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A central limit theorem for sums of 
correlated products 
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Consider a sequence of random points placed on the nonnegative 
integers with i.i.d. geometric (1 /2) interpoint spacings y;. Let X; denote 
the number of points placed at integer i. We prove a central limit theorem 
for the partial sums of the sequence XoYo. X1Y1 • .... The problem is 
connected with a question concerning different bootstrap procedures. 
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1 Introduction 

23 

Consider a simple random placement of particles on the nonnegative integers as 
follows. Begin by flipping a fair coin. If the outcome of the toss is head, place the 
first particle at 0. If not, move one position to the right, but do not place a particle. 
At each successive step, toss a fair coin, place a particle at the current position if 
the outcome of the toss is head, and otherwise move one position to the right. After 
completion of this infinite procedure a possible picture is something like: 
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Fig. I. 
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Now denote by y;, i;;:::: 1, the spacing between the ith and (i + l)th particle (with 
Yo being the place of the first particle), and by x; the number of particles at position 
i (i ;;:::: 0). In this article, we investigate the asymptotic behavior of 

m 

I X;y; 
i=O 

as m becomes large. 
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24 G. Hooghiemstra and M. Keane 

Let Xm denote the total number of pa.rticles in positions 0 up to m and Ym the 

position of the (m + 1 )th particle. That is 

Xm==Xo + . • . + Xm 

and 

Ym==Yo + ' · · + Ym 

Our theorem states that 

- 1-(f x;y; - min (Xn,, Y.,)) Fm i=O 

converges in distribution to a standard normal variable. 

(1) 

(2) 

WELLNER (l 992a) states the following problem (in modified notation). Denote by 
£ 1, £2, ••• , a sequence of independent, exponentially distributed random variables 
with mean 1, and by N; the number of Poisson points contained in (i - 1, i]. So 

N;:=#{j: E1 + · · · + EJ E (i- 1, i]} 

Show that 

1 m p 

- I N;E;-+l 
mi=! 

(where !+ denotes convergence in probability) and secondly, show that 

(3) 

converges in distribution and find the limiting distribution. The first question was 
solved by the authors together with Serguei Foss (see problems and solutions 
Statistica Neerlandica, 1994, vol 48, 2, p. 187-200). The second question is much 
harder. We do think the limit distribution of (3) is normal, and simulation supports 
this claim; however this seems difficult to prove, as the sequence N;E; is a 
non-stationary sequence of random variables which does not satisfy ordinary mixing 
conditions. By simplifying the problem (and of course at the same time trying to 
retain the essential structure of the problem) we came across the variables x, and y; 
introduced above. These variables are exactly the discretized versions of the variables 
in Wellner's problem, because they; introduced above are geometrically distributed 
with expectation 1. Originally Wellner's problem is motivated by the bootstrap. In 
trying to understand different bootstrap procedures with correlated multipliers, 
Wellner formulated the above problem. We refer the interested reader to Section 2 
of the survey article WELLNER (1992b). 

The central limit theorem below contains an item of interest which allows 
the treatment of a wider class of normality problems. Essentially, what happens 
r ws. 1991 



Sums of correlated products 25 

is that when the sum of interest is conditioned on the correct filtration, the 
compensator involves the sum itself multiplied by a factor 1/2 and some additional 
terms which are easy to analyze. Thus the martingale central limit theorem is of 
relevance. 

2 A random path 

Let ~" ~1, ••• be an i.i.d. sequence of zeros and ones, with 

The ~·s represent the outcomes of the coin tosses of the previous section. A nice way 
to visualize our placement is given by the following random path II. The vertices 
of II are the points 

(sk, k - sk), k ~ 0 

where so= 0 and sk = ~ 1 + · · · + ~k, k ~ l, and the edges are the straight line 
segments connecting successive vertices. The following figure represents the 
placement of Fig. 1. 

Fig. 2. A path II. 

If we set 

X;==iength (JI n {(x, y):y = i}) (4) 

and 

y;:=length (II n { (x, y) :x = i}) (5) 

then it is easy to see that these definitions coincide with those of the previous section. 
The x; and y; are a kind of occupation times (or local times) for each direction. Note 
© vvs. 1997 



26 G. Hooghiemstra and M. Keane 

that the path ll visits the diagonal infinitely often, but that the expectation of the 

number of steps between two visits is not finite, since the random walk { sk} is 

nuU-recurrent. This phenomenon is exactly what makes the process 1: x,y, a difficult 

one to study. Although the process has natural times (the visits to the diagonal) at 

which it regenerates, the expected length of the regeneration cycles is infinite, and 

this infinite expectation is the cause that mixing conditions such as strong mixing or 

p-mixing are not fulfilled. 
The backbone of the construction above is the imbedding of the simple random 

walk {sk }. In order to avoid problems with the mixing we construct a martingale with 

respect to the filtration generated by the simple random walk. To calculate 

Conditional expectations given So, . •. , Sm, or equivalently given ei. ... , em, We 

denote by fl .. the initial part of the random path fI for O ~ k :s; m, and we set for 

fixed m, 

.\',:=length (fl,., n {(x, y):y = i}) (6) 

and 

y;:=length (flm n {(x, y):x = i}) (7) 

for 0 :s; i :s; min (s.,, m - s.,); these random variables are the same as the original x, 

and y, except perhaps for the last value of i, and we have omitted the dependence 
on m for ease of notation. 

Next, define form;;::; l, 

Sm /\(m- J..,,) 

W.,:= I ."i;J'; 
1=0 

(8) 

and let y;"' denote the a-field generated by e i. ... , em. Our goal is to make a 

martingale out of the sequence Wm by subtracting the quantity (compensator) 

m-1 

c,_1 = I E(W,+1- WM•,) 
i-1 

and after that, to apply the martingale central limit theorem to the stopped sequence 
W,., - C,., _ 1 where 

(9) 

Note that by choice of tm, the absolute difference between W,., and I:;n=-0 1 x,y, is at most 
x,.y.,. As a consequence of Lemma 2 below we see that 

t vvs. 1997 



Sums of correlated products 

Hence if 

has a normal limit so does 

LEMMA l. 

{~ Y1' s, = k > l = i - S; 

E(W1+1-W,l.F,)= Kvk+:~,). s,=k=i-s, 
!.\'., S; = k < I = i - S, 

27 

(lO) 

PROOF: We will only treat the case where s, = k > I = i - s,. If ~. + 1 = I then length 
(fl, + 1 n {(x, y):x = k}) = l + length(fl, n {(x, y):x = k }), however W.+ 1 - W, = 0, 
because since l < k the product .i,y, is not included in the sum W, + 1• On the other 
hand if ~1+ 1 = 0 then length (ll,~ 1 n {(x, y):y = /}) = l + length(fl, n {(x, y):y = l}) 
and so .\'; increases by l, and this has the effect that wi+ I - w, =,VI· D 

The random variable 

(ll) 

is dearly .:F,-measurable, and if we define the compensator 

I= I 

then W1 = Co = 0 and 

W,.-C,.,_" m;;:::l 

is a martingale with respect to the filtration (.:F m ). 

LEMMA 2. With probability one: 

l ( m-i ) ? i + z:: (x, + i )y, . 
.. , .... o 

l m- I 

'2 L x,y, + !m, t,,, = 2m 
1-0 

(12) 

l( m-1 ) 

2 1 + I x,(y, + i> , s,m < t,,, - s,m 
t-0 

t vvs. !997 



28 G. Hooghiemstra and M. Keane 

PROOF: Let k1 be the smallest positive integer with sk, = 2k1 - sk,, and suppose that 
2/c1 :$; t,,.. Since the problem is symmetric we can restrict ourselves to the case where 
the path nVr, is below the diagonal y = x. Then: 

Vr1 

L µ, = 0 +H.Yo +···+Yo)+···+ !(Jk1 -1 + · · · + Yk1-1) + !(ik1 + YkJ 
1-0 

The first equality follows from (l O); the second because .Yo = 0, and because the 
number of vertices of the graph on the line y = I is equal to i1 + 1. The third equality 
is evident from Xk,Jk, = 0, and the fact that .Y1 + · · · + Jk, = k1. The final equality 
follows since x, = i; and Yi= y, for i = 0, 1, ... , k1 - 1. By induction the formula is 
also true if there are more excursions with final endpoint on the diagonal. This proves 
the middle expression of Formula (12). 

Now suppose that the random path ends at (k, m) with k > m, and let (k., k.) be 
the last visit of the path to the diagonal. Then following the same reasoning as above 

( Ik.-1 ) 
C, .. = 2 .I X1J; + !k. + t<.Yk. + ... + Jk.) 

1-0 

+ "· · + !<Ym-1 + · · · + Jm-1) + !Jm 
lm-1 1m-I 

=1 L X;J1+2 L Yi+! 
i•O i•O 

because Ym = 1. This completes the proof of Lemma 2. 

3 Asymptotic normality 

We now present the result. 

THEOREM. 

I ("' ) Si' fZ. L X;J; - (Xm /\ Ym) -+N(O, l) 
y6m i•O 

0 

PROOF. As indicated above we intend to apply the central limit theorem for 
maringales (cf. LEVY, 1935; for a modem treatment see POLLARD, 1984). Let 

then 

0 vvs. 1997 
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Clearly the contribution to the conditional variance for an excursion of the path 
below the diagonal is of the form 

~ L (.i; + I )j'; 

whereas above the diagonal the contribution is 

~I tv, + 1).i? 

Denote by Y,,,•=.vo + · · · + _iim and by X,.:=.io + · · · +.i.,. A more detailed 
analysis, similar to the proof of Lemma 2, shows that 

J { 'm •I"' - s,.) 
0 ~ 4 (.io + l)y~ + (yo + l).i~ + L [(.\', + op;! ( Y, - I < i) 

1= I 

+(.v, + l).i~l(X, I< m}- (a?+ ... + 11~) 

l {''"·'Im -,.,I } ~ 4 L [.v; 1 < r, 1 < i < ?, ) + .if 1 ( x, _ , < i < x, )J 
I~ I 

By conditioning on Y;. 1 it is seen that 

Hence 

Ey;I(Y,.1 <i< Y,)=E(E(y;l(Yi-1 <i< Y,_, +y,)IY,_1)) 

= d :t r-w1 + 1 l (i - I < Y, - I < i)) ,_,\1~ I 

E{t, y~ l( Y,.1 < i < Y,)} = O(J';), m-i.oo 

(13) 

which fact implies, by nonnegativity of the summand and because s,., has a binomial 
distribution with parameters m and l/2, 

Using symmetry we conclude from (13) that 

I l {''"•1m-.•~1 -- (crf + · · · + u~) - 4- L [(.i; + l)y; l(Y,. 1 < i) n1 m ,~ 1 

+ cv, + l).i? 1<X-1 < i)J _.o - } /> 

{'. vvs. !997 



30 G. Hooghiemstra and M. Keane 

In the lemma following this proof we will show that 

l {"' . } p 
;;; 1~1 [(x1 + l)y7i(Y1-1 < i) + (y; + l)xfl(X1_ 1 < l)] -+2µ2, m-+oo 

where µ2 = Eyf = 3. From the previous two statements and the law of large numbers 

for the sequence s., it is immediate that the conditional variance 

I p 

- (<r~ + · · · + rif,,)->µi/4 
m 

To finish the proof of the theorem we verify Lindeberg's condition. This condition 

is trivial because u~ + · · ·+a!~ mµ2/4, and l~jl :s; 1, almost surely. Applying the 
martingale central limit theorem, with stopping time tm we obtain: 

because 

a.s. 

Now use the remarks preceeding Lemma I to obtain the result. 

LEMMA 3. 

PROOF: Instead of (14) we show that 

m-+oo 

; {f [(x, + l)yfl(Y; < i) + (Y1 + l)xfl(X; < i)]}.:_.2µ2 , m-+oo (15) 
1• I 

0 

(14) 

That is we show the statement of the lemma with Y1 _ 1 and x 1 _ 1 replaced by y1 and 
X,, respectively. Note that l(Y,_ 1 <i)-l(Y1 <i)=l(Y1 _ 1 <i:s;Y1). It follows 
from 

I "' ;;; EL (x, + l)y;I(Y1_ 1 < i :s; Y1) = O(m-112), m-+- 00 
'•I 

and 

l "' ;;; EL (y, + l)xfl(X,_, < i $ X1) = O(m- 112), m-. 00 
1-1 

tha~ (l5) .imp~ies (14) (here we used that L1 convergence of nonnegative random 
vanables implies convergence in probability). We next verify that the expectation of 
the left-hand side of (15) converges to 2µ 2 as m->oo. 
f vvs. 1997 
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E(x, + I I( Y; < i) l(Y,<i) 

= 2E(E(y," l(y, + }'·, .. I < i)I y. l)} 

y <i-1)-+2· 

for i-•<t:.. This follows by dominated convergence since Eyf < oc, and the fact that 

for fixed l, according to the central limit theorem, P( Y, 1 < i - /)--+I By symmetry 

the same result holds when y and x are interchanged: 

lim E(y, + l l(X, < i) = µi 
1-:t. 

Hence the statement of the lemma is true if we show that the variance (Var) of the 

left-hand side of (15) converges to 0 as m-+ :x.. 
Now consider the reflected random walk e; = l, ~2, ~i .... , where <lie.,. 1 is 

Bernoulli with probability 12, when ~; + · · · + · # k, and + 1 = l with 

probability I when ~1 + · · · + ~:. = k. Formally si. = ~{+···+~;forms a Markov 
chain, starting from si = I and with transition probabilities 

P(sl;; + 1 = sl;; + l lsf. ) = l, s2k = k 

P(sl;; + 1 = s; + l lsl>:) = P(s;..,., = sidsl.) = L sl. > k 

As before we define by fl' the random path with vertices (s~. k - s;). k :<.::: 0. Note 

that all vertices satisfy s; :<.::: k - s:. Let x' and y' be defined as in (4) and (5) but with 

n replaced by II', and let X' and Y' be the partial sums. A probabilistic replica of 

the path n can be obtained from ll' in a pathwise manner by randomizing 

the variables ~.lk.,. 1 (choosing probability I /2 to each of the possibilities 0 and l) for 

which s; = k. It follows from the correspondence between the paths ll and ll' that 

for i:;::: l, 

l(Y,' = i) = l(Y, = i) + l(X = i) 

almost surely. Moreover by symmetry of the random walk ~ 1, e I + ~2 ••• , we obtain 

the almost sure identity 

m • 

I + 1)(.r,')'l(Y; < i) =I [(x, + l)y;l(Y, < i) + (y, + l)x~!(X < i)J 

Hence the statement of the lemma follows if we show that 

(16) 

To this end put 

Z, = (x: + l)(y()2 l ( Y; < i) 
vvs. !997 
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Since 

it is sufficient to show that 

1 m-1 m 

2 L L (EZ;Zi-EZ;EZi)-+O, m-+oo (17) 
m i• 1j•i+1 

Since Z; = O on the set { Yf = i} it is no restriction to prove ( 17) on the set { Yf < i}. 
Then condition (17) is equivalent to 

I m-1, { m m )) 2 L z, L Z1- L EZ11Yf, xf -+O, m-+oo 
m i•l •l+I j•i+l 

For k, I e ~ we consider a random path ll' starting from vertex (i + l, Yf) to 
(m, Y.;.). The section of this path from (i + l, Yf) to (p,p), where p > i + 1 is the 
first index for which the path hits the diagonal can serve as a realisation of a path 
starting from (i + 1, Yf - 1) and ending at (p,p - 1), by translation of the section 
over the vector (0, - 1 ). At (p, p - 1) we move either to (p, p) or to (p + l, p - 1), 
each possibility has probability 1/2. In the first case the lower path couples with the 
original path; in the second case we end at (p + l,p - I), while the original path is 
at (p + l,p); from these two points the above procedure can be repeated. Note that 
if coupling occurs at (p,p) then I:f.;+ 1 (yf)2l(YJ <j) is the same for both paths, while 
in case of no coupling the absolute difference is (y;)2• Hence for k, I e N, 

lrf f Zilxf = k,yf =I+ 1)- E( t Z1lxf = k, yf = 1)1 
""'\.;.,+I -1+ 1 

~E(xj + 1)1,j f (yj)2 l(YJ <j)lxf = k, yf =I+ 1) 
L.l~-1+) 

_ ,j. f (yj)2 l(YJ <j)lxf = k,y; = 1)1 .&..I\;_,+ I 

cc 

~2µ2 .L n<W+' = 2µ2 
n•O 

\ similar coupling argument which we leave to the reader shows that 

l,j f Z1lxf = k + l,yf = 1)- ,j f: Z1lxf = k, yf = 1)1~2µ2 ~~-1+1 ~~-i+l 
::-rom the above two estimates we obtain quite easily 

l ,j f Zilxf = k,y; = 1)- E I Z11 ~ 2µ2E(lxf - kl+ lyf - /I) 
...,\;•i+I J=i+I 

vvs. 1997 



Sums of correlated products 33 

This finally shows that 

:::;;2 L 2µ2E((xf + l)(yf)2(xf + yf + 2)) = 0 -1 m-1 (1) 
m 1-1 m 0 

4 Some concluding remarks 

In the paper we proved a central limit theorem for :E x,y, using the random centering 
(min (Xm, Ym)). It is conceivable that the proof, albeit less elegant, can be pushed 
through for exponential random variables. We would then obtain a result in the spirit 
of Wellner, though again with random centering. 

To obtain a limit result for :E x,y, with deterministic centering we need the joint 
asymptotic behaviour of (:E x,y,, Ym). It is well-known (see IGLEHART and WHITT, 
1971), that the asymptotic behaviour of Xm determines that of Ym in the sense that 
if either 

g w 
m- 112(Xm-m)-+N or m- 112(Ym-m)-+-N, 

then 
g 

m- 112(X., - m, Y., - m)-+(N, -N) 

We tried the martingale method developed in this paper on linear combinations of 
the form 

SnrA(m-sm) Sm 

tX L X;y; + f3 L y; 
i•O 

The compensator for this expression stopped at time tm equals 

tXC,m + {J(!(Xm V Ym) + !m) 

However, for tX and f3 both unequal to 0 the proof of the convergence in probability 
of the conditional variance breaks down. For tX = 0 we obtain the curious one 
dimensional central limit theorem: 

1 g 
;;:;::_ ((Ym - m)l(Ym ~ m) + (m - Xm)l(Ym < m))-+N(O, 1) 

...;2m 

which is a consequence of the above cited result of Iglehart and Whitt, while for 
f3 = Owe obtain the contents of our theorem. Simulation indicates that the joint limit 
of 

© vvs. 1997 
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is indeed not normal. However this does not contradict the possibility of a normal 
limit for l/j;i L (x,y; - l). 

Note that joint asymptotic normality (with deterministic centering) of the pair 
I: x,y1, I: y 1 is not possible, because it conflicts with the result in this paper. 
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