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These draft excerpts of the chapter ''Randomness'' in 20th Century Math­
ematics in preparation for the 'Matematica, Logica, lnformatica' Volume 12 
of the Storia del XX Secolo, to be published by the Instituto della Enci­
clopedia Italiana. are dedicated to Cor Baayen. Here we present in a single 
essay a combination and completion of the several aspects of the problem of 
randomness of individual objects which of necessity occur scattered in our 
text [3]. 
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P.S. Laplace ( 17 49 - 1827) has pointed out the following reason why intuitively 
a regular outcome of a random event is unlikely. 

''We arrange in our thought all possible events in various classes; and we 
regard as extraordinary those classes which include a very small number. 
In the game of heads and tails, if head comes up a hundred times in a row 
then this appears to us extraordinary, because the almost infinite number 
of combinations that can arise in a hundred throws are divided in regular 
sequences, or those in which we observe a rule that is easy to grasp, and 
in irregular sequences, that are incomparably more numerous''. 
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If by 'regularity' we mean that the complexity is significantly less than maximal, 
then the number of all regular events is small (because by simple counting the 
number of different objects of low complexity is small). Therefore, the event 
that anyone of them occurs has small probability (in the uniform distribution). 
Yet, the classical calculus of probabilities tells us that 100 heads are just as 
probable as any other sequence of heads and tails, even thol1gh our intuition 
tells us that it is less 'random' than some others. Listen to the redoubtable Dr. 
Samuel Johnson: 

''Dr. Beattie observed, as something remarkable which had happened to 
him, that he chanced to see both the No. 1 and the No. 1000, of the 
hackney-coaches, the first and the last; 'Why, Sir', said Johnson, 'there 
is an equal chance for one's seeing those two numbers as any other two.' 
He was clearly right; yet the seeing of two extremes, each of which is in 
some degree more conspicuous than the rest, could not but strike one in 
a stronger manner than the·sight of any other two numbers.'' [Boswell's 
Life of Johnson] 

Laplace distinguishes between the object itself and a cause of the object. 

''The regular combinations occur more rarely only because they are less 
numerous. If we seek a cause wherever we perceive symmetry, it is not 
that we regard the symmetrical event as less possible than the others, 
but, since this event ought to be the effect of a regular cause or that of 
chance, the first of these suppositions is more probable than the second. 
On a table we see letters arranged in this order C o r B a a y e n, and 
we judge that this arrangement is not the result of chance, not because 
it is less possible than others, for if this word were not employed in 
any language we would not suspect it came from any particular cause, 
but this word being in use among us, it is incomparably more probable 
that some person has thus arranged the aforesaid letters than that this 
arrangement is due to chance.'' [Slightly paraphrasing Laplace] 

Let us try to turn Laplace's argument into a formal one. First we introduce 
some notation. If x is a finite binary sequence, then l ( x) denotes the length 
(number of occurrences of binary digits) in x. For example, l(OlO) = 3. 

Occam's Razor 
Suppose we observe a binary string x of length l(x) = n and want to know 
whether we must attribute the occurrence of x to pure chance or to a cause. 
To put things in a mathematical framework, we define chance to mean that the 
literal x is produced by independent tosses of a fair coin. More subtle is the 
interpretation of cause as meaning that the computer on our desk computes x 
from a program provided by independent tosses of a fair coin. The chance of 
generating x literally is about 2-n. But the chance of generating x in the form 
of a short program x*, the cause from which our computer computes x, is at 
least 2-l(x*). In other words, if x is regular, then l(x*) ~ n, and it is about 
2n-l(x*) times more likely that x arose as the result of computation from some 
simple cause (like a short program x*) than literally by a random process. 
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This approach will lead to an objective and absolute version of the classic 
maxim of William of Ockham (1290? - 1349?), known as Occam's razor: ''if 
there are alternative explanations for a phenomenon, then, all other things 
being equal, we should select the simplest one''. One identifies 'simplicity of 
an object' with 'an object having a short effective description'. In other words, 
a priori we consider objects with short descriptions more likely than objects 
with only long descriptions. That is, objects with low complexity have high 
probability while objects with high complexity have low probability. 

This principle is intimately related with problems in both probability theory 
and information theory. These problems as outlined below can be interpreted 
as saying that the related disciplines are not 'tight' enough; they leave things 
unspecified which our intuition tells us should be dealt with. 

Lacuna of Classical Probability •Theory 

An adversary claims to have a true random coin and invites us to bet on the 
outcome. The coin produces a hundred heads in a row. We say that the coin 
cannot be fair. The adversary, however, appeals to probabity theory which 
says that each sequence of outcomes of a hundred coin flips is equally likely, 
1/2100 , and one sequence had to come up .. 

Probability theory gives us no basis to challenge an outcome after it has 
happened. We could only exclude unfairness in advance by putting a penalty 
side-bet on an outcome of 100 heads. But what about 1010 ... ? What about 
an initial segment of the binary expansion of 1r? 

Regular sequence 

1 

Regular sequence 

1 

11.audom sequence 

1 

The first sequence is regular, but what is the distinction of the second se­
quence and the third? The third sequence was generated by flipping a quarter. 
The second sequence is very regular: 0, 1, 00, 01, .... The third sequence will 
pass (pseudo-)randomness tests. 

In fact, classical probability theory cannot express the notion of randomness 
of an individual sequence. It can only express expectations of properties of 
outcomes of random processes, that is, the expectations of properties of the 
total set of sequences under some distribution. 
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Only relatively recently, this proble1n has found a satisfactory resolution by 
co:rnbining notions of computability a11d statistics to express the complexity of 
a finite object. This cornple+ity is the length of the shortest binary p:rogram 
from which the object can be effectively reco11structed. It may be called the 
algorithmic information content of the object. This quantity turns out to be 
an attribute of the object alone, and absolute (in the technical sense of being 
recursively invariant). It is th~ J( olmogorov complexity of the ob_ject. 

Lacuna of Information Theory 
Claude Shannon's classical information theory assigns a qµantity of information 
to an ensemble of possible messages. All m,.essages in the ensemble being equally 
probable, this quantity is the numbe:r of bits needed to count all possibilities. 

This expresses the fact that each message in the enseinble can be communi­
cated using this number of bits. However, it does not say anything about the 
number of bits needed to co11vey any individual 1nessage in the ensemble. To 
illustrate this, consider the ensemble consisting of all binary strings of length 
9999999999999999. 

By Shannon's measure, we require 9999999999999999 bits 011 the average 
to encode a string in such an ensemble. However, the string consisting of 
9999999999999999 l 'scan be encoded in about 55 bits by expressing 9999999999 
999999 in binary and adding the repeated pattern 'I'. A requirement for this to 
work is that we have agreed on an algorithm that decodes the encoded string. 
We can compress the string still further when we note that 9999999999999999 
equals 32 x 1111111111111111, and that 1111111111111111 consists of 24 l's. 

Thus, we have discovered an interesting phenomenop: the description of 
some strings can be compressed considerably, provided they exhibit enough 
regularity. This observation., of course, is the basis of all systems to express 

• 

very large numbers and was e~ploited early on by Archimedes in his treatise 
The Sand Reckoner, in which he proposes a system to name very large numbers: 

''There are some~ King Galon, who think that the number of sand is 
infinite in multitude [ ... or] that no nu:rnber has been na1ned which is 
great enough to exceed its multitude. [ ... ] But I will try to show you, 
by geometrical proofs, which you will be able to follow, that, of the 
numbers named by me [ ... ] some exceed not only the mass of sand e~uftl 
ill magnitude to the earth filled up in the way described, but also that of 
a :r:1+ass equql in magnitude to the ~niverse." 

' 

However, if regularity is lacking, it becomes rnore cumbersome to express la:rge 
' 

nurp.be:rs. Far insta11ce, it seems easier to compress the I\Ufllber 'one billion.,' 
than the n,µqiber ~a:qe billion seven hundred thirty-five million two hunclreq. 
stx,ty-eigµt thous~nd and three hundred ninijty~four,' even though they are of 
the same order of n:iagnitude. 

The a.pove exaw.ple shows; tliat we p.eeq too many bits ta t:r&nsmit :regnla.:r 
objects. The coilverse problem, too little bits, arises as well since Sh9'nnon 's 
theory of information and communication deals with the specific technology 
problem of d<lita transmission.. That is, with the informtttion that needs to be 
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' . -
transmitted in order to select an object from a previously agreed upon set of 
alternatives; agreed upon by both the sender and the receiver of the message. 
If we have an ensemble consisting of the Odyssey and the sentence ''let's go 
drink a beer'' then we can transmit the Odyssey using only one bit. Yet Greeks 
feel that Homer's book has more information contents. Our task is to widen 
the limited set of alternatives until it is universal. We aim at a notion of 
'absolute' information of individual objects, which is the information which by 
itself describes the object completely. 

Formulation of these considerations in an objective manner leads again to 
the notion of shortest programs and Kolmogorov complexity. 

2 RANDOMNESS AS UNPREDICTABILITY 

What is the proper definition of a random sequence, the 'lacuna in probability 
theory' we have identified above? Let us consider how mathematicians test 
randomness of individual sequences. To measure randomness, criteria have 
been developed which certify this quality. Yet, in recognition that they do not 
measure 'true' randomness, we call these criteria 'pseudo' ra11domness tests. 
For instance, statistical survey of initial segments of the sequence of decimal 
digits of 7f have failed to disclose any significant deviations of randomness. But 
clearly, this sequence is so regular that it can be described by a simple program 
to compute it, and this program can be expressed in a few bits. 

''Any one who considers arithmetical methods of producing random digits 
is, of course, in a state of sin. For, as has been pointed out several times, 
there is no such thing as a random number·-there are only methods 
to produce random numbers, and a strict arithmetical procedure is of 
course not such a method. (It is true that a problem we suspect of being 
solvable by random methods may be solvable by some rigorously defined 
sequence, but this is a deeper mathematical question than we can go into 
now.)'' [von Neumann] 

--

This fact prompts more sophisticated definitions of randomness. In his fa-
mous address to the International Mathematical Congress in 1900, D. Hilbert 
proposed twenty-three mathematical problems as a program to direct the math-

• 

ematical efforts in the twentieth century. The 6th problem asks for ''To treat 
(in the same manner as geometry) by means of axioms, those physical sciences 
in which mathematics plays an important part; in the first rank are the theory 
of probability .. ''. Thus, Hilbert views probability theory as a physical applied 
theory. This raises the question about the properties one can expect from 
typical outcomes of physical random sources, which a priori has no relation 
whatsoever with an axiomatic mathematical theory of probabilities. That is, 
a mathematical system has no direct relation with physical reality. To obtain 
a mathematical system that is an appropriate model of physical phenomena 
one needs to identify and codify essential properties of the phenomena under 
consideration by empirical observations. 

Notably Richard von Mises (1883-1953) proposed notions that approach the 
very essence of true randomness of physical phenomena. This is related with 
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the construction of a formal mathematical theory of probability, to form a basis 
for real applications, in the early part of this century. While von Mises' objec­
tive was to justify the applications to the real pheno1nena, A.N. Kolmogorov's 
(1903-1987) classic 1933 treatment constructs a purely axiomatic theory of 
probability on the basis of set theoretic axio1ns. 

''This theory was so successful, that the problem of finding the basis 
of real applications of the results of the mathematical theory of proba­
bility became rather secondary to many investigators .... [however] the 
basis for the applicability of the results of the mathematical theory of 
probability to real 'random phenomena' must depend in some form on 
the frequency concept of probability, the unavoidable nature of which has 
been established by von Mises in a spirited manner." [Kol:rnogorov] 

The point made is that the axio1ns of probability theory are designed so that 
abstract probabilities can be computed, but nothing is said about what prob­
ability really means, or how the concept can be applied meaningfully to the 
actual war ld. Von Mises analyzed this issue in detail, and suggested that a 
proper definition of probability depends on obtaining a proper definition of a 
• 

random sequence. This makes him a 'frequentist'-a supporter of the frequency 
theory. 

The frequency theory to interpret probability says, roughly, that if we per­
form an experiment many times, then the ratio of favorable outcomes to the 
total number n of experiments will, with certainty, tend to a limit, p say, as 
n > oo. This tells us something about the meaning of probability, namely, the 
measure of the positive outcomes is p. But suppose we throw a coin 1000 times 
and wish to know what to expect. Is 1000 enough for convergence to happen? 
The statement above does not say. So we have to add something about the rate 
of convergence. But we cannot ~~ert a certainty about a particular number 
of n throws, such as ~the proportion of heads will be p ± f for large enough n 
( with c depending on n) '. We can at best say 'the proportion will lie between 
p±€ with at least such and such probability (depending on E and no) whenever 
n > n 0 '. But now we defined probability in an obviously circular fashion. 

Ip 1919 von Mises proposed to eliminate the problem by simply dividing 
all infinite sequences into special random sequep.ces ( called collectives), hq,ving 
relq,tive f:reqµency limits, which are the proper subject of the calculus of p:rob-. ' . . 

abilities &nd othe:r sequences. He postulates the existence of random sequences 
(thereby circumventing circularity) as certified by abundant empirical evidence, 
ip, the manner of physical laws and derives mathematical laws of probability as 

' 

a ponsequ,ence. In his view a naturally occurring sequence can be nonrap.dom 
or unlawful in the sense that it is not a proper collective. 

Von Mises views the theory of probabilities ip.sofar as they are numericall,y 
ff3p:resentaple a~ a physic&l theory of defin\tely observ~ble phenomen,q., 
:repetitive Qf µia,ss events, for instance, as found in games of chance, pop­
µlation statistics, 1,3rownian motion. 'Probf;l.bility' is a primitive :notiou 
of the theory comparable to those of 'energy' or 'mass' in. other physical 
theories. 
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Whereas energy or mass exist in fields or material objects, probabil­
ities exist only in the similarly mathematical idealization of collectives 
(random sequences). All problems of the theory of probability consist of 
deriving, according to certain rules, new collectives from given ones and 
calculating the distributions of these new collectives. The exact formu­
lation of the properties of the collectives is secondary and must be based 
on empirical evidence. These properties are the existence of a limiting 
relative frequency and randomness. 

The property of randomness is a generalization of the abundant ex­
perience in gambling houses, namely, the impossibility of a successful 
gambling system. Including this principle in the foundation of probabil­
ity, von Mises argues, we proceed in the same way as the physicists did 
in the case of the energy principle. Here too, the experience of hunters 
of fortune is complemented by solid experience of insurance companies 
and so forth. 

A fundamentally different approach is to justify a posteriori the ap­
plication of a purely mathematically constructed theory of probability, 
such as the theory resulting from the Kolmogorov axioms. Suppose, we 
can show that the appropriately defined random sequences form a set of 
measure one, and without exception satisfy all laws of a given axiomatic 
theory of probability. Then it appears practically justifiable to assume 
that as a result of an (infinite) experiment only random sequences appear. 

Von Mises' notion of infinite random sequence of O's and l 's (collective) essen­
tially appeals to the idea that no gambler, making a fixed number of wagers of 
'heads', at fixed odds [say p versus 1 - p) and in fixed amounts, on the flips of 
a coin [with bias p versus 1 - p], can have profit in the long run from betting 
according to a system instead of betting at random. Says Church: ''this defini­
tion [below] ... while clear as to general intent, is too inexact in form to serve 
satisfactorily as the basis of a mathematical theory.'' 

DEFINITION 1 An infinite sequence a 1 , a 2 , ..• of O's and 1 's is a random se­
quence in the special meaning of collective if the following two conditions are 
satisfied. 

1. Let f n is the number of l 's among the first n terms of the sequence. Then 

for some p, 0 < p < I. 

l. fn 
1m - = p, 

n )00 n 

2. A place-selection rule is a partial function <:/>, from the finite binary se­
quences to O and 1. It takes the values O and 1, for the purpose of selecting 
one after the other those indices ·n for which </J(a1a2 ... an-I) = 1. We 
require (1), with the same limit p, also for every infinite subsequence 

obtained from the sequence by some admissible place-selection rule. (We 
have not yet formally stated which place-selection rules are admissible.) 
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The existence of a relative frequency limit is a strong assumption. Empirical 
evidence from long runs of dice throws, in gambling houses, or with death 
statistics in insurance mathematics, suggests that the relative frequencies are 
apparently convergent. But clearly, no empirical evidence can be given for the 
existence of a definite limit for the relative frequency. However long the test 
run, in practice it will always be finite, and whatever the apparent behavior in 
the observed initial segment of the run, it is always possible that the relative 
frequencies keep oscillati11g forever if we contin11e. 

The second condition ensures that no strategy using an admissible place­
selection rule can select a subsequence which allows different odds for gambling 
than a subsequence which is selected by flipping a fair coin. For example, let 
a casino use a coin with probability p == 1/4 of coming up heads and pay-off 
heads equal 4 times pay-off tails. This 'Law of Excluded Gambling Strategy' 
says that a gambler betting in fixed amounts cannot make more profit in the 
long run betting according to a system than from betting at random. 

''In everyday language we call random those phenomena where we cannot 
find a regularity allowing us to predict precisely their results. Generally 
speaking, there is no ground to believe that random phenomena should 
possess any definite probability. Therefore, we should distinguish be­
tween randomness proper ( as absence of any regularity) and stochastic 
randomness (which is the subject of probability theory). There emerges 
the problem of finding reasons for the applicability of the mathematical 
theory of probability to the real world.'' [Kolmogorov] 

Intuitively, we can distinguish between sequences that are irregular and do not 
satisfy the regularity implicit in stochastic randon1ness, and sequences that are 
irregular but do satisfy the regularities associated with stochastic randomness. 
Formally, we will distinguish the second type from the first type by whether or 
not a certain complexity measure of the initial segments goes to a definite limit. 
The complexity measure referred to is the length of the shortest description of 
the prefix (in the precise sense of Kolmogorov complexity) divided by its length. 
It will turn out that almost all infinite strings are irregular of the second type 
and satisfy all regularities of stochastic randomness. 

''In applying probability theory we do not confine ourselves to negat­
, ing regularity, but from the hypothesis of randomness of the observed 

phenomena we draw definite positive conclusions.'' [Kolmogorov] 

Considering the sequence as fair coin tosses with p = 1/2, the second condition 
in Definition 1 says there is no strategy <p (principle of excl·uded gambling system) 
which assures a player betting at fixed odds and in fixed amounts, on the 
tosses of the coin, to make infinite gain. That is, no advantage is gained in 
the long run by following some system, such as betting 'head' after each run 
of seven consecutive tails, or (more plausibly) by placing the nth bet 'head' 
after the appearance of n + 7 tails in succession. According to von Mises, 
the above conditions are sufficiently familiar and a uncontroverted empirical 
generalization to serve as the basis of an applicable calculus of probabilities. 

EXAMPLE 1 It turns out that the naive mathematical approach to a concrete 
formulation, admitting simply all partial functions, comes to grief as follows. 
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Let a = a 1a2 ... be any collective. Define c/> 1 as c/> 1 (a1 ... ai-1) = 1 if ai = 1, 
and undefined otherwise. But then p = 1. Defining </>o by </>o(a1 ... ai-1) = bi, 
with bi the complement of ai, for all i, we obtain by the second condition of 
Definition 1 that p = 0. Consequently, if we allow functions like </>1 and c/>o as 
strategy, then von Mises' definition cannot be satisfied at all. 0 

In the thirties, Abraham Wald proposed to restrict the a priori admissible</> 
to any fixed countable set of functions. Then collectives do exist. But which 
countable set? In 1940, Alonzo Church proposed to choose a set of functions 
representing 'computable' strategies. According to Church's Thesis, this is pre­
cisely the set of recursive functions. With recursive <p, not only is the definition 
completely rigorous, and random infinite sequences do exist, but moreover they 
are abundant since the infinite random sequences with p = 1/2 form a set of 
measure one. From the existence of random sequences with probability 1/2, 
the existence of random sequences associated with other probabilities can be 
derived. Let us call sequences satisfying Definition 1 with recursive cp Mises-
Wald-Church random. That is, the involved Mises- Wald-Church place-selection 
rules consist of the partial recursive functions. 

Appeal to a theorem by Wald yields as a corollary that the set of Mises­
Wald-Church random sequences associated with any fixed probability has the 
cardinality of the continuum. Moreover, each Mises-Wald-Church random se­
quence qualifies as a normal number. (A number is normal if each digit of the 
base, and each block of digits of any length, occurs with equal asymptotic fre­
quency.) Note however, that not every normal number is Mises-Wald-Church 
random. This follows, for instance, from Champernowne's sequence (or num­
ber), 

0.1234567891011121314151617181920 ... 

due to D.G. Champernowne, which is normal in the scale of 10 and where the 
ith digit is easily calculated from i. The definition of a Mises-Wald-Church 
random sequence implies that its consecutive digits cannot be effectively com­
puted. Thus, an existence proof for Mises-Wald-Church random sequences is 
necessarily nonconstructive. Unfortunately, the von Mises-Wald-Church defi­
nition is not yet good enough, as was shown by J. Ville in 1939. There exist 
sequences that satisfy the Mises-Wald-Church definition of randomness, with 
limiting relative frequency of ones of 1/2, but nonetheless have the property 
that 

fn 1 - > - for all n. 
n 2 

The probability of such a sequence of outcomes in random flips of a fair coin is 
zero. Intuition: if you bet '1' all the time against such a sequence of outcomes, 
then your accumulated gain is always positive! Similarly, other properties of 
randomness in probability theory such as the Law of the Iterated Logarithm 
do not follow from the Mises-Wald-Church definition. 
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3 RANDOMNESS IN TERMS OF EXPECTATIONS 

For a better understanding of the problem revealed by Ville, and its subsequent 
solution by P. Martin-Lof in 1966, we look at some aspects of the methodol­
ogy of probability theory. Consider the sample space of all one-way infinite 
binary sequences generated by fair coin tosses. Intuitively, we call a sequence 
'random' iff it is 'typical'. It is not 'typical', say 'special', if it has a particu­
lar distinguishing property. An example of such a property is that an infinite 
sequence contains only finitely many ones. There are infinitely many such se­
quences. But the probability that such a sequence occurs as the outcome of fair 
coin tosses is zero. 'Typical' infinite sequences will have the converse property, 
namely, they contain infinitely many ones. 

In fact, one would like to say that 'typical' infinite sequences will have all 
converse properties of the properties ,vhich can be enjoyed by 'special' infi­
nite sequences. This is formalized as follows. If a particular property, such 
as containing infinitely many occurrences of ones ( or zeros), the Law of Large 
Numbers, or the Law of the Iterated Logarithm, has been shown to have prob­
ability one, then one calls this a Law of Randomness. 

An infinite sequence is 'typical' or 'random' if it satisfies all Laws of Ran­
domness. That is, a particular 'random' infinite sequence posesses all properties 
which are expected to hold with probability one for the ensemble of all infinite 
sequences. This is the substance of so-called pseudo-randomness tests. For 
example, to test whether the sequence of digits corresponding to the decimal 
expansion of 1r = 3.1415 ... is random one tests whether the initial segment 
satisfies some properties which hold with probability one for the ensemble of 
all sequences. 

EXAMPLE 2 One such property is so-called normality. E. Borel (1909) has 
called an infinite sequence of decimal digits normal in the scale of ten if, for 
each k, the frequency of occurrences (possibly overlapping) of each block y of 
length k > 1 in the initial segment of length n goes to limit 10-k for n grows 
unbounded, [1]. It is known that normality is not sufficient for randomness, 
since Champernowne's sequence 

123456789101112 ... 

is normal in the scale of ten. On the other hand, it is universally agreed that 
a random infinite sequence must be normal. (If not, then some blocks occur 
more frequent than others, which can be used to obtain better than fair odds 
for prediction.) 

For a particular binary sequence w = w1 w2 ... let f n == w1 + w2 + · · · + Wn • 

Of course, we cannot effectively test an infinite sequence. Therefore, a so­
called pseudo-randomness test examines increasingly long initial segments of 
the individual sequence under consideration. 

We can define a pseudo randomness test for the normality property with k = 
1 to test a candidate infinite sequence for increasing n whether the deviations 
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from one half O's and I's become too large. For example, by checking for each 
successive n whether 

lfn -
n nloglogn 

2 
• 

(The Law of the Iterated Logarithm states that this inequality should not 
hold for infinitely many n). If within n trials in this process we find that the 
inequality holds k times, then we assume the original infinite sequence to be 

n · k · 
random with confidence at most, say, Li-I 1/2i - :Ei=l 1/2i. (The sequence 
is random if the confidence is greater than zero for n goes to infinity, and not 
random otherwise.) 

Clearly, the number of pseudo-randomness tests we can devise is infinite. 
Namely, juf:t for the normality property alone there is a similar pseudo-randomness 
test for each k > 1. 0 

But now we are in trouble. Each individual infinite sequence induces its very 
own pseudo-randomness test which tests whether a candidate infinite sequence 
is in fact that individual sequence. Each infinite sequence forms a singleton set 
in the sample space of all infinite sequences. All complements of singleton sets 
in the sample space have probability one. The intersection of all complements 
of singleton sets is clearly empty. Therefore, the intersection of all sets of 
probability one is empty. Thus, there are no random infinite sequences! 

Martin-Lof, using ideas related to Kolmogorov complexity, succeeded i11 
defining random infinite sequences in a manner which is free of such difficulties. 
His starting point is to observe that all laws which are proven in probability 
theory to hold with probability one are effective. That is, we can effectively 
test whether a particular infinite sequence does not satisfy a particular Law of 
Randomness by effectively testing whether the law is violated on increasingly 
long initial segments of the sequence. 

The natural formalization is to identify the effective test with a partial recur­
sive function. This suggests that one ought to consider not the intersection of 
all sets of measure one, but only the intersection of all sets of measure one with 
recursively enumerable complements. (Such a complement set is expressed as 
the union of a recursively enumerable set of cylinders). It turns out that this 
intersection has again measure one. Hence, almost all infinite sequences satisfy 
all effective Laws of Randomness with probability one. This notion of infinite 
random sequences t,urns out to be related to infinite sequences of which all 
finite initial segments have high Kolmogorov complexity. 

The notion of randomness satisfied by both the Mises-Wald-Church col­
lectives and the Martin-Lof random infinite sequences is roughly that 
effective tests cannot detect regularity. This does not mean that a se­
quence may not exhibit regularities which cannot be effectively tested. 
Collectives generated by Nature, as postulated by von Mises, may very 
well always satisfy stricter criteria of randomness. Why should collectives 
generated by quantum mechanic pher1omena care about mathematical 
notions of computability? Again, satisfaction of all effectively testable 
prerequisites for randomness is some form of regularity. Maybe nature is 
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more lawless than adhering strictly to regularities imposed by the statis­
tics of randomness. 

Until now the discussion has centered on infinite random sequences where the 
randomness is defined in terms of limits of relative frequencies. However, 

''The frequency concept based on the notion of limiting frequency as the 
number of trials increases to infinity, does not contribute anything to 
substantiate the application of the results of probability theory to real 
practical problems where we always have to deal with a finite number of 
trials." (Kolmogorov] 

The practical objection against both the relevance of considering infinite se­
quences of trials and the existence of a relative frequency limit is concisely put 
in J.M. Keynes' famous phrase ''in the long run we shall all be dead.'' It seems 
more appealing to try to define randomness for finite strings first, and only 
then define random infinite strings in terms of randomness of initial segments. 

The approach of von Mises to define randomness of infinite sequences in terms 
of unpredictability of continuations of finite initial sequences under certain laws 
(like recursive functions) did not lead to satisfying results. The Martin-Lof 
approach does lead to satisfying results, and is to a great extent equivalent 
with the Kolmogorov complexity approach. Although certainly inspired by the 
random sequence debate, the introduction of Kolmogorov complexity marks a 
definite shift of point of departure. Namely, to define randomness of sequences 
by the fact that no program from which an initial segment of the sequence 
can be computed is significantly shorter than the initial segment itself, rather 
than that no program can predict the next elements of the sequence. Thus, 
we change the focus from the 'unpredictability' criterion to the 'incompressibil­
ity' criterion, and since this will turn out to be equivalent with Martir1-L6f's 
approach, the 'incompressibility' criterion is both necessary and sufficient. 

Finite sequences which cannot be effectively described in a significant shorter 
description than their literal representation are called random. Our aim is to 
characterize random infinite sequences as sequences of which all initial finite 
segments are random in this sense. Martin-Lof's related approach characterizes 
ra0:dom infinite sequences as sequences of which all initial finite segments pass 
all effective randomness tests. 

Initially, before the idea of complexity, Kolmogorov proposed a close 
analogy to von Mises' notions in the finite domain. Consider a general­
ization of place-selection rules insofar as the selection of ai can depend on 
ai with j > i [A.N. Kolmogorov, Sankhya, Series A, 25(1963), 369-376]. 
Let 4> be a finite set of such generalized place-selection rules. Kolmogorov 
suggested that an arbitrary finite binary sequence a of length n > m can 
be called (m, c)-random with respect to 4>, if there exists some p such 
that the relative frequency of the 1 's in the subsequences ai 1 ••• air with 
r > m, selected by applying some ef> in cl> to a, all lie within € of p. (We 
discard tf> that yield subsequences shorter than m.) Stated differently, the 
relative frequency in this finite subsequence is approximately (to within 
c:) invariant under any of the methods of subsequence selection that yield 
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subsequences of length at least m. Kolmogorov has shown that if the 
cardinality of 'I> satisfies: 

then, for any p and any n > m there is some sequence a of length n which 
is (m, €)-random with respect to 4>. 

4 RANDOMNESS AS INCOMPRESSIBILITY 

We are to admit no more causes of natural things (as we are told by Newton) 
than such as are both true and sufficient to explain their appearances. This 
central theme is basic to the pursuit of science, and goes back to the principle 
known as Occam's razor: ''if presented with a choice between indifferent alter­
natives, then one ought to select the simplest one''. Unconsciously or explicitly, 
informal applications of this principle in science and mathematics abound. The 
conglomerate of different research threads drawing on an objective and abso­
lute form of this approach appears to be part of an emergent applied science 
ranking with information theory and probability theory. 

Intuitively, the amount of information in a finite string is the size ( number 
of binary digits or bits) of the shortest program that, without additional data, 
computes the string and terminates. A similar definition can be given for 
infinite strings, but in this case the program produces element after element 
forever. Thus, a long sequence of 1 's such as 

10,000 times 
-__ ,,,.._ __ _ 
r ' 
11111 ... 1 

contains little information because a program of size about log 10, 000 bits 
outputs it: 

• 

for i := 1 to 10,000 
print 1 

Likewise, the transcendental number 1r = 3.1415 ... , an infinite sequence of 
seemingly 'random' decimal digits, contains but a few bits of information. 
(There is a short program that produces the consecutive digits of 1r forever.) 
Such a definition would appear to make the amount of information in a string 
(or other object) depend on the particular programming language used. 

Fortunately, it can be shown that all reasonable choices of programming 
languages lead to quantification of the amount of 'absolute' information in 
individual objects that is invariant up to an additive constant. We call this 
quantity the 'Kolmogorov complexity' of the object. If an object is regular, then 
it has a shorter description than itself. We call such an object 'compressible'. 

More precisely, suppose we want to describe a given object by a finite binary 
string. We do 11ot care whether tl1e object has many descriptions; however, 
each description should describe but one object. Fron1 among all descriptions 
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of an object we can take the length of the shortest description as a measure of 
the object's complexity. It is natural to call an object 'simple' if it has at least 
one short description, and to call it 'complex' if all of its descriptions are long. 

But now we are in danger of falling in the trap so eloquently described in 
the Richard-Berry paradox, where we define a natural number as ''the least 
natural number that cannot be described in less than twenty words''. If this 
number does exist, we have just described it in thirteen words, contradicting 
its definitional statement. If such a number does not exist, then all natural 
numbers can be described in less than twenty words. We need to look very 
carefully at the notion of 'description'. 

Assume that each description describes at most, one object. That is, there is a 
specification method D which associates at most one object x with a description 
y. This means that D is a function from the set of descriptions, say Y, into the 
set of objects, say X. It seems also reasonable to require that, for each object 
x in X, there is a description y in Y such that D(y) = x. (Each object has a 
description.) To make descriptions useful we like them to be finite. This means 
that there are only countably many descriptions. Since there is a description 
for each object, there are also only countably many describable objects. How 
do we measure the complexity of descriptions? 

Taking our cue from the theory of computation, we express descriptions as 
finite sequences of O's and 1 's. In communication technology, if the specification 
method D is known to both a sender and a receiver, then a message x can be 
transmitted from sender to receiver by transmitting the sequence of O's and 1 's 
of a description y with D(y) = x. The cost of this transmission is measured 
by the number of occurrences of O's and l's in y, that is, by the length of y. 
The least cost of transmission of x is given by the length of a shortest y such 
that D(y) = x. We choose this least cost of transmission as the 'descriptional' 
complexity of x under specification method D. 

Obviously, this descriptional complexity of x depends crucially on D. The 
general principle involved is that the syntactic framework of the description 
language determines the succinctness of description. 

In order to objectively compare descriptional complexities of objects, to be 
able to say ''x is more complex than z'', the descriptional complexity of x should 
depend on x alone. This complexity can be viewed as related to a universal 
description method which is a priori assumed by all senders and receivers. This 
complexity is optimal if no other description method assigns a lower complexity 
to any object. 

We are not really interested in optimality with respect to all description 
methods. For specifications to be useful at all it is necessary that the mapping 
from y to D(y) can be executed in an effective manner. That is, it can at 
least in principle be performed by humans or machines. This notion has been 
formalized as 'partial recursive functions'. According to generally accepted 
mathematical viewpoints it coincides with the intuitive notion of effective com­
putation. 

The set of partial recursive functions contains an optimal function which 
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minimizes description length of every other such function. We denote this 
function by Do. Namely, for any other recursive function D, for all objects x, 
there is a description y of x under Do which is shorter than any description z of 
x under D. (That is, shorter up to an additive constant which is independent 
of x.) Complexity with respect to Do minorizes the complexities with respect 
to all partial recursive functions. 

We identify the length of the description of x with respect to a fixed specifica­
tion function Do with the 'algorithmic (descriptional or Kolmogorov) complex­
ity' of x. The optimality of D 0 in the sense above means that the complexity 
of an object x is invariant (up to an additive constant independent of x) under 
transition from one optimal specification function to another. Its complexity 
is an obje<~tive attribute of the described object alone: it is an intrinsic prop­
erty of that object, and it does not depend on the description formalism. This 
complexity can be viewed as 'absolute information content': the amount of 
information which needs to be transmitted between all senders and receivers 
when they communicate the message in absence of any other a priori knowledge 
which restricts the domain of the message. 

Broadly speaking, this means that all description syntaxes which are power­
ful enough to express the partial recursive functions are approximately equally 
succinct. The remarkable usefulness and inherent rightness of the theory of Kol­
mogorov complexity stems from this independence of the description method. 
Thus, we have outlined the program for a general theory of algorithmic com­
plexity. The four major innovations are as follows. 

1. In restricting ourselves to formally effective descriptions our definition 
covers every form of description that is intuitively acceptable as being 
effective according to general viewpoints in mathematics and logics. 

2. The restriction to effective descriptions entails that there is a universal 
description method that minorizes the description length or complexity 
with respect to any other effective description method. This would not 
be the case if we considered, say, all noneffective description methods. 
Significantly, this implies Item 3. 

3. The description length or complexity of an object is an intrinsic attribute 
of the object independent of the particular description method or formal­
izations thereof. 

4. The disturbing Richard-Berry paradox above does not disappear, but 
resurfaces in the form of an alternative approach to proving Kurt Godel's 
famous result that not every true mathematical statement is provable in 
mathematics. 

Randomness of Individual Sequences Resolved 

The notion of randomness of an infinite sequence in the sense of Martin-Lof, 
as posessing all effectively testable properties of randomness ( one of which 
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is unpredictability), turns out to be identical with the notion of an infinite 
sequence having maximal Kolmogorov complexity of all finite initial segments. 
This equivalence of a single notion being defined by two completely different 
approaches is a truly remarkable fact. (To be precise, the so-called prefix 
Kolmogorov complexity of each initial segment of the infinite binary sequence 
must not decrease more than a fixed constant, depending only on the infinite 
sequence, below the length of that initial segment, [3].) This property sharply 
distinguishes the random infinite binary sequences from the nonrandom ones. 
The set of random infinite binary sequences has uniform measure one. That 
means that as the outcome from independent flips of a fair coin they occur 
with probability one. 

For finite binary sequences the distinction between randomness and nonran­
domness cannot be abrupt, but must be a matter of degree. For example, it 
would not be reasonable if one string is random but becon1es nonrandom if 
we flip the first nonzero bit. In this context too it has been shown that finite 
binary sequences which are random in Martin-Lof's sense correspond to those 
sequences which have Kolmogorov complexity at least their own length. Space 
limitations forbid a complete treatment of these matters here. Fortunately, it 
can be found elsewhere, [3]. 
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