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In this paper we present a model for crystal dissolution in porous media and analyse travelling 
wave solutions of the ensuing equations for a one-dimensional flow situation. We demonstrate 
the structure of the waves and we prove existence and uniqueness. The travelling wave 
description is characterized by a rate parameter k and a diffusion/dispersion parameter D. We 
investigate the limit processes as k >OO and D , 0 and we obtain expressions for the rate of 
convergence. We also present some numerical results. 

I Introduction and travelling wave formulation 

In this paper we study travelling wave solutions of the following system of differential 
equations: 

c1(f.Jc 1)+npo1c12 -V-(f.JDVc1 -q*c1) = 0, 

i\(f.Jc2) +m pl'1 c12 -V · (f.JDV c2 -q* c2) = 0, 

p(\ c12 E O(k,, r(c 1, c2)- kd H(c12)). 

(1.1) 

(1.2) 

(1.3) 

Here c1,c2,c12 denote the unknown functions; all the other quantities are assumed to be 
known. More specifically n, m, k,,, k 11 are positive numbers, and the parameter functions 0, 

p, D, q* are assumed to be positive constants to allow for the possibility of travelling wave 
solutions. The two non-linearities appearing in equation ( 1.3) are a smooth function r with 
properties described below and the set-valued Heaviside function, i.e. 

l { 1} 

H(u) = [.O, I] 

(Oi 

for u > 0 

for u = 0. 

for u < 0 

(1.4) 

Equation (l.IHl.3) may be viewed as a model for the convective-dispersive transport of 
solutes in a porous medium undergoing a precipitation/dissolution reaction: assume, for 
example, a cation M 1 and an anion M 2 to be present in solution, where c1 and c2 denote 
the corresponding molar concentrations in solution relative to the water volume. The 
underlying geology and water flow regime are described by the water content 0, the bulk 
density p, the diffusion/ dispersion coefficient D and the specific discharge q*. In the 
reaction to be described, n particles of M 1 and m particles of M 2 can precipitate in the form 
of one particle of a (crystalline) solid M3 , which is attached to the surface of the porous 
skeleton and thus immobile. The reverse reaction of dissolution is also possible. If c12 

denotes the molar concentration of M3 relative to the mass of the porous skeleton, then 



50 C. J. van Duijn and P. Knabner 

(1.1) and (1.2) describe the conservation of the total masses of M 1 and M 2• Equation (1.3) 
is the kinetic equation describing the overall reaction rate. The precipitation rate is given 
by k. r(c1, c2}, where a typical example is given by mass action kinetics leading to 

r(c1 , c2) = c~ c~' for c1' c2 ;;?: 0. 

The function r is assumed to be continuously differentiable on IR x IR and 

r(c1, c2) = 0, if c1 = 0 or c2 = 0. 

Guided by ( 1.5), we assume 

r( ·, c2) is strictly monotone increasing for c2 ~ 0, 

(l.5) 

( l.6a) 

(1.6 b) 

r(c1 , ·) is monotone non-decreasing for c1 ~ 0. (l.6c) 

The dissolution rate is constant in the presence of crystal, i.e. for c 12 > 0, and has to be such 
that in the absence of the crystal the overall rate is zero (for a not oversaturated fluid, i.e. 
if r( c 1, c2) ~ kd/ k.). The set-valued formulation of the dissolution rate is to account for this 
situation. 

It will turn out that for our specific formulation, the set-valued Heaviside function 
cannot be substituted by a discontinuous Heaviside function. There is, however, an 
equivalent formulation (see the Appendix) for which the travelling wave solutions lead only 
to the values 0 and l in the Heaviside function. Nevertheless, allowing for general 
(multidimensional) situations, one should start with a formulation involving a set-valued 
Hea viside function. 

A more detailed discussion of the model can be found in Knabner et al. [l]. We refer to 
Rubin [2] for a general account on flow and chemical reactions in porous media such as 
soils and aquifers, i.e. from the viewpoint of subsurface hydrology, and corresponding 
mathematical models. 

Our model derivation [l] is rigorous except for one point: in principal, the 
precipitation/dissolution process affects the pore geometry, and thus e. We ignore this 
effect, as for the specific applications from subsurface hydrology we have in mind (cf. [2]) 
the possible crystal layer at the surfaces of the grains is very thin. In this sense, our 
scope of application is different from, for example, acid flow through porous rock in certain 
technological applications (cf. [3]), where the stress is more on such a coupling of 
dissolution and fluid flow and less on the description of the dissolution process. The 
description of the dissolution process used there (cf. [4]) corresponds to the linearized 
version of the equivalent form (i.e. (A 10) with r(c 1 , c2) = c1), excluding oversaturation a 

priori and substituting H(c 1) by c~13 • For this model the existence of travelling wave 
solutions has been shown [4]. 

For a simplification of equations (l.l)-(1.3) later on we will use a conserved quantity, 
which is here given by 

c:=mc1 -nc2 (1.7) 

satisfying oi((J)-V·(8D'Vc-q*c) = 0. (l.8) 

Later on we will consider the equivalent problem given by (1.8), ( l. l) and 

p'c\ c12 e 8(k. g(c1' c)-kd H(c12)), (l.9) 

where g is defined by g(c1, c) := r(c1,~(mc 1 -c)). ( 1.10) 
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Due to (1.6) g( ·, c) is strictly monotone increasing. Actually, only this property will be 
needed, and not the sufficient condition ( 1.6). 

There are two important singular limits to be investigated. If the rate parameters k", k,1 

are very large compared to the parameters of the transport process, it is reasonable to 
substitute the non-equilibrium description (1.3) of the reaction by a quasistationary 
equilibrium description. Formally, this is obtained by letting k.-..r1J, keeping K:= kd/ka 

constant. This leads to 
(l.11) 

which together with the natural sign condition c12 ~ 0 is equivalent to the solubility product 
inequalities 

O~r(c1 ,c2)~K, c12 ~0, (l.12) 
(K- r(cl' c2) c12 = 0. 

For one space dimension and for a specific initial and boundary condition, a free boundary 
problem formulation is possible (see Rubin [2]), which has been considered by Pawell and 
Krannich [5]. If the dispersive transport in negligible compared to the convective transport, 
it is reasonable to consider D '>i. 0, changing equations (1.1), (l.2) to hyperbolic equations 
in the limit. 

We will investigate these limits in §§4 and 5 for the special case of travelling wave 
solutions. More specifically, we consider a one-dimensional stationary flow directed from 
x = - oo (upstream) to x = + oo (downstream), i.e. one space dimension and constant, 
positive parameters e,p, D, q*. Then we look for solutions of (1.1)-(1.3) only depending on 
Y/ = x-at with a wave speed a to be determined. After introducing the notion of solution 
and equivalent formulations in the following, in §2 we will investigate the qualitative 
properties of solutions; the most important is a front for the concentration c12 • The 
existence and the uniqueness proof of §3 are based on §2. In §4, properties of the limit 
problem and convergence to the limit problems are considered, whereas in §5 more specific 
convergence rates are established. Travelling wave solutions for a related general class of 
transport and adsorption problems have been investigated by van Duijn and Knabner [6] 
and further exemplified in [7, 8]. The main distinction is that these papers deal with 
continuous (but possibly not Lipschitz continuous) rate functions. Thus equations (1.3) 
may be viewed as a model, which itself is the singular limit of models with continuous rate 
functions (fitting into the framework of[6]). This approach is possible, for example, to show 
existence of a solution. To avoid unnecessary technical complications we prefer the direct 
approach of §§2 and 3 instead of the regularization approach. On the other hand, for the 
analysis and numerical approximation of a general multidimensional boundary value 
problem based on ( l.l )-(1.3), the regularization is a decisive tool. Special solutions such as 
travelling waves will only have a 'physical' significance for the general problems if they are 
stable under small perturbations. This stability seems to hold in numerical experiments and 
accords with the wave's observability in simple experimental situations such as 
breakthrough column experiments with a continuous feed. Nevertheless, the analysis of this 
problem is beyond the scope of this paper. Despite the vast amount of literature concerning 
the stability of travelling waves for more standard semilinear reaction-diffusion problems 
(e.g. from biology), the stability problem for the class of models addressed above has hardly 
been studied. Only for the equilibrium adsorption model (i.e. a special case of [7]), 
(nonlinear) L1-stability of travelling waves has been shown in [9]. The few approaches 
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aiming at linearized stability including rate of convergence estimates reqmre specific, 

smooth nonlinearities. 

For given non-negative boundary condition ci, ci*' i = l, 2, cf2 , c12* we look for non

negative travelling wave solutions of (l.l)-(1.3), i.e. c; = c;(t/) ~ 0, c12 = c12(1;) ~ 0 with 

1; = x-at, satisfying 

-a(Oc 1 +npc12 )'-f1D<+q*c; =0, 1 
-a(0~~2 +mpc'. 2~'-.0Dc~;+q~c~ = 0, in 1R 
-a p l 12 E O(ka t (l 1, l J- kd H(c 1z}), 

(1.13) 

and the boundary condition 

c;(-co)=c'(, cJ+w)=c;*' i=l,2,1 (l.1 4) 

c1z(-co)=ci2, c1tC+co)=c12*· 

Because, by (1.8) and (l.14) c = c(1;) satisfies a linear equation and boundary conditions at 

- co and + w, a solution of ( 1.13), (1.14) can only exist if c is constant or equivalently 

(1.15) 

We will assume ( l.15) to hold from now on. It may be interpreted as the requirement of 

a constant total electric charge everywhere in the fluid (see [I]). Then c is given by 

(1.16) 

As indicated above, we can reduce the problem to one involving two variables. Define 

u:=cp 1•:=11p/Oc12,} 

q:=q*/f), k:=nka; 
( 1.17) 

then the solutions of ( 1.13), (l .14) (in a sense of be specified) are equivalent to solutions of 

the following equations, setting 

u = 11(11), 

I 
c.,:= -(mu-c): - n 

((') 
u~ - ' 

m + 
t' = l'(r;), t' ~ 0, 

-a(u'+v')-Du"+qz/ = 0,} 
in IR 

- av' E k[g(u, c)- K H(v)], 

and the boundary conditions 

u(-CXJ)=u*, u(+oo)=u*l(BC) 
11(-oo)=v*, 1•(+co)=v*J 

(1.18) 

(1.19) 

( 1.20) 

with u* :=cf,u* :=np/8cf2 , etc. The condition u ~ (c/m)+ is equivalent to c 1 ;?; 0 and 

C2 ;?; 0. 
To define the notion of solutions of (1.20) and (BC) we introduce 

w := (~v' + g(u, c)); KE H(v) 

as a new variable. The expected limited regularity is taken into account by proper 

regrouping in the equations: 
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Definition 1.1 The quadruple : u, 1\ 11\ a: with u, r, a· being functions defined on IR and a a 

real number is called a travelling wace for the boundary condition (BC) if 

(i) 11Ec 1( IR), 1· E c;,,,.(!Rl, w E c,,,,.( IR), 

(ii) u;::;, (c/111)+,l'. 11·;::;, 0 on IR, 

(iii) Du'+arEC 1(IR), 

(TW) 
(iv) -m" +k Kll'E C(IR), 

(v) 0 :<:;; \I' :<:;; I, I\' = 1 on {l' >OJ, 

(vi) 
(Du'+ m·)' = (q-a) ti' } 

-al'' +k Kw = kg(u, c) 
in [ft 

(vii) II, l' satisfy the boundary conditions (BC). 

Here the constant c is given by ( 1.16 ). We use C,,ir( IPl) to denote the piecewise continuous 

functions on IR (with finitely many points of discontinuity), which are continuous from the 

right, and CL 11.(IR) to denote those uEC(IR), for whichfEC11 ir(IR) exists such that u' =f 

except at the points of discontinuity off It is clear that under the assumption (1.15), 

Definition 1.1 is equivalent to an analogous notion of a non-negative solution of (1.13), 

(l.14). We obtain immediately 

Proposition 1.2 Let : u, l', \\',al be a trauefling wal'e for (BC), then: 

(i) u'(± x) e:\ists and 1/(± C0) = 0, 
(ii) if !iu + !11· =F 0, then 

!iu 
a= A A q, 

ull + ul' 

Proof Integration of the first equation in ( TW) (vi) leads to 

Du' = -cw+(q-a) u+ A 111 IR 

(1.21) 

( 1.22) 

for some A E IR. Thus (i) holds because of (BC) (compare Proposition 1.3 in (6)). For 

11 ·,,. ± w equation ( 1.22) leads to a set of equations for a and A yielding (ii) and 

1'* u*-u*r* 
A= q 0 

!iu +!iv · 
(1.23) 

Note that for a =F 0 

q-a !iu 
a !iu· 

( 1.24) 

From (1.21)-(1.23) an equivalent formulation as a first order system follows directly: 

Corollary 1.3 Assume !iu +!ii• =!= 0, then {u, u, w, a} is a travelling wave for (BC), if/' 
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(i) uEC 1{1R), vECijlR), wECw(IR), 

(ii) u ~ (c/m)+, v, w ~ 0 on IR, 

(iii) 0 :( H' :( 1 in IR, w = 1 on (1• > 0}, 

(iv) 
q-a a *) 

u' = D(u-u*)-y/r-1• , 

-ar' +kKw = kg(u,c) in IR 

where a is defined by ( 1.21 ), 
(v) u, l' satish' the boundary conditions (BC). D 

2 Properties of solutions 

(l.25) 

( 1.26) 

For a travelling wave to exist we need is to that the boundary conditions on u and z· are 

equilibrium points for the differential equations. Considering the u-equation, this is 

guaranteed by the expression for the wave speed. For the z•-equation it requires the 

additional conditions 

We will assume from now on that 

0 E g(u*, c)- K H(v*), 

OE g(u*, c)-K H(u*). 

g( ·, c) is strictly increasing to ll ~ (~) . 
Ill + 

(2.1 a) 

(2.1 b) 

Sufficient conditions are given by (1.6 b, c). Therefore, we obtain a unique solution u of 

(2.1 a) or (2.1 b) for fixed wEH(u), l' = v* or l' = z•*, and (c/ml+ :( u ~ 118 , where u, > 0 is 
the unique solution of 

g(u, c) = K. (2.2) 

We first investigate the possible combinations of boundary conditions for which travelling 

waves in the sense of Corollary 1.3 can exist. Suppose r*, c* > 0 and c* =F 1•*. Then we have 

to solve for both u = 11* and u = u* equation (2.2). Hence u* = 11* = u8 . Consequently, 

a = 0 and ( 1.25) implies u = u8 on IR. Using this in ( 1.26) we obtain \I' = I on IR, but no 

information on u is available. So this choice of boundary conditions leads to trivial 

solutions. They describe the situation ofa stationary, but arbitrary crystal distribution 1· in 

the presence of saturated fluid (characterized by u = u, and \\' = I). 

If both 1'* = v* and u* =Fu*, then a = q and equation ( 1.25) reduces to 

' q ll = -[jl' on IR. (2.3) 

For the function v we now distinguish: 

(i) v = 0 on IR. This would imply 

u = constant ( = u* = u*) on IR, 

i.e. a contradiction. 

(ii) v(11 0 ) > 0 and v'(110 ) = 0 for some 11oEIR. Using (1.26) and (2.3) we obtain u(11 0 ) = 11 8 

and u(17) >us for I/< r1 0 , respectively. In particular, u* > u8 which contradicts 
(2.1 a). 
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Thus, to obtain non-trivial solutions we need it so that precisely one of the boundary 

conditions on vis zero. In fact, we are left with the following classes, as the case u* = u* = us 

has already been discussed above: 

1 
l v* - arb. itrary positive, z'* = 0 

u* - Us, u* E [ (~1' Usl 
J c* arbitrary positive, 1'* = 0 

II 1 u* = u8 , u* E[ (~tu.} 
We have not considered the cases 

c* = 11* > 0, u* = u* = u8 , 

11* = 1'* = 0. u* = u*E[(;)+,u,l 
where the wave speed a is not uniquely determined. For arbitrary a there are the trivial 

constant solutions. We doubt that non-trivial solutions exist, but cannot exclude this case 

at the moment. 

Before we turn to the existence and uniqueness in ~3, we consider here a number of 

qualitative, structural properties of travelling waves. Below i u, 1.\ w, a: denotes an arbitrary 

travelling wave in the sense of Corollary 1.3 with (BC) taken from the classes I or II. Note 

that in both cases 0 < a < q. 

Proposition 2.1 

(i) u < ll 8 on IR, 
(ii) 1' is continuously di!Jl'rentiab/e and r' > 0 in it'> o:. 

Proof We first show that u ::::; us on IR. If this is not true, then the boundary conditions 

imply the existence of a point 11o E IR where u'(11 0 ) = 0 and 11(11 0 ) > u8 . Writing ( 1.25) as 

(2.4) 

we obtain that 11 (11 0 ) > r·* > 0 = l'* if (BC) is taken from class II and 1·(110) > v* > 0 = v* if 

(BC) is taken from class I. Using this in ( 1.26) gives w(11 0 ) = 1and1''(110 ) < 0. Since l'( - XJ) = 

l'*, there must exist a point 11i < 11 0 such that 1'(11) > 1'(110 ), r'(IJ) < 0 for all t/E(11i, 11 0 ) 

and v'(11i) = 0. Hence 1v = 1 and u > u, (from ( 1.26)) on (11i. 11o) with u(11i) = us. 

Substituting these observations into equation (2.4) leads to 1/(111 ) < 0, which gives a 

contradiction. 

Next suppose that u(t/ 11 ) = us for some 'lo E IR. Then clearly u'(11 0) = 0 (because u ::::; 11sl 

and from (2.4) 11(11 0) = 1\ where I' = l'* if (BC) satisfies I or I'= 11* if (BC) satisfies II. In 

either case, t' > 0 and w = 1 in some neighbourhood of 110 • This means that ( 1.25) and ( 1.26) 

have u = us and r = ;; as unique solutions in this neighbourhood. A continuation argument 

now contradicts (BC). The second assertion of the proposition is an immediate consequence 

of ( 1.26). D 
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The second statement in Proposition 2.1 gives: 

Corollary 2.2 No tral'elling waves exist with (BC) from class II. D 

Next we show 

Proposition 2.3 

(i) There exists an LE IR such that 

1'(1/) = {o /or 
> 0 fiJr 

(ii) u' > 0 on IR, 

-x <I/~ L, 
11 > L, 

(iii) v" < 0 on (L, co), i.e. in particular v'(L +)exists and u'(L +) > 0. 
(iv) The folloH'ing jump relations hold at 11 = L: 

Proof 

a[v'] = - D[u''] = k K[1v] > 0, 

H'here L/1 :=flL + )-f(L- ). 

(2.5) 

(i) The boundary condition v( oo) > 0 rules out I' = 0 on R If we can also exclude 1· > O 
on R then (2.5) is guaranteed by Proposition 2.1 (ii). To reach a contradiction let 
us suppose v > 0, and consequently w = 1 on IR. Letting 11 -7 - lfJ in (1.26). then 
z"( - oo) exists and 

k 
u'(- XJ) = -{K-g(u*,c)) > 0, 

a 

contradicting v( - CJ:.1) = 0. 
(ii) First we consider the interval ( - oo, L], in which 11 satisfies 

q-a 
u' = -n<u-u*) 

with u( - co) = u*. This implies either u > u*, and consequently z/ > 0 on ( - Xo, L] 
or u = u* on ( - oo, L]. Suppose the second possibility holds. Then u(L) = u*. In the 
interval (L, cfJ) we have for u 

, q-a *) a u = --(u-u --1· 
D D 

and consequently 

(exp(- q;a 11)(u-u*)) = -~vexp(-q;a 11) < 0, 

which implies 

u(1;) < u* for all 11 > L. 
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This contradicts u( oo) = u8 • Hence u' > 0 in ( - oo, L). To show that this also holds 
in (L, oc>}, it is sufficient to rule out possible zeros of u' in (L, oc). Suppose 11'(11o) = 0 
with 11 11 > L. Then 11'(110 ) > 0 and from equation ( 1.25) 11"(11o) < 0. This gives a 
contradiction with the boundary values u(L) < 11( oo) = u8 • 

(iii) On {11 > L} the L'-equation becomes 

, k 'K ( )1 V = - 1 - g U, C I· 
a 

Since g is a C 1-function, strictly increasing on ((c/m)+, oo), the result is obtained by 
direct differentiation. 

(iv) Is an immediate consequence of (iii) showing [1''] > 0 and the notion of solution 

( TW) (iii) and (iv). D 

On the set {1/ <Li the !'-equation reduces to 

II'= g(u, c). 

Hence, the strict monotonicity of u and g imply 

0 :( g(u*, c) < 1r(11) < g(u(L), c) < K on (- OCJ, L). (2.6) 

It is also easy to verify that 

u is C' on (-oo,L) and u is C 3 on (L, oo). (2.7) 

Furthermore, we have 

Proposition 2.4 u" > 0 on ( - oo, L) and 11" < 0 on ( L, C0). 

Proof The first inequality is a direct consequence of the strict monotonicity of u. To prove 
the second one, we differentiate the u-equation twice and use the concavity of i•. This gives 

(2.8) 

Now suppose there exists a point L > L where u"(L) = 0. Inequality (2.8) then implies that 
u" > 0 on (L, OCJ), which contradicts the boundary condition at 11 = oo. Hence, such a point 
L cannot exist, and u" < 0 remains as the only possibility. D 

The last result is about the asymptotic behaviour of u(t/), v( 11) as I/ -;.ct:J. 

Proposition 2.5 Suppose that .fl>r some & > ex > 0 

Then there exist constants C, A. > 0 such that for all 11 ?: L 

u(11) > us(l-e-,i''' 1'1) 

(llld 

(2.9) 
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Reference Case - u Reference Case - v 
7. Oe-04 -~----,...------, 

~15 -10 -5 0 5 10 15 ~15 -10 -5 0 
eta 

Reference Case - w 
l~----------~-

~15 -10 
/ 

-5 0 
eta 

10 15 

eta 
10 15 

FIGURE 1. Numerical approximation of the functions u, l' and w for moderate values of the 
parameters. For information about the data set as well as the numerical approximation. sec [I]. 

Proof For 11 > L the equations for u and t' can be combined into the second-order equation 

,, q-a , k i ( ) K u = Du + I5 lg u, c - }. (2.10) 

Because of the first inequality of (2. 9), straightforward comparison with the linear problem 

z(L) = O,z(::xJ) = !1 8 

u(1;) > u8 fll-exp(q-a(1-j1+ 4akD.,)(i;-L))lf' 
2D (q-a)-

results in ( 2 .11) 

for all 1; ?: L. 

Substituting the second inequality of (2.9) into the v-equation ( 1.26) for ,1 > L, leads 
directly to the desired inequality. D 

Note that a sufficient condition for (2.9) is given by 

0g/0u(u8 , c) > 0. 

The properties derived in this section are shown in Figure I. 

(2.12) 
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3 Existence and uniqueness 

In the previous section we showed that the i·-component of any travelling wave must vanish 
identically for large negative values of 11(11 :::;; L, LE IR). We shall use this observation in the 
proofs of the existence and uniqueness theorems. Note that in deriving this property we 
only used the continuity of the function g( ·, c) and the monotonicity requirement for g, as 
stated after (2.1 ). Compared to the other sections, we can here slightly relax the 
requirements on g( ·, c). Therefore, we will state explicitly in the following assertions what 
is needed: 

Theorem 3.1 Let g(·,c)EC 0· 1 ([(c/m)+,us]) andO ::;;g(u,c):::;; Kfor u*:::;; u:::;; u8 • Then.for 
any set of boundary conditions from class L there exists a travelling waz•e. 

Proof As in Corollary 1.3, the wave speed a is given by ( 1.21 ). Further, set L = 0 by 
translation, i.e. the solution to be constructed has to satisfy 

1'(1/) > 0 for I/ > 0, 

1{1/) = 0 for I/ ,,;; 0 

and w(11) = 1 for 11 > 0. 

The travelling wave functions u, v and w are found by matching the solutions of the 
following initial value problems: 

u' = q;a(u-u*)-!jy(r-l'*) =:/;(u,11) for I/> 0, 

l''=~{K-g(u,c)):=f,(u,v) for 11>0, 
a -

u(O) = u0 E (u*, u*) and i·(O) = 0. 

q-a 
u' = D(u-u*) for 11 < 0, 

(P-) 
u(O) = u0 , 

1r(1/) = g(u(11). c)/ K for I/ < 0. 

Using a shooting argument in the u, l' phase we solve Problem (P+) such that 

(11(1/),1•(1;))_,.(u*,11*) as 11-+oo. 

This leads to a value for unE(u*,u*), which in turn is used in Problem (P-). 

(3.1) 

(3.2) 

We first investigate the sign of the functions/; and/~. We have for uE[u*,u*], PE[u*,11*]: 

q-a 
f~(u,1') > O(resp. < 0) iff /(u):=--(u-u*)+Z'* < l'(resp. > z•), 

. (I 

f~(u, 11) > 0 iff u < u,, .. 

This leads to the phase plane shown in Figure 2. 
For the set S:= {(u,u)l u* < u < u*,v* < v <.f(u)} we consider the following parts of its 

boundary: 
0S1 := {(u, v) I u* < u < u*, I' =.f(u)}, 
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Phase Plane 

0.000275 

u 

FIGURE 2. Computed orbits in the phase plane. Details concerning the data and numerical 
method are given in [!). 

In the interval (u*, u*) we distinguish the subsets A and B according to the following 
criteria. We say that ex EA if the positive half-orbit corresponding to the solution of 
Problem (p+) with u(O) = ex,1'(0) = 0 leaves the set S through the boundary 0S 1• Similarly, 
jJE B if the positive half-orbit starting from u(O) = /], v(O) = 0 leaves the set S through the 
boundary cS2• Proceeding as in [6], one shows that the sets A and Bare non-empty, open 
and ordered (aE A. /lE B =>ex</]). Hence 

sup A= ex,,-;; jJ = infB, 

where aEj: A and /I$ B. 
This means that for any u0 E [a,/J] the half orbit corresponding to Problem (P') ends up 

in the point (11*,v*) as 11-+ro. This gives the required solution in terms of 11=11(1;), r = c(1;) 
for 1; > 0, as in particular v(11) > 0 for 11 > 0. The solution for 11 < 0 is obtained by explicitly 
solving (P-): 

( q-a ) u(11) = (110 -u*) exp -D 11 + u* for 11 ,,-;; 0. (3.3) 

The boundary conditions (BC) and (iii) of Corollary 1.3 are satisfied by construction, the 
regularity conditions of Corollary l.3(i) can be concluded from (P) and (P'). and thus 
equations ( 1.25), ( 1.26). Finally, the sign conditions (ii) hold due to monotonicity of 11. 

D 

Theorem 3.2 Let g( ·, c) E C[(c/m)+, Us] be nondecreasing and satisf.i· (2.9). Suppose there 
exist two trauelling wm•es. characterized by (ul' 1\, 1r1) and (u". 1·2, 11),j(1r the same houndary 
conditions fi'om class I. Then there exists >Jo E lR such that 

(u1( • ), v1( • ), 1v 1( • )) = (u2( · + 1/0), v2( · + 11o), w/ · + rJo)) in IR. 

Proof Given both travelling waves, we apply to each a shift such that 

1'1(1/), V2(ij) > 0 for I/> 0, 

1\(1/) = 1'2(tj) = 0 for 17 ~ 0. 

Then H'i(11) = wz(/1) = I for 1/ > 0. 

Setting U := U1 -U2, l' := 1'1 -1'2 and \\':= l1'1-ll'2 
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we obtain for u, 1' and w the equations 

u' = q-a11_!3_1, for 
D D 

k 
t'' = --{g(u1,c)-g(u.,,c)i for 17 > 0, a . -

w = {g(u1 , c)- g(u:i, c)}/ K for 1; < 0. 

We first consider the equations for 1; > 0. Multiplying the c-equation by u and integrating 

the result with respect to 11 from 1; = 0 to 1; = oo, yields 

Note that this expression is well-defined, because, by Proposition 2.5, 11 and 1' decay 

exponentially fast to zero as 1; -·.,x;. Integrating by parts and using 1'(0) = z'( XJ) = 0, gives 

(3.4) 

Next we multiply the 11-equation by u' and again integrate the result. Using (3.4) leads to 

the identity 

I, , ., k f., q-a ., 
iu :-di;+- {g-(u 1 ,c)-~(u.,,c)l11d1;+--{u(O)i- = 0. 

0 D II c. ' - 2D 
(3.5) 

The monotonicity of g( ·, c) implies that the middle term is non-negative. Hence 

(i) u(O) = 0, which implies 11 1 = u'2 and \\' 1 = 1r'2 on (-0'0,0). 

(ii) 11 1 = 11'2 on (0, xi), which implies t' 1 = r'2 on (0, 1x ), from the t'-equation. D 

4 Limit cases 

Here we discuss the behaviour of the travelling waves for the limit cases introduced in§ 1, 
namely ku XJ, K > 0 fixed; then the chemical reaction is in equilibrium. Motivated by ( 1.12) 

and (l.13)(1.20), we define 

Definition 4. l The triple : u, l'. a: with 11, 11 being functions defined on IR and a a real number 

is called a trm'elling ware ./(Jr k = oo and the boundary condition (BC) if 

(TWE) 

(i) 11EC},,,.(~),rEC1,w(IR), 

(ii) u ? (c/m)+, 11? 0 on R 

(iii) Du'-arEC;,,,.(IR), (Du' +ar)' = (q-a) 11',} 
m R 

(iv) g(u, c) ~ K (K- g(u, c)) Z' = 0, 

(v) 11, z' satisfy the boundary conditions (BC). 
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Remarks 4.2 

1. The complementarity condition in (iv) can be equivalently stated as the existence of 

weC(IR) such that 

0~1v~l, w=l on {v>O}, g(u,c)=Kw. (4.1) 

2. The regularity of u and vis less compared to Definition 1.1, and will be made more 
precise later on; on the other hand, w is continuous, contrary to the case of finite k 

(Proposition 2.3 (iv)). 
3. Exactly as in the case of finite k Proposition 1.2 holds true such that a is given by 

(1.21) (up to some cases), and there is an equivalent formulation analogous to 

Corollary 1.3 with (iii) cancelled and (iv) substituted by 

(4.2) 

g(u, c) ~ K, (K - g(u, c)) v = 0. (4.3) 

We do not repeat the discussion of §2, but restrict ourselves directly to class I, i.e. p* = 0 
and u* = Us· Then it turns out that problem (TW E) can be solved explicitly: 

Proposition 4.3 Let {u, v, a} be a solution~( (TW E). Then these exists on Le IR such that 

and 

v(rJ) = {O for r1 < L, 
v* for r1 ~ L 

l (u*-u*)exp(qD-a(r1-L))+u* for 
U(IJ) = 

u* for 

Jn particular, the following jump relations at ''I= L hold: 

I/< L 

I/~ L. 

au*= a[u] = -D[u'] =-~[(Du' +av)']. 
q-a 

(4.4) 

(4.5) 

(4.6) 

Proof By extracting the possible points of discontinuity of v and u', the real line is 
subdivided in finitely many open subintervals. We consider one of these and call it I. In an 
open (maximal) subinterval A, where v > 0, we have by (4.3) or (4.1) and the strict 
monotonicity of g for u;;::: (c/m)+: u = u* in A. An equivalent form of (4.2) due to (1.21) is 

(4.7) 

and thus v = v* in A. We see that the interval I is subdivided in open subintervals, where 
v = l'* and closed subintervals, where v = 0. Assume there are subsequent intervals A, B, C, 
given by r1i < Y/ 2 < 1J3 < r/4 such that v = v* in A and C and v = 0 in B. Then 
u(r12) = u(r;3) = u* from the first assertion, but u(r1a) > u* from the second assertion and 
(4.5). The only combination still possible is given by (4.4). 

The representation (4.5) follows immediately from (4.4), (4.3) and (4.2). Equation (4.6) 
follows from (4.2) and (TW E) (iv). D 
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Remark 4.4 Due to (l.21) we can also write (4.6) as 

1 1 1 q = D[u']. 
-+-
Au Av 

(4.8) 

In the following a general convergence result of solutions of (TW) to the solutions (TW E) 

is shown. Adding condition (2.9) to the function g leads to an explicit rate of 
convergence. This will be discussed in the next section. 

Theorem 4.5 Let {k,.}~_ 1 be a sequence ofpositive numbers such that k,, -oo. For each ne N, 
{u 11 , v11 , w 11 , a} denote trai,elling waves according to (TW), corresponding to k = k 11 and the 

same boundary conditions (BC), which have been translated such that 

vn(r/) = 0 for rt ~ 0, vn(q) > 0 for I/ > 0. 

Then {u,,, v,,, w,,, a} converge from below to the solution {u, v, a} of (TW E).for which L = 0, 
is the following sense: For Q c c IR and 1 ~ p < oo: 

u11 - u pointwise in IR and in C(Q), l 
ii,, - v a.e. in IR and in LP(Q), 

w11 - w := g(u, c)/ K a.e. in IR and in U(Q). 

Proof Since u* ~ u,, ~ u*, 0 ~ !' 11 ~ v* and v;, ~ 0. 

llu,,11:.<:.lll• llu;,llx.lll• llv,,llx.lll• llv;,111.lll 

(4.9) 

are uniformly bounded with respect to n. Due to the Arzela-Ascoli Theorem and wt. 1(Q) 
c c U(Q) for Q c c IR, there exist functions u E C( IR) n W 1• z ( IR) and t' EL""( IR) such that 

u* ~ u ~ u*, 0 ~ l' ~ l'* a.e. in IR, 

and for a subsequence (not distinguished in notation) we have 

u,, ~ u in C(Q), 

zi 11 - v m LP(Q) and a.e. in IR. 

Thus ( 4.2) holds true because of ( 1.25), and from ( 1.26) we conclude 

w,,-+ w := ~g(u, c) in U(Q). 

We have !'(1/) = 0 for 11 < 0 and w(11) = I for 11 ~ 0, and thus u(t/) = u* for 11 ~ 0. Inserting 
this into equation (4.2) shows !'(11) = l'* for 11 ~ 0. Due to (4.2) and u(O) = u*' u is positive 
for 11 < 0, and thus strictly monotone increasing. Therefore, u'( - oo) = 0 and u( - <XJ) = u*. 

This also shows that ( 4. 7) is satisfied. The inequalities 

zi,,(11) < 11(11), u 11 (11) < 11(11) for 11 ~ 0 

are obvious, and thus also due to (4.2), (l.25) 

u11 (r1) < 11(11) for 11 < 0. 

(4. !0a) 

(4.!0b) 
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As the limit is unique, the whole sequence converges. D 

We now consider the limit D O; then the influence of molecular diffusion and 

mechanical dispersion vanishes. 

Definition 4.6 The quadruple { u, v, w, a} with u, v, w being functions defined on IR and a a real 

number is called a travelling wal'e for D = 0 and the boundary condition (BC), if 

(TWH) 

(i) u E c;,JIR.), 1' E c/~ll'(IR), IV E C/1,,.(IR.), 

(ii) u ~ (c/m)+, v, w:;::: 0 on IR., 

(iii)O~w~l,w=l on ]v>O}, 

-av'+(q-a)u'=O} 
(iv) 

-av' +kKw = kg(u,c) 
in IR, 

(v) u, v satisfy the boundary conditions (BC). 

Again, the regularity of u is reduced compared to Definition I. I, and also here 

Proposition 1.2 is valid such that a is given by (l.21) (up to some cases) and then the 

equations (iv) can be expressed as: 

(q-a)(u-u*) = a(l'-1'*), 

k 
1" = -(K ll' - g(u, c)). 

a 

( 4.11) 

(4.12) 

Again, we restrict ourselves to boundary conditions of class I. The structure of a solution 

is as follows: 

Proposition 4.7 Let {u,r, w,a} be a solution ~f(TW H).Then there exists an LEIR. such that 

1!(11) = { 0 j(Jr 11 < L 

E (0, 1·*) j(Jr !/ > L, 
(4. l 3) 

u = u*, w = g(u*,c)/K for 11 < L, 

11(11) < u*, z/(1/), t''(11) > 0 f{H 11 ~ L, 

z/'(11), r"(11) < 0 f(J1· 11 ~ L, (j" __£,_ g(u, c) > 0 f(;r u ~ (.!~) . 
Ou · /11 f 

The /(Jl/owing jump relations at 1 = hold: 

, (/:;;.u ) k /:;;.u [u]= -+l -.(K-g(u*,c))=-.[v']. 
/:;;.1• q /:;;.1• 

(4.14) 

A solution of" (TW H) is unique up to translation. 

Proof First note that u(r1) < u* =Us for 1/E R 
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If 11(1/) = 11* for some i/E ~.then by (4.11) c > 0, i.e. 11· = 1 in a vicinity of 11. and thus 11 

locally solves the following initial value problem: 

11 1 = ~(K-g(11,c)), 11(1/) = 11*, 
q-a 

which has the unique solution u = u*. By continuation 11 = u* on~. i.e. a contradiction. As 
in Proposition 2. 1 (ii), we now have 

1' 1 > 0 111 t l' > 0: 

and can repeat the proof of Proposition 2.3 (i) to conclude the assertion ( 4.13). The further 
assertions are a direct consequence of (4.11 ), ( 4.12). For the jump relations, also note ( 1.21 ). 
Thus, if we fix L, a solution of (TW H) is given by 

11 = u*, 1· = 1·*, H' = g(u*,c)/K for 11 < L, 

k 
u'=--(K-g(u,c)), u(L)=u* for 11>L, 

q-a 

q-a 
1· = --(u-u*), It'= I for 11 > L, 

([ 

which has a unique solution. 

(4. I 5) 

D 

Again, we can show convergence of the solutions of ( TW) to the solution of ( TW H ), 
analogous to Theorem 4.5. In ~ 5 more precise order of convergence results for u will be 
established. 

5 Rate estimates 

Continuing the discussion about the limiting behaviour of the travelling waves ask c,x_, or 
as D ··" 0, we present in this section some explicit estimates for the corresponding rate of 
convergence. In deriving the estimates fork <£, the lower bounds from Proposition 2.5 
play a crucial role. Therefore, we assume in the first part of this section that g satisfies 
inequality (2.9). Further, we again take (BC) from class I. 

First we consider the equilibrium limit case. For each k > 0 we denote by (111 •. , c,, w,, a: 
a travelling wave in the sense of Corollary 1.3, in which all other parameters arc kept fixed. 
The waves have been translated such that 

rA(1;) = 0 for 11 :( 0 and r,,.(1;) > 0 for 1; > 0. 

We observe from the lower bound (2. I l) and Proposition 2.1 that, given any k,1 > l, for all 
/.: ~ /.: 11 and 11 > 0 

( 5. 1) 

with 

This implies exponential decay for fixed 1; > 0 ask .. y__, of uA(t/) towards 11(1;), where the 
limit 11 is defined by (4.5) with L = 0. 
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From equation (1.25) and Proposition 2.3. we obtain the bound 

(5.2) 

for all k > 0. 
Next let o > 0. The strict concavity of uk on (0, co) due to Proposition 2.4 implies that 

for any 0 ~ 11 ~ o 
u,.(17) > u,Jo)-(0-r;)u~.(1;) > u,.(o)-ou;.(O). (5.3) 

Combining (5.1 )-(5.3) results in 

u(1;)-uk(11) = u8-u,J;1) < u8-uk(o)+ou;.(o) 

(5.4) 

uniformly in [O, o]. Recalling that for I/ < 0 
5C! 

uir;) = (u,JO)-u*)e D '1+u*, 

we obtain, using (4.5), 
9.:::.E. 

u(11)-uk(r;)=(u8 -uk(O))e 0 '1 for all 1;~0. (5.5) 

The above estimates allow us to prove 

Theorem 5.1 Let g satisf)i inequality (2.9) and let u by given by (4.5) with L = 0. Then given 

any k0 > 1, there exists a positil'e constant C(k0) such that for all k ~ k 0 : 

1 
e-,\ J \ k(!j-,\'(k)\ 

kl/2 

0 ~ C(ko)logk {u(r;)-u1/f/)} ~ 1 
e<q-a)/D'/ 

Here o(k) :=log k/(2;\ 1 k112). 

for 11 > o(k ), 

for 0 ~ I/ ~ o(k), 

fr>r 11 < o. 

Proof Substituting o = o(k) in (5.4), we obtain for 0 ~ 11 ~ o(k) and k ~ k 0 

1 u, . q-a 
0 < - 11 u(11)-u (11)11 < -· e-"1' kn<kl +--(u - u*) 

8(k) A: li(k) D s 

This implies the desired estimates for 

2;\ 1 11 8 q-a * 
~ -1 k +-D (us-U ). 

og o 

Ck LI~ q-a 
(·o)=-1 .k +?, D(us-u*). 

Og O -Ill 

Corollary 5.2 For all 1; > 0 and k > 0 we have 

0 
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Here the constant & has to satisfy (2.9). 

Proof Equation (1.26) and inequality (2.9) give 

which together with (5.1) results in 

av~.(q) < :xkus e·'11 ' ' '1 for all 17 > 0. 

The estimate now follows upon integration. 0 

Next we turn to the hyperbolic limit case. For any given D > 0 we now denote a 
travelling wave by {11JJ, l'n• wD, a:. Again, they are shifted such that 1'1/t;) = 0 for i/ ::( 0 and 
1'n(1;) > 0 for 1; < 0. 

We first combine equations ( 1.25) and ( 1.26) into a second-order equation for 11 only. The 
result is 

(5.6) 

where H denotes the Heaviside function. 
Using the strict concavity of uD on (0, oo ), the strict monotonicity of g( ·, c) and ul,( ;; ) > u* 

yields the inequalities 

and for all D > 0. 

0 , . ) , k(K-g(u*,c)) < 11 11(11 ,:::; u0 (0) <----
q-a 

for 

Again using equation (1.25), now at 1; = 0, gives 

0 *-D 'O 111i( )-u --.-111,( ). 
q-a 

Putting this expression and (5. 7) together leads to 

(·o) * kD(K-g(u*,c)) 
Un -ll < )" (q-a -

and consequently to 

kD(K-g(u*,c)) 'L" 
u 11( I/) - u( I/) < ., e n '' 

(q-a)· 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

for all 1; :::::; 0 and all D > 0, where 11 now denotes the hyperbolic limit function satisfying 
(4.11), (4.12) and Proposition 4.7. 

Subtracting the combination of equations (4.11 ), (4.12) from equation (5.6) gives 

( 5.11) 

for I/> 0. 
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Integrating this expression and using (5.8) yields 

J'I 

Du;/11) = (q-a)(uu-u)(1;)+k {g(u",c)-g(11,c)jds. 
() 

The concavity and boundedness of u0 imply u;,(,x_,) = 0 (see also Proposition 1.2). Hence 

r {g(u 0 , c)- g(u, c)j dr; = 0 for all D > 0. 

Expression (5.11) also implies that if u u( 1]) = u(ij) for some 1] > 0, then 

(uJJ - u)' (ij) = _!!__ u~( ij) < 0. 
q-a 

(5.12) 

Consequently, un > u in a left neighbourhood of any intersection point. This observation 

combined with (5.12) gives 

Proposition 5.3 The fimctions Un and u lzaue precisely one intersection point 1/n > O 1rith 

u0 > u on (- oc, 1;1,). O 

Using equation (5.11) again, and also the monotonicity of g, we find 

(u0 -u)'(r;) < 0 on (0, 11 1,). 

Hence 
kD(K-g(u*, c)) 

(uv-U)(if) < (uv-u)(O) < -).' ~ 
(q-a -

for all 0 < 11 < l/n and for all D > 0. 

(5.13) 

To get an estimate in the interval (11 m co) we first integrate ( 5. 11) over the interval ( 11, :o) 

with r1 ~ t/ 0 . This yields 

Du;i{rj) = (q-a) (u 0 - u)(11)-k Jf. {g(11n,c)-g(11, c)l ds. 
'I 

As a consequence, 

Du;Jrinl = kf
1 {g(u,c)-g(un,c))ds. 

11!> 

From (5.14) we further obtain, with 11 ~ l/D, 

0 < (q-a)(u-un)(1;) = - Du;/ 11) + k f' ig(u, c)- g(u", c)) ds 
'I 

as u0 is strictly concave for 1; ~ 0. 

< k f 1. ig(u, c)-g(11", c)) d.1' 
'!1> 

= Du;,(q()) (with (5.15) 

< Du;/O) 

(5.14) 

(5.15) 
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Table l. Limit behaviour for numerical example 

k errorl(k) error2(k) D error(D) 

10 0.841 560 * 10-• 1.937765 * 10-4 6.25 * 10-4 0.2998 
102 0.431551*10-• 1.987 367 * 10-• 6.25 * 10-5 0.4400 
10" 0.289 970 * 10-4 2.003 042 * 10-• 6.25 * 10-6 0.4456 
104 0.218011*10-4 2.007956 * 10-• 6.25 * 10-7 0.4460 
1Q5 0.174 537 * 10-4 2.009433 * 10-4 

Using (5. 7) in this estimate and combining the results we have the following conclusion: 

Theorem 5.4 Let u be the hyperbolic limit as giPen in Definition 5.1. Then for all D > 0 and 

for all 11 E IR 
k(K-g(u*,c)) = 

luJJ(11)-u(11)I ~ ( )"' err< 11>- D. 
q-a-

Here (x)_ := -max ( -x, 0). 0 

Remark 5.5 The estimate in Theorem 5.1 is nearly asymptotically optimal and the estimate 
in Theorem 5.4 is optimal because of the following observation: If we consider the 
linearized model, i.e. 

g(u, c) = u and K = U 8 , 

then we can compute the solution of ( TW) explicitly (compare [7]) and verify that 

\ k(u8 -u,.(O))-* (q-a)\(l~-u*) for k->-00, (5.16) 

u/l(O)-u* k(u 8 -u*) ~ D-·+O. 
D -+ (q-a)2 or (5.17) 

Furthermore, numerical approximations of the problem depicted in Figures I and 2, but 
now for varying k or D (Figures I and 2 are fork= 0.1, D = 6.25* 10-') show the 

behaviour reported in Table I. Here 

\ k 
errorl(k) :=In (k) (u8 -u,.(0)), 

error2(k) := v k(u8 - u,.(O)). 

Table I leads to the conjecture that, in line with Remark 5.5, the logarithmic term in the 
estimate of Theorem 5.1 seems to be too pessimistic, but it cannot be dispensed with totally 
in the general case. The limiting behaviour for D _,_ 0, with 

u (0)-u* 
error (D) := _i_> ---

D 

is found even with the correct constant. 
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6 Conclusions 

In this paper we have analysed travelling solutions for a model describing crystal 
dissolution in a porous medium. The model consists of two diffusion-convection equations 
for the anion and cation concentrations, respectively, and of an ordinary differential 
equation describing the ongoing dissolution/precipitation reactions. The model involves 
two important parameters. One is the rate parameter k for the reactions, the other is the 
diffusion/dispersion coefficient Din the transport equations for the dissolved species. The 
main complication is the occurrence of a Heaviside-graph in the reaction equation. In §2 
we investigated the differential equations describing dissolution fronts (i.e. dissolution 
travelling waves) and explained the structure of the solutions. In particular, we have shown 
the existence of a free boundary which separates the region where the concentration of the 
crystalline solid is positive from the region where no crystalline solid is present, see also 
Figure 1. Existence and uniqueness of solutions has been proved in § 3. 

In §§4 and 5 we have investigated the equilibrium limit in which k-+oo and the hyperbolic 
limit in which D '>.. 0. Fork = oo, all the concentrations are constant whenever crystalline 
solid is present. Furthermore, the crystalline concentration is discontinuous across the free 
boundary, jumping from zero to the positive constant value, and the anion and cation 
concentrations are positive everywhere. For D = 0, anion and cation concentrations are 
constant in the region where the crystalline solid is absent. This is due to the missing 
diffusive transport term. Now all concentrations are continuous, growing from the free 
boundary to infinity. 

For both cases, in §5 we constructed explicit bounds for the corresponding rates. We 
have also compared these rate estimates and numerically obtained convergence results. 
This leads us to the conclusion that the analytical results are close to optimal. 

Appendix: An equivalent formulation 

We consider general solutions of(l.1)-(l.3) in Q7, := Q x (0, T], where Q c: !Rs is a bounded 
domain and T > 0, supplemented by appropriate initial and boundary conditions. The 
solution is understood in a weak sense such that the derivatives, appearing in the following, 
exist with the indicated regularity. As for the travelling wave solutions, we introduce 
functions w: Q1,-+ IR such that 

0:::::; w(x, t):::::; 1, w(x, t) = 1 for cJx, t) = 1, 

p01 c12 = ()(k.r(c 1 ,cJ-kt1w). 

(A 1) 

(A 2) 

We analyse the properties of the function w. We subdivide Q.r into three disjoint sets, 

where 

Qr= A U B UC, 

A = {(x, t) E Q1, I c12(x, t) > 0}, I 
B = int {(x, t) E Q.r I c12(x, t) =OJ, 

C = bdry {(x, t) EQT I c12(x, t) = 0} \A. 

(A 3) 

(A 4) 

Here int and bdry denote the topological interior and boundary of the corresponding set. 
Note that in the definition of C we have to exclude points where c12 > O (e.g. points in A) 
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from the boundary of the set where c12 = 0, because c12 may be a priori discontinuous. We 
have by (A 1) 

w(x, t) = 1 for (x, t) EA, 

and as 2/0tc1ix,t) = 0 for (x,t)eB: 

w(x, t) = r(ci(.'<, t), c2(x, t))/ K for (x, t) E B. 

(A 5) 

(A 6) 

The topological structure of the set C is not clear a priori, as here we want to take into 
account all kinds of scenarios caused by various initial and boundary conditions. In 
particular, we do not know the regularity of the solutions a priori, i.e. we cannot expect that 
!:/lit c12 is continuous, etc. (compare the travelling wave solutions). For the travelling wave 
solutions, the set C will turn out to be a straight line, and thus of Lebesgue-measure zero 
in QT. In general, we expect that C is a collection of surfaces in the space-time domain, i.e. 
a free boundary in the problem. If the situation is more complex in the sense that the set C 
has positive measure, then due to a result in [l OJ (Lemma A 4, p. 53) we have 0/01 c12(x, t) = 0 
for almost every (x, t) EC. Therefore, 

w(x, t) = r(l'i (x, t), c2(x, t))/ K for almost every (x, t) EC. (A 7) 

The function w is determined by c1 , c2 as given by (A 5)-(A 7) up to a set of measure zero, 
which in general may be expected to be surfaces in the space-time domain, where the 
transition c12 > 0 to c12 = 0 takes place. The function w may be discontinuous there, as it 
will be the case for the solutions travelling wave. 

An alternative rate description 

Next we propose an alternative formulation for the reaction rate: Another equivalent form 
of the equilibrium conditions is given by 

0 E H(max(c 12 , r(c1, c)-K)) (k P r(c1, c2)-kd). 

This suggests as an alternative to (A 2) the following rate description: 

or equivalently 

where weH(max(c12,r(c1,c2)-K)), 

or equivalently 

0 ::;:;; 11· ::;:;; I, and 

11· = 1 for c12 > 0 or r(c1,c2 ) > K. 

(A 8) 

(A 9) 

(A 10) 

This means that the precipitation rate k P r(cp c2) and the dissolution rate k" are kept, if 
crystalline solid is present or the fluid is oversaturated. Otherwise, an overall non-positive 
rate (i.e. dissolution rate) is possible. 
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The equivalence of the different formulations 

To investigate the relation between this and the model (A 2), we consider the function w 
in (A 10). At points where the fluid is saturated, i.e. r(c1• cJ = K, w cannot be determined 

from equation (A I 0). Thus, we do not change the solution if we select H' in accordance with 

(A 10). 
Repeating the above discussion leads to 

w(x, t) = 1 for (x,t)EA, 

(X,l)EC l w(x, t) = 0 for (x,l)EB, (A 11) 

iv(x, t) = 0 for almost every 

With this correspondence of the functions w, we see that the models (A 2) and (A 9) in fact 

are equivalent, if we compare weak solutions, where equations ( 1.1 ), ( 1.2), (A 2) or (A 9) 

are only considered almost everywhere in QT. 
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