listed, we obtain the complete solution for y. Let me
describe the next step:

> gbo[8];

—1 4+ 4y32°
> solve(");

1 -

27 2
> y32 := "[1];

y?Qﬁm-%

13. Continuing this way, we find, up to algebraic and matrix conjugates,
the unique solution:

] 11 11

L e o _ .y

2 1T 1V3 Tt gVs
1 1 11 |
v=1-3-3v% 17 1V° 5
1 1 1 1 1

“‘5:+'2£\/g *5 Z:+_ZI\/5

Thus, we have not only found a solution y, but also know that, up to
certain conjugacies, the solution i1s unique.

5.2. Application

[will show how, as a byproduct, we can find the coordinates of the 12
vertices of an icosahedron: choose a vector h fixed by the reflections y and
z (for example h = |— 1'*?2\/5, 1,0]). Then repeated application of x, y, and 2
to h will produce a set (a so-called orbit of the group) consisting of the 12
vertices.

]

1 1 ~] 11] 1 1
Bm{[l,o,z | 2\/5”,[--1306 ; 2\/5‘*,[0,*5-—-2—\/531;
1 1 11 1 1
[03---2--5\/53—1}?“0,2 z 2\/531]}{130’.__._2_.__5\/'5“,
1 1 1 1T 7 1 1 1
[0,5 | ;\/5—,-_1},{-—5—-—2- 5’”“1’0,’..“5 2\/'5',1,,(!)]
[;4‘%\/_5-?1,0]?:%-{—%\/5—3—-1,0?3[”1,0, ;m%\/ﬁ}

To find the edges of the icosahedron one can proceed likewise.

29

30

A.M. COHEN

5.3. Conclusion

Summarizing, we have two results. In the first place, we have a concrete
presentation of the icosahedron and its group. To prove the correctness
of this presentation we only have to check that a system of polynomial
equations has a certain solution. Here, the Buchberger algorithm played
the role of an oracle for finding it.

In the second place we have found that, in a certain sense, the solution
is unique. (To be more precise: up to algebraic and matrix conjugation,
there 1s a single matrix representation of the icosahedral group in which x,
y, and z become reflections.) To prove the correctness of this assertion, it
may seem that verification of the full arithmetic in Buchberger’s algorithm
1s necessary—similar to the situation of the projective plane of order 10.

But Buchberger’s theory gives a tool to see the Grobner basis as an oracle.
To this end, some more a priori arithmetic is necessary (or rather, some
more storing of byproducts), in the same vein as the extended Euclidean
algorithm needs more (storage) than the usual ged computation. (When
determining the ged of two polynomials f and ¢ it is not hard to deliver two
polynomials a and b such that the ged is af + bg. Now the verification that
a given polynomial d is the ged is nothing but the check that d = af + bg
and d|f and d|g. This is shorter than the ged computation itself.) Just like
in these two well-known examples, there exists an ‘extended Buchberger
algorithm’, which gives as extra output a way in which the Grobner basis
elements can be written as a linear combination of the input equations. Due
to the extra output, the verification that, for a given system of equations,
the output 1s indeed a Grobner basis, is brought back to an exercise in
standard polynomial arithmetic.

It 1s unfortunate that most commonly used computer algebra systems do
not have standard facilities for the execution of the extended Buchberger
algorithm. (Macaulay and Singular have a ‘lift’ command that does the job.)
T'his omission may point to a somewhat all too practical attitude with which
the general purpose packages are being used: the results are being accepted
in gratitude, but the validity of their outcome is not always questioned to
the extent that one would need for a mathematically acceptable proof.

6. A LARGER EXAMPLE

In the example just given, the proof that the embedding exists and is unique
(in a certain sense), can be given in many other ways (for instance by use of
classical character theory of groups). An important reason for presenting it
in the context of a Grobner basis computation, is that it is representative of
cases where no other method is available for achieving a comparable result.

COMPUTERS: {ACICOUNTING FOR MATHEMATICAL PROOFS

6.1. Kostant’s conjecture
One such instance is Kostant’s conjecture, which asserts that certain finite
groups occur as subgroups ot certain Lie groups. In the hardest case, the Lie
group 1nvolved 1s the one of type Ex. In order to read on, you need not know
more about this Lie group than the fact that it is a 248-dimensional variety
of square matrices of size 248, whose group multiplication is the ordinary
matrix multiplication. Let us call this group H (abbreviating ‘haystack’).

According to Kostant’s conjecture, this very large group should have a
very tiny group as a maximal closed Lie subgroup. This tiny group is the
simple group of size 113460, and is known as the fractional linear group over
the field of order 61. It is usually denoted by L(2,61), but here, we will
denote it by N (abbreviating ‘needle’).

Thus we are facing the question whether the tiny group /N embeds in the
large group H, and if so, how.

6.2. The solution

Some ten years ago R.L. Griess Jr. and I brought the problem back to
a system of polynomial equations. The method we used, although more
delicate, 1s comparable to the approach we described for the icosahedral
group: the needle N is generated by three elements u, ¢t and w satisfying
the tollowing defining relations:

ubl = 30 = 1. tut™! = ut,
) —
w* =1, wtw =t 1,
| S o
(vw)® =1, wuw =t~ a2 wusY.

The matrices for v and ¢t were easy to determine by use of some Lie
theory. The coeflicients of the third matrix, w, could be described as rational
functions of 9 parameters. The equations that could be directly derived from
the defining relations were too large to handle. Therefore, more complicated
computations were set up, which made use of projections onto t-eigenspaces.

This led to a system of 57 equations in 9 unknown. Each equation had
about 9 monomials. All by itself, it is nothing particular of a problem that
1t can be put into a system of polynomial equations. Solving the system of
equations is another ball game, though. Around 1986, at the time the larger
general purpose computer algebra systems came about, I tried to solve these
equations in vain (using Macaulay and Maple).

About four years ago, together with B. Lisser, I ventured another try.
After having made the preparations for solving the set of polynomial equa-
tions, I found a way to dodge the polynomial equations by solving a system
of more than 1000 linear equations in 248 unknown. This system turned out
to be solvable with Gauss elimination in several computer algebra systems.

31

A M. COHEN

When I tried to solve the large (heavily overdetermined) system of linear
equations, the diagonal that appeared due to Gauss elimination, crept on
towards the last column, until it stopped at the one but last, and stayed
there for all of the overdetermining equations that were to follow. At that
moment [was very sure I had found the needle N in the haystack H, and a
unique one at that. Nevertheless, I performed all the necessary verifications
to establish that my findings were correct: the computational proot was
clearly presented (cf. [5]).

But, in a way, I was counting too heavily on the convincing power of the
computer. Only little later I would have to account for what I had done.
When it came to publication, my colleagues were quite skeptical regarding
the computer computations. I had to pay the price for computations that I
could not do by hand: the price that the computations could not be accepted
as proof. Or, to put their reactions into a milder perspective: 1 was asked
to specify under which circumstances computer calculations are acceptable
as -(part of) a proof, in particular, if they can no longer be checked by any
person by hand.

6.3. Computer calculations as part of a proof

Just as I have done for the icosahedron, I will address the proofs for existence
and for uniqueness separately.

Frxistence

To verify that the three matrices u, t and w satisty the defining relations, we
only have to perform standard calculations. Once we have chosen a suitable
coefficient domain for our computations, the necessary matrix multiplica-
tions can be carried out in any one of the special purpose packages GAP,
MAGMA, and LiE. Each matrix multiplication will take a few seconds, but
that is quite an acceptable time span, even for interactive work.

In this manner, each colleague can verity that u, f, and w generate a
subgroup of the group of all invertible square matrices ot size 248, which
is isomorphic to /N. In order to finish the proof of Kostant’s conjecture
in this case, we still need to verify that each of u, t, and w belongs to
the group H. Again, this verification does not require anything beyond
standard arithmetic.

Uniqueness
Here we were lucky. Because of linearity of the system of equations even-
tually used, uniqueness can be either derived from the (straightforward)
repetition of the Gaussian elimination or from an LUP decomposition ot
the original system.

If we would have had to resort to the system of 57 polynomial equations
found earlier, a uniqueness proof using the extended Buchberger algorithm

COMPUTERS: [ACICOUNTING FOR MATHEMATICAL PROOFS

Definition Let K be a field.

1. An associative algebra over K is a tuple (A4, +,0, —, *,-), such that

(A, +,0,—,*) is an associative ring, (A,+,0,—,-) is a vectorspace over K,
and VAe K,z,y€ A: A - (zxy)=(A-x)xy=xzx(\-y).

2. A Lie algebra over K is a tuple (A, +,0, —,]],-), such that

(A,+,0,—,-) is a vectorspace over K, [] is a bilinear map,

Vx € A:|zz] =0 and Vz,y,z € A : [z]yz]] + [y[zz]] + [z[zy]] = O.

Corollary Let (A, 4,0, —, %, -) be an associative algebra over K.

Define a binary map |[] as follows [zy] =g z *y — y * x.

Then (A,+,0,—,[],) is a Lie algebra over K.

Proof

1. [] is bilinear, because [(A-z)y] = A (zxy)—A-(y*z) = X [zy] = [z(\-y)]
and ((z+y)z]=cxz+y*xz—z*xx —2xy = [x2] + [y2]

and [z(y+2)|=z*xyt+r*xz—yxx — zxx = [zYy] + [22].

2. [zl =ax*xx—x*xx =0.

3. [z[yz]] + [y[zz]] + [z[zy]] = O by computation™.

AP o T e N i e T~ . L N el TP iy " - R i, Sl NI .

s MR iy

> noncom X,y,Zz;
T, Y,z noncom

> procedure br(a,b);axb-bxa;

’ procedure br
> br(x(1),br(y(1),z(1)))+br(y(1),br(z(1),x(1)))+br(z(1),br(x(1),y(1)));
- _ ¢ .]

Vi S ey T T M oty . TR PR,

Computation session in Reduce to prove the Jacobi identity

Figure 6. Elaborate mathematical proofs rely increasingly on the use of Computer
Algebra.

would have been desirable. But the usual version of this algorithm was
already infeasible at the time. In the meantime, eight years after our first
attempt, the system of 57 polynomial equations has been solved twice, first
with Macaulay, later with Singular; in both cases the same (unique) solu-
tion was found, which of course coincided with the solution of the linear
equations.

In summary, although matrices are involved of size larger than we can
conveniently deal with by hand, the arithmetic carried out with up-to-date
software is so standard, that they can be viewed as acceptable (parts of)
proof. The requirement of repeatability is met.

6.4. Conclusion of the large example

In the above discussion I left out some aspects which are worth mentioning.
For instance, I referred to choosing a suitable ‘coeflicient domain’. Kos-

tant’s conjecture concerns Lie groups. Hence, 1t is formulated for the co-

34

A M. COHEN

Slmple gxou}])s L havmg a central extension thafc can be embedded 1n
1e complex Lle group of exceptional type X,,
X, ' Y
Gy Alts, Altg, L(2,7), L(2,8), L(2,13), U(3,3)
Fy Alt,, Altg, Altg, L(2,25), L(2,27),
; L(3,3), 3D4(2),U(4,2), O(7,2), O7(8,2)
E Altig, Altyy, L(2,11), L(2,17), L(2,19),
L(3,4), U(4,3), “F4(2), My, J> |
o Altye, Altis, L(2,29)7, L(2,37), U(3,8), M2
Es Altig, Altis, Altys, Altir, L(2,16), L(2,31), L(2,41)7,
L(2,32)7, L(2,49)", L(2,61), L(3,5), Sp(4,5), Ga(3), Sz(8)"

efficient domain of the complex numbers. The data on the finite group N
however make 1t possible to realize all numbers involved as algebraic num-
bers. In theory, the exact arithmetic of algebraic numbers on computers 1s
possible, and is in fact one of the major raisons d’étre for computer alge-
bra. But computations regarding square matrices of size 248 are not feasible
when the coeflicients are algebraic numbers of considerable size.

Theretore, we have chosen for reduction modulo a suitable prime number
p. Due to some classical mathematical reasoning, it is necessary and suth-
cient for the embedding of NV in H to solve the problem of finding matrices
for u, t, and w over coefhicients that are integers modulo p.

Besides simplification of the calculations, the technique of reduction mod-
ulo a prime number had another good consequence. It got J.-P. Serre inter-
ested, who recently produced a computer free proof of the embedding of N
in H. He used reduction modulo the prime 61, which requires a much more
intricate argument for lifting N back to H, but has the advantage that the
subgroup N is known to exist (in the version of H mod 61) from the theory
of groups of Lie type. By the way, Serre’s proof does not give uniqueness of
the embedding of V in H.

To end this example, I would like to mention that the work on Kostant’s
conjecture is part of a much bigger programme, namely to determine all
maximal finite subgroups of the exceptional Lie groups. In this classifica-
tion, only a few open problems are left. In the table above, question marks
indicate which embeddings are still unpublished at the time of writing.

The table is taken from [7]; there however, the group L(2,41) is erro-
neously left out. In the table L is always a finite simple group and ¢ an
exceptional complex simple Lie group (one of G, Fy, Fg¢, E7, Eg). We
provide a twofold interpretation of this table.

COMPUTERS: {AC)COUNTING FOR MATHEMATICAL PROOFS

1. If L appears on the line of G in the table, then it has a finite central
extension that is embeddable in GG, with a possible exception for five
question marks °7’.

2. If L appears neither on the line of G nor on a line above it, then no
finite central extension of L embeds in G(C).

One of the five question marks appears with the group L(2,41) of frac-
tional linear transtormations over the field of 41 elements. Very recently
(April 2, 1995) Serre announced a computer-free proof of the embedding of
this group in H, to which Griess and A.E.J. Ryba reacted by announcing
a computational proof in the making for the embedding of L(2,32). Thus,
serious mathematics sometimes has the likings of a correspondence chess
game between G. Kasparov and a group of computer-chess players.

7. INTEGRATION

Now that we have gone over some of the features of the new appearances
of a proof, I want to add a few words on their interaction. With regard
to this topic, I have once heard a logician express the ideal of having all
mathematics be verified by proof checkers. If this would imply that the
computer algebra systems should account for each arithmetic step in their
executions of algorithms, giving a deduction of it which can be input to a
proof checker, I am not convinced it is the right goal.

First of all, it does not bring about any pragmatic help for the usual
mathematical activities. Secondly, it is not feasible to make any mathemat-
ical progress on this basis, simply because proof checkers cannot perform
arithmetic with ease and/or speed comparable to computer algebra systems.
In the formal proof that 13 is a prime, we had to come up with axioms like
13 =6%x2+4+1and 13 = 43+ 1 in order to keep the number of lines to
reasonable length. A proof of an arithmetic equality like any of these two
in LEGO comes down to writing out both hand sides as the 13-th successor
of 0 within the natural numbers. So this would not be a feasible approach
to proving that a certain 31 digit number is prime. (A much more realistic
approach would be to prove correctness of the usual number arithmetic,
recognizing strings of digits as numbers and next to use meta-theorems; but
for simplicity I will overlook this possibility here, especially since eventu-
ally the arithmetic is bound to be delegated to software better suited for
computations than proof checkers.)

I would rather favour the point of view where proof checkers will accept
identities coming from computer algebra systems. Some experiments in
this direction have shown that at least this approach is feasible: from the
prootf checker LEGO, an expression has been sent off for simplification to
the computer algebra system REDUCE; the resulting equality between the

35

36

A.M. COHEN

input expression and the output expression has been fed into LEGO as an
axiom. By combining the results of computer algebra work with proots in
proof checkers in this way, a much more powertul tool for mathematics 1s
being created than any of the two can offer individually.

8. CONCLUSION

Having stressed repeatability and verifiability of a computational proof,
I might have given the impression that the validity of a proof would be
quantifiable. To refute this, consider the following thought experiment.
Of an explicitly given number n of 31 digits, say, the assertion i1s being
made that it is a prime number. As a proof of this assertion, a long chain
of computations is presented. However, an error occurs in one of these
computations (so in fact the chain of computations is not a prootf).

Now suppose five colleagues peruse this erroneous proof independently,
leaving a very slim chance €, say € = 107'°, that the error remains unde-
tected.

[have already mentioned that arithmetic on a computer is not 100% re-
liable. But it is quite likely that, using independent repetitions, we arrive
at a likelihood of more than 1 — e that the error in the long chain of compu-
tations is found, regardless of whether the proof is written up as a formal
proof or as a computational proof.

The point I am trying to make is that there are very short probabilistic
arguments that, after verification, give a likelihood of at most € that the
assertion is wrong. One such a probabilistic proof for the assertion that n
is prime, comes from Solovay and Strassen (cf. [3]), and makes use of the
following result: For n € N, n > 1, n odd:

. 1S prime

<~

ged(n, k) =1 and

VkeN, 0 <k <n, { L5 (-{-“I) (mod n),

]

where (f‘;) is the Jacobi symbol.

If n is not prime, then the likelihood that the technical condition above
holds for a random k& between 1 and n is at most 1/2. Hence, the likelihood
that n is not prime and that the condition holds for 50 random choices ot
k. is at most 27°Y in particular less than e & 10~ 1°. The verification of the
technical condition for a single k is extremely fast.

Therefore we can, with the probability of an error which is smaller than
the likelihood of a non-detected error by our five colleagues, establish that
the assertion is correct by means of a relatively short computation. Still I
expect that only few mathematicians will accept this probabilistic argument
as a real proof.

COMPUTERS: [ACICOUNTING FOR MATHEMATICAL PROOFS

By use of this paradox I wanted to illustrate that a reliability estimate
all by itself does not count for the notion of proof; we shall have to take the
human, esthetic standards and values into account.

ACKNOWLEDGMENTS

[am very grateful to H.P. Barendregt, N.G. de Bruijn, H. Elbers, F.G.M.T.
Cuypers, L.J. van Gastel, H.J.M. Sterk, H.A. van der Vorst for their valuable
input.

The topic of the computer influence on mathematical proofs is also dealt
with in [3], and various reactions triggered by it (among which [11]).

T'his text 1s a translated version of the closing address given by the author
at the 31st Nederlands Mathematisch Congres, Groningen, April 21, 1995
and will also be published in Nieuw Archief voor Wiskunde (March 1996).

REFERENCES

1. K. AppPeEL, W. HAKEN (1976). Every planar map is four-colorable.
Bull. A.M.S. 82, 7T11-712.

2. K. AppPEL, W. HAKEN (1989). Every planar map is four colorable.
Contemporary Math., Vol. 98, AMS, ISBN 0-8218-5103-9.

3. L. BABAI (1994). Probably true theorems, cry wolf? Notices AMS
41(5), 453-454.

4. M. BezeMm, R. BoL, J.F. GROOTE (1995). Formalizing Process Al-

gebraic Verifications in the Calculus of Constructions, Report CS-9502,
Dept. Math. & CS, Eindhoven University of Technology.

5. A.M. CoHEN, R.L. GRrIESS JR., B. Lisser (1993). The group L(2,61)
embeds in the Lie group of type Eg. Comm. Algebra 21, 1889-1907.

6. D. Cox, J. LirTLE, D. O'SHEA (1992). Ideals, Varieties, An introduc-
tion to Computational Algebraic Geometry and Commutative Algebra,

Undergraduate Texts in Math., ISBN 3-540-97847-X, Springer-Verlag,
Berlin.

7. A.M. CoHEN, D.B. WALES (1993). Finite simple subgroups of
semisimple complex Lie groups—a survey. To appear in Proceedings of
Groups of Lie type and their Geometries. W.M. KANTOR (ed.), Como.

8. J.F. GROOTE, J. vAN DE PoL (1993). A Bounded Retransmission

Protocol for Large Data Packets, Preprint 100, Dept. Phil. Utrecht Uni-
versity.

9. L. HELMINK, M.P.A. SELLINK, F. W. VAANDRAGER (1994). Proof-
Checking a Data Link Protocol, CWI Report C5-R9420, Amsterdam.

10. H. HRENNIKHOFF, D. McHENRY (1990). see J.T. Oden’s article in
A history of scientific computing. S.G. NASH (ed.). ACM Press, New

37

38

A M. COHEN

York, 152-166. (ISBN 0-201-50814-1)

11. J. HORGAN (1993). Trends in Math., The death of proofs. Scientific
American, 74.

12. C.W.H. LAM (1991). The search for a finite projective plane of order
10. Amer. Math. Monthly.

13. C.W.H. LaM, L.H. THIEL, S. SWIERCZ (1989). The non-existence of
finite projective planes of order 10. Canad. J. Math. 41, 1117-1123.

