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Abstract 

This paper considers a single-server queue with Poisson arrivals and multiple customer 
feed backs. If the first service attempt of a newly arriving customer is not successful. he 
returns to the end of the queue for another service attempt, with a different service time 
distribution. He keeps trying in this manner (as an 'old' customer) until his service is 
successful. The server operates according to the 'gated vacation' strategy; when it returns 
from a vacation to find K (new and old) customers, it renders a single service attempt 
to each of them and takes another vacation, etc. We study the joint queue length process 
of new and old customers, as well as the waiting time distribution of customers. Some 
extensions are also discussed. 
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I . Introduction 

This paper is dedicated to Professor Joe Gani. The applied probability community is 

forever indebted to him for this vigorous and unselfish promotion of applied probability 

as a scientific discipline. 
Consider a dedicated editor-in-chief who devotes sessions to handling tasks for his 

scientific journal. He distinguishes between new and old tasks. New tasks are papers/ 

reports that he has received from his managing editor since the start of the previous 

working session. He decides on acceptance, or on the choice of a referee. etc. Some of 

the new tasks cannot yet be handled, as the editor-in-chief needs to 'sleep on it' or to 

get additional information from his managing editor. Such deferred tasks will be treated 

in the next session as old tasks. At the end of the session the editor sends a message to 

the managing editor and takes a vacation until a reply comes. This situation can be 

modeled by a feedback queue with so-called gated vacations - which is the subject of 

this paper. 
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Other situations modeled by such a feedback queue are that of a machine processing 
parts, X-ray taking, and the like. After a session, the processed parts (or X-rays) are 
inspected and it is decided which have to be redone. In the model studied in L:1is paper 
we allow different service time distributions for new and old tasks, and for successful 
and unsuccessful tasks. This enables us, for example, to model a situation where a job 
can be processed either in one session, or be divided over two (or more) sessions. Our 
model contains the ordinary MIG/I queue with gated vacations as a special case (cf. Takagi 
[8]); it also encompasses the MIG/I queue with Bernoulli feedback (cf. Takacs [7]), and 
its generalization to an M/G/l queue with Bernoulli feedback and gated vacations (all 
service time distributions being the same), cf. Takine et al. [9]. 

The paper is organized as follows. The model is described in detail below. In Section 
2 we determine the joint distribution of the number of old and new customers at session 
beginnings. The steady-state joint queue length distribution is studied in Section 3, and 
the waiting time distribution in Section 4. 

The model. Customers arrive at a single-server M/G/1-type queue according to a 
Poisson process with rate A.. A newly arriving customer receives a 'successful' service 
with probability p, or an 'unsuccessful' service with probability 1-p. The duration of 
a successful service attempt is S (with mean s, p.d.f. S( ·) and LST S( · )), while the 
duration of an unsuccessful service attempt is U (mean u, p.d.f. U( ·) and LST U( · )). 
If a service attempt is successful the customer leaves the system, whereas if the attempt 
is unsuccessful, the customer is immediately fed back to the end of the queue. From 
that moment on, such a customer is an 'old' one. If a customer has been fed back at 
least once then, on each of his following service attempts, with probability p 1 he receives 
a successful service with duration S1 (means1, p.d.f. S1( • ), LST S1( ·)),and with probability 
1-pi he receives an unsuccessful service V1 (mean ui. p.d.f. V1( ·)and LST U1( • )). 

A generalization of the above model to Mtypes of service re-attempts is straightforward 
to formulate, and its analysis is not fundamentally more complicated; it will not be 
discussed in this paper. 

The server operates according to the gated vacation strategy. When the server returns 
from a vacation to find, say, N new customers and 0 old ones, it starts a 'session' and 
renders each one of those customers a single service attempt (which may be successful 
or not) and then leaves for another vacation whose duration V has mean v, p.d.f. 
V( ·) and LST V( · ). If the queue is empty upon returning from a vacation, the server 
immediately leaves for another vacation, etc. (Note that we have assumed that a customer 
immediately leaves after a successful service. In some applications it may be more realistic 
that a successful customer is only released after an inspection at the beginning of the 
server vacation. The analysis to be presented below can easily handle that.) 

We impose all the usual independence assumptions between the arrival process, success
ful and unsuccessful services, and vacations. Given that a customer's first service attempt 
is unsuccessful (with duration U), let Y be the number of his additional unsuccessful 
attempts before he leaves the system. Clearly, P(Y=n)=(l-p1)"pt> n=O, I, 2, .... Thus, 
the expected total amount of service provided to a customer by the time he successfully 
leaves the system is 
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where U1i are independent, identically distributed as U1• 

Since EY =(I -p1)f Pi. by Wald's theorem, E[LJ= 1 U1i] =[(l/p1)- l]u 1• Thus, the system 
load is 

(l.1) 

An interpretation of p is as follows. Let BN=pS+(I-p)V denote the duration of a 
service attempt of a new customer (mean bN, p.d.f. BN('), LST BN(·)), and let B0 = 
P1 S1 + (1 - P1) U1 denote the duration of a service attempt of an old customer (mean b0, 
p.d.f. B0 ( · ), LST B0 (- )). Clearly, 

Each customer makes one service attempt (of mean duration bN) as a new customer. 
With probability (1-p) it is unsuccessful, and then it obtains an average of Ilp1 additional 
service attempts as an old customer, each attempt with mean duration b0 . Thus, the 
mean load of each customer on the system is bN +((1-p)lp1)b0 , and the overall system 
load p is as obtained in (1.1). We assume that p< 1. 

Remark. In [3] polling models with customer routing are considered; this includes 
feedback queues, with different service time distributions at successive visits. That paper 
sketches a framework for analyzing joint queue length distributions in such cases. The 
approach is based on branching processes, which are basically also at the heart of the 
present paper. 

2. The joint queue length distribution at session beginnings 

Define: 
T.: = the time instant when the nth vacation ends; 
Nn : = number of 'new' customers at T" (those customers have arrived during the time 

interval (Tn-i. Tn]); 
On : = number of 'old' customers at Tn. 
The joint probability generating function (p.g.f.) of N" and On is 

(2.1) n= I, 2, ... , lzl ~ 1, lwl ~ 1. 

We shall derive a recursive formula for Gn(z, w) that will lead to the limiting distribution 
of N" and On. Let X(N.) (respectively X1(0.), A(V.)) denote the number of new arrivals 
during the service time of the N" 'new' customers (respectively the service time of the 
O. 'old' customers, and the nth vacation Vn). Let F(Nn) (respectively F1(0.)) denote the 
number of customers fed back out of N" (respectively, O.). Then, 
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(2.2) 
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Nn+I = X(Nn)+X1(011)+A(V,,), 

0 11 + 1 = F(N")+F1(0,,). 

We claim the following. 

Proposition I. For !zl;;::; 1, lw!;;::; 1: 

G11 + 1(z, w) = V(Jc(l-z))G,,(pS[A.(1-z)]+(l-p)wU[A.(l-z)], 

(2.3) 

Proof If N,, = j and 0 11 =k then, with probability 

there will be m type S (m 1 type S 1) successful services out of N11 = j (out of 0 11 = k) 
attempts, and j -m type U (k-m 1 type U1) unsuccessful services. 

The total service duration of the Nil= j and 0 11 = k customers will have a convolution 
p.d.f. [S'"* * u(j-m)* *Si"'** uik-m,I*](. ). If that convoluted service lasts t units of time, 
there will be l new arrivals during that time with probability e·!J(A.t)'!I! (/=0, 1, 2,··-). 
Thus, 

(2.4) 

= V[A(l-z)][pS[),(1-z)]+(l-p)wU[Jc(l-z)]]i 

x [p1S1[A(l -z)]+(l-pi)wU1[),(1-z)]Y. 

Now, taking expectation with respect to N 11 and 0 11 , we obtain equation (2.3). This 
completes the proof 

Let N and 0 be the random variables with as joint distribution, the joint limiting 
distribution of Nil and 0,,. Then, for !zl:;;::; 1, !w!:;;::; 1, 

(2.5) 
G(z, w)=E[zNw 0 ]= V[Jc(l-z)]G(pS[A.(l-z)]+(l-p)wU[)i.(1-z)], 

P1S1[-1(l-z)] +(l -p1)wU1[Jc(l -z)]). 

Remark. A fast way to understand (2.5) is to use the concept of branching processes. 
According to this concept one can interpret the factor pS[Jc(l-z)] +(1-p)wU[-1.(1-z)] 
as follows. Define the 'descendants' of a customer to be the new arrivals during his 
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service time. Then the number of descendants of a 'new' customer has generating function 
pS[Jc(l -z)] + ( 1 - p)wV[A.(l -z)]. The extra factor w indicates the fact that, with proba
bility 1-p, the 'new' customer also generates one 'old' customer, which is he himself, 
being fed back. In the same way one can easily handle the case of M different customer 
types. Formula (2.5) would keep the same structure, the (k+ l)th element of Gin the 
right-hand side becoming (with an obvious extension of notation): 

k= 1,-··, M-2. 

We now solve (2.5) by iteration. For /z/ ~ 1, /w/;?; l, define 

(2.6) 

For n f; 1, 

m~'(z, w): = pS[,1.(l -z)]+(l-p)wU[,1.(1-z)], 

m~'(z, w): =Pi ,$'1[,1.(1-z)] +(l-p1)wU1[,1.(l-z)]. 

m~'(z, w) = pS[A.(l -m~·- 11(z, w))]+(l -p)m6' 1'(z, w)U[,1.(l-m~- 1 '(z, w))], 
(2.7) 

m6''(z, w) =Pi S1[A.(l -m~'- 1 '(z, w))] +O -p1)m;;- 1>(z, w)U1[,l(l -m.~- 1 '(z, w))]. 

Note that m~' 1(z, w) (respectively, m);''(z, w)) may be interpreted as the nth generation 
descendants of one new (respectively, old) customer. Formula (2.5) can be rewritten as 

(2.8) 

Iterating this formula k times results in 

k 

G(z, w) = fl V(,l(l -m~' 1(z, w))]G(m~ ' 1'(z, w), m~+ 1 '(z, w)). 
n :=:O 

It can be shown that, if p <I, lim11 __ , m~ 1(z, w) =I and lim11 _"" m);'(z, w) = 1, convergence 
is geometrically fast, so that n~"~o V[,1.(1 -m~ 1(z, w))] is a convergent infinite product. 
Hence, for p < I , as G ( I , I) = l, 

(2.9) 

Moments. 

(2.10) 

Thus, 

(2.11) 

x. 

G(z, w) = 11 V[,1.(1-m~''(z, w))], /z/~1, /w/~1. 
n-0 

From (2.2), using the Poisson arrival property, we readily obtain 

E[N] =),{bNE[N] +h0 E[O] +v}, 

E[O]=(l-p)E[N]+(l-p 1)E[O]. 

l-p 
E[O] = --- E[N], 

P1 

and hence, using ( 1.1 ), 
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(2.12) 

This implies 

(2.13) 
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E[N] = pE[N] +AV. 

AV 
E[N]=-. 

1-p 

Clearly, (2.12) can be directly obtained by using balance arguments. 
Finally, the mean cycle time, i.e. the time between two consecutive vacation beginnings, 

is given by 

(2.14) 
v 

E[C]=E[N]IA =--. 
1-p 

3. The steady-state joint queue length distribution 

G(z, w) is the p.g.f. of the steady-state joint queue length distribution at the beginning 
of a session (end of a vacation). Let ae>(z, w) denote the corresponding p.g.f. at the end 
ofa session (beginning ofa vacation). Also, let HN(z, w) and H 0 (z, w) be the joint queue 
length p.g.f. at the beginning of a service attempt of a new (respectively, old) customer. 
Similarly, let H~1(z, w) and H~l(z, w) be the corresponding p.g.f.s right after the end of 
a service. Considering one cycle (service plus vacation), the p.g.f. of the state of the 
system at an arbitrary moment, F*(z, w), is given by 

(3.1) 

Now, 

(3.2) 

1 
F*(z, w) = E[C] [bNE[N]F*(z,w I a new customer is served) 

+b0 E[O]F*(z,w I an old customer is served) 

+ vF*(z, w I the server is on vacation)]. 

. . l - V[A(l -z)] 
F*(z, w I the server is on vacat10n) = o<•l(z, w) v(A(l -z)) , 

where (1- V(s))Jvs is the LST of the past part, Vp, of V; 

(3.3) I . l-BN[A(l-z)] 
F*(z, w a new customer 1s served)=HN(z, w) b A , 

N( (1-z)) 

(3.4) I . l -B0 [A(l -z)] 
F*(z, w an old customer 1s served)=H0 (z, w) b . 

0 (A(l -z)) 

Substituting (3.2), (3.3) and (3.4) in (3.1), and then using 

(3.5) G(z, w)= G(e>(z, w}V[A(l -z)], 

we obtain 
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(3.6) 

F*(z, w) = E[C]Jc~l-z) [[E[N](l-BN[J,(1-z)])HN(z, w) 

+E[0]0-BoPO-z)])H0 (z. w)] 

+(l- V[).(1-z)])G(z, w)/V[),(1-z)]]. 
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The steady-state joint queue length distribution of old and new customers depends on 
the order in which customers are served during a session. We now assume that during 
each session of the server, new customers have priority over old ones, i.e. they are served 
first. Thus, if G(z, w) is the p.g.f. of the number of customers at the beginning of a 
session, let G~l(z, w) be the p.g.f. of the number of customers at the moment where the 
server ends serving new customers. We now use a nice idea that seems to be due to 
Eisenberg [5] in a polling context; see also Altman and Yechiali [1], Borst and Boxma 
[2] and Sidi et al. [6]. It is the observation that the union of all session beginnings and 
all service endings of new customers coincides with the union of all service beginnings 
of new customers and endings of whole service periods of new customers. In terms of 
generating functions: 

(3.7) G(z, w) + E[N]H~ 1(z, w) = G~l(z, w)+ E[N]H,v (z, w). 

Similarly, with G0 (z, w) denoting the p.g.f. of the number of customers at the moment 
where the server starts serving old customers: 

(3.8) G0 (z, w) +E[O]Hi~ 1(z, w)= G('\z, w)+E[O]H0(z, 1r). 

Above we might as well have written G~ 1 (z, w) instead of G0 (z, w); note that during a 
session the period in which the server serves new (or old) customers may have length 
zero, but this does not cause complications. Now 

(3.9) G0(z, w)=G~ 1(z, w)=E[(m~l(z, w))Nw0]=G(m~ 1 (:::, w), w). 

Using (3.5), (3.9) and the obvious relations 

(3.10) 

(3.11) 

H~l(:::, w)=HN(z, w)m~l(z, w)lz, 

Hi;l(z, w)=H0 (z, w)m~ 1 (z, w)lw, 

equations (3.7) and (3.8) are written as 

(3.12) E[N]H N (z, w)[l - m~ 1(z, w)lz] = G(:::, w)- G(m~ 1(z, w), w), 

(3.13) E[O]H0 (z, w)[l -m~\z, w)lw] = G(m~\z, w), w)-G(z, w)/V(A.(1-z)). 

Substituting E[N]HN(z, w) from (3.12) and E[O]H0 (z, w) from (3.13) in equation (3.6) 
gives the result we were looking for: the p.g.f. F*(z, w) of the joint steady-state queue 
length distribution, expressed in terms of the known G( ·, · ). 

Briefly consider the case where old customers have priority over new ones. Let 
c~>(z, w) = GN (z, w) be the p.g.f. of the joint queue length distribution at the moment 
where the server ends serving old customers and starts serving new customers. Then 
(3.7) and (3.8) are modified into 



780 

(3.14) 

(3 .15) 
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G(z, w)+E[O]H~l(z, w) = G~l(z, w)+E[O]H0 (z, w), 

GN(z, w)+E[N]H~\z, w) = G'"l(z, w)+E[N]HN(z, w). 

Instead of (3.9) we have 

(3 .16) 

Similar manipulations as above and finally substitution in (3.6) gives F*( ·, ·) in terms 
of G( ·, · ). 

4. Waiting times 

The waiting time distribution obviously depends on the order of service. We assume 
that the order of service follows the 'longest present first' rule. That is, old customers 
are served before new customers and within each group the order is FCFS. We shall 
express the LST of the waiting time into the just obtained function G( ·, · ). 

For the calculation of the LST of the waiting time, W, of an arbitrary customer, we 
consider here the case where p 1 =I. That is, a customer is either successful on his first 
service attempt or, if fed back after the unsuccessful service, his second service attempt 
is always successful (having duration S1). More involved cases can in principle be handled 
in a similar manner, but the analysis may become quite complicated. 

Let Ws (Wu) denote the waiting time of a customer who is successful (unsuccessful) 
on his initial service attempt. Then, 

(4.1) P(W~ t)=pP(Ws ~ t)+(l-p)P(Wu ~ t). 

4.1. Calculation of the distribution of Ws. Consider a tagged successful customer K. 
We can write Ws = CR+ D1 + D2• Here CR denotes the residual cycle time, measured from 
the moment of the arrival of K. D 1 is the sum of the service times of those F(N) 
customers, out of N present at the start of the cycle, who were fed back during the cycle 
(the old customers were successful and left the system). Each of those customers now 
receives a successful service S1• D 2 is the sum of service times of new arrivals during the 
past part, Cp, of the cycle (before the arrival of K). Each of those new customers requires 
a service duration BN. Thus, 

(4.2) 
E[e-wD, I Cp = t] = E[E[e-wD, I A(t)J I Cp = t] 

=E[(BN(w))AUJ I Cp=t]=e-A<I-IiN(<oJJ1, 

where BN(w)=pS(w)+(l-p)U(w), and A(t) is the number of Poisson arrivals during 
a time interval of length t. 

Also, 

(4.3) 

Combining the above, we have 
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(4.4) 00 f..t) k 

x L I L P(N=k, O=j, F(N)=k-1\ Cp=lp, CR=!R)S1(w/ 1 

k=0j=01=0 

It follows from renewal theory (cf. formula (I.6.23) of [4]) that one can write 

loo f "° g(tp, lR)dP{ Cp ~ lp, CR~ lR} 

Jlp=O IR=O 

Hence, 

(4.5) OC· oc, k 

x I I, I P(N=k, 0= j, F(N)=k-1 \ C=x)S,(u.>t-1• 

781 

Using P(F(N)=k-1IN=k,0=})=(7)p1(1-pl- 1 and performing the integration in 

(4.5) with respect to tR we have, letting ~(w)=A.(1-BN((J))), 

E[e··wWs] = --- -·--- (e-~<wJ., -e-"'') ' 1 1 f "' 
E[C] w-((w) x=o 

x k~J 1~0 1~1 P(N =k, 0= j) ( ~ )iO -p)k-tS,(w)k ./ 

xdP(C~x \ N=k, O=j, F(N)=k-1) 

Thus, 

=·-·· .. --.. ·····--- (e-~(colx_e-w') L L L P(N=k, O=j) 1 1 J'X' . . c< 'IJ k 

E[C] w-((w) x=O k=O Hll~O 

1 1 x oc . 

=-·------· L I P(N=k, O=j) 
E[C] w-((w) bD J=O 
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-WW 1 I 
E[e '] = E[C] w-~(lO) 

(4.6) x [V(e(w))G(pS(e(<v))+(l-p)O(e(w))S1((!)), S'i(~(w))) 

- V(w)G(pS(w)+(l-p)U(w)S,(lO), S,(<v))]. 

Remark. For p = 1, i.e. the case without feedback, the expression in (4.6) reduces to 
the LST of the waiting distribution in the MIG/I queue with multiple gated vacations, 
cf. [8], formula (5.21 b) on p. 208. The latter formula can be decomposed into the waiting 
time LST of the ordinary M/G/l queue and an additional term that is due to the 
occurrence of vacations. In (4.6) one also sees a hint of a decomposition; observe that 
the waiting time LST in the MIG/1 queue with service time LST B,v (w) is given by 
[! -)"(ps + (1-p)u)]wl[w -e(<v)]. 

4.2. Calculation oft he distribution of Wu. Consider the waiting time of an unsuccess
ful tagged customer K, arriving during a cycle C. Observe that, because old customers 
are served before new ones in a session, the first service time of K does not influence 
his waiting time between both services; hence we can obtain his sojourn time distribution 
by convoluting his waiting time distribution with his two service time distributions. 

We have 

(4.7) 

Thus, 

(4.8) 

Wu= CR+ service of F(N) unlucky customers who were 

present at the beginning of the cycle C 

+service of all arrivals in C P (possibly two services) 

+vacation at end of 2nd cycle 

+first service of all (new) arrivals in CR. 

00 ':X.i k 

x L L L P(N=k, O=j,F(N)=k-l\ C=x)S\(w)k·· 1 

k=Oj=Ol=O 

x I (n)p'(l-p)"-'S(w)'O(w)"··•. 
r=O r 

Setting Biw)=pS(w)+(l -p)U(w)S1(<;J) we have 
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'l.i C1J k 

x I I 2.,dP(C~x!N=k,O=j,F(N)=k-l)P(N=k,O=j) 
k=Oj=Ol=O 

x P(F(N)=k-ll N=k, 0=j)S1(w)k-t 

(4.9) x exp { - ),tR(I - B N (w)]} exp{ - ).(x - tR)[ 1 - Bi(cl))]} 

= V(w) __ !_ f cf) f x e-wtRdtR t f ± d[S1* * uk-1)* * S{* * V](x) 
E[C] k=o 1·=01=0 

x=O IR=O 

Hence, integrating with respect to tR, we get 

x [l -exp { -x(w + ).(B2(w)- BN (w ))) } ]d[st* * U(k - 11* * S{* * V](x) 

V(w) I , x . 

=~-·-=----·,.----I I P(N=k O=j) 
w+/c(B2(w)-BN(w)) E[C] k=O j=O ' · 

x t~i ( ~ )p 1 (l-p)k- 1S1 (w)'- 1 {S(~2(w))1 U(~z(w))k- 1S1 (~2(w))jV(~iw)) 

- S(w + ~(w))1 U(w + ~(w )l-1 S1(w + ~(w)) 1 V(w + ~(w )) } , 

where ~ 2(w)=/c(l -B2(w)). Finally, 

-ww V(w) 1 
E[ e "] = - -; (B- -(-) B- _(_). ). -E [_C_]_ 

W+A 2 W - N W · 

(4.10) x [J/(~i(w) )G(pS((iw )) + ( 1 - p) U( ( 2(w) )S1(w ), S 1 (~ 2(w ))) 

- V(w + ((w))G(pS(w + ~(w )) + (l - p) U(w + ((w ))S1 (w), S((!) + ((w )))]. 

The waiting time LST of an arbitrary customer follows from (4.1), (4.6) and (4.10). In 

particular, moments can be obtained straightforwardly. 
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